

cuc

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

### Characterization of Equilibrium Emittance with Monte Carlo 8/10/2012

## Zoey Warecki for the CESRTA Collaboration







- Analytic value of horizontal emittance: 2.6 nm
- Measured value from April 2012
  - Emittance<sub>x</sub> ~7 nm
  - Beam size changes with RF Voltage
- We want to resolve these discrepancies





### Tao

- Analytically calculates the equilibrium emittance using Bmad subroutines
- Uses optic functions to compute radiation integrals
- Calculates emittance from radiation integrals

## Element Summation with Fortran90

- Better understand emittance calculations and crosscheck Tao
- Uses Bmad subroutines like Tao but manually calculates radiation integrals



## Monte Carlo Simulation

- Statistically computes emittance
- Simulates a bunch going around the storage ring
  - Generate beam with a Gaussian distribution of particles
  - Track macro particles through the magnets
  - Recompute emittance based on evolved distribution of particles (using sigma matrix)
- By 100,000 turns (5 damping times, >99% damped) the emittance will equilibrate



Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

### **Simulation Methods**

#### Monte Carlo for ideal CesrTA lattice with Taylor Map





## Wiggler Tracking Models

# Different ways to track the particles as they go through the wigglers in ideal CesrTA lattice

- Compute radiation emission differently

| Type of tracking method | Horizontal<br>Emittance | % error from Tao<br>(2.6 nm) |
|-------------------------|-------------------------|------------------------------|
| BDB                     | 5.13 nm                 | 93.7%                        |
| Taylor Map              | 4.28 nm                 | 64.6%                        |
| Symplectic Lie          | 3.28 nm                 | 26.2%                        |

### None of these agree...



# Because of complexities of CesrTA lattices, a simple lattice was introduced

- Tao: 14.51 nm
- Monte Carlo: 15.1 nm +/- 0.2 nm

# **CesrTA** lattice

Simple lattice





### Horizontal Emittances for different types of Lattices

| Energy,<br># wigglers    | Тао           | Monte Carlo            | Element<br>Sum. | MC % err<br>from Tao | ES % err<br>from Tao |
|--------------------------|---------------|------------------------|-----------------|----------------------|----------------------|
| (5.3 GeV)<br>no wigglers | 14.51<br>(nm) | 15.1 (nm)<br>(Average) | 14.57<br>(nm)   | 4.1%                 | 0.41%                |
| (5.3) w/ 1<br>wiggler    | 7.422         | 7.09                   | 7.3728          | 4.5%                 | 0.66%                |
| (5.3) w/ 8<br>wigglers   | 3.99          | 3.98                   | 3.8727          | 0.15%                | 3.0%                 |
| (2 GeV) no<br>wigglers   | 2.255         | 2.27                   | 2.264           | 0.84%                | 0.4%                 |
| (2) w/ 1<br>wiggler      | 1.510         | 1.48                   | 1.1817          | 1.8%                 | 20.1%                |
| (2) w/ 8<br>wigglers     | 1.609         | 1.68                   | .962            | 4.9%                 | 40%                  |



# Effect of periodic noise on magnet strength Ex: add 360 Hz to quad strength in the simple lattice





### Ex: add 60 Hz noise to dipole strength in MA lattice





Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

### **Dispersion in RF cavities**

## Tao: 20.6 nm, Monte Carlo: 8.71 nm





## Results:

- For simple lattice, Tao & MC agree
- Wigglers do not contribute more than 5% to Tao/MC disagreements
- Candidate for other 20% disagreement
  - RF in dispersive region?
- 60Hz and 360Hz not a candidate for this level of disagreement



# Future Studies:

- More extensive testing of Monte Carlo simulations
- RF cavities in dispersive regions
- Connections to measured emittance



## Thanks to:

Dave Rubin Jim Shanks Dave Sagan NSF REU Program and CLASSE

**Questions?**