COSY Summer School 2002

Accelerator R ings with Polarized Beams and Spin Manipulation

Spin Physics in HERA

Phobos und Deimos

- Alle Monde waren vor Dämpfung in die Spin-BahnResonanz chaotisch
. In den chaotischen Bereichen hatten alle Monde 0

The Electron Beam

Georg.Hoffstaetter@DESY.d

Generation of the Emittance

Stronger focusing \longrightarrow Smaller dispersion \rightarrow Smaller emittance

Self Polarization of the Electron Beam

Each 10^{10}-th photon flips the spin of the electron

In HERA every 38.5 minutes

In HERA every 16.2 hours

Ideal ring: equilibrium polarization 92.38\% HERA: routine operation with 60-65\% polarization

First longitudinal lepton polarization

VEPP	1970	80%	0.65 GeV
ACO	1070	90%	0.53 GeV
VEPP-2M	1974	90%	0.65 GeV
VEPP-3	1976	80%	2.0 GeV
SPEAR	1975	90%	3.7 GeV
VEPP-4	1982	60%	5.0 GeV
CESR	1883	30%	5.0 GeV
DORIS	1983	80%	5.0 GeV
PETRA	1982	70%	16.5 GeV
LEP	1993	57%	47 GeV
HERA	1994	70%	27.5 GeV

Longitudinal Electron Polarization

Polarized Proton Beams

- Resonance excitation by the Stern-Gerlach Effect
\Rightarrow requires extremely difficult phase space gymnastics
- Spin flip by scatterin of polarized electrons
\longrightarrow very long polarization time
- Spin filter with polarized target (FILTEX at TSR) very long polarization times and for low energies
- Acceleration of polarized protons from rest

RHIC	$100 \mathrm{GeV} / \mathrm{c}$
AGS	$25 \mathrm{GeV} / \mathrm{c}$
ZGS	$12 \mathrm{GeV} / \mathrm{c}$
COSY	$3.65 \mathrm{GeV} / \mathrm{c}$
SATURN II	$3.6 \mathrm{GeV} / \mathrm{c}$
IUCF	$0.7 \mathrm{GeV} / \mathrm{c}$
PSI Cyclotron	$0.59 \mathrm{GeV} / \mathrm{c}$

The Structure of the Proton

Proton:
Ground state of a system of two u and one d quark

Then one should find:

- Proton momentum

Proton spin

= Sum of quark momenta
= Sum of quark spins

The Momentum of the Proton

$\mathrm{q}(\mathrm{x})$:

Probability of scattering on a quark or anti-quark which carries the fraction x of the proton's total momentum

The momentum puzzle
$\int_{0}^{1} x \cdot q(x) \cdot d x=0.5$

Gluons carry 50\% of the proton's momentum

OCD Model of the Proton

The proton is a highly relativistic, bound state of u and d quarks. Additionally gluons, as field quanta, create quark / anti-quark pairs.

Georg.Hoffstaetter@DESY.d

The Spin Puzzle

S
: quark contribution to the proton spin
DG
$\mathbf{D} L_{q, G}$
: gluon contribution to the proton spin
: angular momentum contribution

$$
\frac{1}{2}=\frac{1}{2} \Sigma+\Delta G+\Delta L_{q, G}
$$

Measurements at SLAC-CERN-DESY and integration:

$$
\int_{0}^{1} \ldots \cdot d x \approx 0.27
$$

Quarks carry only 20-30\% of the proton's total spin

Goals

- Determination of $\mathrm{S}, \mathrm{D} G, \mathrm{D} L_{q, G}$
- Spin contribution of the individual quark types
- Test of QCD
- Scattering between polarized photon and proton
- How relativistic is the proton?

Experiment:

Scattering of polarized proton beams on polarized electron beams

Polarized Protons at DESY

HERA and its Pre-Accelerator Chain

Polarized H" source

Rb thickness (10^{15} atoms $/ \mathrm{cm}^{2}$)
But there is potential for higher polarization and for higher current

The Equation of Spin Motion

Restframe: $\quad \frac{d \vec{s}}{d t^{\prime}}=\frac{g q}{2 m} \vec{s} \times \vec{B}^{\prime}$
Search for 4-vector EOM like: $\frac{d}{d \tau} U^{\mu}=\frac{q}{m} \cdot F^{\mu v} U_{v} \Longleftrightarrow \frac{d}{d t} \vec{p}=q \cdot(\vec{v} \times \vec{B}+\vec{E})$
Spin 4-Vector: $\quad S^{\mu}=\left(S_{0}, \vec{S}\right)=\operatorname{LorentzTrafo}[(0, \vec{s}), \vec{\beta}]=\left(\gamma \vec{\beta} \cdot \vec{s}, \gamma \vec{s}_{\|}+\vec{s}_{\perp}\right)$
$\longrightarrow S^{\mu} U_{\mu}=S_{0} c \gamma-\vec{S} \cdot \vec{v} \gamma=0, \frac{d}{d \tau}\left(S^{\mu} U_{\mu}\right)=U_{\mu} \frac{d}{d \tau} S^{\mu}+S^{\mu} \frac{d}{d \tau} U_{\mu}=0$
Allow linear dependence on velocity, acceleration, spin, and fields:

$$
\begin{aligned}
\frac{d}{d \tau} S^{\mu}= & \mathrm{a} \cdot V^{\mu}+\mathrm{b} \cdot \frac{d}{d \tau} J^{\mu}+\mathrm{c} \cdot J^{\mu}+\mathrm{d} \cdot F^{\mu v} U_{v} \\
& +\mathrm{e} \cdot F^{\mu \nu} S_{v}-\frac{1}{\mathrm{c}^{2}}\left(S_{v} \frac{d}{d \tau} U^{v}\right) U^{\mu}+\frac{\mathrm{e}}{\mathrm{c}^{2}}\left(S_{\eta} F^{\eta v} U_{v}\right) U^{\mu} \quad \text { e }=\frac{g q}{2 m}
\end{aligned}
$$

The Thomas BMT-Equation

$$
\frac{d}{d t} \vec{s}=\vec{\Omega}_{B M T}(\vec{r}, \vec{p}) \times \vec{s}
$$

$$
\vec{\Omega}_{B M T}(\vec{r}, \vec{p})=-\frac{q}{m}\left[\left(\frac{1}{\gamma}+G\right) \vec{B}-\frac{G \vec{p} \cdot \vec{B}}{\gamma(\gamma+1) m^{2} c^{2}} \vec{p}-\frac{1}{m c^{2} \gamma}\left(G+\frac{1}{\gamma+1}\right) \vec{p} \times \vec{E}\right.
$$

$$
G=\frac{g-2}{2}= \begin{cases}\text { Protons } & G=1.79 \\ \text { Deuterons } & G=-0.143 \\ \text { Electrons } & G=0.00116\end{cases}
$$

$$
\begin{aligned}
\frac{d \vec{p}}{d t} & =\left(\frac{-q}{m \gamma}\right)\left\{\quad \vec{B}_{\perp}\right. \\
\frac{d \vec{S}}{d t} & =\left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}\right\} \times \vec{p}
\end{aligned}
$$

Georg.Hoffstaetter@DESY.d

Spins in a transverse magnetic field $\left.\frac{d \vec{d}}{d t}=\left(\frac{-q}{m}\right) \gamma \quad \vec{B}_{\perp} \quad \quad \quad\right) \times \vec{p}$ $\frac{d \vec{S}}{d t}=\left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}\right\} \times \vec{S}$
 $$
d \phi_{p}=\frac{d p}{p}=-\frac{q B_{\perp}}{m \gamma} \frac{d l}{v}
$$

- Relative to the direction of the momentum, the spin rotation of relativistic particles does not depend on energy Protons: $\quad 5.48$ Tm rotate by Deuterons: 137.2 Tm rotate by Electrons: $\quad 4.62$ Tm rotate by

$$
d \phi=-\frac{q G}{m} B_{\perp} \frac{d l}{v}
$$

- Devices can be built which rotate spins independent of energy.

$$
\begin{aligned}
& \text { Spin-tune in a flat ring } \\
& \frac{d \vec{p}}{d t}=\left(\frac{-q}{m \gamma}\right)\left\{\quad \vec{B}_{\perp} \quad\right\} \times \vec{p} \\
& \frac{d \vec{S}}{d t}=\left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}\right\} \times \vec{S}
\end{aligned}
$$

Spin-tune Gg: Number of

COSY

 spin revolutions per turn ν3.3 GeV/c Protons: $\quad \mathrm{Gg}=6.54$
3.3 GeV/c Deuterons: Gg =-0.29

Accelerator ring

920 GeV/c Protons: $\quad G g=1756$ and 1 more each 523 MeV $920 \mathrm{GeV} / \mathrm{c}$ Deuterons: $\mathrm{Gg}=-70$ and 1 more each 13119 MeV at $5 \mathrm{GeV} / \mathrm{c}$ Electrons: $\quad \mathrm{Gg}=62.5$ and 1 more each 442 MeV

Spin-kick ${ }^{\phi_{\xi^{\prime}}}$

$$
\begin{aligned}
& \frac{l \vec{p}}{l t}=\left(\frac{-q}{m \gamma}\right)\left\{\quad \vec{B}_{\perp} \quad\right\} \times \vec{p} \\
& \frac{\vec{S}}{l t}=\left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}\right\} \times \vec{S}
\end{aligned}
$$

$$
\phi_{\vec{S}}=(G \gamma+1) \phi_{1}
$$

COSY
3.3 GeV/c Protons:
3.3 GeV/c Deuterons:
spin-kick
12
12
orbit deflection
11.9 deg
126.6 deg
orbit deflection
0.89 mrad
$-22.1 \mathrm{mrad}$
24.8 mrad

Spin rotation in solenoids

$$
\begin{aligned}
\frac{d \vec{p}}{d t}= & \left(\frac{-q}{m \gamma}\right)\left\{\quad \vec{B}_{\perp}\right. \\
\frac{\vec{S}}{d t}= & \left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}\right. \\
& \text { COSY } \\
& \text { 3.3 GeV/c Protons: } \\
& \text { 3.3 GeV/c Deuterons: }
\end{aligned}
$$

spin-rotation solenoid field
12.39 Tm
40.35 Tm

HERA 920 GeV/c Protons: 920 GeV/c Deuterons: $27.5 \mathrm{GeV} / \mathrm{c}$ Electrons:

spin-rotation solenoid field 3456 Tm
11250 Tm 288 Tm

Orbit rotation in solenoids

$m \ddot{\vec{r}}=q \dot{\vec{r}} \times \vec{B} \quad$ with $\quad \vec{B}=-B_{z}^{\prime} \frac{\rho}{2} \vec{e}_{\rho}+B_{z} \vec{e}_{z} \quad$ so that $\quad \vec{\nabla} \cdot \vec{B}=0$
$\vec{r}=\rho \vec{e}_{\rho}+z \vec{e}_{z}$,

$$
\ddot{\vec{r}}=\left(\ddot{\rho}-\rho \dot{\varphi}^{2}\right) \vec{e}_{\rho}+(2 \dot{\rho} \dot{\varphi}+\rho \ddot{\varphi}) \vec{e}_{\phi}+\dot{z} \vec{e}_{z}
$$

$\dot{\vec{r}}=\dot{\rho} \vec{e}_{\rho}+\rho \dot{\varphi} \vec{e}_{\phi}+\dot{z} \vec{e}_{z}$,

$$
=\frac{q}{m \gamma}\left(\dot{\rho} \vec{e}_{\rho}+\rho \dot{\varphi} \vec{e}_{\phi}+\dot{z} \vec{e}_{z}\right) \times\left(-B_{z}^{\prime} \frac{\rho}{2} \vec{e}_{\rho}+B_{z} \vec{e}_{z}\right.
$$

component: $\quad 2 \dot{\rho} \dot{\varphi}+\rho \ddot{\varphi}=-\frac{q}{m \gamma}\left(\dot{\rho} B_{z}+\dot{z} \frac{\rho}{2} B_{z}^{\prime}\right)$

$$
\frac{d}{d t}\left(\rho^{2} \dot{\varphi}\right)=-\frac{q}{m \gamma} \frac{d}{d t}\left(\frac{\rho^{2}}{2} B_{z}\right)
$$

$$
d \varphi=-\frac{1}{2} \frac{q B_{z}}{p} d l
$$

Spin motion in the Accelerator Frame

 Independent variable: $t \Rightarrow l \Rightarrow \theta=2 \pi \frac{l}{L}$$$
\begin{aligned}
& \frac{d}{d l} \vec{e}_{y}=\frac{\sin \vartheta}{\rho} \vec{e}_{l}=\kappa_{y} \vec{e}_{l} \\
& \frac{d}{d l} \vec{e}_{x}=\frac{\cos \vartheta}{\rho} \vec{e}_{l}=\kappa_{x} \vec{e}_{l} \\
& \frac{d}{d l} \vec{e}_{l}=-\frac{1}{\rho}\left(\cos \vartheta \vec{e}_{x}+\sin \vartheta \vec{e}_{y}\right)=-\kappa_{x} \vec{e}_{x}-\kappa_{y} \vec{e}_{y} \\
& \quad \vec{s}=S_{x} \vec{e}_{x}+S_{y} \vec{e}_{y}+S_{l} \vec{e}_{l}
\end{aligned}
$$

$$
\frac{d}{d l} \vec{s}=\left(\frac{d}{d l} S_{x}-S_{l} \kappa_{x}\right) \vec{e}_{x}+\left(\frac{d}{d l} S_{y}-S_{l} \kappa_{y}\right) \vec{e}_{y}+\left(\frac{d}{d l} S_{l}+S_{x} \kappa_{x}+S_{y} \kappa_{y}\right) \vec{e}_{l}
$$

Spin motion in the Accelerator Frame

 Independent variable: $t \Rightarrow l \Rightarrow \theta=2 \pi \frac{l}{L}$$$
\frac{d t}{d l}=\vec{e}_{l} \cdot \frac{d}{d l} \vec{r} / \vec{e}_{l} \cdot \frac{d}{d t} \vec{r}
$$

$\left(\frac{d}{d l} S_{x}-S_{l} \kappa_{x}\right) \vec{e}_{x}+\left(\frac{d}{d l} S_{y}-S_{l} \kappa_{y}\right) \vec{e}_{y}+\left(\frac{d}{d l} S_{l}+S_{x} \kappa_{x}+S_{y} \kappa_{y}\right) \vec{e}_{l}=\frac{d t}{d l} \vec{\Omega}_{B M T} \times \vec{S}$
$\frac{d}{l l} \vec{S}=\left[\frac{d t}{d l} \vec{\Omega}_{B M T}(\vec{r}, \vec{p})-\vec{\kappa} \times \vec{e}_{l}\right] \times \vec{S}$ with $\vec{S} \times\left(\vec{\kappa} \times \vec{e}_{l}\right)=\vec{\kappa}\left(\vec{S} \cdot \vec{e}_{l}\right)-\vec{e}_{l}(\vec{S} \cdot \vec{\kappa}$

$$
\begin{aligned}
& \frac{d}{d \theta} \vec{S}=\vec{\Omega}(\vec{z}, \theta) \\
& \frac{d}{d \theta} \vec{z}=\vec{v}(\vec{z}, \theta)
\end{aligned}
$$

$$
\vec{\Omega}(\vec{z}, \theta)=\frac{L}{2 \pi}\left[\frac{d t}{d l} \vec{\Omega}_{B M T}(\vec{r}, \vec{p})-\vec{\kappa} \times \vec{e}_{l}\right]
$$

The tumbling of Hyperion

$250 \mathrm{~km} \times 115 \mathrm{~km} \times 110 \mathrm{~km}(\mathbf{a}=3(\mathbf{B}-\mathbf{A}) / 2 \mathbf{C}=0.4)$: largest non-round structure in the solar system Unique due to large a and e=0.1

Voyager2 observed a rotation axis which was close to the orbit plane: no spin-orbit-coppling
Change in luminousness shows a chaotic rotation oxThe only observed chaos in solar-system-dynamics

Model: rotation around the vertical

$$
\frac{d^{2}(\vartheta+\varphi(t))}{d t^{2}}=-\alpha\left(\frac{a}{r(t)}\right)^{3} \sin 2 \vartheta
$$

While changing from rotation to libration around spin-orbit-coupplun

The Importance of Asteroids

The world ends on Feb 12019

 (possibly) (Filed: 25/ 07/ 2002, Telegraph)Scientists have detected a giant asteroid heading towards Earth. It could wipe out humanity, but it could miss us altogether. Astronomers say a huge asteroid is scheduled to crash into the Earth at 11.47 am on Feb 12019.

Objects the size of NT7 only hit the Earth every one or two million years.

The dangers of NT7 have yet to be reviewed by the International Astronomical Union, the main international body responsible for announcing such risks.

Georg.Hoffstaetter@DESY.de

Phase space motion

 classical periodic system like a pendulum or planetary motion

Emittances: $\vec{\varepsilon}: \varepsilon_{x}, \varepsilon_{y}, \varepsilon_{l}$
Tunes:
$\vec{Q}: Q_{x}, Q_{y}, Q_{l}$
Action variables: $\vec{\Phi}=\vec{Q} \theta$
Angle variables: $\quad \vec{J}=\frac{1}{2} \vec{\varepsilon}$

Equation of motion for spin fields

Spin field: Spin direction $\vec{f}(\vec{z}, \theta)$ for each phase space point \vec{z}

$$
\frac{d}{d \theta} \vec{f}=\partial_{\theta} \vec{f}+\left[\vec{v}(\vec{z}, \theta) \cdot \partial_{\vec{z}}\right] \vec{f}=\vec{\Omega}(\vec{z}, \theta) \times \vec{f}
$$

The spin transport matrix EOM

$\vec{S}(\theta)=\underline{R}\left(\vec{z}_{i}, \theta_{0} ; \theta\right) \vec{S}_{i}$
$\vec{f}(\vec{z}, \theta)=\underline{R}\left(\vec{z}_{i}, \theta_{0} ; \theta\right) \vec{f}\left(\vec{z}_{i}, \theta_{0}\right)$
$\frac{\vec{S}}{t \theta}=\vec{\Omega} \times \vec{S}_{i} \square \partial_{\theta} \underline{R}\left(\vec{z}_{i} ; \theta_{0} ; \theta\right)=\left(\begin{array}{ccc}0 & -\Omega_{3} & \Omega_{2} \\ \Omega_{3} & 0 & -\Omega_{1} \\ -\Omega_{2} & \Omega_{1} & 0\end{array}\right) \underline{R}\left(\vec{z}_{i} ; \theta_{0} ; \theta\right.$

The spin transport matrix

Rotation vector: \vec{e}, Rotation angle α.
$\vec{S}(\theta)=\vec{e}\left(\vec{e} \cdot \vec{S}_{i}\right)+\cos \alpha\left[\vec{S}_{i}-\vec{e}\left(\vec{e} \cdot \vec{S}_{i}\right)\right]+\sin \alpha \cdot \vec{e} \times\left[\vec{S}_{i}-\vec{e}\left(\vec{e} \cdot \vec{S}_{i}\right)\right]$
$a_{0}=\cos \frac{\alpha}{2}, \quad \vec{a}=\vec{e} \sin \frac{\alpha}{2}$ with $a_{0}^{2}+\vec{a}^{2}=1$

$$
\left.\vec{S}(\theta)=\left(a_{0}^{2}-\vec{a}^{2}\right) \vec{S}_{i}+2 \vec{a}\left(\vec{a} \cdot \vec{S}_{i}\right)\right]+2 a_{0} \vec{a} \times \vec{S}_{i}
$$

$$
R_{i j}=\left(a_{0}^{2}-\vec{a}^{2}\right) \delta_{i j}+2 a_{i} a_{j}-2 a_{0} \varepsilon_{i j k} a_{k}
$$

$$
\operatorname{Tr}(\underline{R})=4 a_{0}^{2}-1, \quad \varepsilon_{l m n} R_{m n}=-4 a_{0} a_{l}
$$

The spin transport quaternion

$$
A=a_{0} \underline{1_{2}}-i \vec{a} \cdot \underline{\vec{\sigma}}, \quad \sigma_{l} \sigma_{m}=i \varepsilon_{l m n} \sigma_{n}+\delta_{l m}
$$

Propagation: $\quad C=\left(b_{0} \underline{1_{2}}-i \vec{b} \cdot \underline{\vec{\sigma}}\right)\left(a_{0} \underline{1_{2}}-i \vec{a} \cdot \underline{\vec{\sigma}}\right)$

$$
=\left(b_{0} a_{0}-\vec{b} \cdot \vec{a}\right) \underline{1_{2}}-i\left(b_{0} \vec{a}+\vec{b} a_{0}+\vec{b} \times \vec{a}\right) \cdot \underline{\vec{\sigma}}
$$

Infinitesimal rotation: $B=\underline{1_{2}}-i \frac{d \theta}{2} \vec{\Omega} \cdot \underline{\vec{\sigma}}, \quad C=A+d A$

$$
\begin{aligned}
& d A=-\frac{d \theta}{2}\left[\vec{\Omega} \cdot \vec{a} \underline{1}_{2}+i\left(\vec{\Omega} a_{0}+\vec{\Omega} \times \vec{a}\right) \cdot \underline{\vec{\sigma}}\right] \\
&=-\frac{d \theta}{2}\left[(\vec{\Omega} \cdot \underline{\vec{\sigma}})(\vec{a} \cdot \underline{\vec{\sigma}})+i \vec{\Omega} \cdot \underline{\vec{\sigma}} a_{0}\right]=-i \frac{d \theta}{2} \vec{\Omega} \cdot \underline{\vec{\sigma}} A \\
& \frac{d A}{d \theta}=-i \frac{1}{2} \vec{\Omega} \cdot \underline{\vec{\sigma}} A
\end{aligned}
$$

Equation of motion for Spinors

$$
\Psi(\theta)=\left(a_{0} \underline{1}_{2}-i \vec{a} \cdot \underline{\sigma}\right) \Psi_{i}, \quad \square \frac{d \Psi}{d \theta}=-i \frac{1}{2}(\vec{\Omega} \cdot \vec{\sigma}) \Psi
$$

$\vec{S}(\theta)=\Psi^{+} \underline{\vec{\sigma}} \Psi \quad$ with $\quad\left|\psi_{1}\right|^{2}+\left|\psi_{2}\right|^{2}=1$
since $\frac{d \vec{S}}{d \theta}=i \frac{1}{2} \Psi^{+}[(\vec{\Omega} \cdot \underline{\vec{\sigma}}) \underline{\vec{\sigma}}-\underline{\vec{\sigma}}(\vec{\Omega} \cdot \underline{\vec{\sigma}})] \Psi$

$$
=i \frac{1}{2} \Psi^{+}(\vec{\Omega} \times \underline{\vec{\sigma}}) \Psi=\vec{\Omega} \times \vec{S}
$$

$\vec{S}=\left(\begin{array}{c}\sin \vartheta \cos \phi \\ \sin \vartheta \sin \phi \\ \cos \vartheta\end{array}\right) \longleftrightarrow \Psi=\binom{\psi_{1}}{\psi_{2}}=e^{i \xi}\binom{\cos \frac{\vartheta}{2}}{e^{i \phi} \sin \frac{\vartheta}{2}}$
Georg.Hoffstaetter@DESY.d

Spinor pase

Rotation around the spin direction: $\quad \vec{\Omega}=\vec{S} \alpha$

$$
\begin{aligned}
& \frac{d \Psi}{d \theta}=-i \frac{\alpha}{2} \vec{S} \cdot \vec{\sigma} \Psi=-i \frac{\alpha}{2}\left(\begin{array}{cc}
\cos \vartheta & e^{-i \varphi} \sin \vartheta \\
e^{i \varphi} \sin \vartheta & -\cos \vartheta
\end{array}\right) \Psi \\
&=-i \alpha\left(\begin{array}{cc}
\cos ^{2} \frac{\vartheta}{2}-\frac{1}{2} & e^{-i \varphi} \sin \frac{\vartheta}{2} \cos \frac{\vartheta}{2} \\
e^{i \varphi} \sin \frac{\vartheta}{2} \cos \frac{\vartheta}{2} & \sin ^{2} \frac{\vartheta}{2}-\frac{1}{2}
\end{array}\right) \Psi \\
&=-i \alpha\left(\Psi \Psi^{+}-\frac{1}{2} \underline{1}_{2}\right) \Psi=-i \frac{\alpha}{2} \Psi \\
& \Psi=e^{i \frac{\alpha}{2}\left(\theta-\theta_{0}\right)} \Psi\left(\theta_{0}\right)
\end{aligned}
$$

Equation of motion for spin fields

Spin field: Spin direction $\vec{f}(\vec{z}, \theta)$ for each phase space point \vec{z}

$$
\frac{d}{d \theta} \Psi=\partial_{\theta} \Psi+\left[\vec{v}(\vec{z}, \theta) \cdot \partial_{\bar{z}}\right] \Psi=-\frac{i}{2}[\vec{\Omega}(\vec{z}, \theta) \cdot \vec{\sigma}] \Psi
$$

Spin perturbation on the closed orbit

Integer values of the closed orbit spin-tune n_{0} lead to coherent disturbances of spin motion called imperfection resonances.

Remedy:

Partial snakes avoid resonances by avoiding an integer spin-tune n

Periodic spin direction for the closed orbit

A particle traveling on the closed orbit has the closed orbit spin direction \vec{n}_{0} if its spin is periodic after every turn.

$$
\vec{n}_{0}=\underline{R}\left(\vec{z}_{0}, \theta_{0} ; \theta_{0}+2 \pi\right) \vec{n}_{0}
$$

Spin-tune no: Number of spin revolutions per turn ν

Accelerator ring

Closed orbit spin motion

When the design orbit spin tune no becomes integer, no net rotation has occurred after one turn, so that perturbations from the design orbit dominate the motion
If the perturbations are very small, the resonance region can be crossed quickly and the spins hardly react
If the perturbation is large, the closed orbit spin direction changes slowly and spins can follow adiabatic changes of the periodic spin direction on the closed orbit.
When the perturbations have intermediate strength, the polarization will be reduced

Remedies:

Correction of the closed orbit to reduce the perturbation Increase of spin perturbation (for example by a solenoid partial snake) to increase the perturbation

The periodic coordinate system

 Closed orbit precession vector: $\quad \vec{\Omega}_{0}(\theta)=\vec{\Omega}_{0}(\theta+2 \pi)$| Closed orbit spin vector: $\frac{d \vec{n}_{0}}{d \theta}$ | |
| :--- | :--- |
| Von-periodic | $\vec{\Omega}_{0}(\theta) \times \vec{n}_{0}, \quad \vec{n}_{0}(\theta)=\vec{n}_{0}(\theta+2 \pi)$ |

Derpendicular vectors: $\frac{d \vec{m}_{0}}{d \theta}=\vec{\Omega}_{0}(\theta) \times \vec{m}_{0}, \quad \vec{l}_{0}=\vec{n}_{0} \times \vec{m}_{0}$

$$
\left[\vec{m}_{0}+i \vec{l}_{0}\right](\theta)=e^{i 2 \pi v_{0}}\left[\vec{m}_{0}+i \vec{l}_{0}\right](\theta+2 \pi)
$$

Non-periodic
Von-periodic
Derpendicular vectors: $\quad[\vec{m}+i \vec{l}](\theta)=e^{i \theta v_{0}}\left[\vec{m}_{0}+i \vec{l}_{0}\right](\theta)$

$$
\frac{d(\vec{m}+i \vec{l})}{d \theta}=\left[\vec{\Omega}_{0}(\theta)-v_{0} \vec{n}_{0}\right] \times(\vec{m}+\underset{\text { Georg. }}{i \vec{l})}
$$

EOM in the periodic system

$$
\vec{S}=s_{1} \vec{m}(\theta)+s_{2} \vec{l}(\theta)+s_{3} \vec{n}_{0}(\theta)
$$

$\vec{\Omega}_{0}(\theta) \times \vec{S}=\frac{d}{d \theta} \vec{S}=\vec{m} \frac{d s_{1}}{d \theta}+\vec{l} \frac{d s_{2}}{d \theta}+\vec{n}_{0} \frac{d s_{3}}{d \theta}+\left[\vec{\Omega}_{0}-v_{0} \vec{n}_{0}\right] \times \vec{S}$

$$
\hat{s}=s_{1}+i s_{2}, \quad \frac{d}{d \theta} \hat{s}=i \nu_{0} \hat{s}, \quad \frac{d}{d \theta} s_{3}=0
$$

Smooth rotation around the periodic spin direction !

Adiabatic invariant on the closed orbit

Spin flip during crossing of a resonance with a partial snake

Spin flip at imperfection resonances in the AGS

G γ
Georg.Hoffstaetter@DESY.d

Slowly varying periodic system

Slowly varying parameter $\tau=\varepsilon \theta: \quad \vec{\Omega}_{0}(\theta, \tau)=\vec{\Omega}_{0}(\theta+2 \pi, \tau)$
Slowly rotating coordinate system: $\frac{d}{d \tau}\left(\vec{m}, \vec{l}, \vec{n}_{0}\right)=\vec{\eta}(\theta, \tau) \times\left(\vec{m}, \vec{l}, \vec{n}_{0}\right)$ $\frac{d}{d \theta} \vec{S}=\vec{\Omega}_{0}(\theta) \times \vec{S}$

$$
\begin{gathered}
=\vec{m} \frac{d s_{1}}{d \theta}+\vec{l} \frac{d s_{2}}{d \theta}+\vec{n}_{0} \frac{d s_{3}}{d \theta}+\left[\vec{\Omega}_{0}-v_{0} \vec{n}_{0}\right] \times \vec{S}+\left(\frac{d \tau}{d \theta}\right) \vec{\eta} \times \vec{S} \\
s_{1}=\sqrt{1-s_{3}^{2}} \cos \varphi, \quad s_{2}=\sqrt{1-s_{3}^{2}} \sin \varphi \\
\sqrt{1-s_{3}^{2}} \frac{d}{d \theta} \varphi=-\sin \varphi \frac{d}{d \theta} s_{1}+\cos \varphi \frac{d}{d \theta} s_{2}
\end{gathered}
$$

Slowly varying periodic system

$$
\begin{aligned}
& \frac{d}{d \theta}\binom{s_{3}}{\varphi}=\left(\begin{array}{c}
\varepsilon\left(\eta_{2} \sin \varphi+\eta_{1} \cos \varphi\right) \sqrt{1-s_{3}{ }^{2}} \\
v_{0}(\tau) \\
+\varepsilon\left[\left(\eta_{2} \sin \varphi+\eta_{1} \cos \varphi\right) \frac{s_{3}}{\sqrt{1-s_{3}{ }^{2}}}-\eta_{3}\right]
\end{array}\right) \\
& \frac{d}{d \theta}\binom{\tau}{\tilde{\theta}}=\binom{\varepsilon}{1}
\end{aligned}
$$

Averaging of two frequency systems:
The system which is averaged over $2 p$ of the 2 fast variables describes t true motion of the slow variables up to $<c \sqrt{\varepsilon}$ for $\theta<\frac{1}{\varepsilon}$.

$$
s_{3}(\theta)=s_{3}\left(\theta_{0}\right)+c \sqrt{\varepsilon} \text { is an adiabatic invariant }
$$

Driven spin perturbation on a trajectory

Integer values of spin-tune $\mathbf{n} \pm$ tune $\mathbf{n}_{\mathbf{y}}$ lead to coherent disturbances of spin motion

Remedy:

Siberian Snakes avoid resonances by making the spin-tune $\mathbf{n}=1 / 2$ independent of energy.

$$
\phi_{\vec{S}} \propto \phi_{\vec{p}} \propto y=y_{0} \sin \left(\psi_{0}+n Q_{y}\right)
$$

Crossing resonances

Remedy for DESY III:

Tune jump, energy jump, and RF dipole excitation

Remedy for PETRA and HERA:
RHIC Transfer Energy Range
Fixing the spin tune to $1 / 2$ by Siberian Snakes

Problems with Resonances

At integer spin-tune n the spin returns without a change after one turn, and error fields add up.

Remedy: insert controlled perturbations of spin motion

Siberian Snakes

Siberian Snakes rotate spins at each energy $1 / 2$ times

Freedom: direction of the rotation axis in the horizontal

CO spin motion with 1 Siberian Snake

$$
\begin{aligned}
A & =-i\left(\sigma_{1} \cos \alpha+\sigma_{2} \sin \alpha\right)\left(\cos G \gamma \pi-i \sin G \gamma \pi \sigma_{3}\right) \\
& =-i\left[\sigma_{1} \cos (\alpha-G \gamma \pi)+\sigma_{2} \sin (\alpha-G \gamma \pi)\right]
\end{aligned}
$$

Spin direction after the snake:

$$
\vec{n}_{0}=\vec{e}_{x} \cos \left(\alpha-\frac{G \gamma}{2}\right)+\vec{e}_{l} \sin \left(\alpha-\frac{G \gamma}{2}\right) \Leftrightarrow \Psi(0)=\frac{1}{\sqrt{2}}\binom{1}{e^{i\left(\alpha-\frac{G \gamma}{2}\right)}}
$$

$$
\Psi(\theta)=\left(\cos \frac{G \gamma \theta}{2}-i \sin \frac{G \gamma \theta}{2} \sigma_{3}\right) \frac{1}{\sqrt{2}}\binom{1}{e^{i(\alpha-G \gamma \pi)}}=\frac{e^{-i \frac{G \gamma \theta}{2}}}{\sqrt{2}}\left(\begin{array}{c}
1 \\
e^{i[\alpha-G \gamma(\pi-\theta)]}
\end{array}\right.
$$

Snake angle tunes spin direction anywhere in the ring, especially at $\theta=\pi$ it is independent of energy !

CO spin motion with 2N Siberian Snake

$$
=\prod_{j=1}^{2 N} i e^{-i \frac{\psi_{j}}{2} \sigma_{3}}\left(\sigma_{1} \cos \alpha_{j}+\sigma_{2} \sin \alpha_{j}\right)
$$

$$
=i^{N} e^{-i \frac{\psi_{2 N} \cdots-\psi_{3}+\psi_{2}-\psi_{1}}{2} \sigma_{3}} \prod_{j=1}^{N}\left(\sigma_{1} \cos \alpha_{2 j}+\sigma_{2} \sin \alpha_{2 j}\right)\left(\sigma_{1} \cos \alpha_{2 j-1}+\sigma_{2} \sin \alpha_{2 j-}\right.
$$

$$
=i^{N} e^{-i \frac{\Delta \psi}{2} \sigma_{3}} \prod_{j=1}^{N}\left[\cos \left(\alpha_{2 j}-\alpha_{2 j-1}\right)-i \sin \left(\alpha_{2 j}-\alpha_{2 j-1}\right) \sigma_{3}\right]
$$

$$
A=i^{N} e^{-i \frac{\Delta \psi+2 \Delta \alpha}{2} \sigma_{3}}
$$

$$
\begin{aligned}
& \mathrm{v}_{0}=\frac{\Delta \psi+2 \Delta \alpha}{2 \pi} \\
& \vec{n}_{0}=\vec{e}_{y}
\end{aligned}
$$

$\Delta \psi=0 \quad$, to make o independent of energy
$\Delta \alpha=\frac{\pi}{2}$, to make $0=0.5$

RHIC Siberian Snakes (A)

Spin Motion

- 2 helical dipoles
- 10 cm diameter
- Superconducting 4Tesla magnets

$$
\begin{aligned}
& \frac{\vec{p}}{t}=\left(\frac{-q}{m \gamma}\right)\left\{\quad \vec{B}_{\perp} \quad\right\} \times \vec{p} \\
& \frac{s}{t}=\left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}\right\} \times \vec{S}
\end{aligned}
$$

RHIC Siberian Snakes (B)

Particle Trajectories

4 Trajectory at 25 GeV

RHIC Siberian Snake (C)

Production

$$
\begin{aligned}
& \frac{\vec{p}}{\frac{t}{t}}=\left(\frac{-q}{m \gamma}\right)\left\{\quad \vec{B}_{\perp} \quad\right\} \times \vec{p} \\
& \frac{\vec{p}}{t}=\left(\frac{-q}{m \gamma}\right)\left\{(G \gamma+1) \vec{B}_{\perp}+(1+G) \vec{B}_{\|}\right\} \times \vec{S}
\end{aligned}
$$

Required installations in HERA

Cost: about 30M Euro

- Polarimeters
- Flattening Snakes
- Spin rotators

Space for PETRA's Siberian Snakes

Space for Siberian Snakes in HERA

The Invariant Spin Field

A) Maximum polarization: $\quad \boldsymbol{P}_{\text {lim }}=\langle\vec{n}(\vec{z})\rangle_{\text {Phase space }}$

For a large divergence, the average polarization is small, even if the local polarization is 100%.
B) $\vec{n}(\vec{z}) \cdot \vec{S}$ is an adiabatic invariance!

Linearized $\vec{n}(\vec{z})$ can be analytically computed

The Isolated Resonance Model

All Fourier components of $\vec{\Omega}(\phi, \vec{z}(\phi))$, except the dominant one, are neglected.

Is this theory still applicable for HERA with 920 GeV ? ? ?
Georg.Hoffstaetter@DESY.d

The Isolated Resonance Model

All Fourier components of $\vec{\Omega}(\phi, \vec{z}(\phi))$, except the dominant one, are neglected.

First Order Theories A) DEsy III

Low energies: First order theories agree

Medium energies: resonances still isolated Georg.Hofistaeter@DESY.de

First Order Theories c) HERA

Isolated

 resonance model:
Linear

 spin-field theory:-ligh energies: Resonances are no longer isolated. The isolated resonance model becomes invalid

Siberian Snakes and Resonances

Some structure of the 1st order resonances remains after Siberian Snakes have been installed.

Amplitude dependent spin-orbit resonances

Spin Tune at Higher Order Resonance

$800 \quad 810 \quad 820 \quad 830$ ($\mathrm{GeV} / \mathrm{c}$)

$$
0.7-v=1-v_{y} \bar{\beta} v=3-8 v
$$

$800 \quad 810 \quad 820 \quad 830$ (GeV/C
deviates from $1 / 2$ for particles which oscillate around the design trajectory with amplitude J_{y}.

Snake matching

4 Snakes:

4 harmonics of the spin perturbation in each section. With 4 snakes only 2 can be compensated With 8 snakes all 4 can be compensated

$P_{\text {lim }}$ after Snake Matching

Spin Tune after Snake Matching

$v=1-2 Q y$
4 snakes in standard scheme

4 matched snakes

Spin Tune after Snake Matching

$v=1-2 Q y$
4 snakes in standard scheme

$v=1-2 Q y$
8 matched snakes
100
300

High Order Resonance Strength

The higher order Froissart-Stora formula
Resonances up to 19th order can be observed
Resonance strength can be determined from tune jump.

Tracked depolarization as expected

Computations performed in SPRINT, Hoffstaetter and Vogt, DESY/00
Georg.Hoffstaetter@DESY.d

Allowed Beam Sizes

Snake matching allows to have significantly larger beams.

Georg.Hoffstaetter@DESY.d

The Invariant Spin Field

Computation of the

 invariant spin field by analyzing tracking data:- Fourier analysis
- Stroboscopic averaging
- Anti-damping
- Differential Algebra

defines the \vec{n}-axis

$$
\vec{n}\left(\vec{z}_{n+1}\right)=\underline{A}\left(\vec{z}_{n}\right) \vec{n}\left(\vec{z}_{n}\right)
$$

Computations performed in SPRINT, Hoffstaetter and Vogt, DESY/02
Georg.Hoffstaetter@DESY.d

Higher Order Effects

- Overlapping resonances
- Deformation of the invariant spin field
- Resonances of very high order
- Nonlinear spin transfer matrix

Siberian Snakes avoid $1^{\text {st }}$ order resonances but higher orders become important for HERA.

Polarized Deuterons

\vec{p} depolarizing resonance strength

\vec{D} depolarizing resonance strength

- Resonances are 25 times weaker and 25 times rarer for D than for p
- Transverse polarization could be achieved withou Siberian Snakes
- Transverse RF dipoles could be used to rotate and stabilize longitudinal polarization

. 01
$\begin{array}{lllll}100 & 200 & 300 & 400 & G e V\end{array}$

