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Abstract: In a high energy proton ring spin motion depends strongly on the orbital
motion in phase space. This affects the acceleration process as well as the storage
regime. It is therefore necessary to find a theoretical basis that goes beyond the
models that proved to be successful in low energy proton spin dynamics. We present
some numerical results of a study based on the concepts of the invariant spin field
and the amplitude dependent spin tune. These concepts enable us to identify and
classify higher order depolarizing resonances and help us to find means to fight
them.

1 Introduction

The motion of the unit spin vector S in the rest frame of a relativistic charged particle travelling
in electric and magnetic fields is governed by the Thomas-BMT precession equation, which takes
the form dS/dH =Q(v,2,0) x S where 6 is the azimuthal position in the ring, Z is the position
in phase space and v = E/m is the Lorentz factor.

1.1 The Invariant Spin Field

In the following we will assume the equations of orbltal motion in 6- dimensional phase space
to be integrable: Z = Z(J \I/) J = const. \I/(Q) = Uy 4+ Q6. An arbitrary initial spin S; is

mapped to a final spin Sf by means of an orthogonal spin transport matrix R,

A

Sy =R07,059,) S . (1)

We define a general spin field on a torus J = const. as a function f : [0,27)? X R +— S; that
maps the “angle space” x azimuthal domain onto the unit sphere and is, if evaluated along
each orbital trajectory Wo + Q 6, a solution of the T-BMT equation
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The evolution equation of a spin field known on a given torus .J =const. at some arbitrary 6;
reads as

F(Ui+ (07 —0)Q,67) = R{0,0559,) [(V;,0,) , VO . (3)
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The invariant spin field (= Derbenev—Kondratenko ni—axis ) [1, 2, 3] is defined to be the spe-
cial spin field of unit length that is periodic w.r.t. 6, fzf(\I_},Q) = fzj(\I_},@ + 27) and it de-
scribes the equilibrium polarization distribution of the beam|[4]. The n-axis can be computed
non—perturbatively using Fourier analysis[5], stroboscopic averaging[3] and anti—-damping[6]. A
special realization of anti-damping in the presence of an RF dipole is described in [7].

It can be shown that the time averaged polarization on some fixed torus J =const. at some
azimuth # and for a given fixed energy m~ cannot be greater than the static polarization limit
defined by the average of the n—axis on that torus evaluated at 6 and ~

P (], 0,~) = H<ﬁf(q7,e,7)> (4)

¥
The actual polarization on a torus after acceleration to v depends on the history of the
acceleration process. In our ramp-simulations we therefore choose an ensemble of N spins
{Sj(einj,fyinj) = ﬁj(q_}j,@inj,%nj)hgjgN at injection energy, then ramp the ensemble to v and
define the “ramped polarization” as the combination of the ensemble average and the average
over a sufficiently large number of turns at constant final ~

S Plim(j‘7977) : (5)

J

Ponp(J,7,6) = H <<‘§f'(9’7)>mms>

If the acceleration process were an adiabatic evolution through stationary states, then 5‘(67 y) =
n7(V(0),0,~v) and we would obtain the limiting case Pump = Piim.

1.2 The Amplitude Dependent Spin Tune

In order to obtain a complete action—angle representation of spin motion [8] we must assign to
each point in phase space an orthonormal coordinate system (7 7, ﬁ}, ﬁ?) which is periodic in

¥ and 6 and in which the spin precession rate around n is constant along each trajectory on
the torus .J =const. and independent of starting azimuth and orbital phases. The spin phase
advance per turn in this frame divided by 27 is called the spin tune V(j, 7). For each arbitrary
initial spin S; at (\I_}Z',Hi = 0) we can compute the spin action I = S; - ﬁ(\I_}i,O) and the spin
phase &, = arctan(é} . ﬂQ(\I_}Z',O)/SA} . ﬂl(\I_}i,())). Then the spin motion can be written in the
form

S(0) = V1 — 2 R{(0" +i0?) e CH®L 1 1 py (6)

which simply describes a rotation around n with constant rate. The spin tune can be computed
by an averaging method[9] and the Fourier analysis[5] method returns it automatically while
computing the fn—axis. The spin tune on the closed orbit () is just 1/(6,7). In the purely
vertical field on the closed orbit of a perfectly flat ring vy = Gy where G = ¢g/2 — 1 ~ 1.7928
is the gyromagnetic anomaly of the proton.

1 »2

The vectors @', u* as well as the amplitude dependent spin tune are not unique. We can use

another periodic system 4, a3 which differs from @', 4* by some uniform rotation of 27T(ko—|-];'é)

per turn around n. The corresponding spin tune will be v + ko + k- C_j But there is normally

only one branch for which limy 5 V(j,’y) = 1p(y). For this branch we define the spin tune

spread inside some torus .J =const. as maxy<s, v(J',y) — ming<y v(J', 7). f vy = 1/2 as is
enforced by Siberian Snakes in all our simulations, all potential resonance positions k£ = [n@),]
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are symmetric around 1/2, where we have introduced the brackets [] to mean the fractional
part. In this case a resonance crossing at x can occur if maxy<y, [v —1/2| > |k — 1/2]. 1f the

spin tune is in resonance with the orbital tunes: I/(j, y) =mo+m- Cj, we can find a coordinate
system in which an arbitrary spin does not precess. Then the n—axis is not unique. Moreover
near to strong resonances n is a strongly varying function of ¥ and B;,, can be small.

2 Special Features of HERA—p

The HERA proton ring consists of 4 arcs and 4 straight sections. In the arcs the p-ring is located
above the e*-ring. The p- and ef-beams are only brought to collision in the South (S) and
North (IN) straight sections. Therefore these straights include mini-beta regions and magnets
for horizontal beam separation. The East (O) straight contains the HERMES internal target
experiment which only uses the e*~beam. The 3—functions for the p-ring are rather relaxed in
the Fast. Nevertheless, the Fast straight is potentially designed for colliding beam experiments
and hence both beams are separated only horizontally. Finally, in the West (W) straight the
p—beam is used in the HERA-B fixed target experiment and has rather high f—functions and
negative horizontal dispersion at the IP.

In order to have both beams in one horizontal plane at the O-,5-,N-IPs there are sections
made from interleaved horizontal and vertical bends (and quadrupoles) at the ends of the arc
octants OL,OR,SL,SR,NL and NR, where L./R means left /right of the IP when looking in the
outwards radial direction. The vertical bends are located inside of the combined matching-
dispersion suppressor—sections. The HERA arcs outside the vertical bend sections consist of
24 FODO-—cells of which the inner 18 (with QP42/QP40 magnets) are strictly periodic and the
outer 2 x 3 already belong to the matching sections. In the vertical bend sections and just
outside of them there is generally enough space (10-14m) to place Siberian Snakes, whereas
putting snakes in the centres of the arcs would require additional hardware modifications.

We conclude that HERA—p is not a flat ring so that the on—orbit spin tune vy # G~ and ng
is strongly energy dependent in the unmodified machine ! In order to make ng vertical in the
arcs the concept of flattening snakes [10, 11] was introduced whereby 6 radial Siberian Snakes
are placed at the symmetry points of the 6 vertical bend sections, transforming their on-orbit
spin transport maps into the maps of radial snakes themselves. These 6 distributed snakes[12]
then cancel themselves pair wise since they are separated by straight sections only. There are
also some advanced ideas[12] on combining flattening-, main-snakes and 90° spin rotators. 3
out of 4 straight sections are surrounded with vertical bend sections, which immediately implies
a superperiodicity P = 1 ! Nevertheless the lattice has a “very approximate” superperiodicity
P = 4. Neglecting the fact that the O- and W-straights are themselves slightly left/right
asymmetric, one finds an approximate mirror symmetry w.r.t. the O-W-axis. So an optimal
scheme for placing the 4 main snakes should reflect this level of symmetry.

3 Simulations

In all of our simulations we work with the 1996 set of optics and with an unperturbed machine.
For the effect of misalignments see [13]. In figure 1 we plot the static polarization limit B, and
the amplitude dependent spin tune v vs. the reference momentum pg computed with the new[5]
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SODOM algorithm as implemented in SPRINT. Here the layout of the snake scheme is motivated
by the approximate fourfold superperiodicity of HERA—p. The scan is done for purely vertical
orbit motion on an invariant ellipse that corresponds to a beam size of 2.5¢, i.e. an emittance
of 257 mm mrad. Py, is wildly oscillating between 0-90% in certain regions showing that the
average opening angle of the invariant spin field is strongly varying with energy. The spin tune
on that torus also varies strongly with energy (0.4-0.65). With these large spin tune variations
and with a fractional tune of [@Q),] &~ 0.2725 several resonances v = ko + kQ, with k = £2,+9
are met when scanning the energy. We see that the spin tune performs rather large symmetrical
jumps across the resonance lines indicating strong excitation of these resonances. As expected,
Bim is particularly wild and its local maxima are particularly small in the neighbourhood of
spin—orbit resonances. In order to obtain and maintain a polarized beam in HERA-p at an

96-lumi-opt / 1blb / 25cvert. / SODOM 96-lumi-opt / 1blb / 25cvert. / SODOM
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Figure 1: Pim (left) and v (right) for the 1996 HERA—p luminosity optics in the momentum
range from 500GeV to 1TeV evaluated on a phase space torus which corresponds to a vertical
beam size of 2.50. There was no horizontal or longitudinal amplitude. The laltice contains
interleaved radial (O, W) and 45° (S,N) snakes plus 6 radial flattening snakes in the centres of
the vertical bend sections (2x 0,2xS,2x N). The tune is Q, ~ 32.2725.

energy ~ 820GeV, spin motion has to be controlled much more effectively than is possible
with a “classical” snake scheme and the old tunes. Recent studies[14] have shown that simply
adding more snakes does not always improve the spin stability. A snake scheme has to be found
that reduces the large spin tune spread and the orbital tunes have to be optimized in order to
allow for the biggest possible spin tune spread without reducing the dynamic aperture of the
ring too drastically. This was done indirectly with the method of filtering[15] which involves
maximizing the average over energy of the linearized static polarization limit <Plgrlr3>40_820@ev by
choosing optimal snake angles. The scheme obtained by filtering (see figure caption 3 for the
snake angles) reflects the real symmetry properties of HERA—p. Figure 2 shows the possible
resonant spin tune positions £ = [n@,] for |n| < 19 and 0.27 < [@,] < 0.305. The normal
luminosity tunes are (), ~ 31.292 and @), ~ 32.297 so that the design orbit spin tune with
snakes vg = 1/2 is rather close to the 5-th order resonance conditions 5[@,] — 1 &~ 0.485 and
2 —5[Q,] ~ 0.515. This vertical tune is surely not optimal for ramping a polarized beam since
the allowable magnitude of spin tune variations is limited to < +.015. With [@Q,] below 0.285
and above 0.31 the dynamic aperture is strongly reduced but there is enough space close to the
[Q,] = 2/7 ~ 0.2857 orbital resonance. Thus the following simulations are for modified tunes

Q: ~ 31.291 and @, ~ 32.286 and for the optimized/filtered snake scheme. In figure 3 Rin
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Depolarizing Resonance Space : kK = [n Q]
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Figure 2: The possible resonant spin tune positions k = [nQ,] for |n| < 19 as a function of the
fractional vertical tune [Q,]. Note the rather big gap around k = 1/2 close to the 7-th order
orbital resonance [Q,] = 2/7 ~ 0.2857.

and v are plotted on the same phase space torus as in figure 1 under the optimized conditions
and for the complete HERA—p ramp file sequence. The snake scheme, although optimized for
maximal P, reduces the maximum spin tune spread to < 4.04 which is nicely inside the
window |v — vp| < .045 at [@,] = 0.286 so that no resonance conditions are fulfilled for pure
vertical motion on the whole acceleration cycle. Obviously the energy dependence of Py, is
much weaker even up to 820GeV and maxima of Py, ~ 95% can be found close to 820GeV.
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Figure 3: Pim (left) and v (right) for a file sequence from injection- (hping0) via intermediate-
(hpzw300) to the separation optics (hpse820) holding the vertical tune close to [Q,] = 0.286.
The “main” snakes are, from O to N: longitudinal, —45°, radial, +45°. The flattening snakes
are as in figure 1. Again the vertical phase space is exciled to 2.50 whereas horizontal and
longitudinal planes are not excited at all.

Figure 4 finally shows the results of typical ramp simulations with the optimized snake
scheme and tunes. Py, is plotted on a torus with 2o (left) and 2.50 (right) beam size in all 3
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planes. Due to the additional effect of the horizontal and longitudinal motion Py, is expected
to be a little less than with purely vertical motion. Thus P, is quite close to Fjm over the
whole acceleration process in the case of 20. Unfortunately for 2.50, polarization is lost already
around 400 GeV at certain residual resonance structures. Similar simulations with solely 2.50
vertical motion have shown that polarization is conserved up to ~800 GeV. Furthermore in
ramp simulations with large horizontal and longitudinal amplitudes but moderate vertical am-
plitude the polarization survives up to 820GeV. There is a particularly nasty residual resonance
structure at about 804GeV[14] and about 2.50 which we did not manage to circumvent yet.
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Figure 4: Pump for a lypical acceleration process using the file sequence as in figure 3. (Left):
The particles are on a phase space torus with 20 in all three phase space planes. (Right): Same
as left but 2.50 in all three planes.

4 Conclusion and Outlook

If we neglect the effects of misalignments and non—linear orbital motion, then with a properly
filtered /optimized scheme including 4 main- and 6 flattening snakes and with carefully chosen
orbital tunes, it seems possible to accelerate polarized protons up to or close to 820GeV within
emittances which correspond to approximately 2¢ in all three phase space planes. By restrict-
ing one or two phase space planes to moderate amplitudes, beam sizes of up to 2.5¢ in the
other plane(s) could be accelerated without loss of polarization. This success shows that static
calculations of Plim(j, v) and V(j, 7v) provided very useful guidance for identifying and fighting
potentially dangerous regions in energy and orbital action.

Since the limits seem to be due to the spin tune spread during the acceleration and the
opemng angle of the n distribution at the working energy and since both effects vanish for
J — 0, electron cooling in PETRA or HERA[16] should be pursued. An emittance reduction
to 1/5 in the vertical plane alone would already help a lot since spin motion becomes particularly
sensitive to the horizontal and longitudinal degrees of freedom only at high vertical amplitudes.

More simulations must be done including misalignments, non—linear orbit motion, collective
phenomena, and sources of spin diffusion like intra—beam scattering and eventually the electron
cooling itself.
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