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Simulations Electron Cloud in Particle Accelerators

o At CesrTA, primary Low Energy Electrons are produced
from synchrotron radiation (photoelectrons), which may
lead to production of secondary electrons.

Electron Cloud

@ Electron clouds cause instabilities in the positron beams
which limit the maximum beam current in the accelerator.
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Measuring Electron Cloud Density

Simulations

Methods for Measurement of Electron Cloud Density in CesrTA

e @ Measuring Beam Response to E-Cloud (e.g. Tune Shift)

@ Collection of electrons and current measurement (RFA &
Shielded Pickup)
e TE Wave Method
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Measuring Electron Cloud Density

Simulations

Methods for Measurement of Electron Cloud Density in CesrTA

S @ Measuring Beam Response to E-Cloud (e.g. Tune Shift)

@ Collection of electrons and current measurement (RFA &
Shielded Pickup)

o TE Wave Method
Reasons for Using TE Waves:
@ Non-Invasive
o Cheap
@ Localized over Finite Length/Volume

@ Cross-Check with Simulation and other Measurement
Techniques
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Simulations TE Wave Technique
What it does
Uses existing Beam Position Measures resonant frequency
TE Wave Monitor buttons to couple shift — proportional to e-cloud
Method

microwaves into the beam-pipe | density in the volume
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Purpose

Attenuation of Electron
Cloud Density

Grooved

Chamber Beam Pipe Geometry Cross Section
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Purpose

Attenuation of Electron

Installation of new beam-pipe
Cloud Density

assembly in L3

Grooved BPM BPM BPM BPM
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Purpose

Attenuation of Electron

Installation of new beam-pipe
Cloud Density

assembly in L3

Grooved BPM BPM BPM BPM
Chamber Beam Pipe Geometry Cross Section CHIC HV NCHIC HV Blank 49W HV
1800 TiN l TiN l Aluminum l Aluminus ml
Grooved Smooth Grooved Smooth
1600 [
1400 |63 cm—w| |
1200 134.3 cm —|
T e
1000 281 cm —»|
" wisem
419.8 cm —>|
4000 N .
Experimentally:
it was observed that it was possible to
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trap waves within grooved pipe
section at the right frequencies
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Simulatons VORPAL

Vorpal solves Maxwell's equations numerically & handles both
particles and fields.

e ———— e —— ]

Simulation
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Simulatons VORPAL

Vorpal solves Maxwell's equations numerically & handles both
particles and fields.
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Simulation

Bérenger's PML

unphysical; serves purpose of
absorption of wave; as if it were
an infinitely long pipe

Smooth-Grooved-Smooth Pipe with
PMLs at each end in Vorpal
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Frequency Scans
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Frequency Scans

Cutoff Frequencies

Cutoff frequencies were found using simulation for smooth and
grooved geometries. As expected, grooved geometry had lower cutoff.
Smooth: f. = 1.974GHz Grooved: f. = 1.875GHz
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TE Wave

Simulations Frequency Scans

Cutoff Frequencies

Cutoff frequencies were found using simulation for smooth and
grooved geometries. As expected, grooved geometry had lower cutoff.
Smooth: f. = 1.974GHz Grooved: f. = 1.875GHz

E-Field, Smooth Beampipe, Below Cutoff

Frequency Scans

&

MATLAB was then used to
plot voltage data from
VORPAL along length of
beam-pipe.
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Simulations

Phase Difference

Resonances will have an average phase shift close to zero or 7 rad,
indicating that the part of the wave is in or exactly out of phase.

E-Field, f = 1.9045 GHz

@ Standing waves were o
determined using amplitude,
shape, and phase of E-field
along the pipe

Determination of
Resonances

RMS Voltage (V)
H
i

T T T T T T T T

@ Phase shift calculated A

relative to drive point at T R
X = _6 67cm Phase Difference, Average Shift = 0.022035
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@ Average Shift in Grooved
Section only = 0.0220357
rad.
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E-Field, f = 1.9146 GHz
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Determination of
Resonances
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'éi ; Phase Difference, Avg Shift Left = 0.031372, Avg Shift Right = 0.95806
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n =1 Mode

Shortening length of grooved section shifts frequency up, as expected
from behavior of standing waves

E-Fleld, 33cm Grooves, f=1.9068 GHz
E-Fleld, 16.5cm Grooves, 1=19106 Ghz
E-Fleld, 66cm Grooves, 19045 GHz
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66cm: f = 1.9045GHz
33cm: f = 1.9068GHz
16.5cm: f = 1.9106GHz
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n =2 Mode

E-Fleld, 33cm Grooves, 1=1.9167 GHz

P E-Flld, 16.50m Grooves, (=1.9177 GHz
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Resonant Frequencies:
66cm: f = 1.9145GHz
33cm: f = 1.9167GHz
16.5cm: f =1.9177GHz
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Resonant Frequency Shift
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Resonant Frequency Shift
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Resonant Frequency Shift Due to Electron Cloud

Frequencies of 15t Resonance (GHz)

Grooves

E-Cloud Density

W 2eme? [, E2dV

No e~ leld 2el4d

Whole 1.9045 | 1.907 1.910
Half 1.9068 | 1.910 1.912
Quarter | 1.9107 | 1.913 | 1.916

this agrees well with the equation
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Simulations Resonant Frequency Shift Due to Electron Cloud

Frequencies of 15 Resonance (GHz)
E-Cloud Density

No e™ | lel4d 2el4

Whole 1.9045 | 1.907 | 1.910

Half 1.9068 | 1.910 | 1.912

Quarter | 1.9107 | 1.913 | 1.916

Grooves

Resonant Frequency Shift

this agrees well with the equation

Aw, e? fV neEode Frequencies of 2"9 Resonance (GHz)
Electron Cloud = 2 2 E-Cloud Density
S 0 Grooves | No e~ | 1el4 | 2el4

Whole 1.9146 | 1.9155 | 1.917
Half 1.9167 | 1.9175 | 1.918
Quarter | 1.9177 | 1.9185 | 1.919

this doesn't agree quite as well :(
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Experimental
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Position Marker

Bead Pull Method

Shift Due to Dielectric in

Dielectric Bead

—

Resonant Cavity

Bead Pull
Method

Aw [ (1—¢)E3dV
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Bead Pull Method

Shift Due to Dielectric in

Method

—
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Bead Pull on L3 Beam-Pipe
BPM BPM BPM BPM
CHIC H/V NCHIC H/V Blank 49W H/V
NeW beam-pipe TiN l TiN l Aluminuml Aluminum
Grooved Smooth Grooved Smooth ¥
Bead Pul assembly for T
installation in L3 65 cm—s |
was measured using 134.3 cm —>
207.5 |
bead pull method. 25t em
354.3 cm —»

419.8 cm




Bead Pull Method

Spectrum Analyzer

i N nhkrl

| |

at 1.94023 GHz 1.99023 GHz
an 10000 MHz 1 MHz/1 MHz

@ Microwaves were coupled into BPM buttons

Bead Pull

Mcthod @ Bead Pull Method was performed for several resonances at
each BPM detector

@ "Trapped Modes" were observed in grooved sections of
the beam-pipe assembly

@ 6 or 8 measurements were taken at.each BPM detector
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Bead Pull Results |

n =1 and n = 2 Modes Inside Aluminum Grooved Section
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n = 3 Mode Inside Aluminum Grooved Section

Frequency Shift vs. Position
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Frequency Shift vs, Position

Plot 1
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@ Bead Pull Method showed trapped modes in grooved
chamber, which agrees with the standing waves produced
in simulation data

End Matter
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@ Bead Pull Method showed trapped modes in grooved
chamber, which agrees with the standing waves produced
in simulation data

@ Both simulation and experiment show n = 3 mode to
propagate out into smooth chambers

End Matter
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Conclusions

Simulations

@ Bead Pull Method showed trapped modes in grooved
chamber, which agrees with the standing waves produced
in simulation data

@ Both simulation and experiment show n = 3 mode to
propagate out into smooth chambers

@ Simulation data with electron cloud for n = 1 mode agreed
well with theory while n = 2 mode did not agree well

End Matter
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Conclusions

@ Bead Pull Method showed trapped modes in grooved
chamber, which agrees with the standing waves produced
in simulation data

@ Both simulation and experiment show n = 3 mode to
propagate out into smooth chambers

@ Simulation data with electron cloud for n = 1 mode agreed
well with theory while n = 2 mode did not agree well

@ It seems that measurements of electron cloud density
within the newly installed grooved chambers should work
well using the TE Wave Method
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Thank you!

End Matter



Cornell Laboratory for
Accelerator-based Sciences and
Education (CLASSE)

TE Wave
Simulations

Thank you! Questions?

End Matter
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