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Abstract 
The fringe fields of particle optical elements often have a significant influence on particle motion, particularly on the 

higher order aberrations of instruments. Using DA methods, it is possible to compute high order transfer maps of the 
fringe-field region exactly by integration, but compared to the determination of the main field effects, the method is rather 
time ~nsuming. Here we introduce an approximate cal~lation scheme which is very accurate and fast and is therefore 
particularly useful for efficient optimization of field parameters. It works to arbitrary order and yields order by order 

symplectic Taylor maps. With this method, the speed of computing fringe-field maps is typically increased by up to two 

orders of magnitude. 

1. Introduction 

Using propagation operators, the Differential Algebraic 
(DA) methods [1,2] allow very fast computation of high 
order maps of the main-field region of particle optical 
elements. High order transfer maps of the fringe-field 
region, however, can only be calculated accurately using 
rather time consuming n~eri~l integration in DA [l-3]. 
Typically, such integration is up to three orders of magni- 
tude slower than the evaluation of the propagator. Since in 

many cases fringe-field effects of optical elements domi- 
nate aberration coefficients, the effort for their calculation 
thus limits the speed of calculations. 

It is therefore desirable to develop methods for accurate 
and fast approximation of the effects of fringe-field maps. 
The methods should work to arbitrary order and preserve 
the relationships between the matrix elements imposed by 
the symplectic symmetry. Furthermore, it should work for 
any type of instrument to allow application in all the 
various subfields of particle optics. 

In the past, a variety of fast approximations have been 
used. Dowever, all of them have some undesirable features 
which should be circumvented. The mere neglect of 
fringe-field effects, often referred to as Sharp Cut Of 
Fringe Field (SCOFF) approximation, is very inaccurate. 
Low accuracy numerical integration is not accurate and not 
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symplectic. The impulse approximation used in TRANS- 
PORT [4,5] only considers the first and the second order 
and is only applicable for small apertures, Fringe-field 

integral methods, which are employed in the code GIOS 
[6] cannot be used for solenoids and large aperture instru- 
ments, and the obtained maps are in general not symplec- 
tic. Furthermore, the method is so far only available to 
third order, although attempts are being made to extend it 
to fifth order for some cases [71. 

We introduce a method which does not have these 
drawbacks. It is particularly suited for the optimization 
process since the speed and accuracy are most advanta- 

geous when fringe-field maps are computed repeatedly 
with slightly different parameters. This mode of computing 
fringe-field maps has been implemented in the arbitrary 
order code COSY INFINITY [2,8], which was used for the 
computation of all the examples provided in this paper. 

2. Outline of the principles 

A detailed description of the principle of symplectic 
scaling, which forms the basis of the method for the fringe 
field approximation, is given in Ref. [3]. It is not within 
the scope of this paper to describe the relevant nonlinear 
transformations in detail or to dwell on the different 
systems of coordinates which have to be used. Therefore 
we will restrict ourselves to a brief discussion of the key 
ideas of symplectic scaling and then demonstrate its use- 
fulness and its accuracy in several practical cases. 
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Fig. 1. Left: the matrix element (xl xra) for a quadrnpole as a 

function of the field at the pole tip. Right: error A of the 

approximation of (X I xxa) for various expansion orders of the 

reference representation at B = 2 T. 

The sympiectic scaling (SYSCA) approximation is 
based on two rather obvious scaling properties that are 
satisfied by maps of magnetic particle optical elements 

written in geometric coordinates x = (x, x’, y, y’, S,, S,), 
which are for example used in TRANSPORT. These are 
connected to the fact that the maps depend only on the 
ratio of field strength to magnetic rigidity on the one hand 
and on the product of field strength and the size of the 
element on the other hand. 

Thus, once the map of an element is known for a given 
type of beam particle P as a function of the magnetic field 
strength at the pole tip, the first scaling property can be 
used to compute the map for any particle type P *, since 
the trajectory of P * is equivalent to the trajectory of P at a 
different magnetic field. With the second scaling property, 
the map can be computed for any similar element which is 
scaled in size, since the trajectory of a particle is only 
magnified by a scaling factor, if the size of the element is 
magnified and the strength of the field is demagnified by 
the same factor. 

With these two scaling properties, the map of an optical 
element of any size and for any particle can be computed 
once the field dependence of the map for one given size 
and one particle type is known. While usually the map is 
not known as a function of the magnetic field, DA based 
programs can be used to approximate this functional de- 
pendence by Taylor expansion in a straightforward way. 

For theoretical reasons, the resulting approximation can 
be expected to be very accurate. Applying perturbation 
theory to the problem, which is the basis of the f~nge-field 
integral method [9- 1 l], shows that the effects of the fringe 
fields depend on the field in a polynomial fashion, where 

higher order terms arise in higher order perturbation the- 
ory. Since the deviations from the unperturbed orbits are 
small and hence perturbation theory will converge quickly, 
these higher order contributions become less and less 
significant. This phenomenon will become apparent in 
practice in various examples given in the next sections. 

In order to preserve the symplectic symmetry of the 
map, it is necessary to utilize symplectic representations. 
This assures that even after Taylor expansion in the field, 
while not being exact, the resulting map is still symplectie. 

For reasons of speed, it proved advantageous to repre- 
sent the linear part of the map by a generating function and 
the nonlinear part by a single Lie exponent. The generating 
function as well as the Lie exponent depend nonlinearly on 
the magnetic field. Now it is possible to scale not the field 
dependent map, but rather its field dependent symplectic 
representation. This leads to an approximate scaled sym- 
plectic representation representing an approximated scaled 
map which is guaranteed to be symplectic. The field 
dependent symplectic representation, saved in a reference 
file, is the basis for computing maps via symplectic scal- 
ing. 

3. Fringe-field maps 

Traditionally, the main-field region and the fringe-field 
region are separated since the autonomous equations of 
motion in the main-field region can be solved much easier 
than the non-autonomous ones in the fringe-field region. In 
order to describe the difference between the transfer map 
of an optical instrument and the transfer map given by 
only its main-field region, each optical element is sand- 
wiched between so-called entrance and exit fringe-field 
maps that describe the effects attributable to fringe fields 
only. 

The maps of the drift and of the main-field region can 
be computed quickly by explicit formulas and by evaluat- 
ing the propagation operator. The computation of the 
fringe-field maps on the other hand is performed by sym- 
plectic scaling. 

To iHustrate the practical use and accuracy of this 
method, we compute the third order matrix element 
(x, XXIX) of a quadrupole with fringe fields in two ways, 

Table 1 

Angle (a, xa) 

SYSCA DA integration 

(x. xaa) 

SYSCA DA integration 

5” - 0.1360314E - 02 - 0.13683~5E - 02 - 0.6524050E - 01 - 0.6520405E - 01 

10” - 0.7231982E - 03 - 0.72539558 - 03 0.52693898 - 03 0.57957508 - 03 

15” - 0.1033785E - 06 - 0.2891228E - 08 0.7179696B - 01 0.71796788 - 01 
2o” -0.1718367E - 02 -0.17212758 - 02 0.1463239 0.1461203 
25” - 0.96289068 - 02 - 0.9643736E - 02 0.2187553 0.2180152 
30” - 0.2977263E - 01 -0.298158OE - 01 0.2775432 0.2755090 
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Table 2 
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h/T (a, xa) 

SYSCA DA integration 

(x, aaa) 

SYSCA DA integration 

0.0 0.00000 0.00000 0.0109946 0.0109946 
0.1 -2.54411 - 2.54412 0.0400742 0.0400755 
0.2 - 5.08823 - 5.08824 0.1273131 0.1273182 
0.3 - 7.63235 - 7.63236 0.2727113 0.2727228 
0.4 - 10.17647 - 10.17649 0.4762688 0.4762891 
0.5 - 12.72058 - 12.72061 0.7379855 0.7380173 

namely by DA integration of the non-autonomous equa- 
tions of motion, and by sandwiching the main-field map 

into the entrance and exit fringe-field maps obtained by 
symplectic scaling. Fig. 1 shows the dependence of the 
matrix element as a function of field strength as well as the 

accuracy of the SYSCA method for various orders of the 
expansion in field strength. As can be observed, depending 
on the order, the accuracy lies in the range of nine to 

thirteen digits, even if the field strength deviates by a 

factor of two from the reference field strength. 

4. Edge angles and edge curvatures 

In practice, bending magnets often employ edge angles 

as well as edge curvatures to achieve focusing or to 
influence nonlinear matrix elements. In order to avoid the 

computation of a reference file for different edge angles 
and curvatures, in the practical use of the SYSCA method, 
a further approximation is used. The effect of the edge 

shape is evaluated by first applying the fringe-field map of 
a straight edge dipole, and then taking edge angles and 

curvatures up to second order into account analytically in 
the main field of the elements. Higher order curvatures are 

treated in a kick approximation. In this way, edge effects 
and effects depending on finite size are decoupled, which 
is expected to work accurately as long as the perturbations 
due to the finite size of the fringe field are small. 

Table 1 demonstrates the practical accuracy of this 
approximation. In our example, we used a dipole of radius 
2 m, a bend angle of 30”, and an aperture of 1 in. The 

Taylor coefficients (a, xa) and (x, xun) were computed 
with SYSCA (left) and with accurate numerical integration 

in DA (right) for different edge angles. In all examples, the 
entrance and the exit edge angle are equal. 

5. SYSCA for superimposed multipoles 

The computation of the effect of the fringe field of 
superimposed multipoles can be achieved in a similar way 
as in the case of edge angles and curvatures. The total 
effect is approximated by applying the individual multi- 
pole fringe-field maps sequentially. While appearing crude, 
because of the perturbative nature of the various fringe-field 

maps, the method actually gives very accurate results. In 
Table 2, SYSCA (left) and exact DA integration (right) 
were used to compute coefficients of the fringe-field map 
of a magnetic quadrupole which is superimposed with a 
magnetic hexapole. The device has an aperture of 1 in. and 

is 0.5 m long. The pole-tip field of the quadrupole was 1 T 
and the pole tip-field B, of the hexapole is given in 
Table 2. 

6. Approximating maps of solenoids with SYSCA 

While primarily geared towards the entrance and exit 
fringe fields of particle optical elements, the SYSCA 
method can also be used in cases where these fringe fields 
overlap. A typical example is the magnetic solenoid, in 
which the fringe fields even provide the focusing proper- 
ties, and which otherwise can only be treated by DA 

integration. In this case it is advantageous to not perform a 
separation into parts, but to treat the whole element in one 
piece. 

In Table 3 the focal length and the third order opening 

aberration of a solenoid is shown, calculated both by exact 
DA integration and by using the SYSCA method. Appar- 

ently, SYSCA is reliable over a wide range of focal 
lengths. The solenoid used has a length of 6 mm and an 
aperture of 4 mm, and B, is the field in the center. 

7. Spectrograph calculations 

In this section, we illustrate the use of the method for a 
practical high-order calculation using the high-resolution 

large-acceptance spectrograph S800 and its dispersion 

Table 3 

&/T fmm (x, aaa) mm 

0.10 168.3905 168.4225 2.711050 2.713369 
0.15 75.6999 75.6974 2.363293 2.363727 
0.20 43.2568 43.2555 1.890587 1.890608 
0.25 28.2534 28.2529 1.310832 1.310838 
0.30 20.1181 20.1180 0.646378 0.646473 
0.35 15.2287 15.2288 -0.076121 - 0.075216 
0.40 12.0723 12.0729 - 0.825480 - 0.822073 
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matching beamline, which are under construction at NSCL. 

We begin by performing an adjustment of the operating 

parameters of the device using the code COSY, which 
requires fitting of 14 linear and 6 second order conditions. 
This was done using different computation methods for the 

fringe fields; as is apparent, the SYSCA method provides a 
dramatic improvement in computation speed: only main 
fields with propagator: 51 s; fringe fields with DA integra- 
tion: 7 h 11 min; fringe fields with SYSCA: 6 min 

38 s. 
As a second example, we study the A1200 isotope 

separator [12] at NSCL. Linear and nonlinear effects are 
analysed to demonstrate on the one hand the necessity of 
taking fringe fields into account and on the other hand the 

accuracy which is achieved with SYSCA. 
To show the effect of fringe fields to first order, we 

compare quadrupole settings which satisfy the first order 
conditions of the beamline for different fringe-field maps. 

The fringe fields were described by Enge functions, and 
the Enge coefficients have been fitted to measured field 

data. The CPU time used for the fit was 3 min for SYSCA 
versus two hours for numerical integration in DA. 

To demonstrate SYSCA’s accuracy for nonlinear ef- 
fects, we study the tilt angle 0 of the dispersive image 
plane and the opening aberration Co. In the discussed 
device the coefficient (x 1 au> vanishes because of symme- 
try of the axial ray and anti-symmetry of the dipole fields; 
therefore (x 1 am) is the relevant opening aberration, 

CXlU6> 
@=_ \-‘--’ 

(ulu)(xls>’ 
C,=(xluuu). 

Table 4 shows 0 and Co for various fringe-field 
models. The third order aberration is totally inaccurate if 
fringe fields are disregarded. This table also shows that 

quadrupole fringe fields, although often disregarded, can 

have effects which dominate over dipole fringe fields. 

Table 4 

0 and Co with SCOFF approximation 80.8840” - 65.96 m 

0 and Co with dipole fringe fields only 81.1696” -65.96 m 

0 and Co with quad fringe fields only 81.2694” - 682.68 m 

0 and Co with SYSCA approximation 81.2701” -687.10 m 

0 and Co with actual fringe fields 81.2702” - 687.10 m 

lmm O& Imm 

Fig. 2. Beam spots obtained with the exact map (left), with 

TRANSPORT approximation (middle) and with SYSCA approxi- 

mation (right). Notice the difference in scale. 

The combined effect of several nonlinear coefficients 
can be seen by sending a cone of particles through the 
seventh order map of the A1200. The images with SCOFF 
and SYSCA approximation as well as the exact calculation 
are shown in Fig. 2. The maximum angle used is 15 mrad. 
Note that due to the difference in scale, the beam spot 

computed with SCOFF is only one tenth as big. Trusting 
SCOFF would lead to a loss of most of the beam. 
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