Matching of S iberian Snakes

9 November 2002

AGS Polarization Workshop

Driven spin perturbation on a trajectory

Integer values of spin-tune $\mathbf{n} \pm$ tune \mathbf{n}_{y} lead to coherent disturbances of spin mc

Remedy:

Siberian Snakes avoid resonances by making the spin-tune $\mathbf{n}=1 / 2$ independent of energy.

$$
\phi_{\vec{S}} \propto \phi_{\vec{p}} \propto y=y_{0} \sin \left(\psi_{0}+n Q_{y}\right)
$$

Equation of motion for spin

 fields

Spin field: Spin direction $\vec{f}(\vec{z}, \theta)$ for each phase space point \vec{z}

$$
\begin{aligned}
& \frac{d}{d \theta} \vec{S}= \\
& \frac{d}{d \theta} \vec{f}(\vec{z}, \theta) \times \vec{S} \\
& \partial_{\theta} \vec{f}+\left[\vec{v}(\vec{z}, \theta) \cdot \partial_{\bar{z}}\right] \vec{f}=\vec{\Omega}(\vec{z}, \theta) \times \vec{f}
\end{aligned}
$$
 \title{

The
 \title{
The Invariant Spin Field
}

A) Maximum polarization:

$$
P_{\text {lim }}=\langle\vec{n}(\vec{z})\rangle_{\text {Phase space }}
$$

For a large divergence, the average polarization is small, even if the local polarization is 100%.
B) $\vec{n}(\vec{z}) \cdot S$ is an adiabatic invariance !
C) $\vec{n}(\vec{z})$ Defines an amplitude dependent spin tune!

First Order Theories ${ }^{\text {A) DESY III }}$

First Order TheoriesB) PETRA

Isolated

Linear spin-field theory:

First Order Theoriesc) неRA

Resonances are
no longer isolated. Isolated resonance model becomes invalid

Polarized Deuterons

Siberian Snakes

Siberian Snakes rotate spins at each energy $1 / 2$ times

Freedom: direction of the rotation axis in the horizontal

CO spin motion with 2 N Siberian Snake

$A=\prod_{j=1}^{2 N} i e^{-i \frac{\psi_{j}}{2} \sigma_{3}}\left(\sigma_{1} \cos \alpha_{j}+\sigma_{2} \sin \alpha_{j}\right)$
$=i^{N} e^{-i \frac{\psi_{22} \cdots \cdots \psi_{3}+\psi_{2}-\psi_{1}}{2}} \prod_{j=1}^{N}\left(\sigma_{1} \cos \alpha_{2 j}+\sigma_{2} \sin \alpha_{2 j}\right)\left(\sigma_{1} \cos \alpha_{2 j-1}+\sigma_{2} \sin \alpha_{2 j-1}\right)$
$=i^{N} e^{-i \frac{\Delta \psi}{2} \sigma_{3}} \prod_{j=1}^{N}\left[\cos \left(\alpha_{2 j}-\alpha_{2 j-1}\right)-i \sin \left(\alpha_{2 j}-\alpha_{2_{j-1}}\right) \sigma_{3}\right]$
$\Delta \psi=0$, to make o independent of energy
$\Delta \alpha=\frac{\pi}{2}$, to make $0=0.5$

Siberian Snakes and Resonances

Corneu Some structure of the 1st order resonances remains after Siberian Snakes have been installed.

Spin Tune at Higher Order Resonance

The spin tune deviates from $1 / 2$ for particles which oscillate around the design trajectory with amplitude J_{y}.

High Order Resonance Strength

The higher order Froissart-Stora formula

- Resonances up to 19th order can be observed
- Resonance strength can be determined from tune jump.
Tracked depolarization as expected

Computations performed in SPRINT, Hoffstaetter and Vogt, DESY/00 Georg.Hoffstaetter@Cornell.edu

Snake matching

$1^{\text {st }}$ Order:4 harmonics of the spin perturbation in each section.
With 4 snakes only 2 can be compensated
With 8 snakes all $\underline{4}$ can be compensated

$P_{\text {lim }}$ after Snake Matching

Spin Tune after Snake Matching

$v=1-2 Q y$
4 snakes in standard scheme

100	300	500	700
$(G \in V / c)$	900		

$\nu=1-2 Q y$
0.4

8 matched snakes

Matching the betatron phases

$$
\Delta \Psi_{24}=2\left(\varphi_{W}-\varphi_{N}\right)
$$

A proper choice of betatron phase advances allows snake matching with 4 snakes

Spin Tune after Snake Matching

Allowed Beam Sizes

Snake matching allows to have significantly larger beams.

TESLA with Röntgen FEL

Röntgen FEL

