

Optimization of Elliptical SRF Cavities where v < c

Joel Newbolt

Mentor: Dr. Valery Shemelin

Why v < c?

- Acceleration of large subatomic particles
- Accelerator driven systems (ADS)
 - Neutron Spallation
 - Tritium production
 - Nuclear waste transmutation

INFN Milano Cavity, v/c = 0.5

Elliptical Cell Geometry

Non-reentrant ($\alpha > 90^{\circ}$)

Geometric Constraints

- Half-Cell Length, *L*
- Wall Angle, α
- Equatorial Radius, *R↓eq*
- Aperture Radius, $R\downarrow a$

Reentrant($\alpha < 90^{\circ}$)

Free Parameters

- Equator Ellipse Axes
 - *A* and *B*
- Iris Ellipse Axes
 - *a* and *b*

Geometric Constraints

Half-Cell Length, L

Wall Angle, α

π mode

Geometric Constraints (cont.)

Aperture Radius, *R*↓*a*

 Propagation of higher-order modes (HOMs)

$f\downarrow cutoff \propto 1/R\downarrow a$

- Removed by resistive loads
- Power left in cavity by wakefields

$P \propto 1/R \downarrow a \downarrow \uparrow 3$

 Cell-to-cell coupling in multicell cavities

Equatorial Radius, *R↓eq*

 Tuned to make the frequency of TM↓01 equal to the driving frequency

Peak Fields

Magnetic Quenching

- Superconductor enters a normal conducting state
 - Magnetic field changes too rapidly
 - Magnetic field is too strong
- Causes heating of the material
 - Spreads the region of normal conductivity

Field Emission

- Electrons are emitted from the superconductor
 - Electric field is too large
 - Threshold raised by heat treatment

SUPERLANS

 Simulation for axially symmetric cavities

TunedCell

- Wrapper code for SUPERLANS
 - Adjusts *R↓eq* to make the frequency of TM↓01 equal to the driving frequency
 - Creates geometry file for SUPERLANS
 - Linearly varies free parameters

Goal of Optimization

- Minimize B↓pk /E↓acc (and equivalently H↓pk / E↓acc)
- Optimization constraints
 - Minimum wall angle, α
 - Maximum *Elpk /Elacc*
 - Minimum radius of curvature of the cell (two times the Niobium sheet thickness ≈ 6 mm)

Cavity Optimizer

- Matlab wrapper code for TunedCell
- Minimizes $B \downarrow pk / E \downarrow acc$
- Enforces geometric and electromagnetic constraints

Multi-Cell Cavity Optimization

 Reducing wall angle reduces minimum *H**pk* /*E**acc*

- Same trend for β<1
- Increasing β increases minimum H↓pk /E↓acc

Istituto Nazionale di Fisica Nucleare (INFN)

Free Parameters

- Equator Ellipse Ratio, *R*=*B*/*A*
- Iris Ellipse Ratio, r=b/a
- Wall Distance, *d*
- Wall Angle, *alpha*

Varying Iris Ellipse Ratio

 Produces a minimum Elpk /Elacc for a given R, d and alpha

INFN Extension

- Increasing wall angle increases optimal iris ellipse ratio
- Increasing wall distance increases optimal iris ellipse ratio

Bhabha Atomic Research Center (BARC)

BARC Optimization

- Single-cell cavity
 - β=0.49
 - *A*=*B*=20 mm
 - *a/b*=0.7
 - $R\downarrow a = 39 \text{ mm}$

Multi-Cell Boundary Conditions

- Bpk/Eacc (B
- Bok/Eacc (BARC)
- Qualitatively similar
- Differences attributed to
 - Different levels of free parameter accuracy
 - Different simulation codes (SUPERLANS vs. SUPERFISH)

- Clear minimum in *E\pk* / *E\acc*
- Lower values of E↓pk / E↓acc and B↓pk /E↓acc

Multi-Cell Boundary Conditions 5.5 8.6 Bpk/Eacc (mT/(MV/m)) Epk/Eacc 8.4 45 8.2 3.5∟ 90 7.8 92 94 96 98 100 Wall Angle (degrees) Epk/Eacc ... Epk/Eacc (BARC) Bpk/Eacc

BOR/Eacc (BARC)

BARC Improvement

	BARC Optimization Results			
Free Parameters	<i>A</i> =20 mm	<i>B</i> =20 mm	a/b = 0.7	<i>α</i> =96.5°
Electromagnetic Parameters	<i>E↓pk /E↓acc</i> =4.26		$B\downarrow pk / E\downarrow acc = 8.02 \text{ mT/(MV/m)}$	
	Single-Cell Cavity Optimization			
Free Parameters	<i>A</i> =20.81 mm	<i>B</i> =51.3 mm	<i>a</i> =10.51 mm	<i>b</i> =18.41 mm
Electromagnetic Parameters	$E\downarrow pk / E\downarrow acc = 3.50$		$B\downarrow pk / E\downarrow acc = 8.15 \text{ mT/(MV/m)}$	

- Optimized under BARC constraints ($\beta = 0.49$ and $R \downarrow a = 39$ mm)
- Result for minimum $B \downarrow pk / E \downarrow acc$

Single-Cell Cavity Length

Half-Cell Length

Half-wavelength cell

L = v/4f

$$L=\beta\downarrow g c/4f$$

Beam Pipe Fields

 Electric field decays exponentially into the beam pipe

- Reducing cavity length decreases $B\downarrow pk / E\downarrow acc$
- Reduction from BARC design
 - $B \downarrow pk / E \downarrow acc$ by 8%
 - *E\pk /E\acc* by 17.8%

Future Work

- Continue optimization of cavities with $\beta < 1$
 - Prove reentrant shape is ineffective

 Optimize the shape and length of single-cell cavity with record setting accelerating gradient

Acknowledgements

Special thanks to

- Dr. Valery Shemelin
- Dr. Ivan Bazarov and Dr. Georg Hoffstaetter
- CLASSE Student Researchers

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Funding Agency

National Science
Foundation

