Summary of Experimental Beamline Needs							
from X-ray Science Workshop with Energy Recovery Linac, Cornell Univ, 2 & 3 December 2000							
Experiment	Important Machine	Undulator	Special	Facilitator			
Туре	Parameters	Needs	Concerns				
Microbeam Diffraction	Source size 5 to 50 µm Tapered undulator Scan quickly	10 to 20 keV polychromatic 40 – 40 keV Riso approach Brilliance 100 to 1000 fold improvement	Beam Stability of 10% of source size Thermal stability Long term reproducible beam position	Gene Ice			
Microbeam Fluorescence	Source size 5 to 50 µm	4.5 to 20 keV Scan quickly, Tapered undulator		Gene Ice			
High Pressure Diffraction	Same as Microprobes above	20 to 70 keV Most often: 30 to 35 keV		John Parise			
High Pressure Spectroscopy		4 to 10 keV pink beams polarized (circular)		John Parise			
Femtosecond Spectroscopy	10 fs to 1 ps high current/bunch flux of 1x10 ¹⁰ /bunch/0.1% bw at 10 kHz synchronizing to laser	100 eV to 14 keV Most often: 3 to 10 keV	At sample need 50 υm spot and 100 μmrad divergence	Phil Heinmann			
Femtosecond Diffraction	100 fs to 1 ps separation between pulse of 1 µs flux of 1x10 ⁹ /bunch/0.1% bw	Tapered undulator		Phil Heinmann			
Spectromicroscopy Coherent tomography Holograpy & Diffraction with	Need average brilliance Beyond 1x10 ¹⁸ to 1 x 10 ¹⁹	x-ray of ~ 2 to 4.5 nm, also 0.3 nm	Beam stability, especially for scanning	Chris Jacobsen			
zone plates Single molecule imaging	Short pulse ~ 50 fs Large bunch charge at kHz rep rate	Tapered undulator for spectroscopy with 50 eV range	Need enough info from 1 pulse to align sample				
		magnetics					
Photon Correlation Spectroscopy	As much brillance as possible Repetition rate > 10 MHz	5 to 12 keV pink beam high energy opportunity at 100 keV	Sample coherence diameter: 10 to 50 ν m $\delta E/E \sim 10^{-4}$ to 10^{-2}	Joel Brock			

Nuclear Resonant Scattering	Bunch to bunch separation of 20 to 200 ns	First harmonic tunable between 6 and 18 keV	Large transverse coherence for quasi-elastic scattering	Ercan Alp
	High brilliance in the vertical			1
	and horizontal for			
	polarizer/analyser experiments			
	Variable bunch structure			
Inelastic x-ray scattering			π polarized for	
(sub meV to eV resolution)	Brilliance	First harmonic in the 30 keV	horizontal scattering	Ercan Alp
Time-resolved phonon	Flux	range	spectrometer	
measurements	Low horizontal emittance			
Quasi-elastic scattering			note: 1 THz=4 meV	
Normal Incidence Diffraction				
x-ray metrology	Low emittance		stability	Ercan Alp
x-ray interferometry				
microfocusing at 10 ⁴ to 1				
demag				
Polarized Beam Experiments	Round Beams	5 to 100 keV		
Resonant scattering*	- give uniform angular size and	Undulator rotatable about	That tuning ID doesn't affect	Ken Finkelstein
Faraday rotation	high throughput for 0.1 eV	beampipe (or use Apple II type	other users	
Circular Magnetic Dichroism*	optics	undulator)		
		Standard short period		
		Novel ID designs		

Notes: brilliance in units of x-rays/sec/mm**2/mr**2

* Polarization switching on input (as opposed to low signal end).