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Preface

This book aims at teaching modern particle physics. The goal of particle physics is to understand

what are the fundamental laws of Nature. These are grand, yet true, words.

Particle physics is also known as high energy physics (HEP). Particle physics experiments have

probed energy scales as high as 10 TeV (ten thousand times the mass of the proton) and distance

scales as small as 10−20 meters. We find it amazing that by now there is a deep understanding of

how Nature works down to such distances. The framework that we use in order to describe the

phenomena at this distance scale is based on Quantum Field Theory (QFT), which is different from

quantum mechanics (QM) that we use to deal with atomic physics, and which is in turn different

from classical mechanics that we apply to explain most of the macroscopic world. While these

frameworks are very different from each other, the underlying principles of physics are surprisingly

similar across all these scales. Specifically, in all of them we use the principle of minimal action

and symmetry arguments to construct the theory.

It is often stated that the aim of particle physics is to describe the elementary particles and the

fundamental interactions among them. While this is true, particle physicists aim higher. In some

sense, the particles and their interactions constitute a tool for us to obtain insights into deeper

principles that describe Nature. Our current understanding of the basic laws of Nature is based

on very elegant symmetry principles. Once we know the symmetries of the Universe and how the

fundamental fields respect them, much of Nature is explained. In a way, the deeper we understand

Nature, the simpler and more abstract are the basic principles which we use to formulate this

understanding.

The currently accepted theory of particle physics is called the Standard Model (SM). The basic

ingredients of the SM were conceived in the late 1960s and early 1970s by Weinberg, Glashow, and

Salam. At that time, many of the particles that now constitute part of it were yet to be discovered.

By 2012, the full list of the SM particles have been directly produced and detected, and the full list

of the SM parameters have been measured with impressive accuracy. The SM has been tested by

numerous experimental measurements, and it has passed almost all of them in flying colors. The

very few failures constitute the starting point for the road to an even deeper level of understanding

Nature.

It is customary to say that there are four forces in Nature: the gravitational, electromagnetic
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(EM), weak and strong forces. The SM does not deal with gravity but does include the three

other forces. As you read the book, it becomes clear that, while these three forces seem very

different from each other, they all arise at the fundamental level from a QFT incorporating gauge

symmetries. We can think of this as a generalization of Quantum Electrodynamics (QED), that

leads to very different phenomenology. It is this unification of the underlying principle — gauge

symmetries — that makes the theory so elegant.

Significant breakthroughs in physics were often achieved when realizing that phenomena that

seem very different are, in fact, connected. One example is the understanding that the movement

of the planets around the Sun and the falling of an apple from a tree are both explained by the

same law of gravity. Another example is the realization that electricity and magnetism are two

manifestations of the unified electromagnetic theory. Particle physics keeps in the same path and

provides a unified description of phenomena that seem very different from each other.

The way the SM has been developed was based on data that became available along the

process. It took many years to reach the present status of the theory, as it took time to develop

new experiments and collect all the data. In this book, however, we do not follow a historical

approach, but rather describe things as we understand them today. We only briefly mention

historical facts as we go along. Given that all the particles of the SM have been discovered and all

the parameters measured, we can explain the SM in a comprehensive and pedagogical way that

captures the main points.

Most of the data that is relevant for particle physics came from collider experiments. In the

book we focus on the theory side and do not elaborate on the way experiments are carried out.

The various colliders differ in energy and luminosity, and in the particles that collide. It is the

synergy of all of them that led to the construction of the SM. At the time of writing this book, the

highest energy accelerator is the Large Hadron Collider (LHC) that collides protons at center-of-

mass energy of 13 TeV. It is the energy of the LHC that sets the upper bound on the mass scale of

particles that can be probed directly by being produced on-shell. High luminosity machines help

us search for quantum effects, that is, loop effects that probe indirectly physics at even higher

scales.

The data that is relevant to particle physics is collected by the Particle Data Group (PDG) in

the Review of Particle Physics (RPP) [1] (we loosely refer to this collection of data as “the PDG”).

When we quote experimental data it is from the PDG, unless we explicitly state otherwise. For the

untrained eye, the PDG may look like an (old fashioned) phone book. There are numerous tables

with data on decay rates and other properties of particles. Browsing through this data, you see

large variations: some particles are stable, others have long lifetimes, yet others have very short

lifetimes before they decay. Some particles have masses almost a million times heavier than the

electron, yet others are more than a million times lighter. The decay products of various particles

are very different, as are the corresponding branching ratios.
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The task of particle physicists is to identify the patterns in this raw data, and to organize

them in such a way that the principles that explain this variety emerge. The language that we use

to do so is QFT, and the main tool within this framework is the Lagrangian (which depends on

fundamental fields and their couplings). Once organized in this way, we can extract the symmetry

principles that dictate the Lagrangian, and explain the rich phenomena observed.

In writing the book we had in mind that it will serve as a textbook, accompanying a one-

semester course. Thus, we omit many details and focus mainly on the phenomenological aspects.

This means that we skip a few interesting topics. We hope that our book will motivate you to go

on and explore these on your own.

The book, although very much self-contained, is written assuming pre-knowledge of basic QFT.

It is aimed at students who have already taken a one semester course of QFT, have an understand-

ing of the topic, but may be unfamiliar with advanced topics. To gauge this statement, students

familiar with the first part of the book by Peskin and Schroeder [2] have the pre-knowledge nec-

essary to follow our book. Some other books that we find useful and complementary to ours are

[3, 4, 5, 6, 7, 8, 9, 10, 11].

At the end of a course that follows this book, the student should gain knowledge and under-

standing in two directions:

• Good knowledge of the SM: the symmetry principles that define it, the fundamental inter-

actions and elementary particles that it describes, the ways in which it has been tested, its

many successes and its very few failures.

• Good understanding of the principles of model building in particle physics: the tools that

are used to interpret new experimental results and, in particular, to extend the SM if future

measurements cannot be explained by it.

Actually, in our minds, there is a third goal for this book. We think that the SM is a scientific

masterpiece, beautiful and elegant, and we hope to convey this sense of appreciation and intellectual

joy to our readers.
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Chapter 1

Lagrangians

In this chapter, we review the basic tools that we use in the book. In particular, we present the

Lagrangian as our basic tool and review some simple Lagrangians involving scalar and fermion

fields.

1.1 Introduction

Modern physics encodes the basic laws of nature in the action S, and postulates the principle of

minimal action in its quantum interpretation. In Quantum Field Theory (QFT), the action is

an integral over spacetime of the “Lagrangian density” or Lagrangian, L, for short. For most of

our purposes, it is enough to consider the Lagrangian, rather than the action. In this chapter we

explain how Lagrangians are “constructed”. Later in the book we discuss how the numerical values

of the parameters that appear in the Lagrangian are determined, and how to test if a Lagrangian

provides a viable description of nature.

The QFT equivalent of the generalized coordinates of classical mechanics are the fields. The

action is given by

S =
∫
d4x L (1.1)

where d4x = dx0dx1dx2dx3 is the integration measure in four-dimensional Minkowski space. In

general, we require the following properties for the Lagrangian:

(i) It is a function of the fields and their derivatives only.

(ii) It depends on the fields taken at one spacetime point xµ only, leading to a local field theory.

(iii) It is real, so that the total probability is conserved.

(iv) It is invariant under the Poincaré group, that is under spacetime translations and Lorentz

transformations.
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(v) It is an analytic function in the fields. This is not a general requirement, but it is common to

all field theories that are solved via perturbation theory. In these cases, we expand around

a minimum, and this expansion means that we consider a Lagrangian that is a polynomial

in the fields.

(vi) It is invariant under certain internal symmetry groups. The invariance of S (or of L) is

in correspondence with conserved quantities and reflects basic symmetries of the physical

system.

(vii) Every term in the Lagrangian that is not forbidden by a symmetry should appear.

We often impose an additional requirement:

(viii) Renormalizability. A renormalizable Lagrangian contains only terms that are of dimension

less than or equal to four in the fields and their derivatives.

The requirement of renormalizability ensures that the Lagrangian contains at most two ∂µ oper-

ations, and leads to classical equations of motion that are no higher than second order derivatives.

If the full theory of nature is described by a QFT, its Lagrangian should indeed be renormalizable.

The theories that we consider, however, and, in particular, the SM, are only low energy effective

theories, valid up to some energy scale Λ. Therefore, we must include also non-renormalizable

terms. These terms have coefficients with inverse mass dimensions, 1/Λn, n = 1, 2, . . .. For most

purposes, however, the renormalizable terms constitute the leading terms in an expansion in E/Λ,

where E is the energy scale of the physical processes under study. Therefore, the renormalizable

part of the Lagrangian is a good starting point for our study. Thus, in Chapters 1-10, we consider

only renormalizable Lagrangians, unless otherwise explicitly stated. In Chapters 11-15, where we

describe searches for physics beyond the SM, we consider also non-renormalizable Lagrangians.

Properties (i)–(v) are not the subject of this book. You should be familiar with them from

your QFT course(s). We do, however, deal intensively with the other requirements. Actually, the

most important message that we would like to convey is the following: (Almost) all experimental

data for elementary particles and their interactions can be explained by the standard model of a

spontaneously broken SU(3)× SU(2)× U(1) gauge symmetry.1

Writing down a specific Lagrangian is the endpoint of the process known as “model building,”

and the starting point for a phenomenological interpretation and experimental testing. In this

book we explain both sides of this modern way of understanding high energy physics.

1Actually, the great hope of the high-energy physics community is to prove this statement wrong, and to find

an even more fundamental theory.
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1.2 Examples of simple Lagrangians

We next show a few examples of simple Lagrangians of scalar and fermion fields. They are simple

in the sense that we do not yet impose any internal symmetry. We use φ(x) for a scalar field and

ψ(x) for a fermion field. When we consider vector fields, as is first done in section 2.2, we will use

A(x) for a vector field. We do not consider higher spin fields, as it is not simple to construct a

QFT where they are fundamental.

Two comments are in order:

• All fields that we consider are functions of spacetime coordinates, φ(x), ψ(x), A(x). We

leave this spacetime dependence implicit, except in cases where it is relevant.

• We use the notations φ, ψ and A for the discussion of generic cases. When we refer to specific

cases, we use a different notation. For example, for the electron field, we use the notation e

instead of the generic ψ.

1.2.1 Scalars

The Lagrangian for a real scalar field φ is given by

LS =
1

2
(∂µφ)(∂µφ)− m2

2
φ2 − η

2
√

2
φ3 − λ

4
φ4 . (1.2)

The Lagrangian LS of Eq. (1.2) is the most general renormalizable L(φ) for a single real scalar

field. We emphasize the following points:

1. The term with derivatives is called the kinetic term. It is necessary if we want φ to be a

dynamical field, namely to be able to describe propagation in spacetime.

2. The terms without derivatives are collectively denoted by −Vφ. We then write LS =
1
2
(∂µφ)(∂µφ)− Vφ, and Vφ is called the scalar potential.

3. We work in the “canonically normalized” basis where the coefficient of the kinetic term is

1/2. (This is true for a real scalar field. For a complex scalar field, the canonically normalized

coefficient of the kinetic term is 1.)

4. We do not write a constant term since it does not enter the equation of motion for φ.

5. We do not write a term linear in φ because, when expanding around a minimum, the linear

term vanishes.

6. The quadratic term (φ2) is a mass-squared term. (It is often called simply “a mass term.”)

7. The trilinear (φ3) and quartic (φ4) terms describe interactions.

8. Terms with five or more scalar fields (φn, n ≥ 5) are non-renormalizable.
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1.2.2 Fermions

The basic fermion fields are two component Weyl fermions, ψL and ψR, where L and R denote,

respectively, left-handed and right-handed chirality. Each of ψL and ψR has two degrees of freedom

and is a complex field. They are related to the four-component Dirac field ψ via

ψR = PRψ ≡
1 + γ5

2
ψ, ψL = PLψ ≡

1− γ5

2
ψ. (1.3)

It is useful to define related left-handed Weyl fermion ψcR and a right-handed Weyl fermion ψcL via

ψcR = C ψR
T
, ψcL = C ψL

T
, (1.4)

where C is the charge conjugation matrix. (The reason for this name becomes clear once we define

charge in Chapter 2.)

The Lagrangian for a single left-handed fermion field ψL and a single right-handed fermion field

ψR is given by

LF = iψL∂/ψL + iψR∂/ψR −
(
mMR

2
ψcR ψR +

mML

2
ψcL ψL +mDψLψR + h.c.

)
. (1.5)

The Lagrangian LF of Eq. (1.5) is the most general renormalizable L(ψL, ψR) for a single left-

handed and a single right-handed fermion fields. We emphasize the following points:

1. The derivative terms are the kinetic terms. They are necessary if we want ψL,R to be

dynamical fields.

2. We work in the canonically normalized basis where the coefficient of the kinetic term is 1.

3. Terms with an odd number of fermion fields violate Lorentz symmetry, and so they are

forbidden.

4. The quadratic terms are mass terms. The mM terms are called Majorana masses and the

mD terms are called Dirac masses.

5. The relative factor of 1/2 between Majorana and Dirac mass terms is the analog of the similar

factor between the mass-squared terms for a real and complex scalar fields.

6. Terms with four or more fermion fields are non-renormalizable.

7. Given the fact that Majorana mass terms are made out of a pair of identical fields, we often

write
mMR

2
ψcR ψR →

mMR

2
ψR ψR. (1.6)
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In case that the Majorana masses vanish, mML = mMR = 0, LF can be written in terms of the

Dirac fermion field ψ:

LF (mM = 0) = iψ∂/ψ −mDψψ. (1.7)

Since ψL and ψR are different fields, there are four degrees of freedom with the same mass, mD.

In contrast, if the Majorana masses do not vanish, there are generally only two degrees of freedom

that have the same mass. In Section 2.1.5 we discuss these issues in more detail, and explain why

it is often the case that Majorana masses vanish.

1.2.3 Fermions and scalars

Consider the case of a single left-handed fermion ψL, a single right-handed fermion ψR and a single

real scalar field φ. The Lagrangian includes, in addition to terms that involve only the scalar,

Eq. (1.2), and terms that involve only the fermions, Eq. (1.5), terms that involve both the scalar

and the fermions. They can be obtained by replacing the mass parameters for the fermions with

a coupling times the scalar field:

−LYuk =
Y√

2
φψLψR +

YMR

2
φψcR ψR +

YML

2
φψcL ψL + h.c. (1.8)

These terms are called Yukawa interactions. The Y parameters are dimensionless and are called

the Yukawa couplings. Note that in Eq. (1.8) we quote −L. This is a common practice when we

do not write the kinetic terms.

1.3 Symmetries

We always seek deeper reasons for the laws of nature that have been discovered. These reasons are

often closely related to symmetries. The term symmetry refers to an invariance of the equations

that describe a physical system. The fact that a symmetry and an invariance are related concepts

is obvious enough — a smooth ball has a spherical symmetry and its appearance is invariant under

rotation.

Symmetries are built into physics as invariance properties of the Lagrangian. If we construct

our theories to encode various empirical facts and, in particular, the observed conservation laws,

then the equations turn out to exhibit certain invariance properties. For example, if we want

to implement energy conservation into the theory, then the Lagrangian must be invariant under

time translations (and therefore cannot depend explicitly on time). From this point of view, the

conservation law is the input and the symmetry is the output.

Conversely, if we take the symmetries to be the fundamental rules, then various observed

features of particles and their interactions are a necessary consequence of the symmetry principle.

In this sense, symmetries provide an explanation of these features. In modern particle physics
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(and, in particular, in this book), we often take the latter point of view, in which symmetries are

the input and conservation laws are the output.

In the following we discuss the consequences of imposing a symmetry on a Lagrangian. This is

the starting point of model building in particle physics: One defines the basic symmetries and the

field content, and then obtains the predictions that follow from these imposed symmetries.

There are, however, symmetries that are not imposed and are called accidental symmetries.

They are outputs of the theory rather than external constraints. Accidental symmetries arise

due to the fact that we truncate our Lagrangian. In particular, the renormalizable terms in the

Lagrangian often have accidental symmetries that are broken by non-renormalizable terms. Since

we study mostly renormalizable Lagrangians, we will often encounter accidental symmetries.

There are various types of symmetries. First, we distinguish between spacetime and inter-

nal symmetries. Spacetime symmetries include the Poincaré group of translations, rotations and

boosts. They give the energy–momentum and angular momentum conservation laws. As mentioned

above, we always impose this symmetry. The list of possible spacetime symmetries includes, in

addition, space inversion (also called parity) P , time-reversal T , and charge conjugation C. (While

C is not truly a spacetime symmetry, the way it acts on fermions and the CPT theorem make

it simpler to include C in the same class of operators.) The discrete spacetime symmetries are

usually covered in QFT courses, but for completeness we discuss them briefly in Appendix 1.A.

Internal symmetries act on the fields, not directly on spacetime. In other words, they act in

internal spaces which are mathematical spaces that are generated by the fields. These are the

kind of symmetries that we discuss in detail. In Chapter 2 we introduce Abelian symmetries. In

Chapter 4 we introduce non-Abelian symmetries.

1.4 Model building

As stated above, writing a Lagrangian is the endpoint of model building. Our procedure of

constructing lagrangians goes as follows. We start by defining the following inputs:

(i) The symmetry;

(ii) The transformation properties of the various scalar and fermion fields under the symmetry

operation.

Then we write down the most general Lagrangian that depends on the fields and is invariant under

the symmetry.

A renormalizable Lagrangian (or a non-renormalizable one truncated at a certain order) has a

finite number of parameters. For a theory with N parameters, we need to perform N appropriate

measurements such that additional measurements, from the (N + 1)’th and on, test the theory.
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In principle, we do not really need to determine the values of the parameters, and just use exper-

imental inputs to make predictions. In practice, however, it is usually convenient to use the N

measurements to determine the values of the Lagrangian parameters and use these parameters to

make further predictions. It is important to remember that the values of the parameters are not

inputs to model building.

At this point, the above procedure may seem abstract, but it becomes clear and concrete as we

work out examples. Along this book, we repeat the process of model building several times. We see

how QED (the theory of electromagnetic interactions), QCD (the theory of strong interactions), the

LSM (the theory of electroweak interactions among leptons), and the SM itself, can be understood

in this way of thinking, starting from a postulate of symmetry principles.

For further reading

There are many books that discuss in detail the QFT-related aspects relevant to our book. For

example, some of the standard textbooks are by Peskin and Schroeder [2], Zee [12], Srednicki [13],

and Schwartz [14]. Other textbooks that explain many of the relevant issues include Ramond [15],

Dine [16] Nagashima [17, 18], and Petrov and Blechman [19].

With regard to some specific points, we mention the following sources:

• For a formal discussion of C and P see, for example, Section 3.6 of Ref. [2], or Sections

11.4-11.6 of Ref. [14].

• For a discussion of the issues with quantizing theories with higher-spin fields see, for example,

Ref. [20].

• For discussion of Majorana fermions see, for example, Section 11.3 in Ref. [14].

• For the CPT theorem see, for example, Ref. [21].
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Appendix

1.A Discrete spacetime symmetries: C, P and T

The discrete spacetime symmetries, C, P , and T , play an important role in our understanding of

nature. Each of these three symmetries has been experimentally shown to be violated in nature,

as discussed in detail further below. The CPT combination seems, however, to be an exact

symmetry of nature. On the experimental side, no sign of CPT violation has been observed. On

the theoretical side, CPT must be conserved for any Lorentz invariant local field theory. Since we

only consider such theories, we assume that CPT holds. In this case, CP and T are equivalent.

Thus, we usually refer to CP .

1.A.1 C and P

We only consider C and P in theories that involve fermions. Under C, particles and antiparticles

are interchanged by conjugating all internal quantum numbers, e.g., reversing the sign of the

electromagnetic charge, Q → −Q. Under P , the handedness of space is reversed, ~x → −~x, and

the chirality of fermion fields is reversed, ψL ↔ ψR. For example, a left-handed (LH) electron e−L

transforms under C into a LH positron e+
L , and under P into a right-handed (RH) electron e−R.

1.A.2 CP violation and complex couplings

The CP transformation combines charge conjugation C with parity P . For example, a LH electron

e−L transforms under CP into a RH positron, e+
R. CP is a good symmetry if there is a basis where

all the parameters of the Lagrangian are real. We do not prove it here but provide a simple

intuitive explanation of this statement.

Consider a theory with a single complex scalar, φ, and two sets of N fermions, ψiL and ψiR

(i = 1, 2, ..., N) (we define a complex scalar in Chapter 2). The Yukawa interactions are given by

−LYuk = YijψLiφψRj + Y ∗ijψRjφ
†ψLi, (1.9)

where we write the two hermitian conjugate terms explicitly. The CP transformation of the fields

is defined as follows:

φ→ φ†, ψLi → ψLi, ψRi → ψRi. (1.10)
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Therefore, a CP transformation exchanges the operators

ψLiφψRj←→ ψRjφ
†ψLi, (1.11)

but leaves their coefficients, Yij and Y ∗ij , unchanged. This means that CP is a symmetry of L if

Yij = Y ∗ij .

In practice, things are more subtle, since one can define the CP transformation in a more

general way than Eq. (1.10):

φ→ eiθφ†, ψiL → eiθLiψiL, ψiR → eiθRiψiR, (1.12)

with θ, θLi, θRi convention-dependent phases. Then, there can be complex couplings, yet CP would

be an exact symmetry. The correct statement is that CP is violated if, using all freedom to redefine

the phases of the fields, one cannot find any basis where all couplings are real.
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Problems

Question 1.1: Algebra

1. Draw the Feynman rules for the interaction terms in the Lagrangian of Eq. (1.2).

2. Starting from Eq. (1.5) and using Eq. (1.3), derive Eq. (1.7).

3. Draw the Feynman rules for the Yukawa interaction terms in the Lagrangian of Eq. (1.8).

Question 1.2: Using Natural units

In high energy physics, since relativity and quantum mechanics are essential, it is convenient

to use units where

h̄ ≈ 6.58× 10−22 MeV s = 1, c ≈ 3× 108 m s−1 = 1 , h̄c ≈ 2× 10−13 MeV m = 1 . (1.13)

One can think of this convention as a choice of a unit system where the basis is {h̄, c, eV} instead

of, for example, the {cm, g, sec} of the cgs system. In addition, it is common to make the factors

of h̄ and c implicit and measure everything in powers of eV. We reinstate the factors of h̄ and c

only when converting to a different unit system. The aim of this exercise is that you gain some

practice in using these natural units.

1. The width of a particle is defined as the inverse of its lifetime. The mean lifetime for the B+

meson is τ ≈ 1.64× 10−12 s. What is its width in eV?

2. Consider a particle with a width of Γ = 2.3 eV. Recall that in the lab frame t = γτ . What is

the average distance that such a particle travels with γ = 100 before decaying (since γ � 1

you can use β ≈ 1.)

3. Quantum gravity effects cannot be neglected at very short distances. This happens when

the energy scale is of the order of the Planck mass,

MPl ≡
√
h̄c

GN

, (1.14)
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where GN is the Newtonian gravitational constant. (The Planck scale constitutes an upper

bound on the cut-off scale of all QFTs relevant to Nature.) Express MPl in GeV, and the

Planck length, LPl ≡M−1
Pl , in cm.

4. In oscillation experiments for neutrinos, it is important to know the oscillation length, Losc =

4πE/∆m2, where ∆m2 is the mass-squared difference between the two neutrino states. For

an experiment conducted with neutrinos of E = 1.3 GeV, find the value of ∆m2 in units of

eV2 that corresponds to Losc = 140 meters.

Question 1.3: Dimensions of terms

It is useful to understand what we refer to as the “dimension of operators” or the “dimension

of Lagrangian terms.” The action has dimensions of angular momentum. Therefore, in the natural

unit system, the action is dimensionless, and the Lagrangian has a mass-dimension of four (or,

more generally, of the number of spacetime dimensions).

1. Based on the Lagrangians of Eqs. (1.2) and (1.5), show that canonical scalar fields have

dimension d = 1 and canonical fermion fields have dimension d = 3/2.

2. Find the dimensions of the m2 parameter in Eq. (1.2) and of the mMR, mML, and mD

parameters in Eq. (1.5).

3. What are the dimensions of η and λ in Eq. (1.2) and of Y in Eq. (1.8)?

Question 1.4: Accidental symmetries

In this question, we study a classical system in order to show examples of accidental symmetries.

Consider a classical one-dimensional pendulum of length `. The one degree of freedom can be

chosen to be θ, the angle of the pendulum. Then, the Lagrangian is given by

L =
m`2θ̇2

2
−mg`[1− cos θ], (1.15)

Assuming small oscillations (θ � 1), we can expand the potential. Keeping only terms up to

second-order, we get

L =
m`2θ̇2

2
− mg`θ2

2
, (1.16)

which is the Lagrangian of a simple harmonic oscillator. It is well known that the frequency of a

simple harmonic oscillator does not depend on its amplitude. Below we aim to understand how

this result is related to accidental symmetries.
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1. Show that the EoM derived from the Lagrangian of Eq. (1.16) is invariant under dilation,

θ → λθ, for any finite λ. (We are then saying that L of Eq. (1.16) has dilation symmetry,

despite the fact that it is only the EoM that is invariant.)

2. Does the Lagrangian of Eq. (1.15) also have dilation symmetry?

3. Expand the Lagrangian of Eq. (1.15) up to O(θ4). Show explicitly that the θ4 term breaks

the dilation invariance. Explain why this implies that this symmetry is accidental.

4. Without a formal proof, argue that dilation symmetry implies that the frequency cannot

depend on the amplitude.
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Chapter 2

Abelian symmetries

In Section 1.3 we explained the importance of symmetries in physics and presented the various

types of symmetries we encounter. In this chapter we introduce various concepts and definitions

concerning internal symmetries. In particular, we distinguish global from local symmetries, discrete

from continuous symmetries, and chiral from vectorial symmetries. We further introduce the notion

of charge and its relation to symmetries. In this chapter we only discuss Abelian symmetries, that

is, symmetries that correspond to commuting symmetry groups. Non-Abelain symmetries are

discussed in Chapter 4.

2.1 Global symmetries

The term global symmetries refers to symmetries under transformations that are constant in space-

time. This is in distinction to local symmetries, which are introduced in Section 2.2, where the

symmetry transformation is xµ-dependent.

2.1.1 Global discrete symmetries

We start with a simple example of imposing an internal global discrete symmetry. Consider a real

scalar field φ. The most general Lagrangian we can write is given in Eq. (1.2), which we rewrite

here:

LS =
1

2
(∂µφ)(∂µφ)− m2

2
φ2 − η

2
√

2
φ3 − λ

4
φ4 . (2.1)

We now impose a symmetry: We demand that L is invariant under φ→ −φ, namely

L(φ) = L(−φ) . (2.2)

L is invariant under this symmetry if η = 0. Thus, by imposing the symmetry we force η = 0.

The most general L(φ) that is invariant under φ→ −φ is then

L =
1

2
(∂µφ)(∂µφ)− m2

2
φ2 − λ

4
φ4 . (2.3)
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What conservation law corresponds to this symmetry? We note that the number of φ-particles

in a system that is described by the Lagrangian of Eq. (2.3) can change, but only by an even

number. Therefore, if we define φ-parity as (−1)n, where n is the number of φ-particles in the

system, this φ-parity is conserved. If we do not impose the symmetry and η 6= 0, then the number

of particles can change by any integer and φ-parity is not conserved.

It is a useful exercise to describe the symmetry in terms of group theory. Here the relevant

group is Z2. It has two elements that we call even (+) and odd (−). The multiplication table is

very simple:

Z2 (+) (−)

(+) (+) (−)

(−) (−) (+)

(2.4)

When we say that we impose a Z2 symmetry on L, with the Z2 transformation law φ→ −φ, what

we mean is that L belongs to the even representation of Z2, and φ belongs to the odd representation

of Z2. Clearly, for n an integer, φ2n belong to the even representation and φ2n+1 belong to the odd

representation. For L to be Z2-even, each term in L must be Z2-even, and we must omit all terms

with odd powers of φ. Then we can construct the most general L, and it is given by Eq. (2.3).

At this point, using the language of group theory may seem cumbersome and unnecessarily

complicated. Later, however, we use the language of group theory to deal with more elaborate

situations, where it has proven to be very useful.

2.1.2 Global continuous symmetries

We now extend our discussion to global continuous symmetries. The idea is that we demand that

L is invariant under rotation in some internal space. While (some of) the fields are not invariant

under rotation in that space, the combinations that appear in the Lagrangian are.

The fact that we can rotate between fields should not come as a surprise. This is nothing

but the idea of generalized coordinates. Any linear combinations of the fields can be used as our

coordinates, not just the one we choose to start with.

Our first example is that of a complex scalar field, φ. A complex scalar field has two Degrees

of Freedom (DoF). There are two useful ways to write the two DoF explicitly. First, we can use a

Cartesian form:

φ ≡ 1√
2

(φR + iφI) , (2.5)

with φR and φI real scalar fields. The most general renormalizable L(φR, φI) is given by

L(φR, φI) =
1

2
δij (∂µφi) (∂µφj)−

m2
ij

2
φiφj −

ηijk
6
φiφjφk−

λijk`
24

φiφjφkφ` , i, j, k, ` = R, I. (2.6)

We consider rotations in the complex plane:(
φR

φI

)
→ O

(
φR

φI

)
, O =

(
cos θ sin θ

− sin θ cos θ

)
. (2.7)
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When we say that we impose a global symmetry, we mean that θ is a number that does not depend

on xµ. Imposing that L(φR, φI) is invariant under the transformation of Eq. (2.7) forbids many

terms and relates others:

L(φR, φI) =
1

2
(∂µφR∂µφR) +

1

2
(∂µφI∂µφI)−

m2

2
(φRφR + φIφI)−

λ

4

(
φ4
R + φ4

I + 2φ2
Iφ

2
R

)
. (2.8)

In the language of group theory, the imposed symmetry — rotations in a two dimensional real

plane — is called SO(2).

Second, we can formulate the transformation law directly in terms of the complex field φ:

φ→ eiθφ, φ† → e−iθφ†. (2.9)

Imposing that L(φ, φ†) is invariant under the transformation of Eq. (2.9) leads to

L(φ, φ†) =
(
∂µφ†

) (
∂µφ

)
−m2φ†φ− λ(φ†φ)2. (2.10)

In the language of group theory, the imposed symmetry — rotations in a one dimensional complex

plane — is called U(1). (Mathematically SO(2) and U(1) are equivalent. The different names

represent the way we think about the underlying space.) It is easy to check that the Lagrangians

in Eqs. (2.8) and (2.10) are equivalent. Eq. (2.10) is, however, more compact. We emphasize the

following points regarding Eq. (2.10):

• The three terms that appear in this equation and, in particular, the mass term, do not

violate any internal symmetry. Thus, there is no way to forbid them by imposing an internal

symmetry.

• We would obtain the same result if we scale θ by any non-zero number. Explicitly, we would

obtain the same Lagrangian with a transformation law

φ→ eiqθφ (2.11)

for any finite q. Since q is arbitrary, we can choose it to be one, as we did. The situation is

different when we have more than one complex field, as we discuss next.

In terms of group theory, the situation is explained as follows: we impose a U(1) symmetry, and

assign the φ field into the q = 1 representation of that U(1).

2.1.3 Charge

We are now ready to define charge. We are accustomed to the notion of charge from the specific

case of electromagnetism. In electromagnetism, charge has two aspects: (i) It sets the strength of

the interaction of the fermions with the photon; (ii) It is a conserved quantity. In this section we

deal with the latter point, while the aspect of interaction strength will emerge when we generalize
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our discussion to local symmetries in Section 2.2. Charge conservation is related to symmetry. The

general relation between internal global continuous symmetries and conserved charges is known as

Noether’s theorem. Here we provide a simple example.

Consider a theory with two complex scalar fields, φ1 and φ2. To each field φi we assign a real

number qi. We impose a symmetry under the simultaneous phase rotation of both fields:

φ1 → eiq1θφ1, φ2 → eiq2θφ2. (2.12)

The conjugate fields transform as follows:

φ†1 → e−iq1θφ†1, φ†2 → e−iq2θφ†2. (2.13)

We say that qi is the charge of the field φi. The charge of the conjugate field φ†i is −qi. While we

can always set one of the charges to 1, we cannot do it for both. The ratio of charges, q2/q1, is a

physical quantity.

The charge qi is an input to model building: We assign charges to the fields and write down the

Lagrangian that is invariant under the above rotations. As a concrete example, consider a model

with two complex scalar fields of charges q1 = 1 and q2 = 3. Then the most general renormalizable

Lagrangian that is invariant under Eq. (2.12) is

L =
(
∂µφ†1

) (
∂µφ1

)
+
(
∂µφ†2

) (
∂µφ2

)
−m2

1φ
†
1φ1 −m2

2φ
†
2φ2

−λ11(φ†1φ1)2 − λ22(φ†2φ2)2 − λ12(φ†1φ1)(φ†2φ2)− (ηφ3
1φ
†
2 + h.c.). (2.14)

A few comments are in order:

• For a term to be allowed, the sum of the charges of the fields in this term must be zero.

• All the interactions that are allowed by the symmetry conserve the charge. This can be seen

formally (and most generally) by the Noether’s theorem. It can also be seen for our specific

example. Each term in the Lagrangian of Eq. (2.14) carries an overall charge zero. Therefore,

it corresponds to creation and annihilation of particles such that the sum of charges of the

initial particles equals the sum of charges of the final particles.

• Since charge is related to the phase shift of a field, it can only be assigned to complex fields.

That is, real fields have q = 0.

• There are two terms that are often used in the physics jargon instead of charges: quantum

numbers (QN’s) and representations. The use of the term QN’s might be confusing, as in

quantum mechanics charge is assigned to a particle while QN is assigned to a state. In QFT,

however, we use QN to describe the charges that are assigned to a field. The use of the term

representations becomes clear when we discuss non-Abelian symmetries.
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2.1.4 Product groups and accidental symmetries

In our discussion above, we introduced the simplest continuous Abelian symmetry, U(1). We can

generalize this idea and impose a larger symmetry, [U(1)]N . This gives us another tool for model

building. Consider, for example, a model with two complex scalar fields, where we require invari-

ance of the Lagrangian under two independent rotations by phases θa and θb. Such a symmetry is

called U(1)a × U(1)b. The two fields transform as follows:

φ1 → exp[i(qa1θa + qb1θb)]φ1, φ2 → exp[i(qa2θa + qb2θb)]φ2. (2.15)

The rotation of the conjugate fields is done with the replacement qa,bi → −q
a,b
i .

Consider the assignment (qa1 , q
b
1) = (1, 0), and (qa2 , q

b
2) = (0, 1). In such a case, the η term of

the Lagrangian of Eq. (2.14) is forbidden, and we have (repeated indices are summed over)

L = ∂µφ†i∂µφi −m2
1φ
†
1φ1 −m2

2φ
†
2φ2 − λij(φ†iφi)(φ

†
jφj) (2.16)

We see again how imposing a symmetry can be used to forbid terms in the Lagrangian.

The U(1)a × U(1)b symmetry can be defined in various ways: Instead of having θa and θb as

the independent rotation angles, we can use linear combinations of them. For example, we can use

θ± ≡ θa ± θb as the two independent angles. The corresponding charges are q±i = qai ± qbi and the

symmetry is denoted by U(1)+ × U(1)−. In Question 2.9 and in Section 3.2 you encounter cases

that demonstrate the usefulness of such a redefinition.

It is illuminating to ask if there is a way to obtain the Lagrangian of Eq. (2.16) by imposing

a single U(1) symmetry as in Eq. (2.12). The answer is in the affirmative. For example, we can

assign charges q1 = 1 and q2 = 4. Note that this choice allows a term of the form φ4
1φ
†
2. The reason

we do not write it is that it is a dimension-five term and therefore non-renormalizable.

This is in fact our first example of an accidental symmetry. The symmetry we impose is a

U(1) symmetry with certain charge assignments, and the resulting Lagrangian has a U(1)× U(1)

symmetry, that is, there is an extra U(1) symmetry that is accidental. In fact, the Lagrangian of

Eq. (2.16) would be the same for any U(1) symmetry with q1 and q2 positive integers, co-prime to

each other, and q1 + q2 ≥ 5. To each such assignment corresponds a different non-renormalizable

term, φq21 φ
†q1
2 , that breaks the [U(1)]2 symmetry down to the U(1) that we imposed.

2.1.5 Symmetries and fermion masses

We can define a U(1) phase transformation of Weyl fermions:

ψL → exp(iqLθ)ψL, ψR → exp(iqRθ)ψR. (2.17)

The conjugate fields transform as

ψL → exp(−iqLθ)ψL, ψR → exp(−iqRθ)ψR. (2.18)
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Note that ψR and ψcR transform in the same way under all symmetries. In particular, if

ψR → exp(iqRθ)ψR, then ψcR → exp(iqRθ)ψcR. This is the reason we often write ψTRψR instead

of ψcRψR: The charge in both expressions is the same. Similarly, we often write ψTLψL instead of

ψcLψL.

To understand the consequences of imposing such a U(1) symmetry on the Lagrangian, re-

call that the combination of renormalizability and Lorentz invariance allows only terms with two

fermion fields (or no fermion fields at all), see Eq. (1.5). We here focus on the fermion mass terms.

There is a classification of symmetries applied to fermions that is relevant for our discussion.

Consider a theory with a single left-handed fermion field and a single right-handed fermion

field and an imposed U(1) symmetry:

• The symmetry is chiral if qL 6= qR.

• The symmetry is vectorial if qL = qR.

• More generally, if there are several fermion fields, the symmetry is vectorial if all left-handed

fields and all right-handed fields can be matched into pairs with the same charge, qLi = qRi

for each i, and chiral otherwise.

• If we include any non-Abelian group, to be discussed later, the generalization of the above

is that we replace the word charge with the word representation.

A result that is important for our purposes is that C and P are violated in any chiral theory.

Note that imposing a chiral symmetry is sufficient but not necessary for a theory to violate C

and P : Vectorial theories can conserve or violate C and/or P . (For an explicit example, see

Question 3.3.)

Consider a theory with one or more U(1) symmetries, a single left-handed field and a single

right-handed field:

• To allow a Dirac mass, the charges of ψL and ψR under these symmetries must be opposite,

which is the case when q(ψL) = q(ψR). (If we include any non-Abelian group, to be discussed

later, a fermion field can have a Dirac mass only if it is in a vector representation of the

symmetry group.)

• Since the transformations of ψcR and ψR are the same, a fermion field can have a Majorana

mass only if it is neutral under all U(1) symmetries. In particular, as we discuss below, fields

that carry electric charges cannot acquire Majorana masses. (If we include any non-Abelian

group, to be discussed later, a fermion field can have a Majorana mass only if it is in a real

representation of the symmetry group.)

Consider a theory with m left-handed fields and n right-handed fields:
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Table 2.1: Dirac and Majorana masses

Dirac Majorana

# of degrees of freedom 4 2

Representation vector neutral

Mass matrix m× n, general (m+ n)× (m+ n), symmetric

SM fermions quarks, charged leptons neutrinos (?)

• If all of these (m+n) fields carry the same charges, q 6= 0, the Majorana mass terms vanish,

while the Dirac mass terms form an m× n general complex matrix mD:

(mD)ij(ψL)i(ψR)j + h.c.. (2.19)

The mass eigenstates are, for m ≤ n, m Dirac fermions and (n −m) massless right-handed

fermions or, for m ≥ n, n Dirac fermions and (m− n) massless left-handed fermions. In the

SM, as we discuss later, charged fermion fields are present in three copies (m = n = 3) with

the same quantum numbers, and the Dirac mass matrices are 3× 3.

• If all of these (m + n) fields are neutral, q = 0, the mass terms form an (m + n)× (m + n)

symmetric complex matrix Mψ. This matrix consists of an m ×m block of Majorana mass

terms for the left-handed fields, an n×n block of Majorana mass terms for the right-handed

fields, and an m× n block of Dirac mass terms:

(ψL ψcR )

(
m

(m×m)
ML m

(m×n)
D

m
T (n×m)
D m

(n×n)
MR

)(
ψcL

ψR

)
. (2.20)

The (m + n) mass eigenstates are Majorana fermions. In the SM, neutrinos are the only

neutral fermions with m = 3 and n = 0. If they have Majorana masses, then their mass

matrix is 3× 3.

We summarize these differences between Dirac and Majorana masses in Table 2.1.

An important lesson that we can draw from these observations is the following: charged fermions

in a chiral representation are massless. In other words, if we encounter massless fermions in nature,

there is a way to explain their masslessness from symmetry principles.

2.2 Local symmetries

2.2.1 Introducing local symmetries

So far we discussed global symmetries, that is, symmetries where θ is independent of spacetime.

In this section we discuss local symmetries (also called gauge symmetries), that is, continuous
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symmetries where the transformation can be different at different space-time points θ(x), where

x stands for xµ, the spacetime coordinates. (We discuss only continuous local symmetries, and

not discrete local symmetries.) Local symmetries have far reaching consequences. All the internal

symmetries that are imposed in defining the SM are local.

We generalize Eq. (2.9) and define a local transformation of a complex scalar field:

φ(x)→ eiqθ(x)φ(x), φ†(x)→ e−iqθ(x)φ†(x). (2.21)

(From here on, we do not write explicitly the transformation of the conjugate field.) All terms

in the Lagrangian that do not involve derivatives of fields and which are invariant under a global

symmetry are also invariant under the corresponding local symmetry. This is, however, not the

case for derivative terms. The local transformation of ∂µφ is given by

∂µφ(x)→ ∂µ[eiqθ(x)φ(x)] = eiqθ(x)∂µφ(x) + iqeiqθ(x)[∂µθ(x)]φ(x) . (2.22)

Consequently, the kinetic term of a scalar is not invariant under the local symmetry:

∂µφ†(x) ∂µφ(x)→
[
∂µφ†(x)− iq[∂µθ(x)]φ†(x)

][
∂µφ(x) + iq[∂µθ(x)]φ(x)

]
6= ∂µφ†(x)∂µφ(x). (2.23)

The kinetic term violates the local symmetry also in the case of fermion fields (see Question 2.1).

We learn that in a theory that includes only scalars and fermions, a local symmetry acting on these

scalar and fermion fields forbids the kinetic terms. A field without a kinetic term is not dynamical

and cannot describe the particles we observe in nature.

Can we have a theory of dynamical scalars and fermions that is invariant under a local sym-

metry? The answer is in the affirmative. To do that, we have to “correct” for the extra terms that

arise in the transformation of the kinetic terms, while keeping in the kinetic terms themselves.

These two requirements give us an idea of how to solve the situation for the local case. We should

replace1 ∂µφ with a so-called “covariant” derivative Dµφ, with Dµ transforming in such a way that

the transformation law for Dµφ under the local symmetry is similar to the transformation law of

∂µφ under the global symmetry, i.e.

Dµφ→ eiqθDµφ. (2.24)

If we have a globally invariant L(∂µφ, φ), and the transformation law (2.24) applies, then L(Dµφ, φ)

is guaranteed to be invariant under the corresponding local symmetry.

How do we find what Dµ is? Given the transformation law (2.21), and the desired transforma-

tion law (2.24), let us try

Dµ = ∂µ + igqAµ , (2.25)

1From this point on, we leave the x dependence implicit. We add it only when we introduce new x dependent

entities.
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where g is a dimensionless constant, which we take to be positive, and Aµ(x) is a vector field with

the following transformation law:

Aµ → Aµ −
1

g
∂µθ. (2.26)

We leave it as a homework (Question 2.1) to check that Eqs. (2.25) and (2.26) indeed lead to

Eq. (2.24). We thus achieved our goal of obtaining a locally invariant Lagrangian with dynamical

scalar and/or fermion fields. We do so by taking a Lagrangian L that is invariant under the global

symmetry, and replacing ∂µ with Dµ. The “price” to pay is that we must add vector fields to the

model.

The field Aµ is called a gauge field. The constant g is called the coupling constant (for reasons

that will become clear below). Following our principle that we include all the terms that are

allowed, we add a kinetic term for Aµ. To do that, we define the field strength F µν :

[Dµ, Dν ] = igqF µν , (2.27)

which leads to the familiar definition:

F µν = ∂µAν − ∂νAµ. (2.28)

The Lorentz invariant kinetic term for the gauge field is given by

L = −1

4
F µνFµν . (2.29)

The Lagrangian of Eq. (2.29) is the most general renormalizable one that involves only the vector

field and is invariant under the local symmetry.

Note the following points:

• Given the kinetic term, Aµ is a dynamical field and its excitations are physical particles. For

example, as we show later, the photon is associated with such excitations.

• We work in the canonically normalized basis where the coefficient of the kinetic term is 1/4.

• While a kinetic term is invariant under the local phase transformation, a mass-squared term,
1
2
m2AµAµ, is not. You will prove it in your homework (Question 2.5). Here we just emphasize

the result: Local invariance implies massless gauge fields. Gauge bosons have only two

degrees of freedom.

• One may wonder why we do not include a term of the form FµνF̃µν (with F̃µν ≡ εµνρσF
ρσ).

The reason is that such a term is a total derivative which for Abelian symmetries is unphys-

ical.

• A gauge field related to an Abelian symmetry does not couple to itself, that is, there is no

term in the renormalizable Lagrangian that involves more than two gauge fields.
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• You may be puzzled by the fact that the transformation law for the gauge field is additive,

and not multiplicative, as is the case for the scalar and fermion fields. You should not be

entirely surprised. When we write the transformation law for a scalar field as φ→ eiqθφ, the

phase of the field is shifted, arg(φ)→ arg(φ) + iqθ. The Aµ field transforms like a phase.

• Consider Lagrangian terms involving only scalar and/or fermion fields and no derivatives of

fields. If such a term is invariant under the global symmetry then it is also invariant under the

corresponding local symmetry. This is not the case for the terms involving the gauge fields.

Indeed, a mass-squared term and a quartic interaction term are invariant under the global

U(1) but not under the local U(1). This is related to the fact that the U(1) transformation

law for scalars and fermions involves a multiplicative phase factor, while the one for gauge

fields involves an additive shift.

• The transformation of Eq. (2.26) is familiar from classical electromagnetism, where Aµ is just

the vector potential. In that context, the invariance of the vector potential under Eq. (2.26)

is often stated as the fact that only E and B are physical, while Aµ is redundant, and thus

we have an extra freedom that we call the gauge freedom. Here we reverse the logic: we

impose the gauge symmetry and the result is that the photon is massless and that only E

and B are physical.

• If a local symmetry decomposes into several independent factors, each factor requires its

corresponding gauge field and has its own independent coupling constant. For example, if

the symmetry is a local U(1)a×U(1)b, we must include two massless gauge fields, Aaµ and Abµ,

and their transformation laws involve two independent coupling constants, ga and gb. (Note

that the sub-indices a and b on the symmetry groups are just labels that do not change the

mathematical properties. In the example here these are arbitrary labels, but later on, similar

sub-indices are more meaningful. For example, we use U(1)EM to denote the symmetry group

that corresponds to the electromagnetic (EM) interaction.)

2.2.2 Charge

The notion of charge under a global symmetry was introduced in Eq. (2.12). The global symmetry

implies charge conservation. In this subsection we show that, in the case of a local symmetry, there

is an additional implication to the charge: it sets the strength of the interaction with the gauge

boson.

Consider a local U(1) symmetry. The covariant derivative of a field of charge q is given by

Dµ = ∂µ + igqAµ . (2.30)

Take, for example, a fermion field with charge q under the local U(1). Its kinetic term is

iψ̄D/ψ = iψ̄∂/ ψ − gqψ̄A/ψ. (2.31)
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The second term is an interaction term between the fermion and the vector fields. The strength

of the interaction is given by the gauge coupling constant g times the charge q. In particular, the

larger the charge, the stronger the coupling to the gauge boson.

Two comments are in order with regard to Eqs. (2.30) and (2.31):

1. Unlike the derivative ∂µ, the covariant derivative Dµ depends on the charge q of the field on

which it acts. It is different for fields of different charges.2

2. What appears in a Lagrangian is the combination gq, and not g and q separately. Indeed,

for the Abelian case, one can re-scale the coupling constant g and the charge q such that gq

remains the same, and the physics of the model is unaffected. When we have several fields of

different charges, one should re-scale all of them in the same way. The ratio between different

charges, say q2/q1, is physical and sets the relative strength of the interactions of φ2 and φ1

with the gauge field Aµ. As we discuss later, the situation is different in the non-Abelian

case.

We can summarize this section as follows. To have a Lagrangian of dynamical scalar and/or

fermion fields that is invariant under a local U(1) symmetry requires the introduction of a vector

boson. The vector boson necessarily interacts with all scalars and fermions that are charged under

the symmetry. Conversely, the gauge boson does not couple to fields that are neutral (q = 0) under

the symmetry. The global symmetry implies charge conservation. The local symmetry implies, in

addition, that the charge sets the strength of the interaction with the corresponding gauge field.

2.3 Summary

We described the first steps in the process of model building for scalars and/or fermions. We need

to provide as input the following two ingredients:

(i) The symmetry;

(ii) The charges of the fermions and scalars.

Then we write down the most general renormalizable Lagrangian that depends on the scalar and

fermion fields and is invariant under the symmetry. If the imposed symmetry is local, corresponding

vector fields must be added.

The most general renormalizable Lagrangian with scalar, fermion and gauge fields can be

decomposed into

L = Lkin + Lψ + Lφ + LYuk. (2.32)

2Perhaps it would have been helpful to denote a U(1)-related covariant derivative by Dµ
q , emphasizing the q-

dependence. It became, however, customary to keep the q-dependence implicit and write just Dµ. We comply with

this norm of the community.
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Here Lkin describes the free propagation in spacetime of all dynamical fields, as well as the gauge

interactions, Lψ gives the fermion mass terms, LYuk describes the Yukawa interactions, and Vφ ≡
−Lφ is the scalar potential. In all the examples we will study, our task will be to find the specific

form of each of these four parts of the renormalizable Lagrangian.

In the SM, only local symmetries are imposed. Similarly, in most of the extensions of the

SM, only local symmetries and global discrete symmetries are imposed. While it is possible,

in principle, to impose also global continuous symmetries, this is rarely done in current model

building. The reason for that is twofold. First, there are arguments that suggest that continuous

global symmetries are always broken by gravitational effects and thus can only arise as accidental,

rather than imposed symmetries. Second, there is no obvious phenomenological motivation to

impose such symmetries. Thus, in all the models presented in this book that aim to describe

nature, global continuous symmetries are not imposed.

In the next chapter we show how QED, the theory of electromagnetic interactions, can be

derived by starting from the above principles.

For further reading

A discussion of Noether’s theorem can be found, for example, in Section 3.3 of Ref. [14] and

Chapter 3 of Ref. [11].
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Problems

Question 2.1: Algebra

1. Show that the Lagrangians in Eqs. (2.8) and (2.10) are equivalent.

2. Using Eqs. (2.25) and (2.27), derive Eq. (2.28).

3. Consider a kinetic term of a fermion field, iψ∂/ψ, and show that it is not invariant under a

local transformation: ψ → eiθ(x)ψ.

4. Explain why, for terms that do not involve derivatives, the θ → θ(x) substitution has no

effect on the symmetry properties.

5. Show that the covariant derivative of the field, defined in Eq. (2.25), transforms in the same

way as the field itself:

Dµφ→ eiqθ(x)Dµφ. (2.33)

6. Show that Eq. (2.33) can be written equivalently as

Dµ → eiqθ(x)Dµe
−iqθ(x). (2.34)

7. Show that a mass term for Aµ, that is, m2AµA
µ is not invariant under the transformation

law of Eq. (2.26).

8. Show that F µν , defined in Eq. (2.28), is gauge invariant.

9. Show that F µνF̃µν (with F̃µν ≡ εµνρσF
ρσ) is a total derivative.

Question 2.2: Charges
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Consider a system with three complex fields, φ1, φ3, and φ4, where φq carries a charge q under

a U(1) symmetry. Write all the allowed interaction terms with three and four fields.

Question 2.3: Imposing a symmetry

The most general mass-squared terms for a theory with two real scalar fields, φ1 and φ2, are

−Lm =
1

2

(
m2

11φ
2
1 +m2

22φ
2
2 + 2m2

12φ1φ2

)
. (2.35)

1. Show that one can always rotate to a basis where m2
12 = 0.

2. Find a symmetry that you can impose in order to get a universal mass term, that is,

−Lm =
m2

2

(
φ2

1 + φ2
2

)
. (2.36)

In other words, the symmetry forces m2
11 = m2

22 and m2
12 = 0.

3. Define a complex field

φ ≡ φ1 + iφ2√
2

, (2.37)

and write the Lagrangian of Eq. (2.36) in terms of this field.

4. Argue, based on the above, that a simple way to talk about fields that transform non-trivially

under an Abelian symmetry is in terms of complex fields.

Question 2.4: Gauge boson interactions

1. Explain why a gauge boson associated with a local symmetry necessarily interacts with all

fermions and scalars that are charged under the symmetry.

2. Explain why the gauge boson necessarily does not couple to fields that are neutral under the

symmetry (q = 0).

Question 2.5: Gauging a symmetry

The process of gauging a symmetry is one where we take a theory that is invariant under a

global symmetry and modify it to make it invariant under the corresponding local symmetry. This

is done by making the symmetry transformation parameter x-dependent, θ = θ(x) and adding a

gauge field.

In this question we consider a simple theory with a single complex scalar field φ that carries

charge q = 1 under a U(1) symmetry.
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1. Write the most general Lagrangian, taking the U(1) symmetry to be global.

2. Write the most general Lagrangian, taking the U(1) symmetry to be local. In other words,

gauge the theory by adding a gauge field, denoted by Aµ, and replacing the derivative with

a covariant derivative.

3. Writing the kinetic term with the Aµ field appearing explicitly, obtain all the interaction

terms involving Aµ.

Question 2.6: Chiral symmetry

The Lagrangian for a single, massless, free Dirac fermion field is given by

L = iψ ∂/ψ . (2.38)

Consider the following two transformations:

ψ → eiθ ψ, ψ → eiθγ5 ψ . (2.39)

1. Show that under these two transformations, the conjugate field transforms, respectively, as

ψ → ψ e−iθ, ψ → ψ eiθγ5 . (2.40)

2. The ψ → eiθ ψ transformation is clearly vectorial, that is, ψL and ψR transfrom in the same

way:

ψ → eiθ ψ = eiθ ψL + eiθ ψR. (2.41)

The ψ → eiθγ5 ψ transformation, on the other hand, is chiral. That is, ψL and ψR transfrom

diferently under it:

ψ → eiθγ5 ψ = e−iθ ψL + e+iθ ψR. (2.42)

Prove Eq. (2.42).

3. Show that the Lagrangian (2.38) is invariant under both transformations of Eq. (2.39).

4. Add a Dirac mass term to the Lagrangian, mψψ, and show that it breaks the chiral symmetry,

ψ → eiθγ5 ψ, and conserves the vectorial one, ψ → eiθ ψ.

The above result is the source of the statement that we can use chiral symmetries to forbid mass

terms for fermions.

Question 2.7: Vectorial and chiral symmetries
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Consider a system with N Dirac fermion fields ψ1, ψ2, . . . , ψN , and one real scalar field, φ. The

most general part of the Lagrangian that involves the fermions is

L = ψi[i∂/δij −mij − λijφ]ψj . (2.43)

Generally, the symmetry of (2.43) is a U(1) under which all the fermions carry the same charge

and the scalar carries charge zero.

1. Show that, if λij ∝ mij, the symmetry is larger, [U(1)]N .

2. Find a symmetry to impose on the Lagrangian in Eq. (2.43) that sets mij = 0 but allows for

λij 6= 0. Explain why this symmetry must be chiral.

Question 2.8: Canonical normalization

According to the rules of writing Lagrangians, listed in Section 1.1, we should be writing the

most general Lagrangian, consistent with the imposed symmetry and the field content. Yet, we

always use canonically normalized fields, rather than the most general kinetic terms. Consider, for

example, a theory with N real scalar fields:

L = Lkin − Vφ. (2.44)

The most general scalar potential is given by

Vφ =
m2
ij

2
φiφj +

ηijk
6
φiφjφk +

λijk`
24

φiφjφkφ`. (2.45)

For the kinetic terms, we use the canonically normalized form:

Lkin =
1

2
δij∂

µφi∂µφj. (2.46)

Yet, the most general Lkin is given by

Lkin = Zij∂
µφi∂µφj, (2.47)

where Z is a general, symmetric and real matrix.

1. Show explicitly how to perform a change of basis by which Lkin of Eq. (2.47) assumes the

form of Eq. (2.46).

2. Taking the scalar potential of Eq. (2.45) to apply in the basis of Eq. (2.47), obtain the scalar

potential in the basis of Eq. (2.46).

3. Based on the results above, argue that there is no loss of generality when choosing to work

with canonically normalized fields.
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Question 2.9: Accidental symmetries

Consider a variation of the model discussed in Subsection (2.1.4). We impose a U(1)imp symme-

try. The model has two complex scalar fields, φ1 and φ2, that carry charges qimp
1 = 1 and qimp

2 = 5.

The most general Lagrangian for this model is given by Eq. (2.16) that we rewrite here:

L = ∂µφ†i∂µφi −m2
iφ
†
iφi − λij(φ

†
iφi)(φ

†
jφj). (2.48)

1. Show that L has a U(1)a × U(1)b symmetry, where the the charges of the fields are

q1 = (1, 0), q2 = (0, 1). (2.49)

Here the first [second] number in the parenthesis refers to the charge under U(1)a [U(1)b].

The U(1)a × U(1)b symmetry is partially accidental, that is, we imposed a single U(1) and ended

up with a [U(1)]2 symmetry. We can rewrite the symmetry as a product of U(1)imp×U(1)acc such

that U(1)imp is the imposed symmetry (with qimp
1 = 1 and qimp

2 = 5) and U(1)acc is an accidental

one. While there are many possible choices for U(1)acc, the one we consider below is particularly

useful.

2. We choose U(1)acc such that the charges under U(1)imp and U(1)acc are orthonormal:

qimp
1 qacc

1 + qimp
2 qacc

2 = 0,
(
qimp

1

)2
+
(
qimp

2

)2
= (qacc

1 )2 + (qacc
2 )2 . (2.50)

Find one possibility for qacc
1 and qacc

2 .

3. A generic [U(1)]2 transfromation can be written in the two bases as

ψ → ei(qaθa+qbθb)ψ = ei(q
impθimp+qaccθacc)ψ (2.51)

The angles, θimp and θacc, can be expressed in terms of θa and θb. Find that relation.

4. Write a dimension six operator that breaks the U(1)a × U(1)b symmetry into U(1)imp.
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Chapter 3

QED

You are familiar with Quantum ElectroDynamics (QED) from QFT courses, where the QED

Lagrangian is given and its implications are studied. In this chapter we introduce QED using tools

of model building: We postulate a symmetry principle and the transformation properties of the

fields, and derive the Lagrangian.

This is also our first example of a model that describes Nature. QED is an effective theory

describing electromagnetic interactions at low energy. It encompasses, however, very important

and well known phenomena like the Coulomb potential, the anomalous magnetic moment (g − 2)

of the leptons, Compton scattering, and many more.

3.1 QED with one fermion

3.1.1 Defining QED

The simplest version of QED is defined as follows:

(i) The symmetry is a local

U(1)EM. (3.1)

(ii) There are two fermion fields,

eL(−1), eR(−1). (3.2)

The sub-indices L,R denote the chirality: left-handed and right-handed, respectively. The

number in parenthesis is the U(1)EM charge.

(iii) There are no scalars.
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3.1.2 The Lagrangian

As discussed in Section 2.3, the most general renormalizable Lagrangian with scalar, fermion, and

gauge fields can be decomposed into

L = Lkin + Lψ + LYuk + Lφ. (3.3)

It is now our task to find the specific form of the Lagrangian made of the fermion fields eL and eR

subject to the U(1)EM gauge symmetry.

The imposed U(1)EM gauge symmetry requires that we include a single gauge boson, Aµ (of

charge q = 0) that we call the photon field. The corresponding field strength is given by

F µν = ∂µAν − ∂νAµ. (3.4)

The covariant derivative is

Dµ = ∂µ + ieqAµ, (3.5)

where e is the coupling constant and, specifically for the eL,R fields, q = −1.

Lkin includes the kinetic terms of all the fields:

Lkin = ieLD/ eL + ieRD/ eR −
1

4
F µνFµν . (3.6)

Lψ includes a Dirac mass term for the electron fields:

−Lψ = meeLeR + h.c. . (3.7)

Finally, since there are no scalar fields in the model,

LYuk = 0, Lφ = 0. (3.8)

3.1.3 The spectrum

The spectrum of the model defined above consists of a massive Dirac fermion of mass me, and a

massless gauge boson — the photon. We call the Dirac fermion “the electron,” and denote it by

e. (It is somewhat unfortunate that the QED coupling constant and the electron field are both

denoted by e. Which of the two options is meant should be clear from the context.)

We emphasize the following points:

• The electron is a Dirac field, which has four DoF.

• The reason we can write a Dirac mass term for the electron is that QED is vectorial, that is,

the eL and eR fields are assigned the same charge.

• The reason that we cannot write Majorana mass terms for the eL,R fields is that they carry

charge q 6= 0.

• The masslessness of the photon is a consequence of the gauge symmetry.
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3.1.4 The interactions

Expanding Dµ, we obtain the photon–fermion interaction term:

Lint = e eA/e , (3.9)

where the coupling constant e is positive, and we used q = −1 for the electrons. When the charge

of the electron is set by convention to q = −1 (as we do in our definition of the model), the coupling

constant e is related to the fine structure constant as

α =
e2

4π
. (3.10)

We emphasize the following points:

• The photon is not charged under QED (qA = 0) and consequently, at tree level, photons do

not interact with photons.

• The QED interaction is vector-like.

• QED conserves C, P and CP . That is, C, P and CP are accidental symmetries of the

theory.

3.1.5 Parameter counting

The QED Lagrangian has two free parameters that can be chosen to be the electron mass, me, and

the coupling constant, e or, equivalently, α. Both have been measured with impressive accuracy:

me = 0.51099895000(15) MeV, α−1 = 137.035999084(21). (3.11)

This model has no internal accidental symmetry.

3.2 QED with more fermions

3.2.1 Two Dirac fermions

We study a generalization of QED where we add a second fermion to the theory. We obtain

interesting lessons regarding symmetries. Our definition of the model is as follows:

(i) The symmetry is a local

U(1)EM. (3.12)

(ii) There are four fermions fields,

`iL(−1), `iR(−1) (i = 1, 2). (3.13)
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(iii) There are no scalars.

The Lagrangian is a simple extension to the previous model. Since the model has no scalars,

we still have LYuk = Lφ = 0. The canonically-normalized kinetic terms for the fermions read

Lkin = i`1
LD/ `

1
L + i`2

LD/ `
2
L + i`1

RD/ `
1
R + i`2

RD/ `
2
R. (3.14)

The fermion mass terms read

−Lψ = `iLmij`
j
R + h.c. = (`1

L `
2
L)

(
m11 m12

m21 m22

)(
`1
R

`2
R

)
+ h.c.. (3.15)

We can, however, transform to a different basis for the fermion fields, such that in the new basis

the mass matrix is diagonal (see Question 3.5). Consider two unitary matrices, VL and VR, which

diagonalize the mass matrix:

VL

(
m11 m12

m21 m22

)
V †R =

(
me

mµ

)
. (3.16)

Then, inserting the unit matrix twice and rewriting Lψ of Eq. (3.15) as

−Lψ = `iLV
†
LVLmijV

†
RVR`

j
R , (3.17)

it is clear that these two matrices are the rotation matrices from the original basis to the new one:(
`1
L

`2
L

)
→
(
eL

µL

)
= VL

(
`1
L

`2
L

)
,

(
`1
R

`2
R

)
→
(
eR

µR

)
= VR

(
`1
R

`2
R

)
. (3.18)

In terms of these new basis states, the Lagrangian reads

−Lψ = meee+mµµµ. (3.19)

Since we work with canonical kinetic terms, the above rotation keeps the kinetic terms invariant.

The basis where the mass matrix is diagonal is called the mass basis. The fermion states in this

basis are called mass eigenstates. We call the two mass eigenstates the electron, e, and the muon,

µ. By definition, the muon is heavier than the electron, mµ > me.

In the language of the e and µ Dirac fields, the full QED Lagrangian reads

Le,µQED = ieD/ e+ iµD/µ− 1

4
F µνFµν −meee−mµµµ. (3.20)

The QED model with two Dirac fermions has thus three parameters: α and me, whose experi-

mental values are given in Eq. (3.11), and mµ:

mµ = 105.6583745± 0.0000024 MeV. (3.21)
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3.2.2 Accidental symmetries

An interesting feature of this model is that it exhibits an internal accidental symmetry. The

imposed symmetry is local U(1)EM symmetry. The Lagrangian is, however, symmetric under a

global [U(1)]2 symmetry which we choose to denote as U(1)e×U(1)µ symmetry. The conventional

charge assignment under this symmetry is

e(+1, 0), µ(0,+1). (3.22)

The symmetry is manifest in Eq. (3.20), where there is no term that involves both e and µ fields.

Thus, an independent phase rotation of each of them represents a symmetry. The global U(1)EM

(which is automatically imposed when imposing local U(1)EM) is, however, part of U(1)e×U(1)µ.

We can rephrase our findings in the following way. Equivalently to U(1)e × U(1)µ, we can use

U(1)EM × U(1)e−µ, (3.23)

with the charges

qEM
e = qEM

µ = −1, qe−µe = −qe−µµ = +1. (3.24)

U(1)EM is the imposed symmetry, while U(1)e−µ is an accidental symmetry.

The experimental implication of the accidental symmetry is that QED conserves the muon and

electron numbers. In any QED process, the number of electrons minus the number of positrons is

conserved, and the number of muons minus the number of anti-muons is conserved. The symmetry

we impose — electric charge conservation — is the sum of the above two conservation laws.

The accidental symmetry is broken by higher dimension operators. For example, the dimension-

six term,

GµeeeeLeReLµR, (3.25)

where Gµeee is a dimensionful constant, breaks the accidental symmetry (it carries U(1)e−µ charge

of −2), but is still invariant under the imposed local symmetry (its U(1)EM charge is zero). This

term allows processes that are forbidden by the accidental symmetry. For example, the decay

process µ− → e−e+e−, which is allowed by the imposed U(1)EM but violates the accidental U(1)e−µ

symmetry, occurs if Gµeee 6= 0. In Question 3.2 you are asked to work out the details.

So far no decay process that violates the U(1)e−µ symmetry has been observed. In neutrino

oscillation experiments, however, such violation has been observed. We discuss it in more detail

in Chapter 14.

3.2.3 Even more fields

We can add more fields to QED. As long as we add pairs of LH and RH fields with the same charge,

the situation is similar to the model of two Dirac fermions described above. There is always a
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basis where the mass terms are diagonal, and thus each pair of LH and RH fields can be combined

into a Dirac field that does not interact with the other fields. In this basis

LQED = −1

4
F µνFµν + i

∑
j

ψjD/ψj −
∑
j

mjψjψ
j, (3.26)

where j = 1, . . . , N runs over all the Dirac fields. This model has a [U(1)]N symmetry, which in

this form, is manifest.

Note that not all fields necessarily carry the same U(1)EM charge. (The charge of each field is

implicit in the covariant derivative.) Indeed, the charged elementary fermions known to us come

in three different charges: The charged leptons (the electron, muon, and tau) with q` = −1, the

up-type quarks (up, charm, and top) of charge qu = +2/3, and the down-type quarks (down,

strange and bottom) of charge qd = −1/3. There are three Dirac fermions of each of these three

types. The QED Lagrangian for these nine Dirac fields has a global [U(1)]9 symmetry. In other

words, the number of fermions minus the number of anti-fermions of a given charge and a given

mass is conserved.

3.3 Experimental tests of QED

QED had been tested to a very high degree of precision by numerous experiments. QED passed

these tests successfully, that is, the QED calculations agree very well with the experimental results.

In fact, the tests go well beyond tree level calculations, and often require a very high loop level

calculation. Moreover, some of the experiments are precise enough that tiny contributions from

beyond-QED need to be incorporated into the corresponding calculations.

The masslessness and charge-neutrality of the photon are prediction of QED, independent on

the values of its parameters. The experimental upper bounds are

mA < 1× 10−18 eV, |qA| < 1× 10−35 e. (3.27)

The massless photon field should generate a long range potential of the form e2q/r. This is indeed

the form of the Coulomb potential.

Below we mention a few of the processes that were used to form the theory of QED and to

further test it. Some of the well known tests of QED include the Lamb shift, g − 2 of the muon,

positronium decays, Compton scattering (γe− → γe−), Moeller scattering (e−e− → e−e−), Bhabha

scattering (e+e− → e+e−), muon pair production (e+e− → µ+µ−), and photon pair production

(e+e− → γγ). You should have encountered most of these processes in your QFT course but, if

you did not, you are encouraged to study them and carry out some of the calculations yourself.
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For further reading

The phenomenology of QED is discussed in many textbooks and reviews. In particular, see Chapter

5 of Ref. [2] and Chapter 13 of Ref. [14].
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Problems

Question 3.1: Algebra

1. Draw the Feynman rules for the gauge interaction of Eq. (3.14).

Question 3.2: Non-renormalizable terms in QED

In this question we discuss aspects of non-renormalizable terms in QED. Consider the model

defined in Section 3.2.1, where we impose C and P symmetries, and add the following non-

renormalizable term:

−LNR = Geeeµ. (3.28)

Here G is a coupling of mass dimension d = −2, and we use Dirac field notations for the electron

and muon fields.

1. Draw all the tree level diagrams that contribute to the decay µ+ → e+e−e+ and obtain the

resulting amplitude. Denote the amplitude as ANR.

We now study a renormalizable model that generates the term of Eq. (3.28). Add to the model

defined in Section 3.2.1 a scalar field S with EM charge q = +2.

2. Write down the covariant derivative DµS as well as the scalar potential LS. Denote the

scalar mass-squared term by m2
S and assume that it is positive.

3. Write down the Yukawa coulings in this model.

4. Draw all the tree level diagrams that contribute to the decay µ+ → e+e−e+ and obtain the

resulting amplitude. Denote the amplitude as AUV.

5. Consider the case where mS � mµ. Identify G in terms of the model parameters such that

AUV = ANR to leading order in m2
µ/m

2
S.
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This model provides an example of how non-renormalizable terms, made of light degrees of freedom,

can be generated from a full theory that includes also much heavier degrees of freedom.

Question 3.3: A mirror world

Consider the following model:

(i) The symmetry is a local U(1)EM×U(1)D. We denote the corresponding gauge bosons by Aµ

and Cµ, and their field strengths by Fµν and Cµν , respectively.

(ii) There are four Weyl fermion fields:

eL(−1, 0), eR(−1, 0), dL(0,−1), dR(0,−1), (3.29)

where the first number in the parenthesis is the charge under U(1)EM and the second is the

charge under U(1)D.

(iii) There are no scalars.

1. Write down the covariant derivative Dµ for a generic field with charge (qEM , qD), and then

write it specifically for the four fermion fields. Use a normalization such that the coupling

constants of the two groups is the same, that is, gEM = gD = e.

2. Draw the Feynman rules for this theory, i.e. draw all vertices from the interaction terms in

the Lagrangian and write down their corresponding rules. Be sure to label the fields and

take care of particle flow.

3. Find Lψ and state what are the masses of the fermions and how many DoF each has.

4. Consider the term CµνF
µν . (A term of this form is called “kinetic mixing” term.) Argue

that this term is gauge invariant, Lorentz invariant, and has mass dimension d = 4.

Despite the fact that the kinetic mixing term is allowed we do not write it since we use canonical

normalization. (It is a similar argument for why we do not write a term of the form ēγuD
µµ.)

Thus, we can write L = LEM + LD and the two sectors are completely decoupled. In particular,

the process eē→ dd̄ is not allowed as it connects the two sectors.

5. We now add a scalar field S(−1,+1) to the theory. Write down explicitly the covariant

derivative DµS.

6. Write down the most general coupling of S to the fermions (up to dimension-four terms).

Write down the hermitian conjugate terms explicitly.

7. Explain why the theory violates parity. What are the consequences of imposing parity?
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From now on assume that parity is imposed, and we use Dirac fields.

8. Draw the Feynman rules of the gauge and Yukawa interactions involving S.

9. With the addition of the field S, the process eē→ dd̄ is allowed. Draw a tree level Feynman

diagram for this process.

10. We assume that the mass of the scalar, MS, is much larger than E, the center of mass energy

of the incoming electron, that is: MS � E. In this limit, how does σ(eē → dd̄) scale with

MS?

11. We now add another Dirac fermion field, b(0,−2). Write down its couplings to the gauge

bosons, the scalar, and other fermions, and draw the corresponding Feynman rules (again,

up to dimension four).

12. The process eē→ bb̄ does not occur at tree level, but it does at the one loop level. Draw one

such loop diagram.

The model that we considered in this question is representative of a class of models where, in

addition to a sector with the particles and interactions known to us, one adds a sector that is

either completely decoupled from the first sector, or coupled to it only via very heavy degrees of

freedom. The (almost) decoupled sector is often called a “dark sector.” Thus, Cµ would be called

a “dark photon”, and its interactions can be termed as “dark QED.” We return to this model in

Question 6.4.

Question 3.4: Light by light scattering

One of the well known properties of waves is the superposition principle that states that two

electromagnetic waves do not interact with each other. The superposition principle is, however,

only a classical approximation and it does not hold at the quantum level. In order to understand

this statement, we discuss the cross section for the scattering process γγ → γγ. We only consider

photons that have center of mass energy smaller than 2me.

1. Explain why at tree level (also referred to as the classical level),

σ(γγ → γγ) = 0. (3.30)

2. Within the framework of QED with only an electron field, draw a one loop diagram that

contributes to the above process.
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3. The cross section was calculated to leading order in E/me (where E is the photon energy)

in the 1930s by Euler and Kockel. In the center of mass frame, the differential cross section

is given by
dσ

dΩ
=

139α4

(180πE)2

E8

m8
e

(
3 + cos2 θ

)2
. (3.31)

Without explicit calculation, explain why the cross section depends on α4 and on 1/m8
e.

4. Calculate the total cross section, that is, integrate over Ω and show that

σ =
973

10125π

E6α4

m8
e

. (3.32)

Remember to include a factor of half due to having identical particles at the final state.

5. The above result takes into account only an intermediate electron. Estimate the effect of

including the muon. Consider only the case where E � me.

6. The cross section is numerically very small for visible light. Calculate the probability to have

at least one light by light interaction when two laser beams of visible light (of 500 nm) cross

each other for one second. Assume that the beam area is 1 mm2 and that the flux of photons

F is 1021 photons per second per m2. Recall that the event rate is given by

dN

dt
= Lσ = F 2ATσ, (3.33)

where A is the beam area and T is the overlap time. For colliding beams, the luminosity L

is given by L = F 2AT .

7. At what photon energies do you expect the effect to become significant?

Question 3.5: Matrix diagonalization

Consider a 2× 2 Hermitian matrix:

M =

(
a c

c∗ b

)
, (3.34)

with a and b real.

1. Show that the eigenvalues are

λ1,2 =
TrM ±

√
(TrM)2 − 4 detM

2
. (3.35)
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2. Prove that

(TrM)2 ≥ 4 detM. (3.36)

This is needed in order to ensure that the eigenvalues are real.

3. Assume that c is real. In this case, the matrix M can be diagonalized by an orthogonal

matrix O:

O =

(
cos θ sin θ

− sin θ cos θ

)
. (3.37)

We call θ the mixing angle. Show that

tan 2θ =
2c

b− a
. (3.38)

4. Consider a general matrix

M =

(
a b

c d

)
. (3.39)

In general, it can be diagonalized by a bi-unitary transformation, as we did in Eq. (3.16).

That is

Mdiag = VLMV †R . (3.40)

In order to find VL and VR, first show that MM † and M †M are Hermitian and that they

are diagonalized by VL and VR, respectively. Then use the above formalism to find the

diagonalization angle in the case where M is real.
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Chapter 4

Non-Abelian symmetries

In previous chapters, we discussed Abelian symmetries, such as U(1). For this type of symmetries,

also known as commutative symmetries, the result of applying two symmetry transformations does

not depend on the order in which they are applied. In this chapter, we discuss non-Abelian sym-

metries, such as SU(2) and SU(3). For this type of symmetries, also known as non-commutative

symmetries, the result of applying two symmetry transformations might depend on the order of

which they are applied. Within the SM, and in models that extend it, both Abelian and non-

Abelian symmetries play an important role.

4.1 Introduction

In order to discuss non-Abelian symmetries, we use the language of Lie groups (we provide a short

review of the topic in Appendix A). For the sake of concreteness, we focus on SU(N) groups, but

most of the results are generic and apply to any Lie group.

We are interested in internal symmetries where the symmetry transformation is unitary:

φ→ Uφ, UU † = U †U = 1 . (4.1)

We now emphasize some of the differences between transformation laws for Abelian and non-

Abelian symmetries. Specifically, we list differences between U(1) and SU(N) symmetries.

Consider a U(1) symmetry and a field φ that carries charge q 6= 0.

• The field φ is necessarily complex.

• The transformation law for this field is

φ→ eiqθφ. (4.2)

• The charge, q, is a real number.
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• Thus, for an Abelian symmetry, the transformation law is defined for each single complex

field separately. A U(1) symmetry operation changes the phase of the field proportionally to

the charge.

• For a Lagrangian to be invariant under a U(1) symmetry, each term must consist of a product

of fields such that the sum of their charges is zero.

Consider an SU(N) symmetry and a field φ in a representation R of dimension M > 1. Here

φ is a vector with M components, φi with i = 1, . . . ,M .

• If R is a complex representation, φ is complex. If R is a real representation, φ can be real.

• The transformation law for this field is

φi →
(
eiTaθa

)
ij
φj. (4.3)

Here i, j = 1, . . . ,M and a = 1, . . . , (N2 − 1). The Ta’s are the generators of the SU(N)

algebra:

[Ta, Tb] = ifabcTc. (4.4)

For the field φ in the M -dimensional representation R, the Ta’s are represented by M ×M
matrices.

• Thus, for a non-Abelian symmetry, the transformation law is defined for each multiplet of

fields separately. The SU(N) symmetry operations consist of rotations among the various

components within each multiplet.

• For a Lagrangian to be invariant under a non-Abelian symmetry, each term must consist of

a product of fields such that the various representations are contracted into a singlet of the

symmetry group.

If the symmetry group is not simple, we can consider an independent rotation within each

simple subgroup. Then, it is convenient to represent the field as a vector under each of the simple

Lie subgroups. When a field undergoes a transformation under one simple subgroup, it is not

affected by the other subgroups. For example, consider an SU(3) × SU(2) group, and a field

that is a triplet under SU(3) and a doublet under SU(2). We can denote the field by φαi, where

α = 1, 2, 3 is the SU(3)-triplet index, and i = 1, 2 is the SU(2)-doublet index. We can write

separately the transformation laws under an SU(3) symmetry transformation and under an SU(2)

symmetry transformation:

φαi →
(
e(i/2)λaθa

)
αβ
φβi, φαi →

(
e(i/2)τbθb

)
ij
φαj. (4.5)
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Here λa are the eight 3 × 3 Gell-Mann matrices, which are (twice) the SU(3) generators in the

triplet representation, and τb are the three 2 × 2 Pauli matrices, which are (twice) the SU(2)

generators in the doublet representation.

The notation that we use is best explained by examples. For the case of an SU(3) × SU(2)

symmetry, we write the representation of a field φ that is an octet under SU(3) and a singlet

under SU(2) as φ(8, 1): The first number in parenthesis is the representation under SU(3), and

the second one under SU(2). When we consider product groups that include both non-Abelian

and Abelian factors, the charges under U(1) symmetries are written as sub-indices. For example, if

the symmetry is SU(3)×U(1), a field that is a triplet under SU(3) and has charge +1 under U(1)

is written as φ(3)+1. As a final example we take the symmetry to be SU(3)× SU(2)×U(1), with

a field φ that is an SU(3)-triplet, an SU(2)-doublet and carries U(1) charge of +1/6: φ(3, 2)+1/6.

4.2 Global symmetries

As described above, in each Lagrangian term, the product of the various representations must

be contracted into a singlet of the imposed symmetry. The way we combine representations is

presented in Appendix A.8. In most of the upcoming sections, we only make sure that the product

of representations contains a singlet, and keep the group indices of the various fields implicit. (We

can do so because, in all cases discussed in this book, there is a single way to combine the product

of representations into a singlet. In other cases, where there is more than one way to do so, it is

important to write the contraction explicitly.)

In this Section, we present three models:

1. A model that demonstrates that mass-squared terms for scalars cannot be forbidden.

2. A model that demonstrates that fermions in vectorial representations have Dirac masses.

3. A model that demonstrates that fermions in chiral and complex representations are massless.

4.2.1 Scalars and SO(N)

Consider the following model:

(i) The symmetry is a global

SO(N), (4.6)

with N ≥ 2.

(ii) There is a single scalar field in the fundamental representation,

φ(N). (4.7)
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(iii) There are no fermions.

Note that there are N scalar DoF in this model, but we combine them into an N representation

and thus we refer to it as a single scalar field.

The most general renormalizable Lagrangian is given by

L =
1

2
∂µφ

T∂µφ− 1

2
m2φTφ− 1

4
λ(φTφ)2 . (4.8)

What we mean by φTφ is the contraction of an (N)× (N) into a singlet of SO(N). Explicitly, the

contraction of the SO(N) indices is given by φiφi.

We note the following points:

1. There is no internal symmetry that one can impose to set m2 = 0 or λ = 0.

2. In the case of N = 2 the symmetry is Abelian, and the model is the same as the one discussed

in Section 2.1.2.

4.2.2 Vectorial fermions and U(N)

Consider the following model of vectorial fermions:

(i) The symmetry is a global

U(N) = SU(N)× U(1), (4.9)

with N ≥ 2.

(ii) There are two fermion fields in the fundamental representation:

ψL(N)+1, ψR(N)+1. (4.10)

(iii) There are no scalars.

Here, similar to the model of Section 4.2.1, many DoF are combined into an irreducible represen-

tation. Given that each Weyl fermion has two DoF, the model has a total of 4N DoF. The most

general renormalizable Lagrangian is given by

L = iψL ∂/ψL + iψR ∂/ψR − (mψLψR + h.c.), (4.11)

where the group indices are implicit.

Note the following points:

• We cannot write Majorana mass terms since the fermions are charged under U(1).

• Since this model is vectorial, that is, the left-handed ψL and right-handed ψR transform in

the same way, we can combine them into a Dirac fermion ψ and rewrite Eq. (4.11) as follows:

L = iψ ∂/ψ −mψψ. (4.12)
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4.2.3 Chiral fermions and U(N)× U(N)

Consider the following model of chiral fermions:

(i) The symmetry is a global

U(N)L × U(N)R = SU(N)L × SU(N)R × U(1)L × U(1)R, (4.13)

with N ≥ 2.

(ii) There are two fermion fields:

ψL(N, 1)1,0, ψR(1, N)0,1. (4.14)

(iii) There are no scalars.

The most general renormalizable Lagrangian has only kinetic terms:

L = iψL ∂/ψL + iψR ∂/ψR. (4.15)

A few comments are in order:

• As discussed in Section 2.1.5 and demonstrated here, fermion mass terms can be forbidden by

a symmetry. This stands in contrast to scalar mass-squared terms which cannot be forbidden

by a symmetry, as demonstrated in the model of Section 4.2.1.

• The reason that the mass term vanishes in the Lagrangian of Eq. (4.15) is that the fermion

fields of the model are in a chiral representation of the symmetry. This stands in contrast to

the model of Section 4.2.2, where the fermion fields are in a vectorial representation of the

symmetry, and therefore the Lagrangian of Eq. (4.11) includes a Dirac mass term.

• The U(N) symmetry of Eq. (4.9) is a subgroup of the U(N)L×U(N)R symmetry of Eq. (4.13).

It is often called “the vectorial” subgroup.

4.3 Local symmetries

Abelian local symmetries were discussed in Section 2.2. Here we discuss non-Abelian local sym-

metries, commonly called “Yang-Mills theories.” The following properties apply for both Abelian

and non-Abelian local symmetries:

• Terms that depend on scalar and/or fermion fields only, but not on their derivatives, and

which are invariant under a global symmetry, are also invariant under the corresponding

local symmetry.
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• The kinetic terms are not invariant under the local symmetry.

From here on, we consider specifically the case of SU(N), but the main points apply to all Lie

groups. To achieve invariance under a local non-Abelian symmetry, we must add gauge fields, that

we denote by Gµ
a , and replace the derivative ∂µφ with a covariant derivative Dµφ, such that Dµφ

and φ transform in the same way:

φ→ eiTaθa(x)φ, Dµφ→ eiTaθa(x)Dµφ. (4.16)

The Ta’s are the N2 − 1 generators of the SU(N) algebra and, for φ in an M -dimensional repre-

sentation, they are represented by M ×M matrices.

The gauge bosons that we introduce must restore the local symmetry for N2 − 1 independent

rotations. Therefore, they themselves must carry an index a = 1, 2, . . . , N2 − 1, in contrast to the

single gauge boson needed for an Abelian local symmetry. Furthermore, the fields in an SU(N)-

symmetric theory must transform in a well-defined way under the symmetry. It is suggestive then

that the gauge bosons Gµ
a are in the adjoint representation of SU(N). You are asked to prove that

this is indeed the case in Question 4.6. We conclude that the covariant derivative is given by

Dµ = ∂µ + igTaG
µ
a , (4.17)

where g is the dimensionless positive coupling constant. The transformation law for Gµ
a is given

by (see Question 4.6)

Gµ
a → Gµ

a − fabcθbGµ
c −

1

g
∂µθa. (4.18)

The fact that the non-Abelian gauge field is in the adjoint representation of the gauge group and,

in particular, that — unlike the Abelian case — it is not a singlet, has significant consequences:

It leads to self-interactions of the gauge fields, as we discuss below.

To promote Gµ
a to a dynamical field, we must introduce a kinetic term. Similar to our treatment

of the U(1) case, Eq. (2.27), we now define the field strength Gµν
a as

[Dµ, Dν ] = igTaG
µν
a . (4.19)

Inserting Eq. (4.17) into Eq. (4.19), and using the SU(N) algebra, we obtain

TaG
µν
a = Ta(∂

µGν
a − ∂νGµ

a − gfabcG
µ
bG

ν
c ), (4.20)

Further using tr(TaTb) ∝ δab, we can rewrite Eq. (4.20) as follows:

Gµν
a = ∂µGν

a − ∂νGµ
a − gfabcG

µ
bG

ν
c . (4.21)

Compared to the Abelian case, Eq. (2.28), the non-Abelian case, Eq. (4.21), has an extra term.

This term is the source of self-interactions of the gauge fields.
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The kinetic term of non-Abelian gauge fields is given by

LV = −1

4
Gµν
a Gaµν . (4.22)

Note the following points with regard to Eq. (4.22):

• Given the kinetic term, Gµ
a is a dynamical field and its excitations are physical particles. For

example, as we show later, the gluon is associated with such excitations.

• We work in the canonically normalized basis where the coefficient of the kinetic term is 1/4.

• While a kinetic term is invariant under the gauge transformation, a mass-squared term —
1
2
m2Gµ

aGaµ — is not. Local invariance under non-Abelian symmetry implies massless gauge

fields in the adjoint representation.

• A total derivative term of the form Gµν
a G̃aµν (with G̃aµν ≡ εµνρσG

ρσ
a ) is Lorentz invariant,

gauge invariant and dimension-four. For the Abelian case, we did not include such a term

in Eq. (2.29) because it is not physical. For the non-Abelian case, we still do not include it

in Eq. (4.22) because it is not physical at the classical level. Yet, at the quantum level, it

is physical. We briefly present the physical implications within the SM of such a term for a

local SU(3) symmetry in Section 8.A.1.

The non-Abelian gauge fields couple to themselves. This can be seen by replacing Gµν
a in Eq. (4.22)

with the explicit expression in Eq. (4.21), which leads to interaction terms that are trilinear and

quartic in the gauge fields:

Lself−interactions = gfabc(∂µGaν)G
µ
bG

ν
c −

1

4
g2(fabcG

µ
bG

ν
c )(fadeGdµGeν). (4.23)

The self-interactions of the non-Abelian gauge fields stand in contrast to the Abelian gauge fields

which have no self-interactions. As mentioned above, the source of this difference is the fact

that U(1) gauge fields are neutral under the U(1), while SU(N) gauge fields are in the adjoint

representation of the SU(N), and thus are charged under their own group.

If the symmetry group decomposes into several commuting factors, each factor has its own

gauge fields in the corresponding adjoint representation and an independent coupling constant.

For example, if the symmetry is SU(3) × SU(2) × U(1), we must introduce three irreducible

representations of gauge fields: (8, 1)0 representation, with coupling constant g3, to make the

Lagrangian invariant under the local SU(3); (1, 3)0, with coupling constant g2, to achieve invariance

under local SU(2); and (1, 1)0, with coupling constant g1, to achieve invariance under local U(1).

4.4 Running coupling constants

In QFT, the coupling constants depend on the energy scale. In the Physics jargon, we say that

the coupling constants run. Here we do not discuss the theoretical background for this effect
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and assume that the reader is familiar with it from a QFT course. We just present the relevant

equations and mention several important consequences.

The running — namely, the energy dependence — of a coupling g is given by the beta function:

∂g

∂ log µ
= β(g) , (4.24)

where µ is the relevant energy scale. The beta function depends on the field content of the theory.

The leading order effects depend only on fields that are charged under the symmetry. The fact

that an Abelian gauge boson is neutral under the Abelian symmetry, while a non-Abelian gauge

field is charged under the corresponding non-Abelian symmetry, has important implications on the

running of the respective coupling constants.

Consider a local U(1) theory, with nf chiral fermion fields with charge |q| = 1. The beta

function for the coupling constant g1 is given, to leading order, by

β(g1) =
nfg

3
1

24π2
. (4.25)

(This result is often quoted for the case of nf Dirac fermions, where the 24 is replaced by 12.)

Consider a local SU(N) theory, with nf fermion fields in the fundamental representation N

and nf fermion fields in the anti-fundamental representation N . The beta function for the coupling

constant gN is given, to leading order, by

β(gN) =
(

2nf − 11N

3

)
g3
N

16π2
. (4.26)

The important difference between the running effects of the Abelian case, Eq. (4.25), and non-

Abelian case, Eq. (4.26), is in the sign of the beta function. In the U(1) case, the beta function is

always positive. Consequently, the lower the relevant energy scale, the smaller the coupling. In the

SU(N) case it can assume either sign. If the number of fermions in not too large, nf < (11N/2)

(and in particular in the pure gauge case, nf = 0), the sign is negative. In this case, the lower the

relevant energy scale, the larger the coupling. The phenomenon that couplings become smaller at

higher energies goes under the name of “asymptotic freedom.”

When using perturbation theory, reliable calculations of experimental observables are possible

only in the perturbative regime. If a coupling grows large, one loses the ability to make accurate

predictions using perturbation theory with the coupling as the small parameter. For U(1) theories,

we can use perturbative calculations to make accurate predictions at low enough energy (often

called “the IR”). For SU(N) theories, if the number of charged fermions is small, nf < (11N/2),

we can use perturbative calculations to make accurate predictions only at high enough energies

(“the UV”), while in the IR perturbativity is lost. We discuss the implications of this situation in

the next chapter where we present QCD — the theory of strong interactions — as a specific and

important example.
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Table 4.1: Abelian vs Non-Abelian symmetries

Abelian Non-Abelian

Field Φq Φ(n) ≡ Φi, i = 1, . . . , n

Transformation Φ→ eiqθΦ Φi →
(
eiTaθa

)
ij

Φj

with q a real number with Ta in the irrep of Φ

The gauge field Aµ Ga
µ

irrep of the gauge field q = 0 Adjoint

Covariant derivative Dµ = ∂µ + igqAµ Dµ = ∂µ + igT aAaµ

Field strength tensor F µν = ∂µAν − ∂νAµ Gµν
a = ∂µAνa − ∂νAµa − gfabcA

µ
bA

ν
c

Gauge kinetic term −1
4
FµνF

µν −1
4
GµνaG

µν
a

Gauge boson self-interactions No Yes

Sign of the beta function Positive Can assume either sign

4.5 Summary

We summarize the main differences between the Abelian and non-Abelian cases in Table 4.1.

For further reading

QFT aspects of non-Abelian symmetries can be found, for example, in Chapters 15 and 16 of

Ref. [2]. More on running coupling constants can be found in, for example, Chapter 23 of Ref. [14].
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Problems

Question 4.1: Algebra

1. Insert Eq. (4.17) into Eq. (4.19) and use the SU(N) algebra to obtain Eq. (4.20).

2. Use the definition in Eq. (4.21) to derive Eq. (4.23).

3. Derive the Feynman rules for the self-interactions of the gauge fields.

Question 4.2: Constructing invariants

Consider the following model:

(i) the symmetry is a global SU(3)× SU(2)× U(1).

(ii) There are three complex scalars:

A(3, 2)x, B(T, 3)2, C(3̄, 2)1. (4.27)

(iii) There are no fermions.

1. Find all possible values of x and of T such that the term ABC is allowed.

2. Repeat the question for a term of the form ABC†.

Question 4.3: SU(3) and a flavor symmetry

Consider the following model:

(i) The symmetry is a global

SU(3)G. (4.28)

63



(ii) There are N complex scalar fields that transform as

φi(3), i = 1, ..., N. (4.29)

(iii) There are no fermions.

We call the index i “a flavor index”

1. What is the number of real scalar DoF in this model?

2. Take N = 3. Write the most general renormalizable Lagrangian. For each term state explic-

itly if it is symmetric or antisymmetric in its flavor indices. Note that there are quadratic,

cubic, and quartic terms.

3. We now impose an additional global symmetry that we call flavor SU(3)F , such that the

three flavors constitute an SU(3)F -triplet (φ1, φ2, φ3). In other words, the scalars of this

model are in the (3, 3) representation of SU(3)G × SU(3)F . What are the implications of

imposing the SU(3)F symmetry on L?

Question 4.4: Scalar Lagrangians

Consider a model with four real scalar fields φi (i = 1, . . . , 4).

1. Write the kinetic terms for this model. Argue that Lkin has an SO(4) symmetry where the

four real scalars form the fundamental representation of SO(4).

2. Impose an SO(4) symmetry, with the four real scalars in the fundamental representation of

SO(4), that is, they form a vector in 4-dimensional real space, Φ = (φ1, . . . , φ4)T . Write the

most general renormalizable LSO(4). Explain why the mass terms must be proportional to

unit matrix in that space.

3. Impose a U(1) symmetry (instead of the SO(4) above, not in addition). To do so, pair the four

real scalar fields into two complex scalar fields, φa = (φ1 + iφ2)/
√

2 and φb = (φ3 + iφ4)/
√

2.

The U(1) charges are qa = 1 and qb = 4. Write the most general renormalizable LU(1).

4. LU(1) has an accidental symmetry. What is it and what are the charges of φa and φb under

it?

5. Write a non-renormalizable term that breaks the accidental symmetry.
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Question 4.5: Discrete sub-symmetries

Consider the following Lagrangian for two Dirac fermions:

L = ψi[(i∂/−m)δij]ψj, (4.30)

where the flavor indices i, j run from 1 to 2. This Lagrangian is manifestly invariant under

some discrete symmetries in flavor space. These symmetries, however, are part of the U(2) flavor

symmetry under which (ψ1, ψ2) form a doublet. For example, the symmetry operation ψi → −ψi
can be generated by the U(1) transformation: U = eiα with α = π. Find the U(2) = SU(2)×U(1)

rotations for the following two symmetries:

(i) ψ1 → ψ1, ψ2 → −ψ2 (4.31)

(ii) ψ1 ↔ ψ2 .

Hints: You can write your answer as a series of several rotations. The following identity can be

useful

exp(iασa) = I cosα + iσa sinα (4.32)

Question 4.6: Non-Abelian gauge bosons

In this question you are asked to prove that the gauge bosons belong to the adjoint represen-

tation. Consider a field φ that transforms as an M -dimensional representation, R:

φ→ Uφ, U = eiTaθa , (4.33)

where a runs from one to the dimension of the group (for SU(N), a = 1, 2, . . . , N2 − 1) and U

and T a are M ×M matrices. We take θa to be independent of xµ. This may seem weird, as the

whole reason to introduce the gauge fields is to let θa depend on xµ. Yet, once the gauge fields

are introduced, they must transform also under the global symmetry, so θa = const(xµ) is just a

special case. The covariant derivative is

Dµ = ∂µ + igGµ, Gµ ≡ Ga
µTa. (4.34)

1. Show that the infinitesimal transformation is

U = 1 + iTaθa +O(θ2
a). (4.35)

2. Write the infinitesimal transformation of φk explicitly with the group indices.
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3. In order to promote a global symmetry to a local one, Dµφ must transform the same way as

φ, that is,

Dµφ→ UDµφ. (4.36)

Show that Eq. (4.36) implies that

Gµ → UGµU
† − 1

g
Ta∂µθa. (4.37)

4. Show that Eq. (4.37), together with the algebra of the group, imply that for an infinitesimal

gauge transformation

Ga
µ → Ga

µ + θcfabcGb
µ −

1

g
∂µθ

a. (4.38)

5. Using Eq. (4.35), argue that the irrep of the gauge field is

(T c)ab = −if cab. (4.39)

Using this result argue that the gauge fields transform as the adjoint.
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Chapter 5

QCD

Quantum ChromoDynamics (QCD), the theory of strong interactions, is our first example of a

non-Abelian theory. The theory exhibits various interesting aspects. In particular, at low energy

(often called “the IR”), the perturbative approach that we use cannot be applied. In this chapter

we define the theory at high energy (“the UV”) in a perturbative way. We discuss IR aspects in

Chapter 10. QCD is a successful theory that has passed many experimental tests. We defer the

discussion of these successes to Chapter 10.

5.1 Defining QCD

QCD is defined as follows:

(i) The symmetry is a local

SU(3)C . (5.1)

(ii) There are six left-handed and six right-handed fermion fields,

QLi(3), QRi(3), i = 1, ..., 6. (5.2)

From here on, we call fermions in the triplet representation of SU(3)C “quarks.”

(iii) There are no scalars.

5.2 The Lagrangian

The most general renormalizable Lagrangian is given in Eq. (2.32). For a model with fermion fields

and no scalar fields we have

L = Lkin + Lψ. (5.3)
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It is now our task to find the specific form of the Lagrangian made of the fermion fields QLi and

QRi subject to the SU(3)C gauge symmetry.

The imposed SU(3)C gauge symmetry requires that we include a gauge field in the adjoint

representation of SU(3)C , Gµ
a , that we call the gluon field. The corresponding field strength is

given by

Gµν
a = ∂µGν

a − ∂νGµ
a − gsfabcG

µ
bG

ν
c . (5.4)

Here, gs is the coupling constant, and fabc are the structure constants of SU(3). The covariant

derivative is

Dµ = ∂µ + igsG
µ
aLa, (5.5)

where La, a = 1, . . . , 8, are the SU(3) generators, [La, Lb] = ifabcLc. In the triplet representation,

La = 1
2
λa, where λa are the eight 3 × 3 Gell-Mann matrices given explicitly in Eq. (A.26). The

covariant derivative is the same for all the fermions in the theory and is given by

Dµ = ∂µ +
i

2
gsG

µ
aλa. (5.6)

Lkin includes the kinetic terms of all the fields:

Lkin = iQLiD/QLi + iQRiD/QRi −
1

4
Gµν
a Gaµν . (5.7)

Lψ includes Dirac mass terms for the quarks:

−Lψ = mQ
ijQLiQRj + h.c. . (5.8)

We can always, however, make a unitary transformation of the quark fields,

QLi → (VL)ijQLj, QRi → (VR)ijQRj, (5.9)

such that in the new basis the mass matrix is diagonal (this basis is called the mass basis):

VLm
QV †R = diag(mu,md,ms,mc,mb,mt). (5.10)

The transformation (5.9) by unitary matrices preserves the canonical normalization of the kinetic

terms. We call the six mass eigenstates the up (u), down (d), strange (s), charm (c), bottom (b),

and top (t) quarks where, by definition, mu < md < ms < mc < mb < mt.

In the language of the quark Dirac mass eigenstate fields, qi ≡ (Qi
L, Q

i
R)T , the full QCD

Lagrangian reads

LQCD = −1

4
Gµν
a Gaµν +

∑
qi

(iqiD/ qi −mqiqiqi), qi = u, d, s, c, b, t. (5.11)
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5.3 The spectrum

When discussing the spectrum of QCD, the energy scale at which it is probed makes a significant

difference. The reason is that the strong coupling constant gs (uniquely among the SM coupling

constants) becomes stronger at lower energy or, equivalently, the larger the distance between

quarks. This leads to confinement: quarks bind into SU(3)C-singlet states (“color-singlets”). Here

we discuss the UV spectrum. The IR spectrum is discussed in Chapter 10.

At short distance, the spectrum of QCD consists of six massive Dirac quarks q of masses mq

in the color-triplet representation, and a massless gluon, in the color-octet representation. We

emphasize the following points:

• The masslessness of the gluon is a consequence of the gauge symmetry.

• The reason that we can write mass terms for all six quarks is that QCD is vectorial, that is,

the six QL and six QR fields are all color-triplets.

• Since each of the six quarks is a color-triplet Dirac fermion, it has twelve DoF.

• The situation where the the theory has six fermion mass eigenstates that carry the same

quantum numbers and differ only in mass is described, in the physics jargon, by the statement

that the model has six flavors.

5.4 The interactions

Expanding Dµ, we obtain the quark–gluon interaction term:

Lint = −gs
2
qiλaG/aqi . (5.12)

Expanding Gµν
a Gaµν we obtain the gluon self-interactions:

Lself−int = gsfabc(∂
µGν

a)G
µ
bG

ν
c − g2

s(fabcG
µ
bG

ν
c )(fadeG

µ
dG

ν
e) . (5.13)

We emphasize the following points:

• Both the quark–gluon interaction and the gluon self-interaction depend on one and the same

coupling constant, gs.

• The quark–gluon interaction is vector-like, diagonal and universal in flavor space.

• The strong interaction conserves P , T , C, and any combination of them.
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5.5 The parameters

The QCD Lagrangian has seven free parameters: the six masses, mqi , and the coupling constant,

gs or, equivalently,

αs ≡
g2
s

4π
. (5.14)

The values of the parameters depend on the scale where they are measured, and on the renormal-

ization scheme that is used. We do not discuss these issues here, and just quote the values from

the PDG:

mu = 2.2+0.5
−0.3 MeV, md = 4.7+0.5

−0.2 MeV, ms = 93+11
−5 MeV, (5.15)

mc = 1.27± 0.02 GeV, mb = 4.18+0.03
−0.02 GeV, mt = 172.9± 0.4 GeV.

The coupling constant is given by

αs(m
2
Z) = 0.1181± 0.0011, (5.16)

where mZ ∼ 91 GeV is the mass of the Z boson that we discuss in Chapter 7.

5.6 Confinement

The confinement hypothesis states that quarks, which are SU(3)C triplets, must be confined within

color-singlet bound states. This implies that all asymptotic states are singlets of SU(3)C . This

prediction is confirmed as we do not observe free quarks in Nature.

While there is no formal proof of this phenomenon, there are many indications that it is true.

In particular, the confinement hypothesis is consistent with the way the strong coupling runs. The

beta function for the SU(N) coupling constant is given in Eq. (4.26). For QCD, where the gauge

group is SU(3) and the number of relevant quarks at µ > mt is six, we have

β(gs)(µ > mt) = − 7g3
s

16π2
< 0. (5.17)

For lower energy scales, where the number of relevant quarks is smaller, β(gs) becomes even more

negative, β(gs) = −(33 − 2nlight
q )g3

s/(48π2), where nlight
q is the number of quarks with mq < µ.

The fact that the beta function is negative is very important. It implies that the strong coupling

constant becomes larger for lower energies. This behavior is what leads to confinement: when a

quark and an antiquark are traveling away from each other, at some point it becomes energetically

favorable to pop-up a quark–antiquark pair from the vacuum. The result is that we do not observe

free quarks at the IR. All quarks are confined into color-singlet objects.

The scale where the transition between the UV and IR description of QCD occurs is called

ΛQCD. Roughly speaking, it is the scale where the coupling constant becomes strong, gs ≈ 4π. It
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occurs around ΛQCD ≈ 300 MeV (the value depends on the renormalization scheme). We can treat

QCD as a perturbative theory when considering processes where q2 � Λ2
QCD.

Note that ΛQCD is not a fundamental parameter of the theory but an emergent one. Its value

is determined by the masses of the quarks and the coupling constant. See Question 5.3.

5.7 Accidental symmetries

The kinetic term of QCD has a large accidental global symmetry, U(6)L×U(6)R. The mass terms

break it, in general, to [U(1)]6:

U(1)u × U(1)d × U(1)s × U(1)c × U(1)b × U(1)t. (5.18)

In the mass basis, Eq. (5.11), this symmetry is manifest.

The following comments are in order:

• The [U(1)]6 symmetry predicts that the quarks are stable. This is because under each of the

U(1)’s there is just a single particle that is charged, so it must be stable.

• More generally, the accidental symmetry implies that quark flavor is conserved. For example,

uū→ cc̄ is allowed, but uc̄→ cū is not.

• Both predictions are violated in Nature. In fact, the weak interaction breaks the [U(1)]6

symmetry down to a single U(1) called baryon number. This U(1)B is one where all quarks

rotate with the same phase. It is also called the diagonal U(1). The [U(1)]6-breaking by the

weak interactions allows the QCD-forbidden processes to be mediated by weak interactions.

We discuss this point in Chapter 8.

• At and below the scale of present experiments, the weak interactions are considerably weaker

than the strong interactions. Thus, the QCD Lagrangian and its accidental [U(1)]6 symmetry

constitute a good approximation.

• At low energies, the QCD Lagrangian has even larger approximate accidental symmetries:

isospin, SU(3)-flavor, and heavy quark symmetry. These are discussed in Section 10.4.

• Similarly to QED, QCD conserves C, P , and CP since it is a vectorial theory with masses

and gauge interaction only.

5.8 Combining QCD with QED

In this section we combine QCD, the local SU(3)C theory of strong interactions, with QED, the

local U(1)EM theory of electromagnetic interactions. The model describes the quark spectrum and

interactions in Nature, neglecting the weak and Yukawa interactions.
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The model is defined as follows:

(i) The symmetry is a local

SU(3)C × U(1)EM. (5.19)

(ii) There are six left-handed and six right-handed quark fields,

ULi(3)+2/3, URi(3)+2/3, DLi(3)−1/3, DRi(3)−1/3, i = 1, ..., 3. (5.20)

(iii) There are no scalars.

The resulting Lagrangian combines QED with QCD. The imposed symmetry requires that we

include the following gauge fields:

Gµ
a(8)0, Aµ(1)0. (5.21)

The covariant derivative acting on the quark fields is given by

Dµ = ∂µ +
i

2
gsG

µ
aλa + ieqAµ, (5.22)

where q = +2/3 for the Ui fields and q = −1/3 for the Di fields.

Lkin includes the kinetic terms of all the fields:

Lkin = −1

4
Gµν
a Gaµν −

1

4
F µνFaµν + iULiD/ULi + iURiD/URi.+ iDLiD/DLi + iDRiD/DRi. (5.23)

The gauge interactions are extracted from the kinetic terms. The gluon interactions are identical to

the pure QCD Lagrangian and the photon interactions are identical to the pure QED Lagrangian,

except that the quark charges are different from those of the electron. The mass terms are the

same as in the QCD Lagrangian. In terms of the Dirac mass eigenstate quark fields, they read

−Lψ = muūu+mcc̄c+mtt̄t+mdd̄d+mss̄s+mbb̄b, (5.24)

where u, c, t are the three q = +2/3 fields and d, s, b are the three q = −1/3 fields.

The resulting theory is not much different from just putting together LQCD +LQED. The global

symmetry of the kinetic terms is now [U(3)]4 (instead of the [U(6)]2 symmetry of the pure QCD

case), but the mass terms break it to the same symmetry as that of QCD, [U(1)]6.

We can also add the three charged leptons to this model. They are in the (1)−1 representation

of SU(3)C × U(1)EM. The terms that involve them are the same as in Eq. (3.20).

For further reading

QFT aspects of QCD can be found, for example, in Chapter 17 of Ref. [2]. The issue of quark

masses is discussed in the PDG review on quark masses.
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Problems

Question 5.1: Algebra

1. Draw the Feynman rules for the quark-gluon gauge interaction of Eq. (5.12) and the gluon

self interaction of Eq. (5.13).

Question 5.2: Testing QCD with the ratio R

Consider the following model:

(i) The symmetry is a local

SU(3)C × U(1)EM. (5.25)

(ii) There are four quark fields,

AL(Na)qa , AR(Na)qa , BL(Nb)qb , BR(Nb)qb , (5.26)

and four lepton fields (in fact, the electron and muon fields):

eL(1)−1, eR(1)−1, µL(1)−1, µR(1)−1. (5.27)

(iii) There are no scalars.

We assume that the masses of the fermions are much smaller than the energy scale
√
s of the

scattering processes that we consider.

1. Draw the diagrams of e+e− → ff̄ for f = µ and for f = A.

2. Show that
σ(e+e− → AA)

σ(e+e− → µ+µ−)
= Naq

2
a. (5.28)

3. Calculate
σ(e+e− → AA) + σ(e+e− → BB)

σ(e+e− → µ+µ−)
. (5.29)
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Consider now the model defined in Section 5.8.

4. We define the ratio

R =

∑
q σ(e+e− → qq̄)

σ(e+e− → µ+µ−)
, (5.30)

where the sum runs over all quarks with 4m2
q < s. Calculate R for the following two cases:

m2
s � s/4� m2

c and m2
c � s/4� m2

b .

We discuss the ratio R in more detail in Section 10.5.1. The measurements of R constitute an

important test of QCD, which the theory passes successfully.

Question 5.3: The β function

In Section 4.4 we presented the idea that coupling constants run, that is, that higher order

corrections can be absorbed into the definition of the coupling constants. Consider, for example,

the cross section for e+e− → µ+µ−. In the CM frame and to leading order, this is given by (up to

normalization factors)

σ =
α2

E4
, (5.31)

where E is the energy of the electron. Higher order effects change this result. Most of the effect

can be absorbed into the running of α, that is

σ =
α(µ)2

E4
, (5.32)

where µ ∼ E is the energy scale in the problem, and α(µ) is a running coupling constant that

satisfies a differential equation:
∂α

∂ log(µ)
= β(α). (5.33)

The beta function can be calculated to the desired precision in perturbation theory. In QED at

one loop, with only electrons in the loop, we have

β(α) = Bα2, B =
2

3π
. (5.34)

This equation is valid for µ > me.

1. Verify that the solution of the beta function equation is

1

α(µ1)
=

1

α(µ2)
+B log

(
µ2

µ1

)
. (5.35)

2. Use α(me) ≈ 1/137.0 to calculate α(mZ), where mZ ≈ 91 GeV.
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The fact that the coupling constant becomes larger for higher energy scale raises the possibility

that it diverges at some scale, which would be an indication that the theory breaks down. The

energy scale at which it diverges is called the Landau pole. That is, the Landau pole is µLP where

α(µLP)→∞.

3. Find the Landau pole for α. How does it stand with respect to the Planck scale, which

constitutes an upper bound on the cut-off scale of all QFT?

Measurements find that α(mZ) ≈ 1/128. The reason for the disagreement with your result above

is that there are other particles in the loop besides the electron. The generalization of Eq. (5.35)

to that case is
1

α(µ1)
=

1

α(µ2)
+B

∑
i

Q2
iN

i
C log

(
max(mi, µ2)

µ1

)
, (5.36)

where N i
C = 1(3) for leptons (quarks), and Qi is the electric charge. The sum is over all the

charged particles with mass below µ1.

4. Use the physical masses and charges of the known fermions,

q = −1 : me,µ,τ ≈ (0.5, 100, 1777) MeV,

q = +2/3 : mu,c,t ≈ (0.3, 1.4, 174) GeV,

q = −1/3 : md,s,b ≈ (0.3, 0.4, 4.2) GeV, (5.37)

to calculate α(mZ). How close is your result to the measured value? (Note that the values

of mu, md and ms are much larger than the values quoted in PDG. The reason is that we

use the “valence quark masses” rather than “running quark masses”, which is what the PDG

quotes. We discuss this point in Chapter 10.)

We now move to QCD. The beta function is given by β(α) = Bα2
s with

B = −
(

11− 2nf
3

)
1

2π
, (5.38)

where nf is the number of quark flavors with masses below the relevant scale. Below we use the

input αs(mZ) ≈ 0.12.

5. The sign of the beta function depends on the number of flavors. How many flavors are needed

to change the sign of the beta function? We denote this number as NCri.

6. Sketch the shape of the function αs(µ) for µ between 1 and 104 GeV for (i) a theory with

nf < nCri, and (ii) a theory with nf > nCri. Use log scale for µ.

7. Estimate ΛQCD, that is, the scale where αs = 4π. For simplicity, you can neglect all quark

masses except mt.

8. The proton mass is roughly mp ≈ 3ΛQCD. Can you tell if the mass of the proton would be

lighter or heavier if we did not have the third generation, assuming the same measured value

of αs(mZ)?
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Chapter 6

Spontaneous Symmetry Breaking

Spontaneously broken symmetries play an important role in physics, and in particle physics in

particular. In this chapter we introduce the idea of spontaneous symmetry breaking and discuss

its consequences. The role of such symmetries in the weak interaction part of the SM is discussed

in Chapter 7.

6.1 Introduction

The notion of broken symmetries may seem strange: In what sense is there a difference between

the case that we call “a broken symmetry” and the case of not having the symmetry at all? The

idea of a broken symmetry is however meaningful in two scenarios:

• Explicit breaking of a symmetry by a small parameter. The Lagrangian includes terms

that break the symmetry, but these terms are characterized by a small parameter. The small

parameter can be either a small dimensionless coupling, or a small ratio between mass scales.

The symmetry is then approximate, and one can expand around the symmetry limit.

• Spontaneous Symmetry Breaking (SSB). The Lagrangian is symmetric, but the vacuum state

is not. Even though with SSB the symmetry is not manifest but rather hidden, the number

of parameters is the same as in the case of unbroken symmetry. In this sense, the predictive

power of a spontaneously broken symmetry is as strong as that of the unbroken symmetry.

SSB is based on the following ingredients. Symmetries of interactions are determined by the

symmetries of the Lagrangian. The states, however, do not have to obey these symmetries. Con-

sider, for example, the hydrogen atom. While the Lagrangian is invariant under rotations, an

eigenstate does not have to be. Specifically, a state with a finite m quantum number is not invari-

ant under rotation around the z-axis. The fact that there are eigenstates that are not invariant

under the symmetry of the system is a generic feature when there are degenerate states.
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In perturbative QFT we expand around the lowest energy state. This lowest state is called the

“vacuum” state. When the vacuum state is degenerate, the fact that the physics would remain

the same for any choice of vacuum to expand around is a consequence of the symmetry. Yet, when

we expand around a specific vacuum state out of the degenerate set of vacua, we expand around

a state that does not conserve the symmetry.

The name “spontaneously broken” indicates that there is no preference as to which of the

states is chosen. A very simple example is that of a hungry donkey. Consider a donkey that stands

exactly halfway between two stacks of hay. Symmetry tells us that it costs the same amount of

energy to go to either stack. Thus, we may expect that the donkey is unable to choose and would

starve! Yet, in reality, the donkey would make an arbitrary choice and go to one of the stacks to

eat. We say that the donkey spontaneously breaks the symmetry between the two sides.

In previous chapters we encountered the predictive power of imposed symmetries. In this

chapter we show that spontaneously broken symmetries are no less predictive than exact ones,

though the predictions are different. While the symmetry is no longer manifest, in the sense that

processes that are forbidden in the symmetry limit may become allowed if it is spontaneously

broken, there are subtle relations between these ‘forbidden’ processes and the allowed ones. These

relations reveal that the Lagrangian does have this symmetry. This is why a spontaneously broken

symmetry is also called a hidden symmetry.

6.2 Global discrete symmetries: Z2

Consider a model with an imposed Z2 symmetry, similar to the one discussed in Section 2.1.1.

There is a single real scalar field φ, which is odd under the symmetry:

φ→ −φ. (6.1)

Thus, the symmetry is simply φ-parity. The Lagrangian reads

L =
1

2
(∂µφ)(∂µφ)− µ2

2
φ2 − λ

4
φ4. (6.2)

In particular, the symmetry forbids a φ3 term. Hermiticity of L requires that µ2 and λ are real,

and we must have λ > 0. (λ < 0 leads to a “run-away” potential, that is, one that is not bounded

from below.) As for the µ2 term, we can have either µ2 > 0 or µ2 < 0. The µ2 > 0 case is

considered in Section 2.1.1. It corresponds to an ordinary φ4 theory, and µ2 is the mass-squared

of φ. The case of interest for our purposes is

µ2 < 0. (6.3)

The minimum of the scalar potential should satisfy

0 =
∂V

∂φ
= φ(µ2 + λφ2). (6.4)
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Thus, the potential has two possible minima:

φ± = ±
√
−µ2

λ
≡ ±v. (6.5)

The classical solution would be either φ+ or φ−. We say that φ acquires a Vacuum Expectation

Value (VEV):

〈φ〉 ≡ 〈0|φ|0〉 6= 0. (6.6)

Perturbative calculations should involve expansion around the classical minimum. Since the

two solutions are physically equivalent, the physics cannot depend on our choice, but we must

make a choice. Let us choose — without loss of generality — to expand around φ+. We define a

field φ′ with a vanishing VEV:

φ′ = φ− v. (6.7)

In terms of φ′, the Lagrangian reads

L =
1

2
(∂µφ

′)(∂µφ′)− 1

2
(2λv2)φ′2 − λvφ′3 − λ

4
φ′4, (6.8)

where we used µ2 = −λv2 and discarded a constant term.

We recall that the most general Lagrangian of a scalar field is given in Eq. (1.2) and we rewrite

it here in terms of φ′

LS =
1

2
∂µφ

′∂µφ′ − m2

2
φ′2 − η

2
√

2
φ′3 − λ

4
φ′4 . (6.9)

Examining the Lagrangians of Eqs. (6.2), (6.8) and (6.9) raises the following points:

1. The Lagrangian (6.8) includes all possible terms for the real scalar field φ′. In particular,

it has no φ′-parity symmetry. Thus, the φ → −φ symmetry is hidden. It is spontaneously

broken by our choice of the ground state 〈φ〉 = +v.

2. Yet, the Lagrangian (6.8) is not the most general renormalizable Lagrangian for a scalar field.

While the most general one, Eq. (6.9), depends on three independent parameters, Eq. (6.8)

depends on only two. In terms of the parameters of the general Lagrangian Eq. (6.9), the

relation is

η2 = 4λm2. (6.10)

This relation is the clue that the symmetry is spontaneously, rather than explicitly, broken.

3. The two parameters can be chosen to be v and λ, or µ2 and λ. The first choice is the one we

made in writing Eq. (6.8). The second choice employs the same parameters of the original,

manifestly symmetric L(φ), see Eq. (6.2). It demonstrates that the SSB does not introduce

additional new parameters.
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4. The coefficients of the quadratic and trilinear terms in (6.8) are different from those of the

quadratic and trilinear terms in Eq. (6.2). In contrast, the coefficients of the quartic terms

are the same. This is a general result: as long as we consider only the renormalizable terms,

SSB changes dimensionful parameters, but not dimensionless ones.

5. While the symmetry is manifest in Eq. (6.2), the phenomenological interpretation of this

model should start from Eq. (6.8). Specifically, the model describes a scalar particle of

mass-squared 2λv2 = −2µ2. This particle is an excitation of the φ′ field.

6. Hypothetical particles with negative mass-squared are called tachyons and they travel faster

than light. The example above shows why tachyons do not appear in QFT. To make a

physical interpretation, we have to expand around the minimum, and thus physical particles

have positive mass-squared. Fields with negative mass-squared terms are sometimes referred

to as tachyonic fields.

7. In non-relativistic quantum mechanics, the analogous case – a particle in a double-well poten-

tial – does not have a degenerate vacuum due to tunneling effects. Such tunneling effectively

vanishes in QFT.

6.3 Global Abelian continuous symmetries: U(1)

Consider a model with an imposed U(1) symmetry, similar to the one discussed in Section 2.1.2.

There is a single complex scalar field φ, with q = +1, so the theory is required to be invariant

under

φ→ eiθφ. (6.11)

The Lagrangian reads

L = (∂µφ
†)(∂µφ)− µ2φ†φ− λ(φ†φ)2. (6.12)

Equivalently, we can rewrite the Lagrangian in terms of two real scalar fields, as in Eq. (2.5),

φ ≡ 1√
2

(φR + iφI) , (6.13)

and impose an SO(2) symmetry,(
φR

φI

)
→
(

cos θ sin θ

− sin θ cos θ

)(
φR

φI

)
. (6.14)

The Lagrangian reads, see Eq. (2.8),

L =
1

2
∂µφR∂µφR +

1

2
∂µφI∂µφI −

µ2

2

(
φ2
R + φ2

I

)
− λ

4

(
φ2
R + φ2

I

)2
. (6.15)
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The µ2 and λ parameters are real, and we must have λ > 0. We consider the case that µ2 < 0.

(The µ2 > 0 case is considered in Section 2.1.2.) We define v2 = −µ2/λ. The scalar potential can

be written (up to a constant term) as

V = λ

(
φ†φ− v2

2

)2

. (6.16)

Thus, φ acquires a VEV:

2
〈
φ†φ

〉
=
〈
φ2
R + φ2

I

〉
= v2 = −µ

2

λ
. (6.17)

In the (φR, φI) plane, there is a circle of radius v that corresponds to minima of the potential. We

have to choose a specific vacuum to expand around. We choose the real component of φ to carry

the VEV:

〈φR〉 = v, 〈φI〉 = 0. (6.18)

We define the real scalar fields

h = φR − v, ξ = φI , (6.19)

with vanishing VEVs:

〈h〉 = 〈ξ〉 = 0. (6.20)

We obtain the Lagrangian in terms of h and ξ:

L =
1

2
(∂µh)(∂µh) +

1

2
(∂µξ)(∂

µξ)− λv2h2 − λvh(h2 + ξ2)− λ

4
(h2 + ξ2)2. (6.21)

Note the following points:

1. The SO(2) symmetry is spontaneously broken. This can be seen from the presence of the

h(h2 + ξ2) term.

2. Since the symmetry is spontaneously broken, the Lagrangian is not invariant under a trans-

formation similar to the one in Eq. (6.14). Explicitly,(
h

ξ

)
→
(

cos θ sin θ

− sin θ cos θ

)(
h

ξ

)
(6.22)

is not a symmetry of L.

3. The Lagrangian describes one massive scalar, h, with m2 = 2λv2, and one massless scalar, ξ.

If the symmetry were not broken, it would be impossible to distinguish the two components

of the complex scalar field. With the symmetry spontaneously broken, these two DoF are

distinguishable, for example, by their different masses.

4. The Lagrangian of Eq. (6.21) is not the most general Lagrangian for two real scalar fields.

Many terms are missing, while others, that would have been independent in the general case,

are related. In particular, there are only two independent parameters, as for a Lagrangian

with an unbroken SO(2).
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Figure 6.1: The Mexican hat potential. The masses of the two DoF correspond to the second

derivative of the potential around the minimum. One direction (left) is flat, while the other

(center) is not. The plot on the right shows the symmetric point. Yet, it is unsable and does not

correspond to a particle. In the case of a global symmetry, the flat direction corresponds to the

massless Goldstone boson, while the non-flat direction corresponds to the massive DoF. In the case

of a local symmetry, the flat direction corresponds to the longitudinal component of the vector

boson, while the non-flat direction corresponds to the massive Higgs boson.

5. The quartic terms, with dimensionless couplings, are the same in Eqs. (6.15) and (6.21).

Only dimensionful couplings are modified.

6. We chose a basis by assigning the VEV to the real component of φ. This is an arbitrary

choice. We made it since it is convenient. The physics does not depend on this choice.

7. We write the VEV as 〈φR〉 = v or equivalently as 〈φ〉 = v/
√

2. The factor of
√

2 between

the two VEVs is just the one that we encounter many times when moving between real and

complex fields.

One of the most interesting features of the model presented here is the existence of a massless

scalar field. This feature is not particular to our specific model, but rather the result of a general

theorem called The Goldstone Theorem: The spontaneous breaking of a global continuous sym-

metry is accompanied by massless scalars. Their number and quantum numbers equal those of the

broken generators. The massless scalars are called Nambu-Goldstone Bosons.

While we do not prove here the theorem, we briefly describe the intuition behind it. SSB is

possible only when the vacuum is degenerate. For a continuous symmetry, the set of degenerate

vacua is also continuous. In the case of a U(1) symmetry, the shape of the potential is usually

called “a Mexican hat,” see Fig. 6.1. When expanding around any point in the “valley,” it can

be seen that one direction is flat. A flat direction in the potential corresponds to a massless DoF.

The Goldstone theorem is a generalization of this simple picture. Fig. 6.1 demonstrates the point.
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6.4 Global non-Abelian continuous symmetries: SO(3)

Consider a model with an imposed SO(3) symmetry, and a real scalar field, φ, that transforms as

a triplet under the symmetry:

φ→ eiLaθaφ. (6.23)

The three La matrices, (La)bc = iεabc, constitute the triplet representation of the SO(3) algebra.

They are given explicitly in Eq. (6.50). This model provides an intuitive picture of spontaneous

symmetry breaking. The triplet constitutes a vector in a real three-dimensional (3d) space. Once

a vector is fixed in space, the symmetry under 3d rotations breaks, but not completely, as the

symmetry under rotations in the plane that is perpendicular to the vector remains. Here we

translate this intuitive picture into a rigorous analysis.

The Lagrangian reads

L =
1

2
(∂µφ

T )(∂µφ)− µ2

2
φTφ− λ

4
(φTφ)2. (6.24)

We take µ2 < 0, and define v2 = −µ2/λ. Then φ acquires a VEV: | 〈φ〉 | = v. The triplet φ has

three DoF. We choose the direction of the VEV to lie in the φ3 direction:

φ =


φ1

φ2

v + φ3

 , (6.25)

such that 〈φi〉 = 0, i = 1, 2, 3. The SO(3) symmetry is only partially broken,

SO(3)→ SO(2), (6.26)

where the SO(2) symmetry refers to rotations in the (φ1, φ2) plane.

The Lagrangian for the φi fields can be written as

L = Lkin + L2 + L3 + L4, (6.27)

where Ln includes terms that are n’th power in the φi fields. Let us comment on the significance

of each of these parts of the Lagrangian:

• Quadratic terms:

−L2 = λv2φ2
3. (6.28)

The model has one massive scalar, φ3, of mass-squared m2
3 = 2λv2, and two massless scalars,

m2
1 = m2

2 = 0. This is a manifestation of the Goldstone theorem. Spontaneous symmetry

breaking requires the appearance of massless Goldstone bosons in correspondence to the

broken generators. Since SO(3) has three generators, and it is spontaneously broken to

SO(2) that has one generator, our model must have two Goldstone bosons.
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• Trilinear terms:

−L3 = λvφ3(φ1φ1 + φ2φ2 + φ3φ3). (6.29)

The fact that L3 6= 0 is a manifestation of the SO(3) breaking.

• The quartic terms:

−L4 =
λ

4

(
φ2

1 + φ2
2 + φ2

3

)2
. (6.30)

This part of the Lagrangian has dimensionless couplings and therefore it is unchanged from

the symmetric form.

The model presented here is an example of partial breaking of the symmetry. In general, a

generator corresponds to a spontaneously broken symmetry if the vacuum is not invariant under an

operation of the corresponding group element. Conversely, a generator corresponds to an unbroken

symmetry if the vacuum is invariant to an operation by the corresponding group element. Given the

fact that the group element is the exponent of the generator, these conditions can be represented

in terms of the generators as follows. We denote the the vacuum state by 〈φ〉. A broken generator

gives

Ta〈φ〉 6= 0. (6.31)

An unbroken generator gives

Ta〈φ〉 = 0. (6.32)

More details are given in Question 6.3.

6.5 Fermion masses

Spontaneous symmetry breaking can give masses to chiral fermions. We explain this statement by

an explicit example.

Consider a model with a U(1) symmetry. The field content consists of a left-handed fermion

ψL, a right-handed fermion ψR, and a complex scalar φ with the following U(1) charges:

q (ψL) = +1, q (ψR) = +2, q (φ) = +1. (6.33)

The most general Lagrangian we can write is

L = Lkin − µ2φ†φ− λ(φ†φ)2 − Y φψRψL + h.c.. (6.34)

Since the fermions are charged and chiral, we cannot write mass terms for them (Lψ = 0).

We take µ2 < 0, so that the scalar potential is the one given in Eq. (6.15), leading to a VEV

for φ: |〈φ〉| = v/
√

2 6= 0. As in Section 6.3, we choose 〈φR〉 = v, 〈φI〉 = 0 and define the real fields

h and ξ in such a way that they have vanishing VEVs:

φ =
h+ v + iξ√

2
, (6.35)
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Expanding around the chosen vacuum we find

L = Lkin − V (h, ξ)− Y v√
2
ψRψL −

Y√
2

(h+ iξ)ψRψL + h.c. , (6.36)

where V (h, ξ) can be read off Eq. (6.21). We learn that ψL and ψR combine to form a Dirac

fermion with mass

mψ =
Y v√

2
. (6.37)

This is possible because the symmetry under which the fermion is chiral is broken.

In a more general case, the symmetry might be only partially broken, namely a subgroup of the

original group remains unbroken. In this case, necessary conditions for generating fermion masses

are the following:

• Dirac mass: the fermion representation is vector-like under the unbroken subgroup.

• Majorana mass: the fermion is neutral under unbroken U(1) groups and in a real represen-

tation of unbroken non-Abelian subgroups.

6.6 Local symmetries: the Higgs mechanism

In this section we discuss spontaneous breaking of local symmetries. We demonstrate it by studying

a U(1) gauge symmetry. One of the main results is that the breaking of a local symmetry generates

mass terms for the gauge bosons that correspond to the broken generators. At first sight, this result

might seem surprising, since the spontaneous breaking of a global symmetry gives massless Nambu-

Goldstone bosons. In the case of a local symmetry, however, these would-be Nambu-Goldstone

bosons are “eaten” by the gauge bosons and become the longitudinal components of the resulting

massive vector-bosons.

Consider a theory similar to the one discussed in Section 6.3, where we have a single scalar

field that is charged under a U(1) symmetry. The difference is that here we impose a local U(1)

symmetry:

φ→ eiθ(x)φ. (6.38)

The Lagrangian is given by

L = (Dµφ)†(Dµφ)− 1

4
FµνF

µν − µ2φ†φ− λ(φ†φ)2. (6.39)

The covariant derivative is given by

Dµφ = (∂µ + igAµ)φ . (6.40)

Aµ is the gauge field, Fµν is defined in Eq. (2.28), and g is the coupling constant.
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We consider the case of µ2 < 0, leading to SSB via a VEV of φ:

〈φ〉 =
v√
2
, v2 = −µ

2

λ
. (6.41)

We choose the real component of φ to carry the VEV. We again write the complex scalar in terms

of two scalar fields with vanishing VEVs, 〈h〉 = 〈ξ〉 = 0, but, unlike the global case, it is convenient

to write the two DoF as a phase, ξ(x) and a magnitude, h(x):

φ(x) = eiξ(x)/v v + h(x)√
2

. (6.42)

Note that we normalized ξ(x) such that it has mass dimension one. To leading order in ξ(x)/v,

Eq. (6.42) is the same as Eq. (6.35). We usually refer to Eq. (6.42) as a non-linear realization and

to Eq. (6.35) as a linear realization.

When a symmetry is spontaneously broken and we write the Lagrangian in terms of the VEV-

less fields, the Lagrangian is no longer manifestly invariant under the broken symmetry transfor-

mation. Instead, the transformation constitutes a change of basis. We can use this change of basis

to our advantage, by choosing a basis that makes the physics of the model more transparent. This

is what we do here by choosing a specific gauge: θ(x) = −ξ(x)/v. (It is fully legitimate to choose

the phase to be related to a field.) This gauge is called the unitary gauge.

With this choice of gauge,

φ→ φ′ =
1√
2

(h+ v), Aµ → Vµ = Aµ +
1

gv
∂µξ, (6.43)

such that φ′ has one DoF and Vµ three. The Lagrangian in terms of h and Vµ reads

L = −1

4
FµνF

µν +
1

2
(∂µh)(∂µh) +

1

2
(g2v2)VµV

µ − 1

2
(2λv2)h2 (6.44)

+
g2

2
VµV

µh(2v + h)− λvh3 − λ

4
h4.

Note the following points:

1. The elementary particles of this model are a massive vector boson of mass-squared m2
V =

(gv)2 and a massive scalar of mass-squared m2
h = 2λv2. (The sign of a mass-squared term

for a vector-boson is opposite sign to that of a mass-squared term for a scalar.)

2. The source of the mass-squared term for the vector bosons is the kinetic term of the Higgs

field.

3. A propagator of a massive gauge boson depends on the gauge choice. In the unitary gauge

it is given by

(−i)g
µν − (kµkν)/m2

V

k2 −m2
V

. (6.45)

We do not discuss in detail the issues of gauge fixing for massive gauge bosons.
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4. The kinetic term of the gauge boson is independent of the gauge fixing. This can be seen

from the fact that

∂µVν − ∂νVµ = ∂µAν − ∂νAµ. (6.46)

5. The ξ field is “eaten” in order to give mass to the gauge boson. It was a convenient choice

to make the phase to be the “eaten” DoF. The total number of degrees of freedom does

not change: instead of the scalar ξ, we have the longitudinal component of a massive vector

boson.

6. In the limit g → 0 we have mV → 0. This situation describes a massless gauge boson

and a massless scalar. We see that in that limit the longitudinal component is the massless

Nambu-Goldstone boson as expected.

7. The field that acquires a VEV, in our case φ, is called the Brout-Englert-Higgs (BEH) field

or the Higgs field. The h scalar is called “a Higgs boson.”

8. The Lagrangian (6.39) depends on three parameters. They can be taken to be g, v, and λ.

The Lagrangian (6.44) has two mass terms and four interaction terms which depend on the

same three parameters. Thus, the six relevant terms, which would be independent in the

absence of a symmetry, obey three relations among them. This is a sign of SSB.

9. The hV V coupling is proportional to the mass-squared of the vector boson.

10. The dimensionless V V hh and hhhh couplings are unchanged from the symmetric Lagrangian.

In the example above, we consider SSB of a local U(1) symmetry. The basic ingredients are,

however, much more generic and apply also to non-Abelian symmetries and to product groups.

In fact, the SM incorporates SSB of a local SU(2) × U(1) symmetry. The following lessons are

generic to all cases of spontaneous breaking of a local symmetry:

1. Spontaneous symmetry breaking gives masses to the gauge bosons related to the broken

generators.

2. Gauge bosons related to an unbroken subgroup remain massless, because their masslessness

is protected by the symmetry.

3. The field that acquires a VEV (the BEH field) must be a scalar field. Otherwise its VEV

would break Lorentz invariance.

We close this section with two remarks. First we note that spontaneous breaking of a local

symmetry can give masses also to fermions, as is the case for a spontaneously broken global

symmetry. To see this, we add to our model fermions with q(ψR)− q(ψL) = q(φ), as in the model
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Table 6.1: Symmetries and some of their main consequences

Type Consequences

Spacetime Conservation of energy, momentum, angular momentum

Discrete Selection rules

Global (exact) Conserved charges

Global (spon. broken) Massless scalars

Local (exact) Interactions, massless spin-1 mediators

Local (spon. broken) Interactions, massive spin-1 mediators

of Section 6.5. Working in the physical gauge, θ(x) = −ξ(x)/v, we learn that Eq. (6.36) is modified

to

L = Lkin − V (h)− Y v√
2
ψRψL −

Y√
2
hψRψL + h.c.. (6.47)

Similarly to the global case, the fermions are massive and their Yukawa couplings to h are propor-

tional to their masses.

Second, one consequence of SSB is that states with different QNs under the broken symmetry

but with the same QNs under the unbroken subgroup can mix. By “mixing” we mean that a mass

eigenstate can be a linear combination of such states. We do not elaborate on it here. Chapter 7

provides an example of mixing among vector bosons. Chapter 14 provides an example of mixing

among fermions.

6.7 Summary

Symmetries in QFT have a strong predictive, or explanatory, power. The main consequences of

the various types of symmetries are summarized in Table 6.1.

To construct a model, we provide as input the following ingredients:

(i) The symmetry;

(ii) The transformation properties of the fermions and the scalars.

Then we write the most general Lagrangian that is invariant under the symmetry up to some order

in the fields. Unless explicitly stated otherwise, we truncate the Lagrangian at the renormalizable

level, that is, at dimension four in the fields.

The resulting Lagrangian has a finite number of parameters that we need to determine by

experiment. In principle, for a theory with N independent parameters, we need to perform N
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appropriate measurements to extract the values of the parameters. Additional measurements test

the theory.

The values of the parameters can have minor or major implications. In particular, variation

of values of parameters can lead to different patterns of SSB, which result in very different phe-

nomenology. Thus, often, when we define a theory, the various SSB branches of it are given

different names.

Our process of building some model X starts with defining the imposed symmetry and the

transformation properties of fermions and scalars under this symmetry, and writing the most

general Lagrangian consistent with these definitions. At this stage, we can obtain the predictions

of model X that are independent of the values of the model parameters. Additional predictions

can be made when the values of the parameters are determined experimentally. We sometimes

use the term “a model X” for the class of models that are described by the Lagrangian, with any

possible values of its parameters, and “the model X” for the specific model with the values of the

parameters as realized in Nature (namely, as determined by experiments). In particular, we use

the terminology of “a SM” and “the SM” in this sense later in the book.

For further reading

More on the formal aspects of SSB can be found, for example, in Section 2.2 in Ref. [16], Chapters

20 and 21 of Ref. [2], Chapter 28 in Ref. [14], and Section 4 of Ref. [20].
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Problems

Question 6.1: Algebra

1. Show that to leading order in ξ(x)/v, Eq. (6.42) leads to Eq. (6.35).

2. Use Eqs. (6.39), (6.42), and (6.43) to derive Eq. (6.44).

3. Based on the definition of Vµ in Eq. (6.43), derive Eq. (6.46).

4. Derive Eq. (6.47).

Question 6.2: SSB with many scalars

Consider the following model. The symmetry is global SO(N). There is a real scalar fields Φ,

in the N representation, so there are N real scalar DoF Φ = (φ1, φ2, . . . , φN)T . The Lagrangian is

given by

L =
1

2
∂µΦ∂µΦ− 1

2
µ2Φ2 − 1

4
λΦ4, (6.48)

with µ2 < 0 and λ > 0. This Lagrangian is a generalization of Eq. (6.12).

1. Show that L describes a theory with a single massive scalar of mass-squared m2 = −2µ2,

and N − 1 massless scalars.

2. What is the unbroken symmetry group?

3. The Goldstone theorem states that the number of massless bosons is equal to the number of

broken generators. Show this explicitly for this model.

Question 6.3: Broken and unbroken symmetries
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In this question we elaborate on Eqs. (6.31) and (6.32) that state that an unbroken generator

Ta annihilates the vacuum, Ta〈φ〉 = 0, while a spontaneously broken one does not, Ta〈φ〉 6= 0. For

this consider the operation of a group element on the vacuum:

〈φ′〉 = eiTaθa〈φ〉. (6.49)

1. Explain why the symmetry is unbroken if 〈φ′〉 = 〈φ〉 for any θa and that it is broken if there

is a θa such that 〈φ′〉 6= 〈φ〉.

2. Explain why the above implies that Ta〈φ〉 = 0 if Ta corresponds to an unbroken symmetry.

3. A familiar example is the case of a vector in 3d, that breaks the symmetry from SO(3) to

SO(2), that is, from rotations in 3d to rotations in the plane perpendicular to the vector.

Consider a case where we choose the normalized vector to be ~v = (0, 0, 1)T . Show that Lz is

still a symmetry while Lx and Ly are not. It is useful to recall the explicit representation of

Li for a vector, in the basis that corresponds to rotations in real space:

Lx = −i


0 0 0

0 0 1

0 −1 0

 Ly = −i


0 0 −1

0 0 0

1 0 0

 Lz = −i


0 1 0

−1 0 0

0 0 0

 . (6.50)

4. Now consider a generic normalized vector, ~v = (a, b, c) such that a2 + b2 + c2 = 1. Show that

[aLx + bLy + cLz]~v = 0. (6.51)

The above shows that there is always one generator that is not broken, so indeed the unbroken

symmetry is SO(2).

5. Consider SU(2) transformations. The previous question demonstrates that a vector, that is

a 3, breaks SU(2) to U(1). Here you are asked to show that a spinor, that is a 2, breaks

SU(2) completely. In order to show this, we need to prove that there is no combination of

generators which annihilates a spinor. The SU(2) generators in the spinor representation

are the Pauli matrices. Consider the spinor ~s = (0, 1) and show that any non-zero linear

combination with real coefficients of the Pauli matrices does not annihilate it.

Question 6.4: More on the dark photon

We consider a model that is an extension of the one discussed in Question 3.3:

(i) The symmetry is a local U(1)EM × U(1)D. We denote the gauge bosons by Aµ and Cµ,

respectively.

90



(ii) There are four fermion fields:

eL(−1, 0), eR(−1, 0), dL(0,−1), dR(0,−1). (6.52)

(iii) There is a single complex scalar:

φ(qEM, qD). (6.53)

We assume no kinetic mixing and use a normalization such that the coupling constants of the two

groups is the same, that is, gEM = gD = e.

1. There are five specific charge assignments that allow Yukawa interactions, that is, couplings

between φ and the fermions. What are these charge assignments? From this point on we

do not consider any of the above options, that is, we consider only cases where all Yukawa

interactions are forbidden.

2. Write the scalar potential. What is the condition for φ to acquire a VEV? From here on,

assume that this condition is satisfied.

3. One way to make the model possibly consistent with Nature is to have partial SSB, such

that the photon Aµ is massless but the dark photon Cµ is massive. Explain why this is the

case when qEM = 0 and qD 6= 0.

4. In the above case, that is with qEM = 0 and qD 6= 0, write the mass of the dark photon in

terms of the model parameters.

5. We now consider a case where both qEM 6= 0 and qD 6= 0. In this case both U(1)EM and

U(1)D are broken. Show, however, that the breaking pattern is [U(1)]2 → U(1). We denote

the massless gauge boson A′µ and the massive one C ′µ.

6. Write the couplings of the fermions to A′µ and C ′µ.

7. We now assume that qEM � qD (and gEM = gD). In this case, we can think of A′µ as a

small deviation from Aµ, and still call it the photon. We further assume that md ∼ me.

Experimentally, a particle with a mass of order the electron mass and with EM charge larger

than about 10−3 that of the electron, is ruled out. Obtain the resulting constraint on the

parameter space of this model.

Question 6.5: Physics of the Higgs boson

We consider the model of Section 6.3 with the Lagrangian of Eq. (6.21).
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1. Draw the tree-level diagrams for the hh → hh scattering and write down the amplitude.

Note that there ia more than one diagram.

2. Calculate (up to numerical constants and phase space) the differential cross section in the

limit where E � v and θ ∼ 1. Here E is the center of mass energy of the collision and θ is

the scattering angle such that θ = 0 corresponds to forward scattering.

3. Consider the same model but with µ2 > 0. Calculate (again, up to numerical constants and

phase space) the φφ∗ → φφ∗ differential cross section in the limit where E2 � µ2 and θ ∼ 1.

Explain the similarity to the result of the hh → hh scattering cross section obtained in the

previous item.

Question 6.6: The Sigma model

A classic example of spontaneous symmetry breaking with Nambu–Goldstone bosons is pro-

vided by the σ-model. It pre-dated QCD, and we now think of it as an effective theory of the

strong interactions at low energies. It aims to describe the effective strong interactions between

the nucleons — the proton p and the neutron n — via the exchange of three scalars — the pions

πa (a = 1, 2, 3).

Consider the following model:

(i) The symmetry is a global SU(2)L × SU(2)R × U(1)B.

(ii) There are two fermion fields:

NL(2, 1)+1 =

(
pL

nL

)
, NR(1, 2)+1 =

(
pR

nR

)
. (6.54)

(iii) There is a single scalar field:

Σ(2, 2)0. (6.55)

The most general Lagrangian can be written as

L = iNL∂/NL + iNR∂/NR +
1

4
Tr
[
∂µΣ†∂µΣ

]
−
[
g(NLΣNR + h.c.)

]
− V (Σ) . (6.56)

The infinitesimal symmetry transformations on the fermion fields are chiral and given by

δNL = iεaLT
aNL, δNR = iεaRT

aNR. (6.57)

1. L is invariant under the above chiral symmetries. The fermion kinetic terms can be written

in terms of the Dirac field N = (NL NR)T . Write the infinitesimal symmetry transformations

in the form

δN = iεaT aN, δN = iγ5ε
a
5T

aN, (6.58)

and express εa and εa5 in term of εaL and εaR.
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What you showed is that we can write the symmetry in a different basis. Instead of SU(2)L ×
SU(2)R we can write SU(2)V × SU(2)A. The SU(2)V group is also called the “diagonal SU(2)”

or “isospin symmetry”, while SU(2)A is usually called the “axial SU(2)”.

2. Show that a mass term mNN is invariant under SU(2)V but not under SU(2)A. We learn

that it is the axial symmetry that forbids fermion masses.

The Σ field has four DoF, so we can write it in terms of four real scalar fields, σ and πa (a = 1, 2, 3):

Σ = σ + iτaπ
a, a = 1, 2, 3, (6.59)

where τa are the Pauli matrices. We aim to have a model that describes Nature, so we need to

provide masses to the proton and the neutron. This is done via spontaneous breaking of the chiral

symmetry by the Σ field acquiring a VEV.

3. The scalar potential, V (Σ), can be written as

V (Σ) =
λ

4
(Σ†Σ)2 − m2

2
(Σ†Σ). (6.60)

What are the conditions for V (Σ) to be bounded from below and for Σ to acquire a VEV?

4. Show that, up to a constant term, the potential in Eq. (6.60) is equivalent to

V (Σ) =
1

4
λ
[
σ2 + ~π2 − F 2

π

]2
, (6.61)

with λ and Fπ real and positive. Fπ is the so called “pion decay constant” and it is the only

mass scale in the theory.

5. What are the minima of V (Σ)? Find a minimum where only σ acquires a VEV, but the πa’s

do not.

6. Rewrite L in terms of fields that do not carry a VEV, that is, NL, NR, πa, and s ≡ σ − Fπ.

What are the masses of these fields? How many DoF are massless?

7. How many generators are broken? Check your result against the Goldstone theorem, that is,

check that the number of massless scalars is the same as the number of broken generators.

8. We denote the NNπ intecation coupling by gπNN . Show that the following relation between

masses and couplings holds:

mN = gπNNFπ. (6.62)

This relation is known as the Goldberger-Treiman relation. It is satisfied in Nature to a good

accuracy. Such a relation between masses and couplings is a signal of SSB, as discussed in the

main text.

93



9. In Nature the pions have small masses (compared to the nucleon), which reflect a small

explicit breaking of a symmetry. What is this broken symmetry: SU(2)V or SU(2)A?

10. In Nature there is a very small mass splitting between the proton and the neutron, while the

model predicts that they are degenerate. Thus the model provides a very good approximation

to Nature. What symmetry has to be broken to generate the splitting, SU(2)V or SU(2)A?

We conclude that the Sigma model has some nice predictions: the degeneracy of the proton

and neutron and the masslessness of the pions. These predictions are approximately fulfilled in

Nature. The model also predicts the existence of the s particle, which can be identified as the

f0(500) resonance. We discuss low energy QCD in more detail in Chapter 10.
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Chapter 7

The Leptonic Standard Model

The Leptonic Standard Model (LSM) incorporates the three aspects of imposed symmetries that

are discussed in previous chapters: Abelian symmetries, non-Abelian symmetries, and spontaneous

symmetry breaking. Moreover, the model is relevant to Nature. It accounts for the weak, electro-

magnetic and Yukawa interactions of the leptons. The LSM is part of the SM, which adds quarks

and strong interactions to the LSM. We discuss it in Chapter 8.

7.1 Defining the LSM

In Section 6.7 we presented the ingredients that are required to define a model. For the LSM,

these ingredients are defined as follows:

(i) The symmetry is a local

SU(2)L × U(1)Y . (7.1)

(ii) There are three fermion generations, each consisting of two different representations:

LiL(2)−1/2, Ei
R(1)−1, i = 1, 2, 3. (7.2)

(iii) There is a single scalar multiplet:

φ(2)+1/2. (7.3)

What we define as the LSM is the theory where SSB occurs. Given the scalar representation of

Eq. (7.3), the pattern of spontaneous symmetry breaking is

SU(2)L × U(1)Y → U(1)EM. (7.4)

We use the notation (N)Y such that N is the representation under SU(2)L and Y is the charge

under U(1)Y , which we call hypercharge. What we mean by Eq. (7.2) is that there are nine Weyl

fermion degrees of freedom that are grouped into three copies (“generations”) of the same gauge

representations. The three fermionic degrees of freedom in each generation form an SU(2)-doublet

(of hypercharge −1/2) and an SU(2)-singlet (of hypercharge −1).
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7.2 The Lagrangian

The most general renormalizable Lagrangian with scalar, fermion and gauge fields can be decom-

posed into [Eq. (2.32)]

L = Lkin + Lψ + Lφ + LYuk. (7.5)

It is now our task to find the specific form of the Lagrangian made of the LiL and Ei
R fermion fields

of Eq. (7.2), and the φ scalar field of Eq. (7.3), subject to the gauge symmetry of Eq. (7.1) and

leading to the SSB of Eq. (7.4).

7.2.1 Lkin and the gauge symmetry

The gauge group is given in Eq. (7.1). It has four generators: three Ta’s that form the SU(2)

algebra

[Ta, Tb] = iεabcTc, (7.6)

where a, b, c = 1, 2, 3, and a single Y that corresponds to the U(1) group. The SU(2) generators

commute with the U(1) generator as they belong to different gauge groups:

[Ta, Y ] = 0. (7.7)

The local symmetry requires four gauge boson DoF, three in the adjoint representation of

SU(2) and one related to the U(1) symmetry:

W µ
a (3)0, Bµ(1)0. (7.8)

The corresponding field strengths are given by [see Eqs. (2.28) and (4.21)]

W µν
a = ∂µW ν

a − ∂νW µ
a − gεabcW

µ
b W

ν
c , Bµν = ∂µBν − ∂νBµ. (7.9)

The covariant derivative is

Dµ = ∂µ + igW µ
a Ta + ig′BµY. (7.10)

Thus there are two independent coupling constants in Lkin: there is a single g for all the SU(2)

couplings and a different one, g′, for the U(1) coupling. (We choose both to be positive.) The

SU(2) couplings must all be the same because they mix with one another under SU(2) rotations.

The U(1) coupling can be different from that of the SU(2) because the generator Y never appears

as a commutator of SU(2) generators.

We define Lkin to include the kinetic terms of all the fields:

Lkin = −1

4
W µν
a Waµν −

1

4
BµνBµν + iLiLD/L

i
L + iEi

RD/E
i
R + (Dµφ)†(Dµφ). (7.11)
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For the SU(2)L doublets Ta = σa/2 (σa are the Pauli matrices), while for the SU(2)L singlets,

Ta = 0. Explicitly,

Dµφ =
(
∂µ +

i

2
gW µ

a σa +
i

2
g′Bµ

)
φ,

DµLiL =
(
∂µ +

i

2
gW µ

a σa −
i

2
g′Bµ

)
LiL,

DµEi
R = (∂µ − ig′Bµ)Ei

R. (7.12)

7.2.2 Lψ
There are no mass terms for the fermions in the LSM. We cannot write Dirac mass terms for the

fermions because they are assigned to chiral representations of the gauge symmetry. We cannot

write Majorana mass terms for the fermions because they all have Y 6= 0. Hence,

Lψ = 0. (7.13)

We learn that the LSM is a chiral theory, that is a theory without bare mass terms for the fermions.

7.2.3 LYuk

The Yukawa part of the Lagrangian is given by

−LYuk = Y e
ijL

i
LE

j
R φ+ h.c., (7.14)

where i, j = 1, 2, 3. The Yukawa matrix Y e is a general complex 3 × 3 matrix of dimensionless

couplings.

7.2.4 Lφ and spontaneous symmetry breaking

The Higgs potential, which leads to the spontaneous symmetry breaking, is given by

−Lφ = µ2
(
φ†φ

)
+ λ

(
φ†φ

)2
. (7.15)

The discussion follows the same lines as the U(1) and SO(3) models presented in Chapter 6. The

quartic coupling λ is dimensionless and real, and we consider the case that it is positive so the

potential is bounded from below. The quadratic coupling µ2 has mass-dimension 2 and is real. If

the gauge symmetry is to be spontaneously broken, Eq. (7.4), we must take µ2 < 0. Defining

v2 = −µ
2

λ
, (7.16)

we can rewrite Eq. (7.15) as follows (up to a constant term):

−Lφ = λ

(
φ†φ− v2

2

)2

. (7.17)
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The scalar potential in Eq. (7.17) implies that the scalar field acquires a VEV, | 〈φ〉 | = v/
√

2. We

choose the VEV to lie in the real direction of the T3 = −1/2 component:

〈φ〉 =

(
0

v/
√

2

)
. (7.18)

This VEV corresponds to the following breaking:

SU(2)× U(1)→ U(1). (7.19)

This statement corresponds to the fact that there is one (and only one) linear combination of

generators that annihilates the vacuum state. With our specific choice, Eq. (7.18), it is T3 + Y

(you are asked to prove it in Question 7.2). The unbroken subgroup is identified with U(1)EM, and

hence its generator, Q, is identified as

Q = T3 + Y. (7.20)

(We could equally well choose the VEV to lie in the direction of the T3 = +1/2 component. In

this case we would identify Q = T3 − Y , and the physics would remain the same.)

Let us denote the four real components of the scalar doublet as three phases, θa(x) (a = 1, 2, 3),

and one magnitude, h(x). We choose the three phases to be the three “would be” Goldstone bosons,

in a way that is similar to the case we discuss in Section 6.6. In our case, the broken generators

are T1, T2, and T3 − Y , and thus we write

φ(x) =
1√
2

exp

[
i (σaθa(x)− Iθ3(x))

2v

](
0

v + h(x)

)
. (7.21)

The spontaneously broken SU(2)L×U(1)Y symmetry allows one to rotate away the explicit depen-

dence on the three θa(x). They represent the three would-be Goldstone bosons that are eaten by

the three gauge bosons that acquire masses as a result of the SSB. See the discussion in Section 6.6.

In this gauge, φ(x) has one DoF:

φ(x) =
1√
2

(
0

v + h(x)

)
. (7.22)

7.2.5 Summary

The renormalizable part of the LSM Lagrangian is given by

LLSM = − 1

4
W µν
a Waµν −

1

4
BµνBµν + (Dµφ)†(Dµφ) + iLiLD/L

i
L + iEi

RD/E
i
R

−
(
Y e
ijL

i
LE

j
R φ+ h.c.

)
− λ

(
φ†φ− v2/2

)2
, (7.23)

where i, j = 1, 2, 3.
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7.3 The Spectrum

7.3.1 Scalars: back to Lφ
The scalar sector contains one real scalar field that we denote by h. It is a color-singlet and

electromagnetically neutral. This is the Higgs boson of the LSM. Its mass can be obtained by

plugging Eq. (7.22) into Eq. (7.17), and is given by

mh =
√

2λv. (7.24)

Experiments give

mh = 125.10± 0.14 GeV. (7.25)

7.3.2 Vector bosons: back to Lkin(φ)

Since the symmetry that is related to three out of the four generators is spontaneously broken,

three of the four vector bosons acquire masses, while one remains massless. Taking into account

the SSB, the term that leads to gauge boson masses can be read from the kinetic term of φ [see

Eq. (7.11)]:

LMV
= (Dµ 〈φ〉)†(Dµ 〈φ〉). (7.26)

Using Eq. (7.12) for Dµφ, we obtain:

Dµ 〈φ〉 =
i√
8

(gW µ
a σa + g′Bµ)

(
0

v

)
=

i√
8

(
gW µ

3 + g′Bµ g(W µ
1 − iW

µ
2 )

g(W µ
1 + iW µ

2 ) −gW µ
3 + g′Bµ

)(
0

v

)
. (7.27)

The mass terms for the vector bosons are thus given by

LMV
=

1

8
( 0 v )

(
gW3µ + g′Bµ g(W1 − iW2)µ

g(W1 + iW2)µ −gW3µ + g′Bµ

)(
gW µ

3 + g′Bµ g(W1 − iW2)µ

g(W1 + iW2)µ −gW µ
3 + g′Bµ

)(
0

v

)
.

(7.28)

We define an angle θW via

tan θW ≡
g′

g
. (7.29)

We define four gauge boson states:

W±
µ =

1√
2

(W1∓iW2)µ, Z0
µ = cos θWW3µ−sin θWBµ, A0

µ = sin θWW3µ+cos θWBµ, (7.30)

such that W±
µ form a complex field while Aµ and Zµ are real fields. In terms of the vector boson

fields of Eq. (7.30), the mass term, Eq. (7.28), reads

LMV
=

1

4
g2v2W+µW−

µ +
1

8
(g2 + g′2)v2ZµZµ. (7.31)

We learn that the four states of Eq. (7.30) are the mass eigenstates, with masses-squared

m2
W =

1

4
g2v2, m2

Z =
1

4
(g2 + g′2)v2, m2

A = 0. (7.32)
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(Recall that for a complex bosonic field φ with mass m, the mass term is m2|φ|2 while for a real

field it is m2φ2/2.) Furthermore, these four states have well-defined charges under the unbroken

U(1)EM symmetry:

q(W+
µ ) = +1, q(W−

µ ) = −1, q(Zµ) = 0, q(Aµ) = 0. (7.33)

Thus, the super-indices in Eq. (7.30) stand for the respective electromagnetic charges. In most

cases, unless there is ambiguity, we do not write these indices.

Four points are worth emphasizing:

1. As anticipated, three vector bosons acquire masses.

2. m2
A = 0 provides a consistency check on our calculation.

3. When a symmetry is partially broken, G→ H, mass eigenstates can be linear combinations

of states that come from different representations of G as long as they transform in the same

way under the unbroken subgroup H. The mass eigenstates Zµ and Aµ provide an explicit

example.

4. The angle θW represents the rotation angle of the two neutral vector bosons from the inter-

action basis, where fields have well-defined transformation properties under the full gauge

symmetry, (W3, B), into the mass basis for the vector bosons, (Z,A).

In Chapter 6 it is emphasized that SSB leads to relation between observables that would have

been independent in the absence of a symmetry. One such important relation involves the vector-

boson masses and their couplings:
m2
W

m2
Z

=
g2

g2 + g′2
. (7.34)

This relation is testable. The left hand side can be derived from the measured spectrum, and the

right hand side from interaction rates. It is conventional to express this relation in terms of θW ,

defined in Eq. (7.29):

ρ ≡ m2
W

m2
Z cos2 θW

= 1. (7.35)

The ρ = 1 relation is a consequence of the SSB by SU(2)-doublets. (See Question 7.6 for other

possibilities.) It thus tests this specific ingredient of the LSM.

The experimental values of the weak gauge boson masses are given by

mW = 80.379± 0.012 GeV; mZ = 91.1876± 0.0021 GeV. (7.36)

We can then use the ρ = 1 relation to determine sin2 θW :

mW

mZ

= 0.8815± 0.0001 =⇒ sin2 θW = 1− (mW/mZ)2 = 0.2230± 0.0003. (7.37)

Below we describe the determination of sin2 θW by various interaction rates. We will see that ρ = 1

is indeed realized in Nature (within experimental errors, and up to calculable quantum corrections

that we discuss in detail in Chapter 12).
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7.3.3 Fermions: back to LYuk

Since the fermions in the LSM are chiral and charged under the SU(2)L × U(1)Y symmetry, the

model has Lψ = 0, and fermion masses can only arise from the Yukawa interaction as a result of

the SSB. The terms that lead to fermion masses can be read from LYuk [see Eq. (7.14)]:

−LM`
= Y e

ijL
i
LE

j
R 〈φ〉+ h.c.. (7.38)

We write explicitly the two components of the SU(2)L doublets LiL:

LiL =

(
N i
L

Ei
L

)
. (7.39)

The various states have well-defined charges under the unbroken U(1)EM symmetry:

• Ei
L have T3 = −1/2, and Y = −1/2, while Ei

R have T3 = 0 and Y = −1. Hence, their

electromagnetic charges are

q(Ei
L) = q(Ei

R) = −1. (7.40)

• N i
L have T3 = +1/2 and Y = −1/2. Hence, they are neutral under U(1)EM:

q(N i
L) = 0. (7.41)

If SU(2)L × U(1)Y were an exact symmetry of Nature, there would be no way of distinguishing

particles that are members in the same SU(2)L multiplet. The SSB makes N i
L distinguishable

from Ei
L.

Using the above definitions in Eq. (7.38), and replacing φ by its VEV, Eq. (7.18), we obtain

the following mass terms:

−LM`
= Y e

ij (N i
L Ei

L )

(
0

v/
√

2

)
Ej
R + h.c. =

Y e
ijv√
2
Ei
LE

j
R + h.c. . (7.42)

Without loss of generality (see discussion in Section 7.5.2), we can choose a basis where Y e is

diagonal and real:

Ŷ e =


ye 0 0

0 yµ 0

0 0 yτ

 , (7.43)

with the convention that ye < yµ < yτ . In the basis defined by Eq. (7.43), we denote the left-handed

fermion fields as follows:

LLe =

(
νeL

eL

)
, LLµ =

(
νµL

µL

)
, LLτ =

(
ντL

τL

)
, (7.44)

and the right-handed fermions fields as follows:

eR, µR, τR. (7.45)
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The charged lepton mass terms are given in this basis by

−Lm` =
yev√

2
eL eR +

yµv√
2
µL µR +

yτv√
2
τL τR + h.c.. (7.46)

We conclude that the charged leptons, e, µ, τ are Dirac fermions of masses

me =
yev√

2
, mµ =

yµv√
2
, mτ =

yτv√
2
. (7.47)

We often refer to them as the three lepton flavors. We also see that the mass basis for the fermions

is the one where Y e is diagonal and real, Eq (7.43). The charged lepton masses have been measured:

me = 0.5109989461(31) MeV, mµ = 105.6583745(24) MeV, mτ = 1776.86(12) MeV.

(7.48)

The crucial point is that while the leptons are in a chiral representation of the full gauge

group SU(2)L × U(1)Y , the charged leptons — e, µ, τ — are in a vectorial representation of the

subgroup that is not spontaneously broken, that is U(1)EM. This situation is the key to opening

the possibility of acquiring masses as a result of the SSB, as realized in Eq. (7.46).

Unlike the charged leptons, the neutrinos νe, νµ, ντ are massless Weyl fermions:

mνe = mνµ = mντ = 0. (7.49)

(We drop the explicit index L from the neutrino fields.) Their masslessness in the LSM can be

understood as follows. The LSM has no RH fields in the (2)−1/2 representation, so there are no

Dirac mass terms for the neutrinos. The LSM has neither (1)0 fermion fields nor (3)1 scalar fields,

so the neutrinos can acquire neither Dirac nor Majorana mass as a result of the SSB. A-priori,

since the neutrinos have no charge under U(1)EM, the possibility of acquiring Majorana masses is

not closed, but the neutrinos do not acquire Majorana masses from renormalizable terms. Thus,

lepton number is an accidental symmetry of the theory (see Section 7.5.1). Since the masslessness

of the neutrinos is protected by a symmetry, the neutrinos are exactly massless, not only at tree

level.

Experimentally, the neutrinos were found to have very small masses, much smaller than all the

other masses in the LSM spectrum. Thus, the LSM prediction of massless neutrinos is violated,

yet it constitutes a very good approximation to Nature. We discuss neutrino masses and possible

ways to generate them in Chapter 14.

7.3.4 Summary

We presented the details of the spectrum of the LSM. These are summarized in the Table 7.1. All

masses are proportional to the VEV of the scalar field, v. For the three massive gauge bosons,

and for the three charged leptons, this must be the case: In the absence of spontaneous symmetry

breaking, the former would be protected against acquiring a mass by the gauge symmetry and the
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Table 7.1: The LSM particles

particle spin charge mass (theoretical)

W± 1 ±1 gv/2

Z0 1 0
√
g2 + g′2 v/2

A0 1 0 0

h 0 0
√

2λ v

e 1/2 −1 yev/
√

2

µ 1/2 −1 yµv/
√

2

τ 1/2 −1 yτv/
√

2

νe 1/2 0 0

νµ 1/2 0 0

ντ 1/2 0 0

latter by their chiral nature. For the Higgs boson, the situation is different, as a mass-squared

term does not violate any symmetry. Here it is just a manifestation of the fact that the LSM has

a single dimensionful parameter, which can be taken to be v, and therefore all masses must be

proportional to this parameter.

7.4 The interactions

In this Section, we obtain the interactions among the mass eigenstates of the LSM. The scalar

potential of Eq. (7.15) leads to Higgs boson self-interactions. The Yukawa terms of Eq. (7.14)

lead to Higgs-mediated Yukawa interactions among the charged leptons. The kinetic terms of

Eq. (7.11) lead to three types of interactions that are mediated by vector bosons: The photon-

mediated electromagnetic interactions (QED), the Z-mediated weak interactions (neutral current

weak interactions), and the W±-mediated weak interactions (charged current weak interactions).

To obtain these three types of interactions, we need to rewrite the covariant derivative given in

Eq. (7.10) in terms of the vector boson mass eigenstates, A, Z and W± defined in Eq. (7.30):

Dµ = ∂µ + ig(W+
µ T

+ +W−
µ T

−) (7.50)

+ i(g sin θW T3 + g′ cos θW Y )Aµ + i(g cos θW T3 − g′ sin θW Y )Zµ,

where

T± = (T1 ± iT2)/
√

2. (7.51)
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7.4.1 The Higgs boson

The interactions involving the Higgs boson, h, are given by

Lhint = Lhh + LhV + Lhf

−Lhh =
m2
h

2v
h3 +

m2
h

8v2
h4,

LhV =
(
m2
WW

−
µ W

µ+ +
1

2
m2
ZZµZ

µ
)(

2h

v
+
h2

v2

)
,

−Lhf =
h

v
(me eL eR +mµ µL µR +mτ τL τR + h.c.) . (7.52)

We write Lhint in a way that demonstrates that all of the Higgs couplings can be expressed in terms

of the masses of the particles to which it couples.

The Higgs boson self-couplings are proportional to its mass-squared, m2
h = 2λv2. The dimen-

sionless h4 coupling,
m2
h

8v2
=
λ

4
, (7.53)

is unchanged from the quartic coupling of φ in Eq. (7.15). The h3 coupling,

m2
h

2v
= λv, (7.54)

arises as a consequence of the SSB.

The Higgs couplings to the weak interaction vector bosons are proportional to their masses-

squared. The dimensionless hhV V couplings,

m2
W

v2
=
g2

4
,

m2
Z

2v2
=
g2 + g′2

8
, (7.55)

are unchanged from those of φ in Eq. (7.11). The hV V couplings,

2m2
W

v
=
g2v

2
,

m2
Z

v
=

(g2 + g′2)v

4
, (7.56)

arise as a consequence of the SSB.

There is neither hAA nor hhAA coupling. One can understand the absence of these couplings

in two ways. First, the Higgs boson is electromagnetically neutral, so it should not couple to the

electromagnetic force carrier. Second, the photon is massless, so it should not couple to the Higgs

boson.

The Yukawa couplings of the Higgs bosons to the charged leptons are proportional to their

masses. The h`+`− couplings,
m`

v
=

y`√
2
, (7.57)

are unchanged from Eq. (7.14).

There is no coupling of the Higgs to the neutrinos. This is related to the masslessness of the

neutrinos.
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7.4.2 QED: Electromagnetic interactions

Here we study the photon interactions to fermions and show that we recover QED. Using Eq. (7.50)

and the definition of θW in Eq. (7.29), we find that the photon coupling is proportional to

g sin θW T3 + g′ cos θW Y =
gg′√
g2 + g′2

(T3 + Y ) =
gg′√
g2 + g′2

Q. (7.58)

This is what we should have obtained. The coupling is proportional to T3 + Y , which we defined

as Q, the generator of U(1)EM. We conventionally define

e =
gg′√
g2 + g′2

, (7.59)

such that

g =
e

sin θW
, g′ =

e

cos θW
, (7.60)

Thus, the electromagnetic interactions are described by

LAff̄ = e `iA/`i. (7.61)

The `1,2,3 = e, µ, τ fields are the Dirac fermions with Q = −1 that are formed from the T3 = −1/2

component of a left-handed lepton doublet and from a right-handed lepton singlet, for example

τ = (τL, τR)T . Note that the interaction in Eq. (7.61) is the same as the one from the QED

Lagrangian, Eq. (3.20). QED is now understood as the part of the LSM Lagrangian that involves

the photon field, A, and the massive charged Dirac fermions `i.

The QED interactions are discussed in Chapter 3. Here we only emphasize again some impor-

tant features that arise from Eq. (7.61):

1. The photon couplings are vector-like: Since the left-handed and right-handed fields carry the

same charge, the photon couples to them in the same way.

2. The electromagnetic interactions are P , C, and T conserving.

3. Diagonality. The photon couples to e+e−, µ+µ− and τ+τ−, but not to e±µ∓, e±τ∓ or µ±τ∓

pairs. Thus, electromagnetic interactions do not change leptonic flavor. This is a result of

the unbroken local U(1)EM symmetry.

4. Universality: the couplings of the photon to the different generations are universal. This is

a result of the U(1)EM gauge invariance.

7.4.3 Neutral current weak interactions

Here we study the Z-boson interactions with fermions. Using Eq. (7.50) and the definition of θW

in Eq. (7.29), we find that the Z-boson coupling is proportional to

g cos θW T3 − g′ sin θW Y =
g

cos θW
(T3 − sin2 θWQ). (7.62)
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This leads to the following interactions between the Z-boson and the fermions:

LZ =
g

cos θW

∑
`=e,µ,τ

[
−
(

1

2
− sin2 θW

)
`LZ/ `L + sin2 θW `RZ/ `R +

1

2
ν`LZ/ ν`L

]
. (7.63)

Interactions mediated by Z-exchange are called neutral current weak interactions (NCWI). Eq. (7.63)

reveals some important features of the NCWI:

1. Unlike the photon, the Z-boson couples to neutrinos.

2. Parity violation: The Z-boson couplings are chiral. Since left-handed and right-handed

fields carry different T3, the Z-boson couples to them with different strength. Thus, the

Z-interactions violate parity.

3. Diagonality: The Z-boson couples to, for example, e+e−, µ+µ−, νeLνeL and νµLνµL, but not

to, for example, e±µ∓ and νeLνµL pairs. The diagonality holds to all orders in perturbation

theory, due to an accidental [U(1)]3 symmetry of the LSM, see Section 7.5.1.

4. Universality: the couplings of the Z-boson to the different generations within each of the

three sectors (ν`L, `L, `R) are universal. This is a result of a special feature of the LSM: all

fermions of given chirality and given charge come from the same SU(2)×U(1) representation

(more details are given in Section 9.4).

The above points have been experimentally tested:

1. The branching ratio of Z decays into invisible final states which, in the LSM, is interpreted

as the decay into final neutrinos, is measured to be

BR(Z → νν̄) = (20.00± 0.06)%. (7.64)

From Eq. (7.63), we obtain

BR(Z → `+`−)

BR(Z → ν`ν̄`)
=

(1/2− sin2 θW )2 + sin4 θW
1/4

= 1− 4 sin2 θW + 8 sin4 θW . (7.65)

2. As an example of parity violation we consider the τ polarization Pτ (also denoted as Aτ ) in

the Z → τ+τ− decay. It is given by

Pτ ≡
σL − σR
σL + σR

, (7.66)

where σR(σL) is the cross section of producing a RH (LH) τ− in Z decay. Experimentally,

Pτ = 0.143± 0.004. (7.67)

In a parity invariant theory, Pτ = 0, and thus the measurement of Pτ 6= 0 demonstrates

parity violation. From Eq. (7.63), we obtain

Pτ =
(1/2− sin2 θW )2 − (sin2 θW )2

(1/2− sin2 θW )2 + (sin2 θW )2
. (7.68)
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3. Diagonality has been tested by the following experimental searches:

BR(Z → e+µ−) < 7.5× 10−7, (7.69)

BR(Z → e+τ−) < 9.8× 10−6,

BR(Z → µ+τ−) < 1.2× 10−5.

4. Universality has been tested by Z-boson decays into charged lepton pairs:

BR(Z → e+e−) = (3.363± 0.004)% , (7.70)

BR(Z → µ+µ−) = (3.366± 0.007)% ,

BR(Z → τ+τ−) = (3.370± 0.008)% .

These results confirm universality:

Γ(µ+µ−)/Γ(e+e−) = 1.0009± 0.0028, (7.71)

Γ(τ+τ−)/Γ(e+e−) = 1.0020± 0.0032.

Z decays provide additional ways to determine sin2 θW , as demonstrated by the following two

examples. Using Eq. (7.65) and the central values from Eqs. (7.64) and (7.70), we obtain:

sin2 θW = 0.226. (7.72)

Using Eq. (7.68) and the central value from Eq. (7.67), we obtain:

sin2 θW = 0.232. (7.73)

Both determinations are in agreement with Eqs. (7.37). An additional determination, from W -

mediated decay, is given in Eq. (7.87). We discuss the various determinations of sin2 θW in more

detail in Chapter 12.

We end this subsection with some definitions. There are several ways to write the coupling of

the Z-boson to the fermions. Eq. (7.63) gives the couplings of the Z-boson to LH and RH charged

leptons:

LZ`¯̀ =
g

cos θW

[
geL`iLZ/ `iL + geR`iRZ/ `iR

]
.

geL = −1

2
+ sin2 θW , geR = sin2 θW . (7.74)

One could write these Z-boson couplings in terms of the Dirac fermions:

LZ`¯̀ =
g

2 cos θW

[
¯̀(geV + geAγ5)Z/ `

]
,

geV = geR + geL = −1

2
+ 2 sin2 θW , geA = geR − geL =

1

2
. (7.75)
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In Section 8 we consider additional fermions of various Q and T3 assignments. Generalization of

the definitions of gL,R and gV,A to such fermions in straightforward

gR =
gV + gA

2
= TR3 −Q sin2 θW , gL =

gV − gA
2

= TL3 −Q sin2 θW , (7.76)

where the flavor index is implicit, and

gV = gR + gL = TR3 + TL3 − 2Q sin2 θW , gA = gR − gL = TR3 − TL3 . (7.77)

7.4.4 Charged current weak interactions

Here we study the W±-bosons interactions with fermions. Using Eq. (7.50), and the explicit form

of the T± matrices from Eq. (7.51), we find that the W -boson couplings to fermion pairs are given

by

LW = − g√
2

∑
`=e,µ,τ

[
ν`L W/

+`−L + h.c.
]
. (7.78)

The interactions mediated by the W± vector-bosons are called charged current weak interactions

(CCWI). They are unique among the interactions of the LSM, as the fermion pairs to which the

W -boson couples consist of two different fermions, a neutrino and a charged lepton. This must be

the case as the W -bosons are charged, so they must change the identity of the particle with which

they interact.

Eq. (7.78) reveals important features of the CCWI:

1. Parity violation: The W -boson couplings are chiral. More specifically, only left-handed fields

take part in the CCWI. Thus, the W -interactions violate parity.

2. Universality: the couplings of the W -boson to τ ν̄τ , to µν̄µ and to eν̄e are equal. This is a

result of the local nature of the imposed SU(2): a global symmetry would have allowed an

independent coupling to each lepton pair.

These predictions have been experimentally tested:

1. Consider polarized µ− → e−νµνe decay. We define θ to be the angle between the muon

polarization and the electron. Parity transformation does not change the spin direction but

reverses the momentum direction of the electron, leading to θ → π − θ. We learn that a

parity invariant spectrum must be even in cos θ. Experiments are consistent with the LSM

prediction for the differential decay rate in the muon rest frame,

d2Γ

dx d(cos θ)
∝ x2 [3− 2x+ Pµ(2x− 1) cos θ] , (7.79)

where x ≡ Ee/E
max
e , Pµ is the polarization of the muon. The cos θ dependence proves that

parity is violated.

Parity violation was first established in 1956 in an experiment conducted by Chien-Shiung

Wu, using β decays of polarized cobalt-60 (60Co).
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2. Universality has been tested by W -boson decays into lepton pairs:

BR(W+ → e+νe) = (10.71± 0.16)× 10−2,

BR(W+ → µ+νµ) = (10.63± 0.15)× 10−2,

BR(W+ → τ+ντ ) = (11.38± 0.21)× 10−2. (7.80)

These results confirm universality:

Γ(µ+ν)/Γ(e+ν) = 0.993± 0.015,

Γ(τ+ν)/Γ(e+ν) = 1.062± 0.024. (7.81)

7.4.5 The Fermi constant

When discussing low energy effects of the weak interaction, it is useful to define the Fermi constant:

GF ≡
πα√

2 sin2 θWm2
W

=
g2

4
√

2m2
W

, (7.82)

where we use g2 = 4πα/ sin2 θW based on Eqs. (3.10) and (7.60).

To demonstrate the usefulness of this definition, consider the µ− → e−νµν̄e decay. At low

energy (q2 � m2
W ), the W -mediated interaction is well approximated via a four fermion coupling:

Aµ−→e−νµν̄e ∝
g2

m2
W − q2

≈ g2

m2
W

=
4πα

sin2 θWm2
W

≡ 4
√

2GF . (7.83)

The measured muon lifetime,

τµ = (2.196981± 0.000002)× 10−6 s, (7.84)

determines GF via

Γµ =
1

τµ
=
G2
Fm

5
µ

192π3
f(m2

e/m
2
µ)(1 + δRC), f(x) = 1− 8x+ 8x3 − x4 − 12x2 log x, (7.85)

where f(x) is the phase space function for a three body decay with two massless final particles

(it is normalized to 1 in the case when all final particles are massless) and δRC encodes radiative

corrections, and is known to O(α2). One gets:

GF = 1.1663787(6)× 10−5 GeV−2. (7.86)

We note the following points:

1. The Fermi constant GF can be used as yet another independent way to determine sin2 θW .

Using Eq. (7.83), and the central values of α in Eq. (3.11), mW in Eq. (7.36), and GF in

Eq. (7.86), we obtain

sin2 θW = 0.215, (7.87)

in good agreement with Eqs. (7.37) and (7.72). Differences between the three values are

accounted for by higher order radiative corrections. They are discussed in Chapter 12.
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2. The Fermi constant GF determines also the VEV of the Higgs field. Using the expression

for GF in Eq. (7.82) and the expression for mW given in Eq. (7.32), we obtain

v = (
√

2GF )−1/2 ≈ 246 GeV. (7.88)

3. Historically, GF was used as the effective four fermion coupling well before the LSM was

conceived. The LSM reveals that GF is a not a fundamental constant, but rather a quantity

that is derived from the parameters of the LSM.

7.4.6 Gauge boson self-interactions

The gauge boson self-interactions that are presently most relevant to experiments are the W+W−V

(V = Z,A) couplings which, in the LSM, have the following form:

LWWV = ie cot θW
[
(W+

µνW
−µ −W−

µνW
+µ)Zν +W+

µ W
−
ν Z

µν
]

+ie
[
(W+

µνW
−µ −W−

µνW
+µ)Aν +W+

µ W
−
ν F

µν
]
. (7.89)

Here W±
µν = ∂µW

±
ν − ∂νW±

µ , Zµν = ∂µZν − ∂νZµ, and Fµν = ∂µAν − ∂νAµ. (Do not confuse the

definitions we use here for the mass eigenstates to the ones we use in Eq. (7.9) for the interaction

eigenstates.)

The WWV interactions depend on only two parameters, e and θW . Moreover, these parameters

can be measured from other sectors of the theory. Thus, it can be used to test the theory. To

date, the LSM has passed all such tests.

Last we present the quartic vector-boson couplings within the LSM:

L4V = g2 cos2 θW
(
W+
µ W

−
ν Z

µZν −W+
µ W

−µZνZ
ν
)

+g2
(
W+
µ W

−
ν A

µAν −W+
µ W

−µAνA
ν
)

+
g2

2

(
W+
µ W

−
ν

) (
W+µW−ν −W+νW−µ

)
+e2 cot θW

[(
W+
µ W

−
ν

)
(ZµAν − ZνAµ)− 2W+

µ W
−µZνA

ν
]
. (7.90)

The experimental precision is not yet good enough to significantly probe these couplings.

7.4.7 Summary

Leptons have four types of interactions. These interactions are summarized in Table 7.2.

The name weak interactions is somewhat misleading. In fact, the weak coupling g is larger

than the electromagnetic coupling e. The more important feature is that the weak interactions are

mediated by massive vector bosons, and consequently they are short range, while the electromag-

netic interactions are mediated by the massless photon and hence they are long range. It is the

short range of the weak interactions which suppresses the related cross sections.
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Table 7.2: The LSM lepton interactions.

Interaction Force carrier Coupling Fermions

Electromagnetic γ eQ e

NC weak Z0 (g/ cos θW )(T3 − sin θ2
WQ) e, ν

CC weak W± (g/
√

2) ν̄e

Yukawa h y` e

7.5 Global symmetries and parameters

In Section 7.5.1 we identify the accidental global symmetries of the kinetic terms and of the full

Lagrangian, and give examples of the resulting predictions. Preparing for the identification of the

physical parameters, we describe the interaction and mass bases and the relation between them

in Section 7.5.2, and explain the symmetry-related method for counting the number of physical

parameters in Section 7.5.3. The LSM parameters are counted and identified in Section 7.5.4.

7.5.1 Accidental symmetries

If we set the Yukawa couplings to zero, LYuk = 0, the fermion sector of the LSM gains a large

accidental global symmetry:

Gglobal
LSM (Y e = 0) = U(3)L × U(3)E = SU(3)L × SU(3)E × U(1)L × U(1)E. (7.91)

Under this symmetry, the LiL fields transform as (3, 1)qL,0, the Ei
R fields transform as (1, 3)0,qE ,

and all other fields are singlets, (1, 1)0,0. Concerning the U(1) factors, the choice of qL and qE is

arbitrary (except that both must not equal zero). It is customary to normalize these charges to

+1.

The Yukawa couplings break this symmetry into the following subgroup:

Gglobal
LSM = U(1)e × U(1)µ × U(1)τ . (7.92)

The U(1) factors are called electron number, muon number, and tau number, respectively. The

charges of νe and e are (1, 0, 0), of νµ and µ are (0, 1, 0), and of ντ and τ are (0, 0, 1). Thus, electron

number, muon number, and tau number are conserved charges in the LSM. This situation allows,

for example, the muon decay mode µ− → e−νeνµ, but forbids µ− → e−γ and µ− → e−e+e−. Also

scattering processes such as e+e− → µ+µ− are allowed, but e+µ− → µ+e− is forbidden.

It is useful to define total lepton number, which is the sum of the three lepton flavor numbers

and corresponds to a U(1)L symmetry. (This U(1)L symmetry is different from the U(1)L of

Eq. (7.91). From here on, U(1)L refers to total lepton number.) Clearly total lepton number is also
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an accidental symmetry of the LSM. Since all neutrinos are charged under U(1)L, the conservation

of total lepton number explains why Majorana masses for them are not allowed within the LSM.

These accidental symmetries are, however, all broken by nonrenormalizable terms, such as

1

Λ
LTLiLLjφφ. (7.93)

(As explained in Section 1.2.2, for the sake of simplicity, we write LTL instead of LcL.) If the scale

Λ is high enough, these breaking effects are very small. It means that the “forbidden” processes

mentioned above are expected to occur, but at very low rates. It also implies that we should expect

very small Majorana masses. We discuss these points in detail in Chapter 14.

7.5.2 The interaction basis and the mass basis

• The interaction basis is the one where all fields have well defined transformation properties

under the imposed symmetries of the Lagrangian. In particular, in this basis, the gauge

interactions are universal.

• The mass basis is the one where all fields have well defined mass. In this basis all fields have

well defined transformation properties under the symmetries that are not spontaneously

broken. The fields in this basis correspond to the particles that are eigenstates of free

propagation in spacetime.

For the LSM, the interaction eigenstates that have well defined transformation properties under

the SU(2)L × U(1)Y symmetry are:

Wa(3)0, B(1)0, LiL(2)−1/2, Ei
R(1)−1, φ(2)+1/2, (7.94)

with i = 1, 2, 3. The mass eigenstates that have well defined electromagnetic charge and mass are:

W±, Z0, A0, e−, µ−, τ−, νe, νµ, ντ , h
0. (7.95)

The number of degrees of freedom is the same in both bases. To verify this statement one has to

take into account the following features:

1. Wa and B have only transverse components, while W± and Z0 have also a longitudinal one.

2. LL and ER are Weyl fermions, while e, µ, τ are Dirac fermions.

3. φ is a complex scalar, while h is a real one.

In Section 7.3 we show how to transform from the interaction basis to the mass basis for the

LSM bosons. Here we discuss this basis transformation for the LSM fermions or, more generally,

for cases where there are several copies of fields with the same representation.
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If there are several fields with the same quantum numbers, fi, then the interaction basis is not

unique. The kinetic and gauge terms are invariant under a global unitary transformation among

these fields. On the other hand, the Yukawa terms and the fermion mass terms are, in general, not

invariant under a unitary transformation among fermion fields with the same quantum numbers,

fi → Ujifi. Thus, by performing such transformations, we are changing the interaction basis.

In the LSM, there are three copies of (2)−1/2 LH fermions, LL = (L1
L, L

2
L, L

3
L)T , and three copies

of (1)−1 RH fermions, ER = (E1
R, E

2
R, E

3
R)T . Let us rewrite LYuk of Eq. (7.14) in the following way:

LLY
eER φ = LL(V †eLVeL)Y e(V †eRVeR)ER φ = (LLV

†
eL)(VeLY

eV †eR)(VeRER)φ, (7.96)

where VeL and VeR are unitary matrices and in the first equality we simply inserted unit matrices.

We can choose VeL and VeR to be the ones that are used in the bi-unitary transformation that

would make Y e real and diagonal:

Y e → VeLY
eV †eR = Y e

diag = diag(ye, yµ, yτ ). (7.97)

While in a generic basis Y e is a 3 × 3 complex matrix and thus has, in general, nine complex

parameters, Eq. (7.96) demonstrates that, without loss of generality, one can find a basis where

the Yukawa matrix depends on only three real parameters. Often one chooses a basis where the

number of Lagrangian parameters is minimal, as is the case with the diagonal basis of Eq. (7.97).

One could work in any other basis. However, when calculating physical observables, only the

eigenvalues of Y †e Ye would play a role. Using the diagonal basis just provides a shortcut to this

result.

As explained in Section 7.3.3, the basis where the Yukawa matrix is diagonal constitutes the

mass basis. We thus identify (LLe, LLµ, LLτ )
T = VeLLL and (eR, µR, τR)T = VeRER as the charged

lepton mass eigenstate fields.

The case for the neutrinos is different since, at the renormalizable level, they are massless and,

in particular, degenerate. Thus, there is freedom in choosing the mass basis for the neutrinos. We

choose the basis where the W± couplings to the charged lepton mass eigenstates are diagonal. One

could choose a different mass basis, related to the one we chose by a unitary transformation of the

three neutrino fields, 
νe

νµ

ντ

 →

ν1

ν2

ν3

 = U †


νe

νµ

ντ

 . (7.98)

Let us see how the decay rate of the W -boson into an electron and a neutrino is calculated in this

basis. Since the experiment does not distinguish between ν1, ν2, ν3, one has to sum over all three

species:

Γ(W+ → e+ν) =
∑

i=1,2,3

Γ(W+ → e+νi) = Γ(W+ → e+νe)(|Ue1|2 + |Ue2|2 + |Ue3|2)

= Γ(W+ → e+νe). (7.99)

113



Thus, if the neutrinos are degenerate, the elements of the matrix U have no physical significance;

They cannot appear in any physical observable. Our choice of basis (νe, νµ, ντ ) provides a shortcut

to this result.

In Chapter 14 it is shown that non-renormalizable terms provide the neutrinos with non-

degenerate masses, and then the neutrino mass basis becomes unique.

7.5.3 Parameter counting

Before we discuss the LSM parameters in detail, we explain the basics of identifying the number

of physical parameters. The Lagrangian written in a general interaction basis might include a

number of parameters that is larger than the number of physical parameters. This means that

when we express physical observables in terms of the Lagrangian parameters, only a subset of

these parameters (or combinations of them) appears. It also means that there exists a specific

basis where the number of Lagrangian parameters is minimal and equals the number of physical

parameters. For the purpose of testing a model, it is important to count and identify its physical

parameters. In this subsection, we explain how to determine the number of physical parameters.

We start with a simple example: The hydrogen atom. It is invariant under spatial rotations,

which are described by the SO(3) group. Furthermore, there is an energy eigenvalue degeneracy

of the Hamiltonian: states with different angular momenta have the same energy. This degeneracy

is a consequence of the symmetry of the system.

Switching on a magnetic field changes the situation. Without loss of generality, we can define

the direction of the magnetic field as the positive z direction. Consider this choice more carefully.

A generic uniform magnetic field is described by three real numbers: the three components of

the magnetic field (Bx, By, Bz). The magnetic field breaks the SO(3) symmetry of the hydrogen

atom system down to an SO(2) symmetry of rotations in the plane perpendicular to the magnetic

field. The one generator of the SO(2) symmetry is the only valid symmetry generator now; the

remaining two SO(3) generators in the orthogonal planes are broken. These broken symmetry

generators allow us to rotate the system such that the magnetic field points in the z direction:

OxzOyz(Bx, By, Bz) = (0, 0, B′z), (7.100)

where Oxz and Oyz are rotations in the xz and yz planes, respectively. The two broken generators

were used to rotate away two unphysical parameters, leaving us with one physical parameter, the

magnitude of the magnetic field. We learn that, when turning on the magnetic field, all measurable

quantities in the system depend on only one new parameter, rather than the naive three.

These results apply more generally. In particular, they are useful in studying the flavor physics

of quantum field theories. Consider a gauge theory with matter content. The kinetic and gauge

terms (Lkin) have a certain global symmetry, Gf . In adding terms (Lψ + Lφ + LYuk) that respect

the imposed gauge symmetries, the global symmetry may be broken down into a smaller symmetry
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group. In breaking the global symmetry, there is an added freedom to use the broken Gf generators

to transform from one interactions basis to another and, in particular, rotate away unphysical

parameters, as when a magnetic field is added to the hydrogen atom system.

We are interested in obtaining the number of parameters affecting physical measurements,

Nphys. In a general basis, the added terms depend on Ngeneral parameters. The global symmetry

of L, Hf , has fewer generators than the global symmetry of Lkin, Gf . We call the difference in the

number of generators Nbroken. Then Nphys is given by

Nphysical = Ngeneral −Nbroken. (7.101)

Furthermore, the rule in Eq. (7.101) applies separately to real parameters and to phases. A

general n×n complex matrix can be parameterized by n2 real parameters and n2 phases. Imposing

restrictions like Hermiticity or unitarity reduces the number of parameters required to describe the

matrix. A Hermitian matrix can be described by n(n+1)/2 real parameters and n(n−1)/2 phases.

A unitary n× n matrix, that corresponds to U(N) symmetry, has n(n− 1)/2 real parameters and

n(n+ 1)/2 phases. Thus, a U(1) transformation (that is not a symmetry) can be used to remove

a single phase, while an SU(N) transformation (that is not a symmetry) can be used to remove

n(n− 1)/2 real parameters and n(n+ 1)/2− 1 phases.

7.5.4 The LSM parameters

We are now ready to discuss the parameters of the LSM. As a first step, we count the number

of physical parameters. The situation is rather simple with regard to the gauge (Lkin) and the

scalar (Lφ) sectors: Each of them is described by two real parameters. As concerns the Yukawa

interactions (LYuk), the rule given in Eq. (7.101) should be applied. The kinetic terms for the

fermions have a global [U(3)]2 symmetry, defined in Eq. (7.91). A U(3) algebra has 9 generators,

so the total number of generators of G is 18. The Yukawa matrix Y e, defined in Eq. (7.14), is a

3×3 complex matrix, which contains a total of 18 parameters. These parameters break the [U(3)]2

down to the [U(1)]3 accidental symmetry of Eq. (7.92). Using Eq. (7.101), the number of physical

parameters in the Yukawa sector is given by

Nphys = 18− (18− 3) = 3. (7.102)

A more detailed calculation implies that the three parameters are real.

We conclude that the LSM has seven parameters. This implies that, in principle, we need to

perform seven appropriate measurements and then we can make predictions for any other processes

involving the leptons and the Higgs boson that are mediated by the EM, weak or Yukawa interac-

tions. It is convenient to think of these experiments as measurements of the seven parameters.

There are various ways in which we can choose the seven independent parameters. For example,

we can choose the parameters that appear in the Lagrangian (7.23) in the basis with the diagonal
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Yukawa matrix (7.43):

g, g′, v, λ, ye, yµ, yτ . (7.103)

Another example would be

mW , mZ , mh, me, mµ, mτ , α. (7.104)

This example shows that by measuring the spectrum of the LSM and the fine structure constant,

all other interaction rates are predicted.

A good choice of parameters would be one where the experimental errors in their determination

are the smallest. As of now this set is the following:

α, GF , me, mµ, mτ , mZ , mh. (7.105)

By now, all seven parameters have been measured, with mh (or, equivalently, λ in the list above)

the latest addition.

Finally, let us comment that the fact that the seven LSM parameters can be chosen real, as

demonstrated explicitly in Eqs. (7.103) or (7.105), implies that CP is conserved by the LSM.

7.6 Low Energy Tests

Nowadays, experiments produce the W and Z bosons and measure their properties directly. It

is interesting to understand, however, how the LSM was tested at the time before experiments

achieved such high enough energies. It is not only the historical aspect that is interesting, it is also

an important demonstration of how we can use low energy data to understand shorter distances.

We consider neutrino–electron scattering processes. These processes are useful for our purpose

as they are mediated by the weak interaction only, that is, by W and/or Z exchange. The strong

and electromagnetic interactions do not contribute at tree level, as the neutrino carries neither

color nor electromagnetic charge. We distinguish four classes of processes:

• Processes that are forbidden due to the accidental symmetries, for example νµe
− → νee

−.

• Processes that are mediated by W exchange only, for example νµe
− → νeµ

−.

• Processes that are mediated by Z exchange only, for example νµe
− → νµe

−.

• Processes that are mediated by both W and Z exchange, for example νee
− → νee

−.

The relevant tree level diagrams are given in Fig. 7.1. We work in the electron rest frame and

define

s = (pν + pe)
2, y =

pe · (pν − p`)
pe · pν

, (7.106)

116



Z

e−

νµ

e−

νµ

W

e−

νµ

νe

µ−

Z

e−

νe

e−

νe

W

e−

νe

νe

e−

Figure 7.1: Tree level diagrams for neutrino–electron scattering.

such that p` is the momentum of the outgoing charged lepton and pν is the momentum of the

incoming neutrino or antineutrino. We consider only the case where

m2
µ � s� m2

W , (7.107)

and keep terms that are first order in s/m2
W and zeroth order in m2

µ/s. The results for the

differential and total cross sections are given by

dσ

dΩ
=
G2
F s

π2

[
a2 + b2(1− y)2

]
, σ =

4G2
F s

π

(
a2 +

b2

3

)
. (7.108)

The dimensionless constants a and b depend on the process:

νµe
− → νee

− : a = 0, b = 0, (7.109)

νµe
− → νeµ

− : a =
1

2
, b = 0,

νµe
− → νµe

− : a =
1

2
− sin2 θW , b = − sin2 θW ,

νee
− → νee

− : a = −1

2
− sin2 θW , b = − sin2 θW ,

and the same with µ→ τ . For the corresponding ν̄ − e scattering processes, a↔ b:

ν̄µe
− → ν̄ee

− : b = 0, a = 0, (7.110)

ν̄ee
− → ν̄µµ

− : b =
1

2
, a = 0,

ν̄µe
− → ν̄µe

− : b =
1

2
− sin2 θW , a = − sin2 θW ,

ν̄ee
− → ν̄ee

− : b = −1

2
− sin2 θW , a = − sin2 θW .

These results can be used to test the LSM in many ways. Below we give two examples.
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7.6.1 Charged current neutrino–electron scattering

A comparison between the two W -mediated scattering processes, νµe
− → νeµ

− and ν̄ee
− → ν̄µµ

−,

provides a test of the vectorial nature of CCWI. (Here vectorial means that the intermediate boson

has spin one.) Using Eqs. (7.109) and (7.110), we obtain:

dσ(ν̄ee
− → ν̄µµ

−)/dΩ

dσ(νµe− → νeµ−)/dΩ
= (1− y)2, (7.111)

σ(ν̄ee
− → ν̄µµ

−)

σ(νµe− → νeµ−)
=

1

3
. (7.112)

If the Dirac structure of the CCWI were not vectorial (for example if the mediator were a scalar),

these ratios could be different. Here we give the intuition behind this result.

In the center of mass frame 1−y = (1+cos θ)/2, where θ as the angle between the outgoing muon

and the incoming neutrino or antineutrino. Backward scattering of the beam particle corresponds

to 1 − y = 0 or, equivalently, cos θ = −1. Since only left-handed fields couple to the W boson,

and we consider the ultra-relativistic limit, for the ν̄ee
− scattering, νL and `L have positive and

negative helicities, respectively. Thus, in the center of mass frame, their spins are in the same

direction. Therefore, for the initial state, (Jz)i = +1. When the scattering is backward, the

respective momenta of the antineutrinos and the charged leptons are reversed, and consequently

their helicities are reversed: (Jz)f = −1. We conclude that backward ν̄` scattering is forbidden

by angular momentum conservation. This explains the (1 − y)2 = (1 − cos θ)2/4 factor in the

numerator of Eq. (7.111). In fact, the process ν̄ee → ν̄µµ proceeds entirely in a J = 1 state

with net helicity +1. That is, only one of the three states is allowed. In contrast, in νµe → νeµ,

backward scattering has (JZ)i = (JZ)f = 0 and all helicity states are allowed. This explains the

factor of 1/3 in Eq. (7.112).

7.6.2 Neutral current neutrino–electron scattering

A comparison between the two Z-mediated scattering processes, νµe
− → νµe

− and ν̄µe
− → ν̄µe

−,

provides yet another way to determine sin2 θW . We first note a historical aspect of these processes.

When the SM was proposed, there were experimental pieces of evidence for the W -mediated CCWI,

but not for the Z mediated NCWI. The experimental discovery of neutral current processes came

from the observation in 1973 of the νµe → νµe process in the Gargamelle experiment. This

constituted a great triumph for the SM.

Using Eqs. (7.109) and (7.110), we obtain:

σ(νµe→ νµe)

σ(ν̄µe→ ν̄µe)
=

3(−1/2 + sin2 θW )2 + sin4 θW
(−1/2 + sin2 θW )2 + 3 sin4 θW

. (7.113)

The experimental result leads to

sin2 θW = 0.230± 0.008. (7.114)
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in good agreement with other determinations, Eqs. (7.37), (7.72), (7.87), and (7.73).

For further reading

• For further details on vector-boson self-interactions see, for example, Ref. [22].

• For reviews and more details on low energy tests see, for example, Ref. [23].

• More details on charged lepton – neutrino scattering can be found, for example, in Ref. [24].
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Problems

Question 7.1: Algebra

1. Write explicitly the h.c.-term in Eq. (7.14).

2. Starting from Eq. (7.28) and using the definitions of Eqs. (7.29) and (7.30), derive Eq. (7.31).

3. Starting from Eq. (7.50) and using the definitions of θW in Eq. (7.29) and of Q in Eq. (7.20),

derive both sides of Eq. (7.62).

4. Derive Eq. (7.65) and discuss what approximations are made in the derivation.

5. Using the gauge boson kinetic terms form Eq. (7.23), and the definitions in Eqs. (7.29),

(7.30), and (7.60), derive Eq. (7.89).

6. Draw the Feynman rules of all the interctions in the LSM in the mass basis.

Question 7.2: The broken generators

Below Eq. (7.18) we make the statement that our choice of VEV keeps T3 +Y unbroken, while

the other three generators are broken. Here you are asked to prove this statement.

1. With the choice of VEV in Eq. (7.18), show that T3 + Y annihilates the vacuum. That is,

write T3 +Y explicitly as a 2× 2 matrix, apply it to the vector 〈φ〉, and show that the result

is zero. This result proves that this operator is not broken (see Question 6.3).

2. The other three generators correspond to T1, T2, and T3 − Y . Show that any non-vanishing

linear combination of them (with real coefficients) does not annihilate the vacuum. This is

a proof that there is no other unbroken generator.

Question 7.3: The would-be Nambu-Goldstone bosons
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The spontaneous breaking of a global symmetry entails Nambu–Goldstone bosons. If we now

modify the model such that the spontaneously broken symmetry is a local one, these scalar DoF

become the longitudinal components of the gauge bosons that correspond to the broken generators.

To see this explicitly, we consider the Higgs sector of a modified LSM, such that the spontaneously

broken symmetry is global.

We consider the Higgs potential of Eq. (7.15). Instead of Eq. (7.21) we write φ as

φ =

(
g+

(v + h+ ig0)/
√

2

)
(7.115)

where g+ = (φ1 − iφ2)/
√

2.

1. Write φ† in terms of g−, g0 and h. Recall that g− = (g+)†.

2. Plug φ and φ† of Eq. (7.115) into Eq. (7.15) and find the spectrum. One way to get the

spectrum is to define the mass-squared matrix as

M2
ij =

∂2V

∂φi∂φ
†
j

∣∣∣∣∣∣
φi=φ

†
j=0

. (7.116)

Explicitly, for example,

M2(g±) =
∂2V

∂g+∂g−

∣∣∣∣∣
g+=g−=0

. (7.117)

3. Check that the spectrum has three massless DoF, the g± and g0, and one massive DoF, h.

Check that the mass of h is the same in the global and local cases.

Question 7.4: Lepton decays

1. Find in the PDG the main decay mode of the muon, and obtain the corresponding decay

width.

2. Draw the tree level Feynman diagram for the leading muon decay.

3. Find in the PDG the bound on

BR(µ→ eγ). (7.118)

What is the LSM prediction for this mode? Explain.

4. Based on lepton universality, predict the following ratio:

Γ(τ → eνν̄)

Γ(τ → µνν̄)
. (7.119)

Compare your results with the PDG and explain any deviations.
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5. Show that the LSM predicts (up to small phase space factors)

Γ(µ→ eνν̄)

Γ(τ → eνν̄)
=
m5
µ

m5
τ

. (7.120)

Compare the prediction to the data.

Question 7.5: A modified LSM

Consider the following model:

(i) The symmetry is a local

SU(2)L × U(1)Y , (7.121)

spontaneously broken to U(1)EM.

(ii) There is a single fermion generation:

LL(3)−1, ER(2)−3/2, . (7.122)

(iii) There is a single scalar multiplet:

φ(2T + 1)+1/2 . (7.123)

1. Can we have a bare mass term for the leptons?

2. What values of T allow a Yukawa term of the form LLER φ? Write all the possibilities.

3. From now on we assume T = 1/2. By considering the components of the fields and the

Yukawa term, argue that the fermionic content of the model consists of a massless Q = 0

state (the neutrino ν), a massive Q = −1 state (the electron e), and a massive Q = −2 state

(that was not observed in nature) that we denote as λ.

4. Show that mλ =
√

2me.

5. Write down the fermionic charged current weak interaction terms in the Lagrangian, that is,

the coupling of the W boson to the fermions. Keep track of factors of 2.

6. Is λ stable? Explain.

7. Calculate the ratio
Γ(W− → eR

+λ−−R )

Γ(W− → eL+λ−−L )
. (7.124)

8. Is this a viable model that can replace the LSM? Explain.
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Question 7.6: ρ for general scalar representations

In the LSM, the Higgs field transforms under SU(2)L ×U(1)Y as (2)+1/2. However, any scalar

that is charged under the gauge group and acquires a VEV will break the LSM gauge symmetry.

We assume that the scalar potential is given by Eq. (7.17).

1. Consider a scalar φ that transforms as (2T +1)Y . Since SU(2) is a non-Abelian group, 2T +1

has to be a positive integer, that is, T is a non-negative half-integer. Since U(1) is Abelian,

a-priori Y can assume any real value. Yet, we require that 〈φ〉 breaks SU(2)L × U(1)Y →
U(1)EM, with Q = T3 + Y . This definition restricts the possible values for Y . Find these

values.

2. Show that

ρ ≡ m2
W

m2
Z cos2 θW

=
T (T + 1)− Y 2

2Y 2
. (7.125)

Hint: Use the following 2T + 1 dimensional representation of SU(2):

T3 = diag{T, T − 1, T − 2, . . . ,−T}, (7.126)

T1 =



0 a1 0 . . . 0

a1 0 a2 0
...

0 a2
. . . . . .

...
... 0

. . . 0 a2T

0 . . . . . . a2T 0


T2 = −i



0 a1 0 . . . 0

−a1 0 a2 0
...

0 −a2
. . . . . .

...
... 0

. . . 0 a2T

0 . . . . . . −a2T 0


where

ak =

√
T (T + 1)− (T − k)(T − k + 1)

2
(7.127)

3. For T > 0 and Y = 0 one can see from Eq. (7.125) that ρ →∞ independent of T . Explain

this result using symmetry arguments.

4. Suppose that there exist several scalar representations (i = 1, . . . , N) whose neutral members

acquire VEVs vi. Find ρ in terms of vi, Ti and Yi.

5. Assume that, in addition to the standard Higgs doublet {T = 1/2, Y = 1/2} with VEV vW ,

there exists one other multiplet {T2, Y2}, whose EM-neutral member acquires a much smaller

VEV, v2 � vW . Find δρ ≡ ρ− 1 to first order in (v2/vW )2.

6. Assume that experimentally −0.01 ≤ δρ ≤ +0.005. Find the constraint on (vi/vW )2 for the

following multiplets: (3)+1, (5)−1 and (4)+3/2.
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7. From Eq. (7.125) it is clear that ρ = 1 for all 3Y 2 = T (T + 1) multiplets. The fact that

experimentally ρ ' 1 motivates the choice of one of these multiplets to spontaneously break

the symmetry, but from the consideration of ρ alone, there is no difference which of these

multiplet we take. Yet, in the LSM, we do make the specific choice of T = 1/2 and Y = 1/2.

What is the advantage of the LSM Higgs field compared to the other possible choices?

Question 7.7: Forward-backward asymmetry

We consider e+e− → µ+µ− scattering. This process is mediated at tree level by both photon

and Z-boson exchange. The photon exchange is parity conserving while the Z exchange is parity

violating. The interference between them leads to a forward-backward asymmetry, which is a

manifestation of parity violation. The forward-backward asymmetry is defined as follows:

AFB =
σF − σB
σF + σB

, σF = 2π
∫ 1

0
d(cos θ)

dσ

d cos θ
, σB = 2π

∫ 0

−1
d(cos θ)

dσ

d cos θ
, (7.128)

where θ is the angle between the incoming e− and the outgoing µ− and σ represents a cross-section.

1. Draw the photon-exchange and Z-exchange diagrams and evaluate the corresponding ampli-

tudes.

2. We define s = (pe+ + pe−)2 where pe+ (pe−) is the four-momentum of the incoming e+ (e−).

Consider the range m2
µ � s � m2

Z , and neglect contributions that are proportional to

1− 4 sin2 θW . Show that, to leading order in s/m2
Z ,

dσ

dΩ
=
α2

4s

[
1 + cos2 θ +

1

4c2
W s

2
W

s

s−m2
Z

cos θ

]
, (7.129)

where c2
W ≡ cos2 θW and s2

W ≡ sin2 θW .

3. Show that, within our approximations,

AFB =
3

32 cos2 θW sin2 θW

s

s−m2
Z

. (7.130)

4. One of the data point is given by AFB[s = (35 GeV)2] = −(9.9 ± 1.6) × 10−2. What is the

LSM prediction for this point, and how does it stand in comparison to experiment?

Question 7.8: Flavor symmetries

In this question you are asked to use broken generators to transform to a basis with fewer

parameters.
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Consider a theory where we impose a global U(1) symmetry and have two Dirac fermions that

have the same charge under that U(1). The most general Lagrangian is

L = ψi(i∂/δij −mij)ψj (7.131)

where i, j = 1, 2. The matrix mij must be Hermitian and thus it depends on four real parameters.

1. The flavor symmetry of this Lagrangian is U(1) × U(1). However, this symmetry is not

manifest. To make it manifest proceed as follows. Write

mdiag ≡ diag(m1,m2) = UmU †. (7.132)

Define ψ′ = Uψ and show that L in (7.131) is equal to

L = ψ′i[i∂/δij − (mdiag)ij]ψ
′
j (7.133)

2. In Eq. (7.133), the two U(1) symmetries are manifest. They are the independent rotations

of each flavor,

ψ′i → eiαiψ′i for i = 1, 2, (7.134)

that we denote as U(1)1 and U(1)2. Show that the U(1)1 × U(1)2 symmetry can also be

written as a U(1)0 × U(1)3 symmetry with

ψ′i →
(
eiα0

)
ij
ψ′j ψ′i →

(
eiα3σ3

)
ij
ψ′j (7.135)

and find α0 and α3 in terms of α1 and α2.

3. Identify the imposed U(1) in terms U(1)0 and U(1)3.

4. In case that m is proportional to the unit matrix, the flavor symmetry is SU(2)× U(1). In

the most general case, the symmetry is U(1) × U(1). In the basis where m = mdiag, the

two broken generators correspond to σ1 and σ2. Show by explicit calculation that they are

broken (it is enough to show it for one of them).

5. The two broken symmetry generators can be used to generate U of Eq. (7.132):

U = eiα2σ2eiα1σ1 , (7.136)

with α1 and α2 given in terms of the parameters of mij. Find α1 and α2.

Hint: it may be easier to perform the two rotations one after the other. First use U1 = eiα1σ1

to make m real and symmetric, and then use U2 = eiα2σ2 to diagonalize it.
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Question 7.9: 2HDM

The LSM includes a single Higgs doublet. Here we study the scalar sector that has two Higgs

doublets. We return to other aspects of the Two Higgs Doublet Model (2HDM) in other chapters

of this book.

We define the 2HDM as follows:

(i) The symmetry is

SU(2)L × U(1)Y × Z2 (7.137)

(ii) There are two scalar multiplets:

φ1(2)+1/2, φ2(2)+1/2. (7.138)

Under the Z2 symmetry, φ1 is even and φ2 is odd. For simplicity, we impose CP conservation.

The Higgs potential is given by

V = m2
1φ
†
1φ1 +m2

2φ
†
2φ2 +

λ1

2
(φ†1φ1)2 +

λ2

2
(φ†2φ2)2

+λ3(φ†1φ1)(φ†2φ2) + λ4(φ†1φ2)(φ†2φ1) +
λ5

2

[
(φ†1φ2)2 + (φ†2φ1)2

]
. (7.139)

We are interested in a model where both doublets acquire a VEV.

1. We need to ensure that the potential is bounded from below (the equivalent of the λ > 0

condition in the LSM) and that at the origin we have a maximum (the equivalent of the

µ2 < 0 condition in the LSM). Argue that if all λi > 0 (i = 1, ..., 5) and all m2
i < 0 (i = 1, 2),

the symmetry is spontaneously broken.

2. Assume that

〈φ1〉 =

(
0

v1/
√

2

)
, 〈φ2〉 =

(
0

v2/
√

2

)
. (7.140)

Show that the minimum equations, ∂V/∂v1 = 0 and ∂V/∂v2 = 0, give

m2
1v1 +

λ1

2
v3

1 +
λ345

2
v1v

2
2 = 0,

m2
2v2 +

λ2

2
v3

2 +
λ345

2
v2v

2
1 = 0, (7.141)

where λ345 = λ3 + λ4 + λ5.

3. Find v2
1, v2

2 and tan β ≡ v2/v1 as a function of the model parameters. What extra assumptions

on the model parameters are needed in order to ensure that both VEVs are real?
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4. In the limit, λ345 = 0, Eqs. (7.141) decouple. In that case, each of the doublets should have

a potential like the one in the LSM. Show that the solution reduces to the LSM one in that

case.

We now obtain the scalar spectrum. Since each doublet has four real DoF, the 2HDM has a total

of eight. We denote them as follows (see Question 7.3):

φ1 =

(
η+

1

(v1 + h1 + iχ0
1)/
√

2

)
, φ2 =

(
η+

2

(v2 + h2 + iχ0
2)/
√

2

)
, (7.142)

where η+
1,2 are complex, and h1,2 and χ1,2 are real fields. To obtain the spectrum, we use

M2
ij =

∂2V

∂φi∂φ
†
j

∣∣∣∣∣∣
φi=φ

†
j=0

, (7.143)

The mass-squared matrix M2 can be divided to three 2× 2 matrices: One for the charged fields,

η±i (denoted as M2
C), one for the hi fields (denoted as M2

S), and one for the χi fields (denoted as

M2
A).

5. Write down M2
C , M2

A, and M2
S.

6. Show that each of M2
C and M2

A has a zero eigenvalue. Show that the corresponding eigenstates

are given by

g± = cβη
±
1 + sβη

±
2 , g0 = cβχ1 + sβχ2. (7.144)

Explain why we should have expected three massless and five massive DoF.

7. The orthogonal combinations are a physical charged scalar and a physical CP-odd neutral

scalar:

H± = −sβη±1 + cβη
±
2 , A = −sβχ1 + cβχ2. (7.145)

Find their masses, mH+ and mA.

8. The eigenstates of M2
S are two neutral CP-even scalars. Write them as H = cαη1 + sαη2 and

h = −sαη1 + cαη2, with the convention that mh < mH . Find the two masses and express α

in terms of the model parameters.

We return to this model in Question 9.9.

Question 7.10: The Leptonic Left Right Symmetric Model

Here we study the Leptonic Left Right Symmetric Model (LLRSM), which extends both the

gauge group and the lepton content of the LSM. It is motivated partly by allowing parity to be a

(spontaneously broken) symmetry of the Lagrangian. More importantly, in contrast to the LSM,

it predicts small neutrino masses.

The model is defined as follows:
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(i) The symmetry is a local

GLRS = SU(2)L × SU(2)R × U(1)X . (7.146)

(ii) There are Ng fermion generations, each consisting of two different representations:

LL(2, 1)−1, LR(1, 2)−1. (7.147)

(iii) There are three scalar multiplets

Φ(2, 2)0, ∆L(3, 1)+2, ∆R(1, 3)+2. (7.148)

We start with Ng = 1. We label the different components of the doublets as

LL =

(
νL

eL

)
, LR =

(
νR

eR

)
. (7.149)

The gauge fields are denoted by WL(3, 1)0, WR(1, 3)0 and C(1, 1)0, and the respective coupling

constants by gL, gR and gX .

1. In what spaces are the doublets in Eq. (7.149) written?

2. Write down the commutation relations between the various generators [the analog of Eq. (7.6)].

3. Write down the covariant derivative of a general field and of all the fermions and scalars of

the model [the analog of Eq. (7.10)].

4. Let us assume that only ∆R acquires a VEV, and assign the VEV to its TR3 = −1 component.

What is GLRS broken into [the analogue of Eq. (7.19)]?

5. Find the linear combinations of the LLRSM generators which give the LSM generator Y and

the EM generator Q [the analogue of Eq. (7.20)].

6. What are the SU(2)L × U(1)Y QNs of νR?

7. Write Φ in components that are distinguishable after this stage of the breaking. Denote the

two components as φ1 and φ2 and write their SU(2)L × U(1)Y QNs.

8. The Bµ field of the LSM must be a linear combination of W µ
R3 and Cµ. The orthogonal

linear combination is called Z ′µ. Write the expression of Bµ and Z ′µ in terms of W µ
R3 and

Cµ [the analogue of Eq. (7.30)]. Denote the mixing angle by θR, and express it in terms of

the LLRSM couplings.

9. Find the masses of the massive gauge bosons, W±
R and Z ′, after this stage of breaking [the

analogue of Eqs. (7.31) and (7.32)].
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10. Find the electric charges of the massive gauge bosons, W±
R and Z ′ [the analogue of Eq. (7.33)].

11. Express gR and gX in terms of g′ and θR [the analogue of Eq. (7.60)]. Here g′ is the coupling

constant of U(1)Y .

12. Find the coupling of the Z ′-boson to fermions in terms of T3R and Y [the analogue of

Eq. (7.63)].

13. Write down explicitly the charged current interactions of the leptons with the massive W±
R -

bosons [the analogue of Eq. (7.78)].

We now assume that all three scalars acquire VEVs, with the following hierarchy:

〈∆R〉 � 〈Φ〉 � 〈∆L〉 . (7.150)

Then, we can think about breaking the symmetry in two stages:

SU(2)L × SU(2)R × U(1)X → SU(2)L × U(1)Y → U(1)EM. (7.151)

The previous items referred to the first stage of the breaking. We now consider the second stage

of the breaking due to 〈Φ〉 6= 0.

14. Explain why we must require that only the neutral components of Φ acquire VEVs.

15. We denote the VEV of φ1 by k1 and that of φ2 by k2. Calculate the mass of the W±
L bosons

in terms of k1 and k2 (provisionally putting 〈∆L〉 = 0), and relate it to the LSM parameter

v. We identify W±
L with W± of the LSM.

Our last step is to understand why we choose the hierarchies of VEVs as in Eq. (7.150).

16. Experiments established that ρ = 1 to a very good approximation. Show that this implies

that | 〈∆L〉 | � | 〈Φ〉 |.

What you have shown is that the LLRSM constitutes a viable extension of the LSM. We return

to this model in Question 14.5.
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Chapter 8

The Standard Model

The Standard Model (SM) accounts for the strong, weak, electromagnetic, and Yukawa interactions

of the fermions. It combines the LSM, presented in Chapter 7, and QCD, presented in Chapter 5.

In this Chapter we define the model, and obtain its spectrum, interactions, accidental symmetries

and parameters. The rest of the book is dedicated to the study of the SM beyond tree-level and

beyond the renormalizable level.

8.1 Defining the Standard Model

The Standard Model (SM) is defined as follows:

(i) The symmetry is a local

SU(3)C × SU(2)L × U(1)Y . (8.1)

(ii) There are three fermion generations, each consisting of five different representations:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1, i = 1, 2, 3.

(8.2)

(iii) There is a single scalar multiplet:

φ(1, 2)+1/2. (8.3)

Similar to the LSM, the presence of a scalar allows for SSB. We define the SM as the model

that exhibits the following breaking pattern:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)EM. (8.4)

We use the notation (A,B)Y where A is the representation under SU(3)C , B is the representa-

tion under SU(2)L, and Y is the hypercharge. The fermions that transform as triplets of SU(3)C

are called quarks, while those that transform as singlets of SU(3)C are called leptons.
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8.2 The Lagrangian

As explained in previous chapters, the most general renormalizable Lagrangian with scalar and

fermion fields can be decomposed into

L = Lkin + Lψ + Lφ + LYuk. (8.5)

It is now our task to find the specific form of the Lagrangian made of the fermion fields QLi, URi,

DRi, LLi, and ERi (8.2), and the scalar field φ (8.3), subject to the gauge symmetry (8.1) and

leading to the SSB of Eq. (8.4).

8.2.1 Lkin and the gauge symmetry

The gauge group is given in Eq. (8.1). It has twelve generators: eight La’s that form the SU(3)

algebra, three Tb’s that form the SU(2) algebra, and a single Y that corresponds to the U(1) group:

[La, Lb] = ifabcLc, [Ta, Tb] = iεabcTc, [La, Tb] = [La, Y ] = [Tb, Y ] = 0. (8.6)

The local symmetry requires twelve gauge boson degrees of freedom, eight in the adjoint repre-

sentation of SU(3)C , three in the adjoint representation of SU(2)L, and one related to the U(1)Y

symmetry:

Gµ
a(8, 1)0, W µ

a (1, 3)0, Bµ(1, 1)0. (8.7)

The corresponding field strengths are given by

Gµν
a = ∂µGν

a − ∂νGµ
a − gsfabcG

µ
bG

ν
c ,

W µν
a = ∂µW ν

a − ∂νW µ
a − gεabcW

µ
b W

ν
c ,

Bµν = ∂µBν − ∂νBµ, (8.8)

where fabc are the structure constants of SU(3), and εabc are the structure constants of SU(2).

The covariant derivative is given by

Dµ = ∂µ + igsG
µ
aLa + igW µ

b Tb + ig′Y Bµ. (8.9)

There are three independent coupling constants in Lkin: gs related to the SU(3)C subgroup, g

related to the SU(2)L subgroup, and g′ related to the U(1)Y subgroup. For the SU(3)C triplets

La = 1
2
λa (λa are the Gell-Mann matrices), while for the SU(3)C singlets La = 0. For the SU(2)L

doublets Tb = 1
2
σb (σb are the Pauli matrices), while for the SU(2)L singlets Tb = 0. Explicitly, the

covariant derivatives acting on the scalar and various fermion fields are given by

Dµφ =
(
∂µ +

i

2
gW µ

b σb +
i

2
g′Bµ

)
φ,

DµQL =
(
∂µ +

i

2
gsG

µ
aλa +

i

2
gW µ

b σb +
i

6
g′Bµ

)
QL,
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DµUR =
(
∂µ +

i

2
gsG

µ
aλa +

2i

3
g′Bµ

)
UR,

DµDR =
(
∂µ +

i

2
gsG

µ
aλa −

i

3
g′Bµ

)
DR,

DµLL =
(
∂µ +

i

2
gW µ

b σb −
i

2
g′Bµ

)
LL,

DµER = (∂µ − ig′Bµ)ER. (8.10)

Lkin includes the kinetic terms of all the fields:

Lkin = − 1

4
Gµν
a Gaµν −

1

4
W µν
b Wbµν −

1

4
BµνBµν

+ iQLiD/QLi + iURiD/URi + iDRiD/DRi + iLLiD/LLi + iERiD/ERi

+ (Dµφ)†(Dµφ). (8.11)

8.2.2 Lψ
There are no mass terms for the fermions of the SM,

Lψ = 0. (8.12)

In Chapter 7 we have seen that this is the case for leptons. Note that a larger symmetry means

stronger constraints, hence it is impossible that lepton masses would become allowed when the

gauge symmetry is extended to include SU(3)C . As concerns the quarks, we cannot write Dirac

mass terms because they are assigned to chiral representations of the SU(2)L × U(1)Y gauge

symmetry. We cannot write Majorana mass terms for the quarks because they all have Y 6= 0 and

because they are in a complex representation of SU(3)C .

8.2.3 Lφ and spontaneous symmetry breaking

The scalar field is a singlet of the SU(3)C group. Thus, the form of Lφ is the same as in the

LSM. Since φ is an SU(3)C singlet, the SU(3)C subgroup remains unbroken, and the pattern of

spontaneous symmetry breaking is as required by Eq. (8.4).

One contraction that is important in the SM is

φ̃a = εabφ
∗
b (8.13)

where a, b are the SU(2)-indices. Thus, we can denote φ̃(1, 2)−1/2. When considering the VEV we

can write Eq. (7.18) as

〈φ〉 =

(
0

v/
√

2

)
,

〈
φ̃
〉

=

(
v/
√

2

0

)
. (8.14)
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8.2.4 LYuk

The Yukawa part of the Lagrangian is given by

−LYuk = Y u
ijQLiURj φ̃+ Y d

ijQLiDRj φ+ Y e
ijLLiERj φ+ h.c., (8.15)

where i, j = 1, 2, 3 are flavor indices. Note that the Yukawa couplings of UR involve φ̃. The Yukawa

matrices Y u, Y d and Y e are general complex 3× 3 matrices of dimensionless couplings.

8.2.5 Summary

The renormalizable part of the SM Lagrangian is given by

LSM = − 1

4
Gµν
a Gaµν −

1

4
W µν
b Wbµν −

1

4
BµνBµν − (Dµφ)†(Dµφ)

+ iQLiD/QLi + iURiD/URi + iDRiD/DRi + iLLiD/LLi + iERiD/ERi

−
(
Y u
ijQLiURj φ̃+ Y d

ijQLiDRj φ+ Y e
ijLLiERj φ+ h.c.

)
− λ

(
φ†φ− v2/2

)2
, (8.16)

where i, j = 1, 2, 3.

8.3 The Spectrum

8.3.1 Bosons

Given the spontaneous breaking of the SU(2)L × U(1)Y symmetry to the U(1)EM subgroup, the

spectrum of the electroweak gauge bosons remains the same as in the LSM: three massive vector

bosons, W± and Z0, and a massless photon, A0. Furthermore, since the breaking is induced by an

SU(2)L-doublet, the ρ ≡ m2
W/(m

2
Z cos2 θW ) = 1 relation holds.

The new ingredient is QCD and the existence of a gluon in the octet representation of SU(3)C .

Since the SU(3)C gauge symmetry remains unbroken, the gluon is massless.

As concerns scalars, the three would-be Goldstone bosons become the longitudinal components

of the three massive vector bosons. The fourth scalar degree of freedom is the Higgs boson h, a

real massive scalar field.

8.3.2 Fermions

Since the SM allows no bare mass terms for the fermions, their masses can only arise from the

Yukawa part of the Lagrangian, which is given in Eq. (8.15). The resulting lepton spectrum is the

same as in the LSM, discussed in Chapter 7.
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The terms that lead to quark masses are given by

−LMq = Y u
ijQLiURj

〈
φ̃
〉

+ Y d
ijQLiDRj 〈φ〉+ h.c.. (8.17)

In what follows, we use

Qi
L =

(
U i
L

Di
L

)
, U i

R, Di
R, (8.18)

to denote the quark interaction eigenstates in a generic basis. The various states have well-defined

charges under the unbroken U(1)EM symmetry:

• U i
L have T3 = +1/2 and Y = +1/6, while U i

R have T3 = 0 and Y = +2/3. Hence, their

electromagnetic charges are

q(U i
L) = q(U i

R) = +2/3. (8.19)

• Di
L have T3 = −1/2 and Y = +1/6, while Di

R have T3 = 0 and Y = −1/3. Hence, their

electromagnetic charges are

q(Di
L) = q(Di

R) = −1/3. (8.20)

Using Eq. (8.14), we obtain

−LMq =
Y u
ijv√
2
ULiURj +

Y d
ijv√
2
DLiDRj + h.c.. (8.21)

Without loss of generality, we can use a bi-unitary transformation,

Y u → Ŷu = VuLY
uV †uR, (8.22)

to transform the basis to one where Ŷ u is diagonal and real:

Ŷ u =


yu 0 0

0 yc 0

0 0 yt

 . (8.23)

Eq. (8.21) implies that the basis defined in Eq. (8.23) is the mass basis for the up-type quarks.

In this basis we denote the components of the quark SU(2)-doublets, and the up-type quark

SU(2)-singlets, as follows:

QLu =

(
uL

duL

)
, QLc =

(
cL

dcL

)
, QLt =

(
tL

dtL

)
; uR, cR, tR, (8.24)

with the convention that yu < yc < yt. The up-type quark mass terms are given in this basis by

−LMu =
yuv√

2
uLuR +

ycv√
2
cLcR +

ytv√
2
tLtR + h.c.. (8.25)

We conclude that the up-type quarks u, c, t are Dirac fermions of masses

mu =
yuv√

2
, mc =

ycv√
2
, mt =

ytv√
2
. (8.26)
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We can use yet another bi-unitary transformation,

Y d → Ŷd = VdLY
dV †dR, (8.27)

to transform the basis to one where Ŷ d is diagonal and real:

Ŷ d =


yd 0 0

0 ys 0

0 0 yb

 . (8.28)

Eq. (8.21) implies that the basis defined in Eq. (8.28) is the mass basis for the down-type quarks.

In this basis we denote the components of the quark SU(2)-doublets, and the down-type quark

SU(2)-singlets, as follows:

QLd =

(
udL

dL

)
, QLs =

(
usL

sL

)
, QLb =

(
ubL

bL

)
; dR, sR, bR, (8.29)

with the convention that yd < ys < yb. The down-type quark mass terms are given in this basis by

−LMd
=
ydv√

2
dLdR +

ysv√
2
sLsR +

ybv√
2
bLbR + h.c.. (8.30)

We conclude that the down-type quarks d, s, b are Dirac fermions of masses

md =
ydv√

2
, ms =

ysv√
2
, mb =

ybv√
2
. (8.31)

We conclude that all charged fermions acquire Dirac masses as a result of the spontaneous

symmetry breaking. The key to this feature is that, while the charged fermions are in chiral repre-

sentations of the full gauge group SU(3)C×SU(2)L×U(1)Y , they are in vector-like representations

of the SU(3)C × U(1)EM group:

• The LH and RH charged lepton fields, e, µ and τ , are in the (1)−1 representation.

• The LH and RH up-type quark fields, u, c and t, are in the (3)+2/3 representation.

• The LH and RH down-type quark fields, d, s and b, are in the (3)−1/3 representation.

On the other hand, as discussed in Section 7.3.3, the neutrinos remain massless:

mνe = mνµ = mντ = 0. (8.32)

The experimental values of the charged fermion masses are

me = 0.5109989461(31) MeV, mµ = 105.6583745(24) MeV, mτ = 1776.86(12) MeV,

mu = 2.2+0.5
−0.3 MeV, mc = 1.27± 0.02 GeV, mt = 172.9± 0.4 GeV,

md = 4.7+0.5
−0.2 MeV, ms = 93+11

−5 MeV, mb = 4.18+0.03
−0.02 GeV. (8.33)

For q = u, d, s we quote the MS masses mq(µ = 2 GeV). For Q = c, b we quote the running mass

mQ(µ = mQ), while mt is extracted from the kinematics of tt̄ events. The issue of how quark

masses are defined and extracted are complicated by the fact that QCD is confining. We do not

elaborate on this here.
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8.3.3 The CKM matrix

In the derivation above of the quark spectrum there is an important difference from the analysis

of the lepton spectrum. For the leptons, there exists a basis that is simultaneously an interaction

basis and a mass basis for both the charged leptons and the neutrinos, that is the Ŷe basis. In

contrast, for the quarks, in general there is no interaction basis that is also a mass basis for both

up-type and down-type quarks. To see that, we denote ui = (u, c, t) and di = (d, s, b), and write

the relation of these mass eigenstates to the interaction eigenstates:

uiL = (VuL)ijU
j
L, uiR = (VuR)ijU

j
R, diL = (VdL)ijD

j
L, diR = (VdR)ijD

j
R. (8.34)

If VuL 6= VdL, as is the general case, then the interaction basis defined by Eq. (8.23) is different

from the interaction basis defined by Eq. (8.28). In the former, Y d can be written as a unitary

matrix times a diagonal one,

Y u = Ŷ u, Y d = V Ŷ d. (8.35)

In the latter, Y u can be written as a unitary matrix times a diagonal one,

Y d = Ŷ d, Y u = V †Ŷ u. (8.36)

In either case, the unitary matrix V is given by

V = VuLV
†
dL, (8.37)

where VuL and VdL are defined in Eqs. (8.22) and (8.27), respectively. Note that each of VuL, VuR,

VdL and VdR depends on the basis from which we start the diagonalization. The combination V =

VuLV
†
dL, however, does not. This is a hint that V is physical. The matrix V is called the Cabibbo-

Kobayashi-Maskawa (CKM) matrix. Its physical significance becomes clear in Section 8.4.4.

We discuss additional aspects of the CKM matrix in Chapter 9.

8.3.4 Summary

The mass eigenstates of the SM, their SU(3)C × U(1)EM quantum numbers, and their masses in

units of the VEV v, are presented in Table 8.1. As it is the case in the LSM, all masses are

proportional to the VEV of the scalar field, v.

8.4 The interactions

In this section, we discuss the electromagnetic, strong, weak and Yukawa interactions of the fermion

and scalar mass eigenstates of the SM.
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Table 8.1: The SM particles

particle spin color Q mass [v]

W± 1 (1) ±1 1
2
g

Z0 1 (1) 0 1
2

√
g2 + g′2

A0 1 (1) 0 0

g 1 (8) 0 0

h 0 (1) 0
√

2λ

e, µ, τ 1/2 (1) −1 ye,µ,τ/
√

2

νe, νµ, ντ 1/2 (1) 0 0

u, c, t 1/2 (3) +2/3 yu,c,t/
√

2

d, s, b 1/2 (3) −1/3 yd,s,b/
√

2

8.4.1 Electromagnetic (QED) and strong (QCD) interactions

The photon-mediated electromagnetic interactions are described by QED, which is part of the SM.

The discussion in Section 3.2.3 leads straightforwardly to following Lagrangian terms for the SM

Dirac fermions:

LAff̄ = eeiA/ei − (2/3)euiA/ui + (1/3)ediA/di. (8.38)

The gluon-mediated strong interactions are described by QCD, which is part of the SM. The

discussion in Section 5.2 leads straightforwardly to following Lagrangian terms for the SM quarks:

LGqq̄ = −gsqiG/a(λa/2)qi. (8.39)

8.4.2 The Higgs boson interactions

The only novelty in the Higgs boson interactions with respect to the LSM, lies in its couplings to

quarks. As concerns its couplings to bosons, Lhh and LhV are unchanged from Eq. (7.52). Note that

the Higgs does not couple to the gluon. As concerns its couplings to fermions, they are given by

the following extension of Lhf of Eq. (7.52):

−Lhf =
h

v
(me eL eR +mµ µL µR +mτ τL τR

+mu uL uR +mc cL cR +mt tL tR +md dL dR +ms sL sR +mb bL bR + h.c.
)
. (8.40)

Since the couplings of the Higgs boson are proportional to the mass of the particle to which

it couples, the Higgs decay is dominated by the heaviest particle which can be pair-produced in

the decay. For mh ∼ 125 GeV, this is the bottom quark. More generally, the SM predicts the
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following branching ratios for the leading decay modes:

BRb̄b : BRWW ∗ : BRgg : BRτ+τ− : BRZZ∗ : BRcc̄ = 0.58 : 0.21 : 0.09 : 0.06 : 0.03 : 0.03, (8.41)

where BRf ≡ BR(h→ f). The following comments are in order with regard to Eq. (8.41):

1. The WW ∗ and ZZ∗ modes stand for the three-body tree-level decays (Wff ′ and Zff ,

respectively), where one of the vector bosons is on-shell and the other off-shell.

2. The Higgs boson does not have a tree-level coupling to gluons since it carries no color (and

the gluon is massless). The decay into final gluons proceeds via loop diagrams. The dominant

contribution comes from the top-quark loop.

3. From the six branching ratios, three (bb̄, τ+τ−, cc̄) stand for two-body tree-level decays. Thus,

at tree level, the respective branching ratios obey BRb̄b : BRτ+τ− : BRcc̄ = 3m2
b : m2

τ : 3m2
c .

QCD radiative corrections are significant and suppress the two modes with the quark final

states (b, c) compared to one with the lepton final state (τ).

4. The Higgs boson does not have a tree-level coupling to photons since it carries no EM charge

(and the photon is massless). The decay into final photons proceeds via loop diagrams with

small (BRγγ ∼ 0.002), but observable, rate. The dominant contributions come from the

W -boson and the top-quark loops which interfere destructively.

Experimentally, the decays into final τ+τ−, bb̄, ZZ∗, WW ∗ and γγ have been established with

rates that are consistent with the SM predictions.

8.4.3 Neutral current weak interactions

The expression for the Z couplings to fermions is the same as in the LSM, Eq. (7.62), and the

quarks follow the same pattrens as the leptons. Using the T3 and Y assignments of the various

fermion fields, we find the following types of Z couplings:

LZ,fermions =
g

cW

[
−
(

1

2
− s2

W

)
eiLZ/ e

i
L + s2

W eiRZ/ e
i
R +

1

2
νiLZ/ ν

i
L (8.42)

+
(

1

2
− 2

3
s2
W

)
uiLZ/u

i
L −

2

3
s2
W uiRZ/u

i
R −

(
1

2
− 1

3
s2
W

)
diLZ/ d

i
L +

1

3
s2
W diRZ/ d

i
R

]
,

where sW ≡ sin θW , cW ≡ cos θW , ei = e, µ, τ , νi = νe, νµ, ντ , u
i = u, c, t, and di = d, s, b. We learn

that the Z couplings are chiral, parity-violating, diagonal, and universal.

Eq. (8.42) implies that the Z-boson couplings in each fermion sector are universal. While

universality is a necessary feature of the couplings of gauge bosons corresponding to unbroken

generators, it is not an obvious feature of the couplings of vector bosons corresponding to sponta-

neously broken generators. We discuss this point in Section 9.4.2.
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Omitting common factors and phase-space factors, we obtain the following predictions for the

Z decays into a one-generation fermion-pair of each type:

Γ(Z → νν̄) ∝ 1,

Γ(Z → `¯̀) ∝ 1− 4s2
W + 8s4

W ,

Γ(Z → uū) ∝ 3
(

1− 8

3
s2
W +

32

9
s4
W

)
,

Γ(Z → dd̄) ∝ 3
(

1− 4

3
s2
W +

8

9
s4
W

)
. (8.43)

Putting s2
W = 0.225, we obtain

Γν : Γ` : Γu : Γd = 1 : 0.51 : 1.74 : 2.24. (8.44)

Experiments measure the following average branching ratio into a single generation of each fermion

species [PDG 2019]:

BR(Z → νν̄) = (6.67± 0.02)%,

BR(Z → `¯̀) = (3.366± 0.002)%,

BR(Z → uū) = (11.6± 0.6)%,

BR(Z → dd̄) = (15.6± 0.4)%, (8.45)

which, using central values, give

Γν : Γ` : Γu : Γd = 1 : 0.505 : 1.74 : 2.34, (8.46)

in very nice agreement with the predictions.

8.4.4 Charged current weak interactions

We now study the couplings of the charged vector bosons, W±, to fermion pairs. For the lepton

mass eigenstates, things are simple, because there exists an interaction basis that is also a mass

basis. Thus, the W interactions must be universal also in the mass basis:

LW,` = − g√
2

(
νeL W/

+e−L + νµL W/
+µ−L + ντL W/

+τ−L + h.c.
)
. (8.47)

As concerns quarks, things are more complicated, since there is no interaction basis that is also

a mass basis. In the interaction basis, the W interactions have the following form:

LW,q = − g√
2
U i
L W/

+Di
L + h.c.. (8.48)

Using Eq. (8.34) to write U i
L = (V †uL)iju

j
L and Di

L = (V †dL)ijd
j
L, we can rewrite LW,q in terms of the

mass eigenstates:

LW,q = − g√
2
ukL(VuL)ki W/

+(V †dL)ild
l
L + h.c. = − g√

2
ukLVkl W/

+dlL + h.c., (8.49)
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where V is the CKM matrix defined in Eq. (8.37).

Eq. (8.49) reveals some important features of the model:

1. Only left-handed particles take part in charged-current interactions. Consequently, parity is

violated by these interactions.

2. The W couplings to the quark mass eigenstates are not universal. The universality of gauge

interactions is hidden in the unitarity of the CKM matrix, V .

3. The W couplings to the quark mass eigebstates are not diagonal. This is a manifestation of

the fact that no pair of an up-type and a down-type mass eigenstates fits into an SU(2)L

doublet. For example, the d and u mass eigenstates are not members of a single SU(2)L

doublet.

Omitting common factors and phase-space factors, we obtain the following predictions for the

W decays:

Γ(W+ → `+ν`) ∝ 1,

Γ(W+ → uidj) ∝ 3|Vij|2 (i = 1, 2; j = 1, 2, 3). (8.50)

The top quark is not included because it is heavier than the W boson. Taking this fact into

account, and the CKM unitarity relations

|Vud|2 + |Vus|2 + |Vub|2 = |Vcd|2 + |Vcs|2 + |Vcb|2 = 1, (8.51)

we obtain

Γ(W → hadrons) ≈ 2Γ(W → leptons). (8.52)

Experiments give

BR(W → leptons) = (32.58± 0.27)%, BR(W → hadrons) = (67.41± 0.27)%, (8.53)

leading to

Γ(W → hadrons)/Γ(W → leptons) = 2.07± 0.02, (8.54)

which, when including radiative corrections, is in good agreement with the SM prediction. The

(hidden) universality within the quark sector is tested by the prediction

Γ(W → uX) = Γ(W → cX) =
1

2
Γ(W → hadrons). (8.55)

Experimentally,

BR(W → cX) = (33.3± 2.6)%, BR(W → hadrons) = (67.41± 0.27)%, (8.56)

which leads to

Γ(W → cX)/Γ(W → hadrons) = 0.49± 0.04. (8.57)
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Table 8.2: The SM fermion interactions

Interaction Force carrier Coupling Fermions

Electromagnetic γ eQ u, d, e

Strong g gs u, d

NC weak Z0 (g/ cos θW )(T3 − sin2 θWQ) u, d, e, ν

CC weak for quarks W± (g/
√

2)Vij ūidj

CC weak for leptons W± (g/
√

2) ν̄e

Yukawa h yf u, d, e

8.4.5 Gauge boson self-interactions

The electroweak vector boson self-interactions are the same as in the LSM, and the gluon self-

interactions are the same as in QCD. There are no interactions that involve both the gluon and

electroweak bosons. Thus, the vector boson self interactions of the SM are given by the combination

of the terms given in Eqs. (5.13), (7.89), and (7.90).

8.4.6 Summary

Within the SM, fermions have five types of interactions. These interactions are summarized in

Table 8.2.

8.5 Global symmetries and parameters

8.5.1 Accidental symmetries

If we set the Yukawa couplings to zero, LYuk = 0, the SM gains a large accidental global symmetry

in the fermion sector:

Gglobal
SM (Y u,d,e = 0) = U(3)Q × U(3)U × U(3)D × U(3)L × U(3)E, (8.58)

where U(3)Q has (Q1, Q2, Q3) transforming as an SU(3)Q triplet, and all other fields singlets,

U(3)U has (U1, U2, U3) transforming as an SU(3)U triplet, and all other fields singlets, U(3)D has

(D1, D2, D3) transforming as an SU(3)D triplet, and all other fields singlets, U(3)L has (L1, L2, L3)

transforming as an SU(3)L triplet, and all other fields singlets, and U(3)E has (E1, E2, E3) trans-

forming as an SU(3)E triplet, and all other fields singlets.

The Yukawa couplings break this symmetry into the following subgroup:

Gglobal
SM = U(1)B × U(1)e × U(1)µ × U(1)τ . (8.59)
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Under U(1)B, all quarks (antiquarks) carry charge +1/3 (−1/3), while all other fields are neutral. It

explains why proton decay has not been observed. Possible proton decay modes, such as p→ e+γ,

are not forbidden by the SU(3)C ×U(1)EM symmetry. However, they violate U(1)B, and therefore

do not occur within the SM. The lesson here is quite general: The lightest particle that carries a

conserved charge is stable.

8.5.2 The SM parameters

On how many physical parameters does the SM depend? The gauge, scalar and lepton sectors are

very similar to the case of the LSM, discussed in Section 7.5.4. Taking into account the one extra

gauge coupling of the SM, gs, these sectors depend on eight physical parameters. What is left to

be obtained is the number of physical parameters in the quark sector. To do so, we follow the

procedure presented in Section 7.5.3.

The two Yukawa matrices defined in Eq. (8.15), Y u and Y d, are 3× 3 complex matrices, which

contain a total of 36 parameters (18 real parameters and 18 phases) in a general basis. The kinetic

terms for the quarks have a global symmetry,

Gq = U(3)Q × U(3)U × U(3)D, (8.60)

which has 27 generators. The Yukawa terms break this symmetry down to baryon number, Hq =

U(1)B, which has a single generator. Thus Nbroken = 26. This broken symmetry allows us to rotate

away a large number of the parameters by moving to a more convenient basis. Using (7.101), the

number of physical parameters in the quark sector is given by

Nphys = 36− 26 = 10. (8.61)

These parameters can be split into real parameters and phases. The three unitary matrices

generating Gq have a total of 9 real parameters and 18 phases. The symmetry is broken down to

a symmetry with only one phase generator. Thus,

N
(r)
phys = 18− 9 = 9, N

(i)
phys = 18− 17 = 1. (8.62)

Let us now identify these parameters. Of the 9 real parameters, 6 are the quark masses and three

are real parameters in the CKM matrix, which are called mixing angles. The one phase is a CP -

violating phase in the CKM matrix, which is called the Kobayashi–Maskawa (KM) phase. We give

examples of explicit parameterizations of the CKM matrix in Section 9.2.1.

We conclude that the SM has 18 parameters: three gauge couplings, two parameters of the

Higgs potential, three charged lepton masses, six quark masses and four CKM parameters. Of

these, seven parameters are the LSM parameters, discussed in Section 7.5.4, and seven (gs and the

six quark masses) were introduced in previous sections of this chapter. The four CKM parameters

are discussed in Chapter 9.
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8.5.3 “A SM” vs. “The SM”

We would like to distinguish “a SM” from “the SM”. The properties of the former depend only on

the definition of the model, i.e. its imposed symmetry and particle content. The properties of the

latter depend also on the specific values of the parameters. Thus, our discussion so far deals with

“a SM”. Once we present the values of the parameters, we can move on to discuss “the SM”. This

distinction is particularly useful when we discuss flavor physics in Chapter 13.

8.5.4 Discrete symmetries: P , C and CP

Similarly to the LSM, the SM violates C and P , as it is a chiral theory. As concerns CP , however,

the SM differs from the LSM: while CP is a good symmetry of the LSM , it is not a good symmetry

of the SM. The single phase of the CKM matrix is a source of CP violation within the SM. CP

violation in the SM is closely related to the number of fermion generations: Three is the minimal

number that exhibits a CP violating phase.

Note, however, that unlike the case of P and C, that are violated in the SM (and in any

chiral theory) already by the definition of the particle content, CP can be violated only by the

interactions. For a generic case, the SM W± interaction with the quarks violate CP . We specify

the exact conditions on the model parameters for CP to be violated in Chapter 9. Here we just

mention that it is experimentally established that CP is indeed violated in Nature.

For further reading

• A collection of original papers that set the stage for the SM can be found in Ref. [25].

• More on the issue of anomalies (discussed in the appendix) can be found, for example, in

Chapter 30 of Ref. [14].

• More on the strong CP problem (discussed in the appendix) can be found, for example, in

Ref. [26].
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Appendix

8.A Anomalies and non-perturbative effects

The issues of anomalies and non-perturbative effects are usually discussed only in advanced QFT

courses. Moreover, for almost all phenomenological implications of the SM, these issues are irrel-

evant. Thus, we mention them in this section for the sake of completeness. Readers that do not

have the required background can skip this section at first reading.

8.A.1 The strong CP parameter

The counting of parameters described above is done at the classical level. Usually, when quantizing

a system, the number of parameters is not changed. Yet, there are exceptions that are related to

non-Abelian gauge groups. It turns out that in the SM there is one more renormalizable parameter

that is unphysical at the classical level but is physical at the quantum level. This parameter is

called θQCD:

LθQCD
=
θQCD

32π2
εµνρσG

µν
a G

ρσ
a . (8.63)

This term violates P and CP . In particular, it leads to an electric dipole moment (EDM) of the

neutron dn. The experimental upper bound on the EDM of the neutron,

dn < 1.8× 10−26 e cm, (8.64)

implies that

θQCD ∼< 10−9. (8.65)

The question of why θQCD is so small is known as the strong CP problem. We do not discuss it

any further here. We just conclude that the number of independent parameters in the quantum

SM is nineteen: the eighteen mentioned above and θQCD.

8.A.2 Anomalies

For a theory to be consistent, its gauge symmetry must be anomaly-free. This issue was not raised

so far, because an anomalous theory can be “fixed” by adding appropriate degrees of freedom to
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it. Yet, it is interesting to note that QED, QCD and the SM are all free of gauge anomalies. In

contrast, the LSM is an anomalous theory and thus could not be a complete theory of Nature.

Indeed, the addition of the quark representations of the SM removes the LSM anomalies.

A point to note is that vectorial theories are anomaly free, and thus QED and QCD are. For

chiral theories, some conditions on the fermion QNs have to be satisfied. These conditions are

satisfied within each generation of the SM.

Concerning global symmetries, a theory is consistent even if its accidental symmetries are

anomalous. An anomaly in a global symmetry implies that the symmetry is violated by non-

perturbative effects. Each of the four accidental U(1) symmetries of Eq. (8.59) is anomalous.

However, one can always define three combinations, such as U(1)B−L, U(1)µ−e and U(1)τ−µ, which

are anomaly free but a fourth independent combination, such as U(1)B+L, is unavoidably anoma-

lous.

Due to the anomalies, baryon and lepton number violating processes occur non-perturbatively.

However, the non-perturbative effects obey a selection rule, ∆B = ∆L = 3n, with n =integer,

and thus do not lead to proton decay. Moreover, the non-perturbative B and L violating effects

are negligibly small in all processes we study, except in the context of cosmology, as we discuss in

Section 15.3.

The accidental symmetries of the renormalizable part of the SM Lagrangian explain the van-

ishing of neutrino masses. A Majorana mass term violates not only the anomalous L symmetry,

but also the non-anomalous B − L symmetry. Thus, the symmetry prevents neutrino mass terms

not only at tree level, but also to all orders in perturbation theory, and even — due to the non-

anomalous B−L symmetry — at the non-perturbative level. We conclude that the renormalizable

SM gives the exact prediction:

mν = 0. (8.66)
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Problems

Question 8.1: Algebra

1. Using Eq. (7.18), derive Eq. (8.14).

2. Using Eq. (8.17) and the definitions in the text, derive Eqs. (8.21), (8.25), and (8.30).

3. Using Eq. (8.34), derive Eqs. (8.35) and (8.36). Show that indeed in both cases V is the one

defined in Eq. (8.37).

4. Using Eqs. (8.34) and (8.48), derive Eq. (8.49).

5. Draw the Feynman rules for quark-W interactions making sure to include the relevant CKM

factors.

Question 8.2: The Ng generation SM

Calculate the number of physical parameters related to LYuk in a SM with Ng generations.

Separate them into masses, mixing angles and phases. In particular, show that CP is violated

only with three or more generations.

Question 8.3: The four generation SM

Consider an extension of the SM with an additional (4th) generation of quarks and leptons:

L4(1, 2)−1/2, E4(1, 1)−1, Q4(3, 2)+1/6, U4(3, 1)+2/3, D4(3, 1)−1/3. (8.67)

We denote the fourth generation mass eigenstates by t′, b′, τ ′, and ντ ′ in an obvious notation.

1. Write down the Yukawa interactions. Use matrix notation, e.g., use Li where i = 1, 2, 3, 4 to

denote the lepton doublets.
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2. What is the global symmetry of the model? What is the number of physical parameters

related to the Yukawa terms? Separate them into masses, mixing angles and phases.

3. Is CP violated in the quark sector? Is it violated in the lepton sector?

4. Assuming that mτ ′ < mt,mt′ ,mb′ and mb � mτ ′ � mW , list the possible tree level decay

processes of the τ ′-lepton. Estimate the branching ratio of each mode in terms of the elements

of the 4× 4 CKM matrix. Neglect the outgoing fermion masses.

5. Explain why the measured value of the invisible width of the Z-boson, Γinv = 499.4 ± 1.7

MeV, rules out the model.

Question 8.4: Leptoquarks and lepton flavor violation

A leptoquark (LQ) is a hypothetical bosonic field which transforms as a triplet of SU(3)C , and

consequently (with appropriate SU(2)L × U(1)Y QNs) can couple to quark–lepton pairs. In this

question, we add to the SM a single scalar field, F (3, 2)YF .

1. We require that the following couplings are allowed:

λFQE QLER F. (8.68)

Determine YF .

2. Restore the color, SU(2)L, and flavor indices in Eq. (8.68).

3. We denote the components of the F -doublet as

F =

(
Fu

Fd

)
. (8.69)

What are the electric charges of Fu and Fd?

4. The model is ruled out if 〈F 〉 6= 0. Explain why this is the case. In what follows we then

assume that 〈F 〉 = 0.

5. Based on Eq. (8.68) find the baryon and lepton numbers of F? (Recall that quarks carry

B = +1/3 and leptons carry L = +1.)

6. Starting from Eq. (8.68) write explicitly the Yukawa terms of Fu and Fd in the mass basis.

Denote the Yukawa matrices by λFu`ij and λFd`ij , respectively.

7. Find the relation between λFd`ij and λFu`ij in terms of the CKM matrix.
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8. The Higgs VEV introduces splitting between the masses of Fu and Fd. Write the mass-

squared term for F and the couplings to the Higgs field. Calculate the masses-squared of

Fu and Fd, and explicitly write the mass-squared splitting. Note that there are two ways to

contract the SU(2)L indices in the terms that involve the φ and the F fields, and that you

can also use φ̃ to have a third term. Make sure you include all of them.

From this point on, assume that the splitting between Fu and Fd is negligible.

9. In the SM, the b→ sµ+e− decay is forbidden. Explain shortly why.

10. F mediates the b→ sµ+e− decay. Draw the tree-level Feynman diagram for this decay and

estimate the amplitude.

11. Estimate the F -mediated amplitude of b→ se+µ−.

Next we obtain a lower bound on mF . To do so, we compare the rate of the F -mediated b→ sµ+e−

decay rate to that of the W -mediated b→ ce−ν̄ decay.

12. Draw the tree-level diagram for b→ ce−ν̄.

13. Estimate the ratio
Γ(b→ sµ+e−)

Γ(b→ ce−ν̄)
(8.70)

in terms of λFd`, mF , g, mW , and the CKM matrix elements. Assume that mF � mb

and neglect phase space effects. Make sure you write explicitly the flavor structure of the

couplings.

14. We now assume that λFQEij ∼ g for all i and j. Using the experimental data

BR(b→ ce−ν̄) ∼ 10−1, BR(b→ sµ+e−) ∼< 10−5, (8.71)

and |Vcb| ≈ 0.04, estimate a lower bound on mF .

We conclude that the mass of such a hypothetical LQ cannot be at the weak scale, that is, close

to the W mass, if its Yukawa couplings are of order the weak couplings.

Question 8.5: Leptoquarks and proton decay

We continue to study hypothetical leptoquarks, but here we encounter LQ fields with much

stronger lower bounds on their mass scale than the one we consider in Question 8.4. Specifically,

we add to the SM a single scalar field, R(3, 1)YR .

148



1. We require that the following couplings are allowed:

λRDEij (dR)i(e
c
R)jR. (8.72)

(Recall that ψcR is a left-handed field with opposite charges compared to ψR. In particular,

ecR is a left handed field which transforms as (1, 1)+1 and carries lepton number of −1.)

Determine YR.

2. R couples also to pairs of quarks. For example, we can have

λRUUij (ucR)i(uR)jR. (8.73)

Show that this term is indeed a singlet under the SM gauge group. Recall that ucR is a left

handed field which transforms as (3̄, 1)−2/3. As for SU(3) algebra, recall that 3 × 3 = 6 + 3̄

and 3× 3̄ = 1 + 8.

3. Explain why λRUUij has to be antisymmetric with respect to i and j.

4. Adding R to the SM breaks both baryon and lepton numbers. That is, one cannot assign

lepton and baryon numbers to R such that B and L are respected by the couplings of both

Eq. (8.72) and Eq. (8.73). Show that this is indeed the case.

5. One combination of B and L is still conserved. Find this combination and determine the

charge of R under it.

6. R can mediate proton decay. Draw a Feynman diagram for the decay

p+ → e+π0, (8.74)

and give a rough estimate of the amplitude in terms of the couplings and mR. Write explicitly

the flavor dependence of the couplings. You can assume that the proton is made out of uud,

the neutral pion is made of dd̄, and mR � 1 GeV.

7. Experiments put a lower bound on the proton lifetime, τp ∼> 1033 years. Taking all the

couplings of R to be of order one, estimate the lower bound on mR. Express your result

in units of GeV. Do not worry about factors of order one. Recall that h̄ = 1 = 6.58 ×
10−22 MeV s.

We learn that if R exists, either its mass is very large, or its couplings are very small.
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Chapter 9

Flavor Physics

The appearance of the CKM matrix in the interactions of the W -boson with quarks introduces two

new qualitative ingredients in the SM as compared to the LSM: Flavor changing interactions and

CP violation. Thus, the physics of the CKM matrix deserves a more detailed discussion, which is

provided in this chapter.

9.1 Introduction

The term “flavors” is used to describe several mass eigenstates with the same quantum numbers.

Within the SM, each of the four different types of fermions (namely different SU(3)C × U(1)EM

representations) comes in three flavors:

• Up-type quarks in the (3)+2/3 representation: u, c, t;

• Down-type quarks in the (3)−1/3 representation: d, s, b;

• Charged leptons in the (1)−1 representation: e, µ, τ ;

• Neutrinos in the (1)0 representation: ν1, ν2, ν3.

In this section we discuss only quark flavor physics. (We discuss lepton flavor physics in Chap-

ter 14.)

The term “flavor physics” refers to interactions that distinguish between flavors. Within the

SM, these are the W -mediated weak interactions and the Yukawa interactions. The term “flavor

parameters” refers to parameters that carry flavor indices. Within the quark sector of the SM,

there are ten flavor parameters: the six quark masses and the four CKM parameters. The term

“flavor-universal” refers to interactions with couplings (or to parameters) that are proportional to

a unit matrix in flavor space. Within the SM, the strong, electromagnetic, and Z-mediated weak

interactions are flavor-universal. The term “flavor-diagonal” refers to interactions with couplings

(or to parameters) that are diagonal, but not necessarily universal, in flavor space (i.e. in the mass
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basis). Within the SM, the Yukawa interactions are flavor-diagonal. Note that all flavor-universal

interactions are also flavor-diagonal.

The term “flavor-changing” refers to processes where the initial and final flavor-numbers (that

is, the number of particles of a certain flavor minus the number of anti-particles of the same flavor)

are different. A central role in testing the flavor sector of the SM is played by flavor changing

processes. In “flavor changing charged current” (FCCC) processes, both up-type and down-type

flavors are involved. Examples of FCCC decays include s → uµ−ν̄µ transition, and b → cc̄s

transition. Within the SM, these processes are mediated by the W -bosons and occur at tree level.

In “flavor changing neutral current” (FCNC) processes, either up-type or down-type flavors but

not both are involved. Examples of FCNC decays include s → dµ+µ− transition, and b → ss̄s

transition.

In Nature, FCNC processes are strongly suppressed compared to FCCC processes. This situa-

tion is well accounted for in the SM, as discussed in detail in Section 9.4 and Chapter 13.

9.2 The CKM Matrix

Among the SM interactions, the W -mediated interactions are the only ones that are not diagonal

in the mass basis. Consequently, all flavor changing processes depend on the CKM parameters.

The fact that there are only four independent CKM parameters, while the number of measured

flavor changing processes is much larger, allows for stringent tests of the CKM mechanism for

flavor changing processes.

9.2.1 The standard parametrization

The CKM matrix is defined in Eq. (8.37). Its explicit form is not unique. First, there is freedom

in defining V in that we can permute between the various generations. This freedom is fixed

by ordering the up quarks and the down quarks by their masses, i.e. (u1, u2, u3) → (u, c, t) and

(d1, d2, d3)→ (d, s, b). We then write the W interaction of Eq. (8.49) as

LW,q = − g√
2

(uL cL tL) V W/ +


dL

sL

bL

+ h.c.. (9.1)

The elements of V are therefore written as follows:

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 . (9.2)

Second, we can redefine the phases of the quark fields in such a way that the masses remain

real but the phase structure of the CKM matrix changes. This freedom can be used to choose an
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explicit parametrization that depends on three real and one imaginary parameters. For example,

the standard parametrization, used by the PDG, is given by

V =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (9.3)

where cij ≡ cos θij and sij ≡ sin θij. The three θij are the three mixing angles while δ is the

Kobayashi–Maskawa phase. With the fixed mass ordering explained above, we have θij ∈ {0, π/2}
and δ ∈ {0, 2π}. The mixing angles θij are often referred to as the real parameters, and δ as the

imaginary one, or the CP violating one.

The fitted values of the four parameters are given by

sin θ12 = 0.22650± 0.00048,

sin θ23 = 0.04053+0.00083
−0.00061,

sin θ13 = 0.00361+0.00011
−0.00009,

δ = 1.196+0.045
−0.043. (9.4)

This translates into the following ranges for the magnitude of the CKM elements:

|V | =


0.97401± 0.00011 0.22650± 0.00048 0.00361± 0.00010

0.22636± 0.00048 0.97320± 0.00011 0.04053+0.00083
−0.00061

0.00854+0.00023
−0.00016 0.03978+0.00082

−0.00060 0.999172+0.000024
−0.000035

 . (9.5)

We discuss some of the ways in which these entries are determined below.

9.2.2 The Wolfenstein parametrization

Eq. (9.5) implies that the CKM matrix is numerically close to a unit matrix, with small off-diagonal

terms that obey the following hierarchy:

|Vub|, |Vtd| � |Vcb|, |Vts| � |Vus|, |Vcd|. (9.6)

This situation inspires an approximate parametrization, known as the Wolfenstein parametrization.

The Wolfenstein parameters consist of the three real parameters λ, A and ρ, and the imaginary

(CP violating) parameter iη. The expansion is in the small parameter,

λ = |Vus| ≈ 0.23. (9.7)

The order of magnitude of each element can be read from the power of λ. To O(λ3), the CKM

matrix is written in terms of the Wolfenstein parameters as follows:

V =


1− 1

2
λ2 λ Aλ3(ρ− iη)

−λ 1− 1
2
λ2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 . (9.8)
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The relations between the standard parameters and the Wolfenstein parameters are given by

λ = s12, Aλ2 = s23, Aλ3(ρ− iη) = s13e
−iδ. (9.9)

The fitted values of the four parameters can be read from Eq. (9.4)

ρ = 0.141+0.016
−0.017,

η = 0.357± 0.011,

A = 0.790+0.017
−0.012,

λ = 0.22650± 0.00048. (9.10)

In Section 8.5.3 we distinguished the SM from a SM. The experimental fact that the CKM

matrix is close to a unit matrix is one of the ingredients of the SM that are far from a generic SM.

The hierarchy in the quark masses constitutes another such ingredient.

9.2.3 CP violation

Various parameterizations differ in the way that the freedom of phase rotation is used to leave a

single phase in V . One can define, however, a CP violating quantity in V that is independent of

the parametrization. This quantity, the Jarlskog invariant, JCKM, is defined through

Im
(
VijVklV

∗
ilV
∗
kj

)
= JCKM

3∑
m,n=1

εikmεjln, (i, j, k, l = 1, 2, 3). (9.11)

(There is no sum over the i, j, k, l indices.) In terms of the explicit parameterizations given in

Eqs. (9.3) and (9.8), the Jarlskog invariant is given by

JCKM = c12c23c
2
13s12s23s13 sin δ ≈ λ6A2η. (9.12)

Note that |JCKM| is bounded from above,

|JCKM| ≤
1

6
√

3
∼ 0.1. (9.13)

The current best fit for JCKM is given by

JCKM = (3.00+0.15
−0.09)× 10−5, (9.14)

which is much smaller than the upper bound of Eq. (9.13). More significantly, the experimental

value is much smaller than the value it would have if all relevant parameters were O(1). This is

one more demonstration that, within the flavor sector, the SM has non-generic features.

While a generic SM violates CP , specific realizations of it could still conserve CP . In order

that the SM violates CP , the following necessary and sufficient condition must be fulfilled:

XCP ≡ ∆m2
tc∆m

2
tu∆m

2
cu∆m

2
bs∆m

2
bd∆m

2
sdJCKM 6= 0, (9.15)

where ∆m2
ij ≡ m2

i −m2
j . Eq. (9.15) puts the following requirements on the SM in order that CP

is violated:
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1. Within each quark sector, there should be no mass degeneracy;

2. The Jarlskog invariant does not vanish.

These conditions can also be written as a single requirement on the quark mass matrices in any

interaction basis:

XCP = Im
{

det
[
MdM

†
d ,MuM

†
u

]}
6= 0 ⇔ CP violation. (9.16)

This is a convention independent condition.

9.2.4 Unitarity triangles

A very useful concept with regard to CP violation is that of the unitarity triangles. The unitarity

of the CKM matrix leads to various relations among its elements. Of particular interest are the

six relations:

∑
i=u,c,t

ViqV
∗
iq′ = 0 (qq′ = ds, db, sb),

∑
i=d,s,b

VqiV
∗
q′i = 0 (qq′ = uc, ut, ct). (9.17)

Each of these relations requires the sum of three complex quantities to vanish. Therefore, they can

be geometrically represented in the complex plane as triangles and are called “unitarity triangles.”

It is a feature of the CKM matrix that all six unitarity triangles have equal areas. Moreover, the

area of each unitarity triangle equals |JCKM|/2 while the sign of JCKM gives the direction of the

complex vectors around the triangles.

The triangle which corresponds to the relation

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0, (9.18)

has its three sides of roughly the same length, of O(λ3) — see Eq. (9.8). Furthermore, both the

lengths of its sides and its angles are experimentally accessible. For these reasons, the term “the

unitarity triangle” is reserved for Eq. (9.18).

We further define the rescaled unitarity triangle. It is derived from Eq. (9.18) by choosing a

phase convention such that (VcdV
∗
cb) is real and dividing the lengths of all sides by |VcdV ∗cb|. The

rescaled unitarity triangle is similar to the unitarity triangle. Two vertices of the rescaled unitarity

triangle are fixed at (0,0) and (1,0). The coordinates of the remaining vertex correspond to the

Wolfenstein parameters (ρ, η). The rescaled unitarity triangle is shown in Fig. 9.1. The lengths of

the two complex sides are

Ru ≡
∣∣∣∣VudVubVcdVcb

∣∣∣∣ =
√
ρ2 + η2, Rt ≡

∣∣∣∣VtdVtbVcdVcb

∣∣∣∣ =
√

(1− ρ)2 + η2. (9.19)
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VudV
∗
ub

VcdV ∗cb

VtdV
∗
tb

VcdV ∗cb

(ρ, η)

α

βγ

(0, 0) (1, 0)

Figure 9.1: The rescaled unitarity triangle.

The three angles of the unitarity triangle are defined as follows:

α ≡ arg

[
− VtdV

∗
tb

VudV ∗ub

]
, β ≡ arg

[
−VcdV

∗
cb

VtdV ∗tb

]
, γ ≡ arg

[
−VudV

∗
ub

VcdV ∗cb

]
. (9.20)

They are physical quantities and can be independently measured, as we discuss below. Another

commonly used notation is φ1 = β, φ2 = α, and φ3 = γ. Note that in the standard parametrization

γ = δ.

9.3 Tree level determination of the CKM parameters

In this section, we describe the determination of CKM parameters from tree level processes. There

is an inherent difficulty in determining the CKM parameters: While the SM Lagrangian has the

quarks as its degrees of freedom, in Nature they appear only within hadrons. There are various

tools to overcome this difficulty, some of which are discussed in Chapter 10.

At tree level, the W -mediated interactions lead to only FCCC processes. These suffice, however,

to over-constrain the CKM parameters. The most useful processes are semileptonic ones. We

discuss in more detail some of these processes in Chapter 10 (and in Question 9.3). Here we give

a short summary of the results:

• Processes related to d→ u`−ν̄ transitions give |Vud| = 0.97370± 0.00014.

• Processes related to s→ u`−ν̄ transitions give |Vus| = 0.2245± 0.0008.

• Processes related to c→ d`+ν or to νµ + d→ c+ µ− transitions give |Vcd| = 0.221± 0.004.

• Processes related to c→ s`+ν or to cs̄→ `+ν transitions give |Vcs| = 0.987± 0.011.

• Processes related to b→ c`−ν̄ transitions give |Vcb| = 0.0410± 0.0014.
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Figure 9.2: Allowed region in the (ρ, η) plane from SM tree level processes (taken from Ref. [27]).

• Processes related to b→ u`−ν̄ transitions give |Vub| = 0.00382± 0.00024.

There are two additional classes of tree level processes that depend on the CKM parameters:

• Processes related to single top production in hadron colliders give |Vtb| = 1.013± 0.030.

• Processes related to b → scū and b → suc̄ transitions give γ = (72 ± 5)o. (See Subsec-

tion 13.C.1 for details.)

These eight distinct classes of processes depend on only four CKM parameters. The system is thus

over-constrained and tests the SM.

The values of λ and A can be straightforwardly extracted from the measurements of |Vus| and

|Vcb|, respectively:

λ = 0.2245± 0.0008, A = 0.837± 0.016. (9.21)

The values of ρ and η are extracted mainly from combining the measurements of |Vub| and γ, as

shown in Fig. 9.2:

ρ = 0.13± 0.03, η = 0.38± 0.02. (9.22)

The fact that the ranges of the four parameters in Eqs. (9.21) and (9.22) are consistent with all

the measurements means that the SM passes the test successfully.

Note that the error bars on the determination here, Eqs. (9.21) and (9.22), is larger than the

one in Eq. (9.10). The reason is that here we only consider tree level processes.

9.4 No FCNC at tree level

Historically, the strong suppression of FCNC played a very important role in constructing the

SM. At present it continues to play a significant role in testing the SM and in searching for new

physics. In this section we explain why, within the SM, there are no tree level contributions to
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FCNC processes. Since there is no symmetry that forbids FCNC in the quark sector, there are

loop contributions to these processes. These are discussed in Chapter 13.

The W -boson cannot mediate FCNC processes at tree level, since it couples to up-down pairs,

or to neutrino-charged lepton pairs. Only neutral bosons could mediate FCNC at tree level. The

SM has four neutral bosons: the gluon, the photon, the Z-boson and the Higgs-boson. As derived

explicitly in Chapter 8, within the SM all of them couple diagonally in the mass basis, and therefore

cannot mediate FCNC at tree level. Here we explain the qualitative features of the SM that lead

to this situation.

9.4.1 Photon- and gluon-mediated FCNC

As concerns the massless gauge bosons, the gluon and the photon, their couplings are flavor-

universal and, in particular, flavor-diagonal. This is guaranteed by gauge invariance. The uni-

versality of the kinetic terms in the canonical basis requires universality of the gauge couplings

related to the unbroken symmetries. Hence neither the gluon nor the photon can mediate flavor

changing processes at tree level. Since we require that extensions of the SM respect the local

SU(3)C × U(1)EM symmetry, this result holds in all such extensions.

9.4.2 Z-mediated FCNC

The Z-boson, similarly to the W -boson, corresponds to a broken gauge symmetry (as manifest in

the fact that it is massive). Hence, there is no fundamental symmetry principle that forbids flavor

changing Z couplings. Yet, as we explicitly find in Section 8.4.3, in the SM the Z couplings are

universal and diagonal.

The key point is the following. The Z couplings are proportional to T3 − Q sin2 θW . A sector

of mass eigenstates is characterized by spin, SU(3)C representation and U(1)EM charge. While Q

must be the same for all the flavors in a given sector, there are two possibilities regarding T3:

1. All mass eigenstates in this sector originate from interaction eigenstates in the same SU(2)L×
U(1)Y representation, and thus have the same T3 and Y .

2. The mass eigenstates in this sector mix interaction eigenstates with the same Q = T3 + Y

but different SU(2)L × U(1)Y representations and, in particular, different T3 and Y .

Let us examine the Z couplings in the interaction and mass bases for several flavors of (hypothet-

ical) fermions in the same SU(3)C × U(1)EM representation:

1. In the first class, the Z couplings in the fermion interaction basis are universal, namely

they are proportional to the unit matrix (times T3 − Q sin2 θW of the relevant interaction

eigenstates). The rotation to the mass basis maintains the universality:

VfM × 1× V †fM = 1, (f = u, d;M = L,R). (9.23)
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2. In the second class, the Z couplings in the fermion interaction basis are diagonal but not

universal. Each diagonal entry is proportional to the relevant T3 − Q sin2 θW . Generally in

this case, the rotation to the mass basis does not maintain the diagonality:

VfM × Ĝdiagonal × V †fM = Gnon−diagonal, (f = u, d;M = L,R). (9.24)

Question 9.6 provides a specific example of a model of this type.

The SM fermions belong to the first class: All fermion mass eigenstates with a given chirality

and in a given SU(3)C × U(1)EM representation come from the same SU(3)C × SU(2)L × U(1)Y

representation. For example, all the left-handed up quark mass eigenstates, which are in the

(3)+2/3 representation, come from interaction eigenstates in the (3, 2)+1/6 representation. This is

the reason that the SM predicts universal Z couplings to fermions. If, for example, Nature had

also left-handed quarks in the (3, 1)+2/3 representation, then the Z couplings in the left-handed

up sector would be non-universal and the Z-boson could mediate FCNC, such as t → cZ decay,

at tree level.

9.4.3 Higgs-mediated FCNC

The Yukawa couplings of the Higgs boson are not universal. In fact, in the interaction basis, they

are given by completely general 3× 3 matrices. Yet, as explained in Section 8.4.2, in the fermion

mass basis they are diagonal. The reason is that the fermion mass matrix is proportional to the

corresponding Yukawa matrix and, consequently, the mass matrix and the Yukawa matrix are

simultaneously diagonalized. The general condition for the absence of Higgs-mediated FCNC at

tree level is that the only source of masses for any fermion type is a single Higgs field.

The relevant features of the SM are the following:

1. All the SM fermions are chiral, and therefore there are no bare mass terms.

2. The scalar sector has a single Higgs doublet.

In contrast, either of the following possible extensions would lead to flavor changing Higgs cou-

plings:

1. There are quarks and/or leptons in vector-like representations, and thus there are bare mass

terms.

2. There is more than one SU(2)L-doublet scalar that couples to a specific type of fermions.

Question 9.6 provides an example of the first case. Question 9.9 provides an example of the second

case.

We conclude that, within the SM, all FCNC processes are loop suppressed. However, in exten-

sions of the SM, FCNC can appear at the tree level, mediated by the Z-boson, the Higgs boson,

or by new massive bosons.
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For further reading

There are many useful reviews on the CKM matrix and flavor physics. See, for example, Refs. [28,

29, 30] and the PDG review of the CKM matrix [1].
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Problems

Question 9.1: Algebra

1. Using Eqs. (9.9) and (9.3) and working to O(λ3), derive Eq. (9.8).

2. Using the definition of JCKM in Eq. (9.11), show that

JCKM = Im (VudVcsV
∗
usV

∗
cd) . (9.25)

3. Using Eq. (9.25) and the standard parametrization, Eq. (9.3), show that [see Eq. (9.12)]

JCKM = c12c23c
2
13s12s23s13 sin δ. (9.26)

4. Using Eq. (9.25) and the Wolfenstein parametrization, Eq. (9.8), show that [see Eq. (9.12)]

JCKM ≈ λ6A2η. (9.27)

5. Using Eq. (9.26), show that [see Eq. (9.13)]

|JCKM| ≤
1

6
√

3
. (9.28)

Question 9.2: The bs unitarity triangle

In the main text, we discuss the UT, that is the bd triangle, Eq. (9.18). We mention that each

of its sides is of O(λ3), and each of its angles is of O(1). Here we discuss another unitarity triangle,

the bs triangle.

1. Write the equation for the bs UT [the equivalent of Eq. (9.18)].

2. Draw the rescaled bs UT and label the angles as αs, βs and γs, in a similar way to our

discussion of the rescaled bd triangle [the equivalent of fig. 9.1].
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3. Estimate, in terms of powers of λ, the size of each side and each angle of the bs UT.

4. Eq. (9.12) tells us that JCKM = O(λ6). Verify that the area of the bs UT is also of the same

order.

5. Using the standard parametrization, show explicitly that the bs and bd triangles have the

same area.

Question 9.3: Semileptonic decays and the CKM matrix

A semileptonic decay is one where the final state has both hadrons and leptons. Here we

consider semileptonic b decays.

1. Draw the tree-level diagram for b→ ueν̄ and estimate the size of the amplitude.

2. Estimate the ratio
Γ(b→ ueν̄)

Γ(b→ ceν̄)
(9.29)

as a function of CKM matrix elements. Neglect me and use

mc

mb

≈ 0.3,
mu

mb

≈ 0. (9.30)

The phase space function for a three-body decay with one massive and two massless final

particles is given by

f(xf ) = 1− 8xf + 8x3
f − x4

f − 12x2
f log xf , xf ≡ (mf/mb)

2. (9.31)

3. The experimental value is
Γ(b→ u`ν̄)

Γ(b→ c`ν̄)
≈ 2× 10−2 . (9.32)

Estimate the relevant ratio of CKM matrix elements. Comment on the agreement between

your estimate and the best fit value for that ratio.

Question 9.4: τ decays to hadrons

The tau-lepton decays either leptonically or semileptonically.

1. List the possible tree level decay processes of the tau-lepton in terms of leptons and quarks.

(Note that, while mc < mτ , what is relevant to this question is the mass of the lightest

hadron containing a c-quark, the D meson, and mD > mτ .)
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2. In terms of CKM elements, estimate the branching ratio of each mode. Remember to include

color factors.

3. Estimate the SM prediction for BR(τ− → e−ντ ν̄e). Compare your prediction to the data and

discuss any disagreement between the two.

Question 9.5: W decays

In this question we study decays of the W -boson. Neglect all fermion masses, except mt. At

tree level,

Γµ ≡ Γ(W+ → µ+νµ) =
g2mW

48π
=
GFm

3
W

6
√

2π
≈ 227 MeV. (9.33)

1. What is the SM prediction for Γ(W+ → e+νe) and Γ(W+ → τ+ντ )?

2. Write down all the hadronic decays of the W -boson in terms of quarks, that is, W → qq̄′, and

estimate their widths in terms of Γµ, the CKM elements and the number of colors, Nc = 3.

3. Estimate ΓW , the total width of the W . Write your answer in GeV, to a precision of two

decimal points.

4. Experimentally ΓW = 2.12 ± 0.04 GeV. Explain the difference between your result and the

experimental measurement.

Question 9.6: Exotic light quarks

In this question, we discuss a model of historical importance. Before the charm quark was

discovered, only three quarks were known: the up, down, and strange quarks. One of the reasons

to predict the existence of a fourth quark, the charm quark, was that a three quark model predicts

large rates for FCNC, in contradiction to experimental bounds.

Consider the following model:

(i) The symmetry is a local

SU(3)C × SU(2)L × U(1)Y . (9.34)

(ii) The quark fields are

QL(3, 2)+1/6, SL(3, 1)−1/3, UR(3, 1)+2/3, DR(3, 1)−1/3, SR(3, 1)−1/3. (9.35)

The lepton fields are

LLi(1, 2)−1/2, ERi(1, 1)−1, i = 1, 2. (9.36)
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(iii) There is a single scalar field,

φ(1, 2)+1/2 (9.37)

with 〈φ0〉 = v/
√

2.

We denote the components of the SU(2)L-doublets as follows: QL = (UL, DL)T , LL1 = (νeL, eL)T ,

LL2 = (νµL, µL)T , and φ = (φ+, φ0)T .

1. Consider the interaction basis of the quarks. Write down:

(a) The covariant derivative for each of the quark fields.

(b) The charged current weak interactions.

(c) The Yukawa interactions of φ0.

(d) The bare mass terms.

(e) The quark mass matrices, taking into account the SSB.

2. How many physical flavor parameters are there in the quark sector of this model? Separate

the parameters into masses, mixing angles and phases.

3. Are there photon- or gluon-mediated FCNCs? Base your answer on symmetry-related argu-

ments.

4. Write down the Higgs couplings to the quarks in the mass basis. Are there Higgs-mediated

FCNC? Give a separate answer to each set of fermions with the same SU(3)C×U(1)EM QNs.

5. Write down the gauge interactions of the quark mass eigenstates with the W -boson.

6. In the SM, the rate of s̄ → ūµ+νµ is used to determine |Vus| ≈ 0.2245. Use this result to

obtain the value for the mixing angle in LW .

7. Write down the gauge interactions of the quarks with the Z-boson in both the interaction

basis and the mass basis. Are there tree level Z-mediated FCNC? Answer separately for

each set of fermions with the same chirality and QNs.

8. Consider the FCNC process s̄ → d̄µ+µ−. Explain why the Z-mediated contribution is

quantitatively more significant than the h-mediated one.

9. We define

Rq ≡
Γ(s̄→ d̄µ+µ−)

Γ(s̄→ ūµ+νµ)
. (9.38)

Calculate Rq as a function of the model parameters, keeping only the leading effects.
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10. Historically, the model was tested in kaon decays. While we did not yet discuss mesons, all

you need to know for this question is that Rq ∼ RH , where

RH ≡
Γ(KL → µ+µ−)

Γ(K+ → µ+ν)
. (9.39)

Find in the PDG the experimental value of RH and explain why this result rules out the

model. (While the data on RH before the charm quark was discovered were not as good as

they are today, they were good enough to exclude the model even then.)

The fact that, once a charm quark is added to the model, the tree level value is RH = 0 provided

the motivation to suggest the existence of the charm quark.

Question 9.7: Even more exotic light quarks

Repeat Question 9.6, item 1-5 and 7, for a model where we assign UR and DR into a doublet

of SU(2)L that we denote as QR.

Question 9.8: The SM+χ

This is a generalization of the model presented in Question 9.6. We add to the SM a pair of

quarks fields χL(3, 1)−1/3 and χR(3, 1)−1/3. The χR is distinguished from the three DRi by defining

it to be the only RH field that has a Dirac mass term with χL: mχχχLχR. We assume that

mχχ � v.

1. Write down for the quarks in the interaction basis:

(a) The covariant derivative for each of the quark fields.

(b) The Yukawa interactions.

(c) The bare mass terms.

(d) The quark mass matrices, taking into account the SSB.

2. Write down the gauge interactions of the quarks with the Z- and W -bosons in the interaction

basis.

3. Write down the gauge interactions of the quarks with the Z- and W -bosons in the mass

basis. Write the W couplings using a suitably defined 3× 4 mixing matrix V̂ , and write the

Z couplings using, for LH down quarks, a suitably defined 4× 4 matrix Û .

4. Argue that, in general, there are off-diagonal Z couplings to the down type quarks.

5. The bd UT is not a triangle in this model. Write the generalization of Eq. (9.18) and plot it.

What is the geometrical shape of it?

164



In Question 13.3 you are asked to derive bounds on the parameters of this model.

Question 9.9: FCNC in the 2HDM

Consider the two Higgs doublet model (2HDM) extension of the SM. In Question 7.9 we

discussed the scalar sector. Here, we add the quark sector to the discussion. The model is defined

as follows:

(i) The symmetry is

SU(3)C × SU(2)L × U(1)Y . (9.40)

(ii) There are three fermion generations, each consisting of three different representations:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, i = 1, 2, 3. (9.41)

(iii) There are two scalar multiplets:

φ1(2)+1/2, φ2(2)+1/2. (9.42)

We make two simplifying assumptions with regard to the scalar potential:

I: CP conservation. Thus, all couplings are real.

II: The Higgs potential is invariant under the Z2 symmetry defined in Question 7.9. Thus, we

can use the results of Question 7.9 regarding the scalar spectrum.

These assumptions simplify the computations without affecting the main results.

1. Write down (in matrix notation) the most general LYuk for the quarks.

2. Find the masses of the quarks in term of the Yukawa couplings and of the VEVs v1 and v2.

3. Find the couplings of the W - and Z-bosons to the quark mass eigenstates.

4. Find the couplings of h, H, and A to quarks in the mass basis for the quarks, in terms of the

Yukawa couplings, and the angles α and β defined in Question 7.9. Show that the couplings

are generally non-diagonal. This implies that the 2HDM has tree-level FCNC.

5. Impose the Z2 symmetry defined in Question 7.9, with QL and DR even and UR odd under

the symmetry. Show that there are no Higgs mediated FCNCs.
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Question 9.10: b and c lifetimes

In this question we study decay rates and the lifetimes of the b and c quarks. We only consider

tree level decays. We denote by Q the b or c quark and by q the u, d and s quarks. We also

approximate in the phase space factors mq = me = mµ = 0.

The phase space factor for three-body decay with one massless particle is given by

f(x1, x2) =
√
λ12

[
1− 7(x1 + x2)− 7(x2

1 + x2
2) + x3

1 + x3
2 + x1x2(12− 7(x1 + x2))

]
+ 12

[
x2

1 ln
(1 + x1 − x2 +

√
λ12)2

4x1

+ x2
2 ln

(1 + x2 − x1 +
√
λ12)2

4x2

]

− 12x2
1x

2
2 ln

(1− x2 − x1 +
√
λ12)2

4x2x1

, (9.43)

with

xi ≡
m2
i

m2
Q

, λ12 = 1− 2(x1 + x2) + (x1 − x2)2 . (9.44)

For two massless particles, Eq. (9.43) reduces to the phase space factor in Eq. (9.31).

1. Consider semi-leptonic decays, Q → q`ν̄. Draw the tree-level diagram and estimate the

amplitude.

2. The decay width can be written as

ΓQ = Cmn
Q|Vij|2f(xq, x`). (9.45)

such that C is a constant, Vij is the relevant CKM matrix element, xf ≡ m2
f/m

2
Q and f is

a dimensionless phase space factor (given for two massless and one massive final particles in

Eq. (7.85)), with f(0, 0) = 1. Find n.

3. Draw the diagram of the Q→ qiq̄jqk decay, and modify Eq. (9.45) to this case.

4. List the leading (in the CKM parameter λ) decay modes for the c and b quarks.

5. Estimate the BRs of the semi-leptonic modes

b→ ceν, c→ seν. (9.46)

For the rough estimate in this question, use the masses from Eq. (8.33): mc = 1.27 GeV,

mb = 4.18 GeV, mτ = 1.79 GeV. For b decays, negelecting the electron, muon, up, down

and strange quark masses, the relevant phase space factors are

f(xc, xτ ) ≈ 0.06, f(xc, xc) ≈ 0.18, f(xc, 0) ≈ 0.51, f(0, 0) = 1. (9.47)
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For c decays, neglecting the electron, up and down quark masses, the relevant phase space

factors are

f(xs, 0) ≈ 0.96, f(xs, xµ) ≈ 0.91. (9.48)

6. Using the value of the CKM elements from Eq. (9.5), estimate the ratio of the b and c

lifetimes, τb/τc.

7. Compare your estimates for the lifetimes and for the semi-leptonic BRs to the PDG values.

To do so, assume that the b and c lifetimes and decay modes are given by those of the corre-

sponding mesons, B+ and D+. (We discuss the validity of this assumption in Chapter 10.)
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Chapter 10

QCD at the IR

In Chapter 5 we presented QCD in the high energy (UV) regime, where the theory is perturbative.

We mentioned that in the low energy (IR) regime, QCD is strongly coupled. Consequently, on the

theoretical side, there is no perturbative expansion. On the experimental side, we do not observe

free quarks and gluons, but rather bound states which we call hadrons. (Bosonic hadrons are called

mesons and fermionic hadrons are called baryons.) In this chapter we discuss low energy aspects

of QCD and relate it to the theory that we define at the UV.

10.1 Introduction

In order to understand the implications of QCD at the IR, and to connect experiments to theory,

we need to find ways to overcome the absence of a perturbative expansion. There are indeed ways

that aim to solve QCD at the IR from first principles. We mention here two examples. First, lattice

QCD is a non-perturbative approach, based on discretizing spacetime. As of now, while providing

relevant and useful results, lattice QCD is still not at the level of fully solving QCD. Second, chiral

perturbation theory is an effective theory, with hadrons as its DoF, which is applicable at very low

energies, E � ΛQCD. It provides a systematic expansion in powers of E/ΛQCD. We do not discuss

these approaches any further.

One may use a less rigorous (but still useful) approach, by employing a model. Indeed, in

the next section we introduce the quark model, but let us first comment on our use of the terms

theory vs. model. A theory is based on first principle axioms that are assumed to be exact. Any

approximations made should be controlled, that is, there is an expansion in a small parameter.

(From this point of view, the SM is in fact a theory.) For a model, on the other hand, the starting

point is a set of assumptions that are known not to be exact. It is impossible to quantify the errors

on the predictions of a model. A familiar example is that of the Bohr model for the hydrogen atom

compared to the Schrödinger equation, where the latter is an output of a well defined theory of

quantum mechanics.
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10.2 Hadronic properties

Hadrons are formed due to the confining nature of QCD and therefore cannot be treated pertur-

batively within QCD. In this section, we discuss some general properties of hadrons and define the

quark model that enables us to understand more of the dynamics.

10.2.1 General properties

There are some properties of hadrons that can be determined independently of our ability to de-

scribe their internal structure. What is measured directly by experiments is obviously generic. The

measurable properties are the hadron mass, lifetime, spin, and electric charge. Other properties

are not exact, but still generic. We distinguish three classes of hadronic quantum numbers:

• Exact QNs:

– The electromagnetic charge, Q.

– The spin, J .

– Baryon number, B.

• QNs that are respected by QCD and QED but broken by the weak interaction:

– The charges under the global [U(1)]6 flavor symmetry of the QCD and QED Lagrangian,

discussed in Section 5.8, often referred to as flavor QNs.

– Parity, P .

– For neutral mesons, charge conjugation, C.

• QNs under approximate symmetries of QCD:

– SU(2)-isospin and SU(3)-flavor, discussed in Section 10.4.1.

– Heavy quark symmetry, discussed in Section 10.4.2.

10.2.2 The quark model

The basic idea behind the quark model is that hadrons are color-singlet combinations of quarks

and anti-quarks. In particular, we assume that the quantum numbers of the hadrons are dictated

by the quantum numbers of the constituent quarks and antiquarks. This is clearly a model, as it

assumes a minimum quark content of the hadron, while the structure of the hadron is unavoidably

more complex. Yet, the model works surprisingly well and provides many insights into the IR

properties of QCD. It is difficult, however, to estimate the related uncertainties.

We first use the quark model to understand the spectroscopy of the hadrons. The fact that

QCD is confining results in an infinite spectrum of bound states. Their names and Quantum
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Numbers (QNs) are discussed in Appendix 10.A. In the quark model, the simplest hadrons belong

to one of three types:

• Mesons, which have quark-antiquark constituents, M = qq̄

• Baryons, which have three quark constituents, B = qqq;

• Antibaryons, which have three antiquark constituents, B = q̄q̄q̄.

The lightest mesons are the pions:

π+ = ud̄, π0 =
1√
2

(uū− dd̄), π− = dū. (10.1)

The lightest baryons are the proton and the neutron:

p = uud, n = udd. (10.2)

Mesons carry no baryon number, baryons carry baryon number that we normalize to B = +1, and

anti-baryons carry baryon number B = −1. Note that the letter B is used to denote a baryon

and baryon number (as well as mesons that contain a b quark). Which of these options is meant

should be clear from the context.

Some of the properties of the hadrons described in the previous subsection can be interpreted

using the quark model. For example, the total spin of a meson J can be interpreted as a combi-

nation of the spins of the quark and the anti-quark, S (that can be zero or one), and the orbital

angular momentum, L.

As an example of the use of the quark model, consider π+, the charged pion, and ρ+, the

charged rho-meson. The pion is a pseudo-scalar (JP = 0−) with mass of about 140 MeV, while

the ρ-meson is a vector (JP = 1−) with a mass of about 770 MeV. Within the quark model we

interpret both as ud̄ states. They are the ground state (n = 1 and L = 0) and are distinguished

by their different combination of spins. The pion is the S = 0 combination, while the rho-meson is

the S = 1 one. Using J = S + L and P = − (−1)L (fermion pair exchange carries an extra minus

sign), we see how the spin and parity of a meson come out from the properties of the constituent

quarks.

One should be comfortable thinking about the plethora of mesons in analogy to excited hy-

drogen atoms in quantum mechanics. The main difference is that for the hydrogen atom we can

analytically obtain the eigenvalues from the Schrödinger equation, while in QCD, since we do not

know the potential, we cannot calculate the spectrum. Yet, the basic formalism is similar in that

it is a two-body bound state system.

The quark model contains states that involve more than two or three quarks and anti-quarks,

that are referred to as exotics. These include tetraquarks (qq̄qq̄) and pentaquarks (qqqqq̄). While

usually not described as part of the quark model, there are also states involving gluons, in particular

the glueballs made of gluons only. Some of these states have recently been discovered. We do not

elaborate on them any further.
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10.2.3 Hadron masses

The mass of a hydrogen atom comes from the masses of its constituent proton and electron plus

a potential energy (V = −13.6 eV). To make this statement, it is crucial that we are able to

pull an electron and proton apart and measure their masses independent of their mutual electric

field. For hadrons the situation is more complicated. We can think about the mass of a hadron

as a combination of the constituent quark masses and the binding energy that is of order of

ΛQCD. Confinement implies, however, that we cannot separate quarks and measure their masses

in isolation. It is a-priori not clear then how we can separate the contributions to the hadron mass

from the constituent quark masses and the binding energy.

In principle, we can measure quark masses at high energy, where the couplings are small and can

be treated perturbatively. The result, like any parameter in the Lagrangian, is scale dependent.

However, while RGE effects are very small for the lepton masses, they are dramatic for quark

masses. In fact, we cannot calculate the running quark mass below the confinement scale. (For

some purposes, it is useful to define a “valence quark mass,” which is just the mass of the hadron

divided by the number of constituent quarks. For example, the valence mass of the u and d can

be extracted from the mass of the proton and the neutron, and is roughly mp/3.)

We then split the six quarks into three groups: Light quarks, q = u, d, s, heavy quarks, Q =

c, b, and the very heavy quark, t. The distinction between light and heavy quarks is based on

mq � ΛQCD (light quarks) or mQ � ΛQCD (heavy and very heavy quarks). Very heavy quarks are

distinguished by their large width, Γt � ΛQCD.

• q = u, d, s: For hadrons made from only light quarks, the binding energy is the main contri-

bution to the hadron mass.

• Q = c, b: Hadrons that have at least one heavy quark acquire their masses mainly from

the heavy quark mass(es), and the binding energy is a small correction of relative order

ΛQCD/mQ.

• t: The decay width of the top quark is very large, Γt � ΛQCD. This situation is often

described by saying that the top quark “does not form hadrons.” Thus, to leading order,

we treat the top quark as a free particle, and it is irrelevant to the discussion of the quark

model of hadrons.

10.2.4 Hadron lifetimes

With some abuse of language, we classify hadrons as either stable particles or unstable resonances.

In this context, stability is not meant in the absolute sense. (The only truly stable hadron is

the proton.) We can define what we mean by stability in two ways: experiment-related and

theory-related.
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Experimentally, we can determine the lifetime in two ways: By measuring a decay width, that

is, by the energy of the decay products, or directly by measuring the distribution of the decay

times. We characterize a particle as stable if its lifetime is large enough to be measured by the

latter method (or even larger, so that it escapes the detector before decaying). Theoretically, the

definition is that a stable particle is one that does not decay through QCD or QED interactions but

only via the weak interaction. These are the hadrons whose decays violate the accidental flavor

symmetry of QCD and QED. Resonances are the particles which are not stable. In fact, some

resonances are so broad, with a width of the order of their mass, that it becomes questionable

whether or not it is a bound state at all. In the PDG, with a few exceptions, particles whose name

contains their mass in parenthesis, for example ρ(770), are resonances, while those that do not,

are particles.

As an example of a resonance, consider the ρ+ meson. The ρ+ meson decays via QCD, almost

always to two pions, ρ+ → π+π0. Its width is large, Γρ ≈ 150 MeV, just a factor of five smaller

than its mass. As an example of a stable particle, consider the π+ meson. Its main decay is via the

weak interaction to leptons, π+ → µ+ν. Its width is of order 10−8 eV, clearly much smaller than

its mass. The ratio Γρ/Γπ ∼ 1016 demonstrates the difference between a resonance and a stable

particle, and explains why the weakly decaying hadrons are called stable.

When discussing the difference between stable hadrons and resonances, tritium, a hydrogen

isotope with two neutrons, provides a useful analogy. The excited 2P tritium state emits a photon

and decays to the 1S ground state at a time scale of the order of a nanosecond. The 1S state decays

into helium-3 with a lifetime of about 18 years. The 2P state is the equivalent of a resonance,

while the 1S is the equivalent of a stable particle.

10.3 Combining QCD with the weak interaction

When we aim to extract from experiments the weak interaction parameters for quarks, we face the

problem that our Lagrangian is written in terms of quarks and gluons, while experiments observe

hadrons. When analyzing physical processes in QFT, one uses asymptotic free states, but quarks

and gluons cannot be free at infinity. The way we deal with this problem is to “parameterize

our ignorance.” We isolate the parts of the amplitudes that are non-perturbative and then use

whichever relevant method we have at our disposal (approximate symmetries, lattice QCD, models,

etc.) to calculate them or relate them to another measurable process. The aim of this section is

to describe this procedure.

10.3.1 Factorization

The starting point of factorization is the assumption that we can factorize a process to a QCD part

and a non-QCD part. Then we treat the non-QCD parts, that is, the leptonic and electromagnetic
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part, perturbatively.

Consider first a purely leptonic decay, such as W → `ν. The amplitude, or the matrix element,

is written as

AW→`ν = g〈`ν|O|W 〉, O ∼ `LγµW
µνL, (10.3)

where O is the operator that mediates the process in the SM at tree level. The calculation is simple

in that the operator creates and annihilates the particles of the external states and the amplitude

is trivially A ∝ g.

Next consider a hadron decay, such as π− → `−ν̄. In the SM the matrix element is given by

Aπ→`ν = GFVud〈`ν̄|O|π−〉, O ∼ `Lγ
µνLuLγµdL. (10.4)

The leptonic part of this matrix element is simple. Just like in the purely leptonic case, we have

asymptotic external states which are contracted with the creation and annihilation operators in

O. The complication is with the pion. In the quark model the charged pion is made out of ud̄

and thus we can think about the ūγµd combination in the operator as the part that annihilates

the pion. Yet, this is not the whole story since the operator annihilates a free d quark and a free

ū anti-quark, while inside the pion the quark and the anti-quark are bound and not free.

The factorization hypothesis states that we can treat the leptonic and hadronic parts of the

matrix element separately, and write the result as a product of the two terms. The leptons do not

participate in the strong interaction and therefore they can be factored out. We then write

〈`ν̄|O|π−〉 = 〈`ν̄|O`|0〉 × 〈0|OH |π−〉, (10.5)

with

O` ∼ `Lγ
µνL, OH ∼ uLγµdL. (10.6)

The leptonic part is simple to calculate perturbatively but the hadronic part, that is, 〈0|OH |π−〉,
is the one that we cannot calculate perturbatively. It is this “hadronic matrix element” that we

parameterize, and use non-perturbative methods to calculate.

The next example is semi-leptonic kaon decay, K+ → π0`+ν. The matrix element in the SM is

AK→π`ν = GFV
∗
us〈π0`+ν|O|K+〉, O ∼ νLγ

µ`LsLγµuL. (10.7)

Once again we appeal to factorization and write

〈π0`+ν|O|K+〉 = 〈`+ν|O`|0〉 × 〈π0|OH |K+〉. (10.8)

The result is similar to the previous example, but here the hadronic part involves two mesons

compared to the one meson in Eq. (10.6).

Hadronic matrix elements with one hadron, such as in Eq. (10.5), are parameterized by decay

constants, and are discussed in Section 10.3.2. Hadronic matrix elements with two hadrons, such
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as in Eq. (10.8), are parameterized by form factors, and are discussed in Section 10.3.3. We do

not discuss here matrix elements with more than two hadrons.

Before we turn to discuss these specific examples, we present some guidelines that apply to all

hadronic matrix elements. In the most general case involving mesons, we can write

〈Hf |q̄Γq′|Hi〉 = f(p, ε), (10.9)

where Hf and Hi stand for hadronic states (including the vacuum), Γ represents some Dirac

structure, p represents momenta and ε polarizations. We can always write Γ as some combination

of S, P, V,A, T (scalar, pseudo-scalar, vector, axial vector, tensor) structures. The crucial point

is that the two sides of Eq. (10.9) must transform in the same way under parity and Lorentz

transformations. As we see below, there is usually a small number of combinations of momenta

and polarizations that satisfy this requirement. This situation leads to considerable simplification

in the analysis.

10.3.2 The decay constant

Considering pion decay, Eq. (10.5), we need to evaluate

〈0|OH |π−(pπ)〉 ∼ 〈0|V µ − Aµ|π−(pπ)〉, V µ = ūγµd, Aµ = ūγµγ5d. (10.10)

where we use

OH ∼ uLγµdL =
1

2
(V µ − Aµ). (10.11)

The pion is a pseudo-scalar and the vacuum is parity-even. Thus, the matrix element of V µ must

transform as a pseudovector, and the matrix element of Aµ must transform as a vector. The only

available physical observable is the pion momentum, pµ, which is a vector. It is impossible to

construct a product of any number of pµπ that transforms like as a pseudovector. We conclude that

〈0|V µ|π〉 = 0. (10.12)

(Similar considerations imply that the matrix elements of Γ = S, T vanish as well. The matrix

element for Γ = P is not zero. Since it is irrelevant to the SM, we defer a discussion of it to

Question 10.5.)

We do not know how to calculate the hadronic matrix element 〈0|Aµ|π〉. Instead, we parame-

terize it. From the considerations above, we must have

〈0|Aµ|π〉 ∝ pµπ. (10.13)

The proportionality constant could depend on Lorenz scalar quantities only. In our case there is

only one such quantity, p2
π = m2

π, which is, however, not a dynamical variable. We can then define

the proportionality constant as the a decay constant, fπ:

〈0|Aµ|π〉 ≡ −ifπpµπ, (10.14)

174



where −i is a commonly used normalization factor. While the decay constant cannot be calculated,

it can be extracted from measurements. For example, the decay rate for π− → µ−ν̄µ is given by

(see Question 10.3)

Γ(π → µν) =
G2
F |Vud|2

8π
m2
µmπ

(
1−

m2
µ

m2
π

)2

f 2
π . (10.15)

From the measured decay rate, one extracts

fπ = 130.4± 0.2 MeV. (10.16)

(In some of the literature, a different normalization is used, Fπ ≡ fπ/
√

2 ≈ 93 MeV.) Similar

decay constants are defined for other mesons.

To gain intuition with regard to the physics of the decay constant, we consider a perturbative

system, such as the positronium, as a useful analog. Positronium is an e+e− bound state that decays

into photons. One can define then a positronium decay constant. Unlike the pion, however, here

the decay constant is calculable using QED. Semiclassically, the decay occurs when the electron

and positron annihilate. In order that this happens, they must be in the same place. Quantum

mechanically the decay amplitude is proportional to the wave function Ψ at r = 0 (r is the distance

between the electron and a positron). The above intuition carries over to QCD bound states. The

physics of a decay constant has to do with the wave function at the origin:

fπ ∝ |Ψ(r = 0)|. (10.17)

While we cannot calculate the wave function perturbatively, for some cases we know general scaling

properties of it. Moreover, lattice QCD provides precise non-perturbative calculations of decay

constants.

10.3.3 Form factors

Considering kaon decay, Eq. (10.7), we need to evaluate

〈π0(pπ)|V µ − Aµ|K+(pK)〉, V µ = s̄γµu, Aµ = s̄γµγ5u. (10.18)

The available variables are pµK and pµπ. Both K and π mesons are pseudo-scalars. Thus, under

Lorentz and parity, the matrix element of V µ must transform as a vector, and the matrix element

of Aµ must transform as an axial-vector. It is impossible, however, to construct a combination of

pµK and pµπ that transforms like an axial-vector. We conclude that

〈π0(pπ)|Aµ|K+(pK)〉 = 0. (10.19)

For the vector current we write

〈π0(pπ)|V µ|K+(pK)〉 = apµK + bpµπ. (10.20)
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The coefficients a and b are known as form factors. The form factors can depend on Lorentz scalars

only. In the case of K → πeν there are three relevant Lorentz scalars: p2
K = m2

K , p2
π = m2

π, and

pK · pπ. The first two are mass parameters and therefore not dynamical. We are left with a single

dynamical variable. It is customary to define

q ≡ pK − pπ, q2 = p2
K + p2

π − 2pK · pπ, (10.21)

and use the form factors f±(q2) defined as follows:

〈π0(pπ)|V µ|K+(pK)〉 = f+(q2)(pK + pπ)µ + f−(q2)(pK − pπ)µ. (10.22)

A similar procedure applies to the other cases.

The form factors are where the non-perturbative physics plays a role. As noted above, they

can be calculated by lattice QCD. In many cases we can use approximate symmetries of QCD to

learn about some properties of them and to relate them to each other.

The physical intuition with regard to the form factor is that it corresponds to the wave function

overlap of the two hadrons. This intuition is borrowed from the sudden approximation in quantum

mechanics. The probability of a fast transition between an initial and a final state depends on the

overlap of the initial and final wave functions. In semi-leptonic hadron decay there is a sudden

transition due to the weak interaction. The form factors provide a formal way to encode the wave

function overlap.

10.4 The approximate symmetries of QCD

Approximate symmetries of QCD are useful to relate hadronic matrix elements, or even determine

their value at a specific kinematic point. Results obtained from symmetry properties of QCD

are model independent. Corrections to the symmetry limit (which we do not discuss here) are,

however, often evaluated in a model dependent way, e.g. using the quark model.

10.4.1 Isospin

Consider the Lagrangian for a two-flavor (up and down) QCD [see Eq. (5.11)]:

LQCD = −1

4
Gµν
a Gaµν −

∑
q=u,d

(iqD/ q +mqqq). (10.23)

Since mu 6= md, this Lagrangian has a [U(1)]2 flavor symmetry. If, however, we had mu = md,

the flavor symmetry would be U(2) = SU(2)I × U(1)B, where the U(1)B symmetry is baryon

number. The SU(2)I part is called isospin symmetry. Under isospin the up and down quarks form

a doublet:

Q =

(
u

d

)
, Q̄ =

(
d̄

ū

)
. (10.24)

176



We emphasize that the isospin-SU(2)I is different from the gauge-SU(2)L. The u and d quarks

in the doublet are the Dirac fermions, and not only the left-handed components, as for SU(2)L-

doublet quarks. Furthermore, all quarks except the up and the down are singlets of SU(2)I .

The up and down quarks are much lighter than ΛQCD and thus SU(2)I is an approximate

symmetry of the QCD interactions, broken by a small parameter:

εI ≡
md −mu

ΛQCD

∼ 10−2. (10.25)

One might wonder why the QCD scale enters here. In general, we have to compare the mass

difference of the quarks to the relevant energy in the event. Due to confinement the energy is

at least of order the QCD scale, thus the symmetry breaking parameter may be smaller, but not

larger than εI .

In addition to εI , the isospin symmetry is broken by QED due to the different charges of the

up and down quarks. The size of this breaking is of order α ∼ 0.01, similar to εI . The weak

interaction also breaks isospin but, for most applications, its effects are negligible compared to the

εI- and α-related breaking effects.

The approximate SU(2)I symmetry implies that the hadron mass eigenstates can be assigned

into well defined representations of isospin, where the hadrons within an isospin multiplet are

approximately degenerate. This statement is based on a symmetry of the QCD Lagrangian and

not on any quark model. We use the quark model to assign the hadron mass eigenstates into quark

representations.

The expected approximate degeneracies are indeed manifest in the baryon spectrum. The two

lightest baryons are the neutron and the proton which are almost degenerate: mp = 938.272 MeV

and mn = 939.565 MeV. It is natural to assume that they form an isospin doublet (I = 1/2).

At somewhat higher scale, m∆ ≈ 1.23 GeV, there are the four nearly degenerate ∆ states with

charges Q = −1, 0,+1,+2, which fit into an isospin quartet (I = 3/2). Within the quark model a

baryon is made of three quarks. Thus, in terms of isospin, the baryons that are formed from u and

d quarks are a product of three isospin doublets. This product of three identical doublets gives

1

2
× 1

2
× 1

2
=

1

2
+

3

2
. (10.26)

(The other isospin-half in the combination of three doublets is antisymmetric and thus vanishes

for identical doublets.) The quark model charge assignment fits as well: these baryons are made

out of the u and d quarks. The quark assignment for the nucleons is given in Eq. (10.2), while for

the ∆ baryons it is given by

∆− = ddd, ∆0 = ddu, ∆+ = duu, ∆++ = uuu. (10.27)

The quasi-degeneracy within each multiplet is a result of the approximate symmetry. The splitting

of O(ΛQCD) between the masses of the nucleon doublet and the ∆ quartet is a result of the very

different binding energy from QCD interaction for different representations of the isospin group.
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The approximate degeneracies are also manifest in the meson spectrum. Among the JP = 0−

mesons, we identify the three pions, which are quasi-degenerate (mπ± = 139.57 MeV, mπ0 = 134.98

MeV), as an isospin-triplet (I = 1), and the heavier η meson (mη = 547.86 MeV) as an isospin

singlet (I = 0). Indeed, the combination of two isospin doublets gives

1

2
× 1

2
= 0 + 1. (10.28)

The quark model assignment of the pions is given in Eq. (10.1), while that of η is given by

η0 =
uū+ dd̄√

2
. (10.29)

In addition to spectroscopy, isospin plays an important role in weak decays. It relates form

factors, and even allows to predict their values in specific kinematic points. In Section 10.B we

provide an example of a matrix element whose value is predicted in the isospin limit.

One can also treat the s quark as light compared to ΛQCD. In the limit of degenerate u, d,

and s quarks, the QCD Lagrangian gains an approximate SU(3)F symmetry, that is usually called

“flavor SU(3),” with (u, d, s) forming a triplet. The breaking of this symmetry is much larger than

that of isospin, of order (ms − md)/ΛQCD ∼ 0.3, but the symmetry considerations are still very

useful. We do not discuss it any further.

10.4.2 Heavy quark symmetry

Heavy quark symmetry applies to hadrons that contain one heavy quark. When the heavy quark

mass goes to infinity the theory gains extra symmetries. This symmetry does not manifest itself

in LQCD, as one cannot simply take parameters to infinity. Yet, it is rigorously defined and gives

definite and useful predictions.

Most of the essential physics associated with heavy quark symmetry can be demonstrated by

the quantum mechanics of the hydrogen atom. Consider the difference between the hydrogen

isotopes: hydrogen, deuterium, and tritium. Even though they have different masses and spins,

their chemical properties are approximately the same. The reason to this similarity among isotopes

is that, to a very good approximation, the electrons are largely insensitive to the mass and the

spin of the nucleus. To put it in more general terms, the light DoF are insensitive to the heavy

DoF that source the potential, and it is the former that determine the chemistry. To zeroth order

in the inverse mass of the nucleus, the potential is insensitive to the mass and spin of the actual

nuclear source of the electromagnetic field. At order me/mA (mA is the mass of the nucleus), there

are two leading corrections:

• The difference in the reduced mass of the system:

µ ≡ memA

me +mA

≈ me

(
1− me

mA

)
. (10.30)
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• The hyperfine splitting:

∆Ehf ∼ meα
4 me

mA

. (10.31)

The extra me/mA suppression of the hyperfine splitting is a manifestation of the fact that, in

the limit of infinite nucleus mass, one cannot rotate the nucleus to reverse its dipole moment.

We now return to our discussion of hadrons. Consider, for example, mesons that, in the quark

model, are made of a b quark and a light, d or u, quark. The analogy is that the heavy quark,

the b, is like the heavy nucleus, and the light DoF, the u or d, are like the electron. The binding,

however, comes from QCD rather than from QED, and thus we need to overcome the confining

nature of QCD. What is at help here is the fact that mb � ΛQCD and thus we can get some

rigorous results in the symmetry (mb →∞) limit.

Specifically, consider the B (J = 0) and the B∗ (J = 1) mesons which, in the quark model,

are the singlet and triplet states of the hyperfine structure. In the mb → ∞ limit, the B and B∗

mesons are degenerate. The mB∗ −mB mass spitting is the analog of the hyperfine splitting in the

hydrogen system. To leading order, the splitting scales like the inverse mass of the heavy quark,

mB∗ −mB ∝
const

mB∗ +mB

. (10.32)

Thus, the prediction is that for any heavy quark Q

(mQ∗ −mQ)(mQ∗ +mQ) = m2
Q∗ −m2

Q = const. (10.33)

This prediction of the heavy quark symmetry is experimentally confirmed:

m2
B∗ −m2

B ≈ 0.47 GeV2, m2
D∗ −m2

D ≈ 0.55 GeV2. (10.34)

The small difference between the two is attributed to higher order effects.

The situation is similar in other mesons, like the D, Ds and Bs, and their excited states. You

may wonder if indeed mc � ΛQCD. While mc is only a factor of a few larger than ΛQCD, and

corrections can be large, we still formally work in this limit.

Another useful feature that arises in the heavy quark limit is that the wave function repre-

senting the internal structure of the B and the D mesons does not depend on the color source.

Consequently, for B → D`ν decay, in the kinematic point where the two mesons are relatively at

rest, the wave function of the light DoF is not affected by the B → D decay, and we have (up to

some normalization)

〈B(p)|O|D(p)〉 = 1. (10.35)

We use this result in Appendix 10.C.
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10.5 High energy QCD

In the previous section we explained how we can interpret hadronic processes in terms of quark

transitions using form factors and decay constants. This method is most useful when we have a

small number of hadrons. Specifically, we discussed processes involving one or two hadrons. In this

Section we discuss the opposite limit: processes that involve many hadrons. In such processes, the

relative momenta between the underlying quarks and gluons are very large, that is, much larger

than ΛQCD. In such processes, which we call high energy QCD processes, interpretation in terms

of quarks and gluons is possible if one integrates over large parts of the parameter space. It is this

integration that makes it possible to connect the calculation in terms of quarks and gluons to the

experiments that measure hadronic rates.

10.5.1 Quark-hadron duality

The notion of “quark-hadron duality” states that inclusive hadronic observables at high energies,

when integrated over large enough part of phase space, can be described by the calculation in

terms of quarks and gluons. (The generic name for a quark or a gluon in such processes is “a

parton.”)

The quark-hadron duality works well in many cases. Despite this success, the notion of the

quark-hadron duality is often vague. Yet, the intuition is clear: at short distance, QCD is per-

turbative. The strong interaction results in energy shifts of order of ΛQCD between the various

partons. By integrating over a large enough interval, that is, much larger than ΛQCD, we average

over these hadronic processes and recover the underlying results. In practice there are instances

where instead of performing a simple integration, we can smooth out the hadronic distribution at

scale of order ΛQCD or larger.

To demonstrate the idea, consider the following two cross sections that can be measured,

σh(s) ≡ σ(e+e− → hadrons)[s],

σµ(s) ≡ σ(e+e− → µ+µ−)[s], (10.36)

and the following two cross sections that can be calculated,

σa(s) ≡
∫ ∞

0
σ(e+e− → hadrons)[s′]F (s, s′)ds′,

σq(s) ≡ σ(e+e− → qq̄)[s], (10.37)

where s ≡ (p+ + p−)2, p+ (p−) is the four momenta of the positron (electron), and F (s, s′) is a

function that smoothes σh(s) over a scale of order ΛQCD. (σa(s) is calculable given the measured

σh(s).) We further define the three ratios of cross sections:

Rh(s) ≡
σh(s)

σµ(s)
, Ra(s) ≡

σa(s)

σµ(s)
, Rq(s) ≡

σq(s)

σµ(s)
. (10.38)
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Figure 10.1: The ratios Rh(s), Ra(s), and Rq(s), defined in Eq. (10.38). The blue curve provides

a schematic description of the data for Rh, where we do not present the error bars and omit, for

the sake of demonstration, the J/ψ peak. The orange curve is Ra, where, for the smearing, we use

a Gaussian function with a width of 0.35 GeV. The dashed curve is Rq.

The ratio Rq(s) can be calculated perturbatively for
√
s� ΛQCD:

Rq(s) = 3
∑
q

Q2
q. (10.39)

Here 3 is the number of colors, Qq is the electric charge of the quark q, and the sum goes over

all quarks q with masses 2mq <
√
s. Eq. (10.39) applies at leading order in perturbation theory.

Specifically, we neglect higher order QCD and QED effects, put the phase space factor to 1, and

do not consider weak interaction effects.

The idea is to measure Rh(s), then calculate Ra(s) and compare it to Rq(s). Quark-hadron

duality tells us that Ra ≈ Rq as long as the smoothing in Ra is done on a region that is large

enough, that is, larger than ΛQCD. Fig. 10.1 demonstrates the validity of this prediction. We plot

Rh, Ra, and Rq below and above the charm threshold. It can be seen that while Rh is very different

from Rq, the agreement between the smoothed-Ra and Rq is impressive. The deviations between

Ra and Rq are attributed to higher order effects, experimental errors, and the fact that the duality

is not exact.

The situation is more complicated when the initial state involves hadrons, for example, in ep or

pp collisions. Then it is not clear what is the initial state in terms of quarks and gluons. In these

cases one defines a “Parton Distribution Function” (PDF) that describes the distributions of the

quarks, antiquarks and gluons inside the initial hadrons as functions of the energy transfer. The

PDF is a non-perturbative quantity that cannot be calculated from first principles perturbatively.

We determine it by measuring it in one process and then using it in another. Once we have the PDF,

we perform calculations in terms of the partons and compare with the integrated measurements
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of hadronic processes.

10.5.2 Jets

When particles collide at high energy, the hard scattering process can be described by the UV

part of QCD. Consider, for example, the hard scattering process of e+e− → qq̄. Confinement

tells us that our detectors will not observe quark-antiquark pair going back to back (unlike the

case for muons in e+e− → µ+µ−). Instead, the detectors observe a variety of hadrons. This is

semiclassically understood as having qq̄ pairs popping-up from the vacuum to combine with the

original partons in order to form color-singlet final states.

The number of qq̄ pairs that are created depends on the relative momentum of the original

partons. The higher this momentum, the more qq̄ pairs are likely to be created. The point to

emphasize is that, as long as many hadrons are produced, most of them are traveling roughly in

the same direction as the original partons. The collection of hadrons related to a single original

parton comes under the name of a jet.

While there is no practical first principle way to relate jets to the UV properties of QCD, the

fact that jets are formed gives us ways to probe QCD at short distance. To a good approximation,

the e+e− → qq̄ transition appears as e+e− → 2j (here j represents a jet), while the e+e− → qq̄g

transition appears as e+e− → 3j.

The main challenge is to relate the jets to the underlying parton process. The source of the

problem is that a jet constitutes a finite size object and there is inherent ambiguity in defining

it. For every definition, there is some probability that the jets do not directly correspond to the

underlying process that we assume. For example, if we have two partons that are produced almost

collinearly, such that the separation between them is much smaller than a typical jet size, we will

interpret the set of resulting hadrons as a single jet. There is no simple solution to this problem.

What is done in practice is to use simulations, determine the probability that such a situation

occurs and correct for it. There is then an intrinsic theoretical error in translating an experimental

measurement of, say, e+e− → 2j, to the calculated e+e− → qq̄.

Beyond the identification of jets, we can learn more about the short distance physics by the

internal properties of the jet. Some of the properties depend on the parton that generates the jet.

For example, one can, statistically speaking, tell a quark jet from a gluon jet. Other properties are

universal. For example, the most likely mesons to be produced in the jet are pions, since they are

the lightest. Baryons are less likely than mesons to be created within a jet. We can understand

this fact by the need to pop-up two qq̄ pairs from the vacuum, and the combinatorics is such that

the three qq̄ pairs are more likely to end up in three mesons rather than in two baryons.
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For further reading

• For general review of properties of hadrons, see the PDG.

• More on the notion of “quark-hadron duality” can be found, for example, in Ref. [31].

• Reviews of heavy quark symmetry can be found, for example, in Refs. [32], [33], and [34].

• For a review of jets see, for example, Ref. [35].
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Appendix

10.A Names and QN for hadrons

The naming scheme for all the particles is nicely summarized by the PDG. Here we discuss only

the hadrons that we use in the book, which are usually the lightest of a given flavor composition.

We start with the mesons. Each meson is described by its total spin (J), internal parity (P ),

and the principal quantum number. Neutral mesons are also characterized by their internal charge

conjugation parity (C). Mesons made of u and d (anti)quarks are characterized also by their

isospin.

The lightest state of a given quark composition is the pseudoscalar meson (JP = 0−). Those

who carry a flavor QN (like the π+) are stable (in the sense explained in Section 10.2.4). The stable

pseudoscalar mesons play an important role in the investigation of flavor physics as they decay

via the weak interaction. Their list is given in Table 10.1. Note that the four neutral meson pairs

with well defined U(1)s × U(1)c × U(1)b QNs are not mass eigenstates. In fact, each pair mixes

into a pair of mesons of well defined masses and decay widths. This phenomenon is discussed in

detail in Section 13.A. The unflavored pseudoscalar mesons are unstable: they decay via QCD or

QED. The ones that involve only light quarks are π0 and η.

The next-to-lightest mesons are the vector mesons (JP = 1−). In the quark model they have

L = 0 and their spin comes from the spin of their constituents. Those with only light quark (u

and d) constituents include the isospin-triplet ρ(770), and the isospin singlet ω(782). The flavored

vector mesons are indicated by stars relative to the pseudoscalars: K∗, D∗, B∗, B∗s . The unflavored

vectors that do not have light quarks are φ(1020) (made of ss̄), J/ψ (made of cc̄), and Υ (made of

bb̄). Their excited states are denoted in a way very similar to atomic physics. For example, Υ(4S)

is the S-wave state with the principal QN n = 4.

Last we briefly consider the names of some of the stable baryons, that is those that cannot

decay via QCD or QED. Those with three light quarks (u, d combinations) are the proton p and

the neutron n. Baryons with two u and/or d quarks include the Λ,Λc,Λb. The sub-index is in

correspondence with the single heavy quark, with no index implying a single strange quark.
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Table 10.1: List of the weakly decaying JP = 0− mesons with their quark decomposition, U(1)s×
U(1)c × U(1)b charge, mass and lifetime. For the neutral K-meson mass eigenstates, KS and KL,

the respective lifetimes are τS = 9.0× 10−11 s and τL = 5.1× 10−8 s. See also Section 13.A.

Meson qq̄′ (S,C,B) Mass [GeV] τ [s]

π± ud̄, ūd (0, 0, 0) 0.140 2.6× 10−8

K± us̄, ūs (±1, 0, 0) 0.494 1.2× 10−8

K0, K0 ds̄, d̄s (±1, 0, 0) 0.498 See caption

D± cd̄, c̄d (0,±1, 0) 1.87 1.0× 10−15

D0, D0 cū, c̄u (0,±1, 0) 1.87 4.1× 10−16

D±s cs̄, c̄s (±1,±1, 0) 1.97 5.0× 10−15

B± ub̄, ūb (0, 0,±1) 5.28 1.6× 10−12

B0, B0 db̄, d̄b (0, 0,±1) 5.28 1.5× 10−12

Bs, Bs sb̄, s̄b (∓1, 0,±1) 5.37 1.5× 10−12

B±c cb̄, c̄b (0,±1,±1) 6.28 5.1× 10−13

10.B Extracting |Vud|

In this section we give an example of how we use the approximate symmetries of QCD to extract a

weak interaction parameter. Specifically, we use the isospin symmetry, discussed in Section 10.4.1,

to extract the value of |Vud|. The key processes to measure are d→ u transitions in β decay where

the quark level amplitude has a factor of |Vud|, see Fig. 10.2. We briefly discuss one way to do it

with nuclear β decay.

Consider the rate of nuclear beta decay

Γ(C → Beν̄e) = Nf |A(C → Beν̄e)|2, (10.40)

d

W

ν

u

e

Figure 10.2: Beta decay at the quark level. At the upper vertex we have a factor of Vud.
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where C and B are nuclei, and the proportionaly factor, Nf , includes phase space effects and other

numerical factors and it is known for each specific decay. The tree level contributions are presented

in Fig. 10.2. The amplitude for the nuclear beta decay can be written as

A(C → Beν̄e) ∝ VudMµ, Mµ = 〈B(pB)|V µ − Aµ|C(pC)〉, (10.41)

where V µ = ūγµd and Aµ = ūγµγ5d. We obtain

Γ(C → Beν̄e) = Nf |Vud|2 × |Mµ|2. (10.42)

We learn that, in order to extract |Vud| from the experimental measurment of the decay rate, we

need to know the magnitude of the hadronic matrix element, Mµ.

Cases where the matrix element of either Aµ or Vµ vanishes are much simpler to handle. If, for

example, both C and B are JP = 0+ nuclei, then 〈B|Aµ|C〉 = 0, and we have [see Eq. (10.22)]

Mµ = 〈B(pB)|V µ|C(pC)〉 = f+(q2)(pC + pB)µ + f−(q2)qµ, q ≡ pC − pB. (10.43)

We now invoke considerations related to the isospin symmetry of QCD. We consider cases

where C and B are members of the same isospin multiplet. Thus, in the isospin limit, mC = mB

and consequently p2
C = p2

B. Let us invoke the Ward identity related to the isospin symmetry:

0 = qµMµ = f+(q2)(p2
C − p2

B) + f−(q2)q2 = f−(q2)q2, (10.44)

where, for the second equality, we used p2
C = p2

B. We conclude that, for finite q2 in the isospin

limit,

f−(q2) = 0. (10.45)

Thus, we need to find only the value of f+(q2). In the isospin limit, pB = pC = p and therefore q =

0. Since isospin breaking is a very small effect, the physical values of q2 satisfy 0 < q2/Λ2
QCD � 1,

and thus

f+(q2) ≈ f+(0). (10.46)

The final step is then to find the value of f+(0). To do that, we note that, in terms of the isospin

SU(2) algebra, the vector operator ūγµd is just the raising operator which changes I3 by one unit.

Thus,

〈B(p)|V µ|C(p)〉 = 2pµf+(0) = 2pµ〈j,m+ 1|J+|j,m〉 = 2pµ
√

(j −m)(j +m+ 1), (10.47)

where J+ is the usual ladder operator of SU(2) and m is the I3 QN of C. Plugging The value of

the matrix element (10.47) into Eq. (10.42), we obtain

Γ(C → Beν̄e) = 4m2
C(j −m)(j +m+ 1)Nf |Vud|2, (10.48)

where we used p2 = m2
C .

We learn that by using Lorentz invariance and isospin we can overcome the challenges of QCD.

Concretely, we use the measured nuclear beta decay rate to extract |Vud|, up to the small theoretical

uncertainties that come from isospin breaking effects.
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Figure 10.3: Semileptonic b decay at the quark level. At the upper vertex we have a factor of Vcb.

10.C Extracting |Vcb|

In this section, we give another example of how we use the approximate symmetries of QCD to

extract a weak interaction parameter. Specifically, we use the heavy quark symmetry, discussed in

Section 10.4.2, to extract |Vcb|.
Consider the semileptonicB-meson decay. The tree level contributions are presented in Fig. 10.3.

The discussion goes along similar lines to the discussion in Section 10.B. The decay rate is given

by

Γ(B− → D0`−ν̄) = Nf |A(B− → D0eν̄e)|2, (10.49)

where Nf is a known normalization factor. We learn that, to extract |Vcb| from the measured decay

rates, we need to obtain the hadronic matrix elements.

The matrix element of B → D`ν̄ depends on two form factors, just like the case of K → π`ν̄

[see Eq. 10.22]:

〈D0(pD)|V µ|B−(pB)〉 = f+(q2)(pB + pD)µ + f−(q2)(pB − pD)µ, V µ = c̄γµb, (10.50)

The contribution of f−(q2) to the decay rate is proportional to m2
` . Thus, this contribution is

suppressed by m2
`/m

2
B and can be safely neglected for the cases of ` = e, µ. Our task is then to

find f+(q2).

In order to make progress, we use heavy quark symmetry, and consider the specific kinematic

point of no D recoil. At this point, the outgoing D is at rest in the B rest frame, which corresponds

to the maximal momentum transfer, (q2)max. In the mQ → ∞ limit (with Q = b, c), the velocity

of the b quark is the same as the velocity of the B− meson, and the velocity of the c quark is the

same as the velocity of the D0. Thus, in the heavy quark limit, at the zero recoil point, the light

DoF are insensitive to decay of the b quark since there is no change in the source of the color field.

Thus, the wave function overlap at that point is just one:

f+[(q2)max] = 1. (10.51)
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One uses this result to extract |Vcb| from the B → D decay rate.

Ideally we would make the measurement at the zero recoil point, but the rate vanishes at this

point. Thus we must use some models for the q2-dependence of the form factor and fit it to the

data, which introduces another source of uncertainty, on top of the corrections to the heavy quark

limit. The current total theoretical uncertainty is estimated to be at the few percent level.
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Problems

Question 10.1: Using the PDG

Find the PDG entries of B+, D+
s , and Λ. For each of them write down their quark composition,

mass, lifetime, charge, and spin.

Question 10.2: Using the PDG even more

Read the quark model review from the PDG. Answer the following questions using the data

from the light meson summary table.

1. Explain what P , C, J , I, and G stand for. For each of these QNs, indicate if they are (i)

exact in Nature; or (ii) exact in QCD and QED; or (iii) approximately conserved in QCD.

2. Find the mass, width, and the above mentioned QNs of the π0, η, ρ0, and ω.

3. Find the Branching Ratios (BRs) of the η, ρ0, and ω decays to two pions and to three pions.

4. From the answer to item 3, it is evident that the η does not decay to two pions, the ω decay

rate to two pions is highly suppressed, while the ρ decays dominantly to two pions. Based

on the QNs listed in item 2, explain these results.

Question 10.3: Leptonic pion decay

Consider the purely leptonic pion decays

π+ → `+ν`. (10.52)

1. Based on the masses of the relevant particles, what final state leptons are allowed?

2. Draw the diagram for this decay. To take into account that the initial state is a pion, we

need to write the amplitude using the relevant hadronic matrix element. Using Eq. (10.14),
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show that the amplitude is given by

Aπ→`ν = − g2

4m2
W

Vudfπp
µ
π

[
ū`γµPLvν

]
, (10.53)

where u and v are the standard notation for the spinors and PL is a projection operator

defined in Eq. (1.3). Explain why you can approximate the W propagator as 1/m2
W .

3. Using the amplitude in Eq. (10.53), show that the decay width is given by Eq. (10.15):

Γ(π → µν) =
G2
F |Vud|2

8π
m2
µmπ

(
1−

m2
µ

m2
π

)2

f 2
π . (10.54)

The decay rate of a particle of mass M and momentum p into two particles of masses m1

and m2 is given by

Γ =
|p|

32π2M2

∫
dΩ

∑
|A|2, |p| =

√
[M2 − (m1 +m2)2][M2 − (m1 −m2)2]

2M
, (10.55)

where the sum goes over the outgoing particle polarizations.

4. For massless neutrinos,

R ≡ Γ(π+ → e+νe)

Γ(π+ → µ+νµ)
=

(
me

mµ

)2 (
m2
π −m2

e

m2
π −m2

µ

)2

. (10.56)

Repeat the calculation of R for massive neutrinos. (We discuss ways that neutrinos can

be massive in Chapter 14.) Specifically, assume that νe and νµ are mass eigenstates with

masses m1 and m2, respectively. Check that your result agrees with Eq. (10.56) in the case

of massless neutrinos.

5. Using experimental data derive bounds on m1 and m2. To do so, assume that m2
1 � m2

e and

that m2
2 � m2

µ, expand the ratio R to first order in m2
1/m

2
e and in m2

2/m
2
µ, and write

R

R0

= 1 +

(
m2

1

m2
e

)
ae −

(
m2

2

m2
µ

)
aµ (10.57)

where R0 is the value of R for massless neutrinos. Find the expression for ae and aµ.

6. Find the numerical values of ae and aµ and show that they are both positive. Argue that

there is a “flat direction,” i.e. a curve in the (m1,m2) plane where R = R0.

7. The experimental data give

R = (1.2327± 0.0023)× 104. (10.58)

Using Eq. (10.56) would give the theory prediction of R0 = 1.2833×10−4. However, to obtain

the bound, we have to take into accound higher order corrections, which shift the result:

R0 = (1.2352± 0.0001)× 10−4. (10.59)
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Working to 2σ, derive numerical bounds on m1 for m2 = 0, and on m2 for m1 = 0. Explain

why the bound on m1 is much stronger than the one on m2. For each of the two cases check if

the leading order expansion that was used is valid. (Note: these bounds are not very strong

compared to other bounds on neutrino masses, see Section 14.B.)

Question 10.4: Form Factors in B decays

Consider the semi-leptonic B → D∗`ν decay. The differences between the D-meson case of

Eq. (10.50) and the D∗-meson case that we discuss here is that the D-meson is a pseudo-scalar and

the D∗-meson is a vector. We define ε to be the D∗ polarization vector (that satisfies εµp
µ
D∗ = 0),

pB (pD∗) to be the B (D∗) momentum, q ≡ (pB − pD∗) and P ≡ (pB + pD∗).

The way we construct the form factors here follows simlar arguments that we use in Sec-

tion 10.3.3. The dynamical variables that we can use are the various momenta. Note that the

amplitude must be proportional to the polarization of the outgoing particles. For an outgoing

spin-1 particle, this results in a factor of ε∗. (For an outgoing spin-0 particle, this factor is a scalar,

which is normalized to be just the number 1.)

1. Show that the vector form factor can be written as

〈D∗(pD, ε)|V µ|B̄(pB)〉 = g(q2)εµναβε∗νPαqβ, (10.60)

where ε is the totally antisymmetric tensor.

2. Show that the axial vector form factor can be written as

〈D∗(pD, ε)|Aµ|B̄(pB)〉 = f(q2)ε∗µ + ε∗νp
ν
B

[
a+(q2)P µ + a−(q2)qµ

]
. (10.61)

Question 10.5: Pseudoscalar decay constant

Consider the matrix element of the pseudoscalar operator P :

P = 〈K(p)|s̄γ5u|0〉. (10.62)

We aim to relate it to the matrix element of the axial vector operator Aµ:

Aµ = 〈K|s̄γµγ5u|0〉 = −ifKpµ (10.63)

1. Using the Equation of motion, i/∂q = mqq, show that

i∂µ(s̄γµγ5u) = −(ms +mu)s̄γ5u. (10.64)

2. Using Eq. (10.64) and i∂µ = pµ show that

P = ifK
m2
K

mu +ms

. (10.65)
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Chapter 11

Beyond the Standard Model

In spite of the enormous experimental success of the SM, we know that the SM is not a complete

theory of Nature. In this chapter, we explain this statement and discuss the formalism and the

experimental probes to be used in case that the physics that extends the SM takes place at a high

energy scale.

11.1 Introduction

One obvious reason that we know that the SM is not the full theory of Nature is that it does

not include gravity. There are, however, reasons to think that, beyond gravity and the SM list of

elementary particles and fundamental interactions, there must exist degrees of freedom that are

yet unknown to us. These reasons can be roughly divided into four classes:

1. Experiments: measurements that are inconsistent with the SM predictions.

2. Cosmology and astrophysics: observations that cannot be explained by the SM.

3. Fine-tuning: parameters whose values can be explained in the SM only with accidental

fine-tuned cancelations among several contributions.

4. Clues: various non-generic features that are just parameterized in the SM, but not explained.

We elaborate on this list with specific examples in Sections 11.2 and 11.3.

Models that extend the SM by adding DoF, and often by imposing larger symmetries, come

under the general name of “Beyond the SM,” or BSM for short. The fact that experiments have

not observed any particles related to such hypothetical new fields tells us that either these new

particles are very heavy, or that their couplings to the SM particles are very weak. In light BSM

scenarios, where the new DoF are at or below the weak scale, the SM is not a good low energy

effective theory. Each such feebly coupled BSM scenario requires a specific discussion of how to

probe it. We do not discuss such theories any further.
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The situation is different for heavy BSM scenarios, where the new DoF are much above the

weak scale. There is a unified framework that allows one to understand the possible probes of

heavy BSM scenarios, while remaining agnostic about the details of the new degrees of freedom.

We present this framework in Section 11.5 and employ it in the next four chapters.

Direct searches for BSM physics aim to produce the new particles on-shell and study their

properties. Numerous such searches have been conducted but, as of now, no BSM particle has

been discovered. Instead, these searches have set combination of lower bounds on the masses and

upper bounds on the couplings of such states to SM states. Roughly speaking, the lower bounds

on the masses of particles with order one couplings to the SM particles are of order 1 TeV. What

sets this scale is the center of mass energy of the most powerful accelerator in action (the LHC).

Indirect searches for BSM physics aim to observe virtual effects of the new states at low energies.

We discuss this method below.

11.2 Experimental and observational problems

There are several experimental results and observational data that cannot be explained within the

SM. They provide the most direct evidence that we need to extend the SM. Here we present the

three that are the most robust.

Neutrino masses. There are several, related, pieces of experimental evidence for BSM physics

from the neutrino sector. All of these measurements prove that the neutrinos are massive, in

contrast to the SM prediction that they are massless. First, measurements of the ratio of νµ to

νe fluxes of atmospheric neutrinos and the directional dependence of the νµ flux are different from

the SM predictions. Both facts are beautifully explained by neutrino masses and mixing which

lead to νµ − ντ oscillations. Second, measurements of the solar neutrino flux find that, while the

Sun produces only electron-neutrinos, their flux on Earth is significantly smaller than the total

flux of neutrinos. This puzzle is beautifully explained by νe − νµ,τ mixing. Both the atmospheric

neutrino result and the solar neutrino result are now confirmed by terrestrial accelerator and

reactor neutrino experiments. We discuss neutrino physics in detail in Chapter 14.

The baryon asymmetry of the universe (BAU). There exists observational evidence

for BSM physics from cosmology. The features of the Cosmic Microwave Background (CMB)

radiation imply a certain baryon asymmetry of the Universe. Similarly, the standard Big Bang

Nucleosynthesis (BBN) scenario is consistent with the observed abundances of light elements only

for a certain range of the baryon asymmetry, consistent with the CMB constraint. Baryogenesis,

the dynamical generation of a baryon asymmetry, requires CP violation. The CP violation in

the SM generates baryon asymmetry that is smaller by at least ten orders of magnitude than the

observed asymmetry. This implies that there must exist new sources of CP violation, beyond the

SM. Furthermore, baryogenesis requires a departure from thermal equilibrium at a very early time
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after the Big Bang, and the one provided by the SM is not of the right kind. We elaborate on this

in Section 15.3.

Dark matter (DM). The evidence for dark matter — particles that are EM neutral and do

not carry the color charge of the strong interactions — comes from several observations: Rotation

curves in galaxies, gravitational lensing, the CMB, and the large scale structure of the Universe.

The neutrinos of the SM do constitute dark matter, but their abundance is too small to be all the

dark matter abundance. Thus, there must exist DoF beyond those of the SM. We elaborate on

this in Section 15.2.

11.3 Theoretical considerations

Some of the SM parameters are small. We distinguish between two classes of small parameters.

“Technically natural” small parameters are those that, if set to zero, the theory gains an extra

symmetry. The small parameters that are not technically natural are those where the symmetry

of the theory is not enlarged when setting them to zero. An equivalent way to distinguish the

two classes is based on their renormalization properties: For technically natural parameters the

renormalization is multiplicative, while for non-technically natural parameters it is additive. For a

technically natural parameter, loop corrections are proportional to the parameter itself, and if the

parameter is set to be small at tree level, it remains small to all orders in perturbation theory. For

a non-technically natural parameter, the radiative corrections are not proportional to the tree level

parameter, and in cases where the radiative corrections are much larger than the measured value

of the parameter, the smallness of the parameter can only be maintained by fine-tuned cancelation

between the tree level and loop level contributions.

The existence in the SM of small parameters that are not technically natural is suggestive

of BSM frameworks, where the smallness of the parameters is protected against large radiative

corrections by some symmetry. There are two parameters of this kind in the SM: m2
h and θQCD.

The Higgs fine-tuning problem. Within the SM, the mass-squared of the Higgs µ2 defined

in Eq. (7.15), gets additive, quadratically divergent, radiative corrections (see Question 11.1).

Given that the SM is an effective theory, the radiative corrections must be finite and proportional

to the scale above which the SM is no longer valid. The higher the cutoff scale above the weak

scale, the stronger the fine-tuned cancelation between the tree-level mass-squared term and the

radiative corrections must be. In particular, if there is no BSM physics below mPl, the bare mass-

squared term and the loop contributions have to cancel each other to an accuracy of about thirty

four orders of magnitude. Among the theories that aim to solve the Higgs fine-tuning problem,

supersymmetry and composite Higgs have been intensively studied and searched for.

The strong CP problem. The CP violating θQCD parameter contributes to the electric

dipole moment of the neutron dN . The experimental upper bound on dN puts an upper bound on
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θQCD of O(10−9) (see section 8.A.1). The smallness of θQCD is not technically natural. Among the

theories that aim to solve the strong CP problem, the Peccei-Quinn mechanism, and its prediction

of an ultra-light pseudoscalar, the axion, have been intensively studied and searched for.

Other features of the SM parameters provide hints for the existence of BSM physics because

they are non-generic, but they are not related to non-technically natural small parameters. We

mention two of them below.

The flavor parameters. The Yukawa couplings are small (except for yt) and hierarchical.

For example, the electron Yukawa is of O(10−5). These are technically natural small numbers, but

their non-generic structure — smallness and hierarchy — is suggestive of BSM physics. Among

the theories that aim to solve this puzzle, the Froggatt-Nielsen mechanism, U(2) flavor models,

and models of extra dimensions, have been intensively studied.

Grand unification. The three gauge couplings of the strong, weak, and electromagnetic

interactions seem to converge to a unified value at a high energy scale (see Question 11.2). The

SM cannot explain this fact, which is just accidental within this model. Yet, it can be explained

if the gauge group of the SM is part of a larger simple group. This idea is called Grand Unified

Theory, or GUT, and among the relevant unifying groups, SU(5) and SO(10) have been intensively

studied.

11.4 The BSM scale

The SM has a single mass scale that we call the weak scale and denote by ΛEW. It can be

represented by the masses of the weak force carriers, mW or mZ , or by the VEV of the Higgs field,

v. As an order of magnitude estimate, we take ΛEW ∼ 102 GeV.

Some of the problems of the SM presented above are suggestive of where the BSM scale lies.

We present these well-motivated scales in decreasing order. Of course, there could be more than

one scale for the BSM physics.

The Planck scale, mPl ∼ 1019 GeV. The Planck scale constitutes a cut-off scale of all QFTs.

At this scale, gravitational effects become as important as the known gauge interactions and cannot

be neglected.

The GUT scale, ΛGUT ∼ 1016 GeV. The GUT scale is the one where the three gauge

couplings of the SM roughly unify (see Question 11.2). It is an indication that at that scale, the

GUT symmetry group is broken into the SM symmetry group. For example, in SU(5) GUT models,

ΛGUT can be represented by the VEV of the scalar field that breaks SU(5)→ SU(3)×SU(2)×U(1),

or by the masses of the gauge bosons that correspond to the broken SU(5) generators.

The seesaw scale, Λν ∼ 1015 GeV. As explained in Chapter 14, the value of the neutrino

masses mν hints that new degrees of freedom appear at or below the so-called seesaw scale, Λν ∼
v2/mν . This scale is intriguingly close to the GUT scale, and thus the two might be in fact related
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to the same BSM physics.

The Higgs fine-tuning scale ΛFT ∼ 1 TeV. No fine tuning is necessary to explain the

smallness of m2
h if radiative corrections are cut-off at a scale ΛFT of order 4πmh/yt ∼ TeV.

The WIMP scale ΛDM ∼ 1 TeV. If the DM particles are weakly interacting massive particles

(WIMPs) (see section 7.15), the cross section of their annihilation that is required to explain the

DM abundance is of order 1/(20 TeV)2. If the relevant coupling is of order αW , the relevant scale

is of order 1 TeV.

11.5 The SMEFT

As argued above, the SM is not a full theory of Nature. If the BSM degrees of freedom are at a

scale Λ� ΛEW, then the SM is a good low energy effective theory which is valid below Λ. In such

a case, the SM Lagrangian should be extended to include all nonrenormalizable terms, suppressed

by powers of Λ:

LSMEFT = LSM +
1

Λ
Od=5 +

1

Λ2
Od=6 + · · · . (11.1)

Here LSM is the renormalizable SM Lagrangian and Od=n represents operators that are products

of SM fields, of overall dimension n in the fields, and transforming as singlets under the SM gauge

group. The SM extended to include such non-renormalizable term is called the SM effective field

theory, or SMEFT for short. For physics at an energy scale E well below Λ, the effects of operators

of dimension n > 4 are suppressed by (E/Λ)n−4. Thus, in general, the higher the dimension of an

operator, the smaller its effect at low energies.

Nonrenormalizable operators are generated by extensions of the SM, which introduce new de-

grees of freedom that are much heavier than the electroweak scale. By studying nonrenormalizable

operators, we allow the most general extension of the SM and remain agnostic about its spe-

cific structure. At the same time, constraints on nonrenormalizable terms can be translated into

constraints on specific BSM models.

The low energy effects of nonrenormalizable operators are small. Thus, when we study them,

we have to consider also loop effects in the SM. In the previous Chapters, we studied the SM at

tree level and with only renormalizable terms. From this point on, we extend our discussion to

include the effects of loop corrections and of nonrenormalizable terms.

We can classify the effects of including loop corrections and nonrenormalizable terms into three

broad categories:

1. Forbidden processes: Various processes are forbidden by the accidental symmetries of the SM.

Nonrenormalizable terms, but not loop corrections, can break these accidental symmetries

and allow the forbidden processes to occur. Examples include neutrino masses, discussed in

Chapter 14, and proton decay.
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2. Rare processes: Within the SM, various processes that are not forbidden do not occur at tree

level. Here both loop corrections and nonrenormalizable terms can contribute. Examples

include FCNC processes, discussed in Chapter 13.

3. Tree level processes: Often tree level processes in a particular sector depend on a small subset

of the SM parameters. This situation leads to relations among different processes within this

sector. These relations are violated by both loop effects and nonrenormalizable terms. Here,

precision measurements and precision theory calculations are needed to observe these small

effects. Examples include electroweak precision measurements discussed in Chapter 12.

As concerns the last two types of effects, where loop corrections and nonrenormalizable terms

may both contribute, their use in phenomenology can be divided into two eras. Before all the SM

particles have been directly discovered and all the SM parameters measured, one could assume

the validity of the renormalizable SM and indirectly measure the properties of the yet unobserved

SM particles. Indeed, the masses of charm quark, the top quark, and the Higgs boson were

first indirectly measured in this way. Once all the SM particles have been observed and the

parameters measured directly, the loop corrections can be quantitatively determined, and the

effects of nonrenormalizable terms in the SMEFT can be unambiguously probed. Thus, at present,

all three classes of processes serve to search for BSM physics.

For further reading

• For general review of BSM see, for example, Ref. [36].

• For general review of the Higgs fine tuning problem see, for example, the first chapter of

Ref. [37].
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Problems

Question 11.1: Radiative corrections to the Higgs mass

In this question, we discuss the Higgs fine tuning problem. We explore the quadratic divergences

in the Higgs mass-squared and show an explicit example of a BSM model that can make the

radiative corrections small.

For simplicity, we consider only the correction to m2
h due to a top loop. The relevant term in

the Lagrangian is

L = yt

(
h+ v√

2

)
tLtR + h.c.. (11.2)

The top mass is given by mt = ytv/
√

2.

1. Draw the one loop correction to the two-point function of the Higgs boson due to the top

quark.

2. This diagram corresponds to correction to the Higgs mass-squared, ∆f , where we put the

sub-index f to remind you that it comes from internal fermion loop. Evaluate the diagram

and show that

−i∆f = −2y2
tNc

∫ d4k

(2π)4

[
1

k2 −m2
t

+
2m2

t

(k2 −m2
t )2

]
, (11.3)

where NC = 3 is the number of colors. Remember to include the minus sign due to the

fermion loop. (The factor of −i is just a convention that is canceled after a Wick rotation.)

3. Using the general formula

∫ d4k

(2π)4

1

(k2 − A)n
=
i(−1)n

16π2
In(A), In(A) =

∫ ∞
0

xdx

(x+ A)n
, (11.4)

write ∆f in terms of I1 and I2 and show that

∆f =
2NC |yt|2

16π2

[
2m2

t I2(m2
t )− I1(m2

t )
]

(11.5)
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4. Both I1 and I2 diverge. To regulate the divergencies, we cut off the the integrals inside I1

and I2 at Λ2, that is, we write

In(A,Λ2) =
∫ Λ2

0

xdx

(x+ A)n
. (11.6)

Evaluate I1(m2
t ,Λ

2) and I2(m2
t ,Λ

2). What are the degrees of divergence in Λ (logarithmic,

linear, quadratic, etc.) for I1 and I2?

5. Find ∆f as a function of Λ. Denote the answer as ∆f (Λ
2). What is the degrees of divergence

in Λ (logarithmic, linear, quadratic, etc.) for ∆f (Λ
2).

6. Assuming that the cutoff is the Planck scale, Λ = mPl ∼ 1019 GeV, find ∆f (m
2
Pl) and the

ratio ∆f (m
2
Pl)/m

2
h. The fact that the numerical value of the ratio is so large is refered to as

the Higgs fine tuning problem.

7. We now move to find an explicit model that effectively generates the cutoff. We add a scalar

field to the model, t̃, with the following coupling to the Higgs field:

−Lt̃h =
λth
2
|t̃|2 h2 + µ |t̃|2 h, (11.7)

where the coupling λth is dimensionless and µ has mass dimension one. Draw the two t̃-

mediated one-loop diagrams that contribute to the Higgs mass-squared.

8. Calculate each of the diagrams and denote them as ∆(1)
s (for the one proportional to λth)

and ∆(2)
s (for the one proportional to µ2). Denote the sum of these two diagrams as ∆s (s

stands for scalar) and show that

∆s =
1

16π2

[
λthI1(m2

t̃ )− µ
2I2(m2

t̃ )
]
. (11.8)

9. Consider a system with Ns such scalars. Show that, for Ns = 2NC , mt = mt̃, λth = |yt|2,

and µ2 = 2m2
t |yt|2, the sum of the fermion and scalar loops vanishes, that is, show that in

this case

∆f + 2NC∆s = 0. (11.9)

10. Keep Ns = 2NC and λth = |yt|2, but allow arbitrary values for µ2 and mt̃. Show that for

µ,mt̃ � Λ, the quadratic divergence cancels.

What we learn is that adding to the SM scalars with masses that are not much above the weak

scale, and with specific couplings, results in a theory where the Higgs mass-squared does not have

quadratic divergence. This is important as logarithmic divergent are fundamentally different than
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the quadratic one, they are renormelizable, and the exact low energy properties are not sensitive to

the details of the UV physics. In particular, models of supersymmetry provide such a mechanism.

Question 11.2: Coupling unification

The three gauge couplings of the SM roughly meet (that is, assume the same value) at a high

scale. This fact could be a hint that the three gauge groups unify into a GUT. In this question

you are asked to investigate this aspect of GUT. We assume that the GUT group is SU(5). It is

spontaneously broken into SU(3)C × SU(2)L × U(1)Y at the GUT scale ΛGUT. Thus, at ΛGUT,

gGUT = g1 = g2 = g3, (11.10)

where

g1 =

√
5

3
g′, g2 = g, g3 = gs. (11.11)

(The factor of
√

5/3 above arises from embedding the U(1)Y group into the SU(5) group.)

We discuss RGE running in Section 4.4 and Question 5.3. We assume that there are no fields

with masses between ΛEW and ΛGUT. Then the solution for the RGE is given by Eq. (5.35), that

in our case can be written as

1

α(µGUT)
=

1

αi(µEW)
+
Bi

2π
log

(
µEW

µGUT

)
. (11.12)

where αi = g2
i /(4π). The difference between the running of the various couplings is encoded in the

Bi’s. For the running of g′, B is given by a generalization of Eq. (4.25):

B1 =
1

3

∑
f

2nfY
2
f +

∑
b

nbY
2
b

 , (11.13)

where the sum over f (b) is a sum over all Weyl fermions (complex scalars), Y is the hypercharge,

and nf indicates the number of internal DoF, for example nQ = 6 and nE = 1. For the running of

the SU(N) gauge couplings (g2 and g3), BN is given by a generalization of Eq. (4.26):

BN =
1

3

∑
f

nf +
1

2

∑
b

nb − 11N

 . (11.14)

1. Calculate the Bi coefficients for αi (i = 1, 2, 3). Remember to take into account the normal-

ization of g1 with respect to g′.

2. Using α−1(mZ) ≈ 128, and (7.60), (7.73), and (5.16), find the central values of αi(mZ) for

i = 1, 2, 3.

3. Using one loop RGE running and the central values of αi(mZ), calculate the scale where each

pair of couplings meet, M ij
GUT, with i 6= j.

200



4. We can define a measure of “missing” a grand unification by

rm =
∆MGUT

MGUT

, (11.15)

where ∆MGUT is the difference between the largest and smallest M ij
GUT, and MGUT is their

average. Find rm.

5. We used one loop RGE and central values of the couplings. What do you expect to be the

relative effects on rm due to higher order corrections and due to the experimental uncertainties

of αi? Taking into account these uncertainties, is it possible that rm = 0, in which case the

SM is consistent with GUT with no additional degrees of freedom between ΛEW and MGUT?

6. A smaller value for rm is obtained once an extra (1, 2)+1/2 scalar field with weak scale mass

is added to the SM. Calculate rm in this case. Is rm = 0 consistent within this model?

What we learn is that GUT is an attractive idea based on couplings unification. There are

more aspects of GUT that make it a well-motivated extension to the SM. Yet, to date, there is no

direct experimental evidence for it.
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Chapter 12

Electroweak Precision Measurements

In this chapter, we discuss Electroweak Precision Measurements (EWPM). They provide us with

a test of the SM beyond tree level and a probe of BSM physics in the gauge and scalar sectors of

the theory.

12.1 Introduction

Consider a situation where a class of processes is described at tree level by only one sector of a

theory, and where this sector depends on only a small number of parameters. If the number of

observables is larger than the number of parameters, relations among the observables are predicted.

At the quantum level, however, the tree level relations are violated, and the processes depend on

all parameters of the theory. In some cases, the tree level predictions follow from a symmetry

which is respected by the relevant sector but not by other sectors of the theory. Violations of such

symmetry-based relations are particularly sensitive to loop effects. The program of EWPM takes

advantage of these features of quantum theories.

At tree level, all flavor diagonal electroweak processes depend on only three parameters of the

renormalizable SM Lagrangian. In the language of the SM Lagrangian, the three parameters are

g, g′, and v. Alternatively, one can work with the combinations of these parameters that are

measured most precisely: α, mZ , and GF . The number of relevant observables is much larger

than three. Thus, at tree level, a large number of relations among these observables are predicted.

These predictions are, however, violated by SM loop effects, and possibly by nonrenormalizable

operators that are generated by BSM physics.

The full SM has eighteen parameters. The EWPM allow us to probe some of the additional

fifteen parameters through their modification of the tree level relations. Eleven of the fifteen

parameters (eight of the Yukawa couplings and the three CKM mixing angles) are small, and

consequently have negligible effects on deviations from the tree level relations. The four large

parameters are the Kobayashi-Maskawa (KM) phase, the strong coupling constant, the Higgs self–
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coupling (or, equivalently, the Higgs mass, mh), and the top Yukawa coupling (or, equivalently, the

top mass, mt). The KM phase has negligible effects on flavor diagonal processes. As concerns the

strong coupling constant, its universality and the absence of direct couplings of the electroweak

vector bosons to gluons combine make its effect on the relevant parameters very small. Thus, in

practice, there are only two additional SM parameters that have significant effects on the EWPM:

mt and mh. In the past, when these masses had not yet been directly measured, the EWPM

were used to determine their values. Now, that the top quark and the Higgs boson have been

discovered and their masses are known from direct measurements, the EWPM are used to probe

nonrenormalizable operators, that is, BSM physics.

As concerns the experimental aspects of the EWPM program, the relevant processes can be

divided to two classes: low-energy and high-energy. The “low-energy” observables involve processes

with a characteristic energy scale well below mW and mZ , so that the intermediate W -boson or

Z-boson are far off-shell. The “high-energy” observables are measured in processes where the W -

boson or the Z-boson are on-shell. The low-energy EWPM include measurements of GF and α,

as well as data from neutrino scattering, deep inelastic scattering (DIS), atomic parity violation

(APV), and low energy e+e− scattering. The high-energy EWPM include measurements of the

masses, the total widths, and partial decay widths of the W and Z bosons.

12.2 The weak mixing angle

12.2.1 The weak mixing angle at one loop

As an example of the way EWPM are used, we consider three definitions of the weak angle. Each

definition involves a different set of observables. At tree level, all three definitions are equivalent,

and correspond to [see Eq. (7.29)]

tan θ ≡ g′

g
. (12.1)

At the one loop level, however, they differ.

(i) Definition in terms of α, GF and mZ :

sin2 2θ0 ≡
4πα√

2GFm2
Z

. (12.2)

Quantitatively, θ0 is defined in terms of the best measured observables and thus has the

smallest experimental uncertainties.

(ii) Definition in terms of mW and mZ :

sin2 θW ≡ 1− m2
W

m2
Z

. (12.3)
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This definition is based on the tree level relation ρ = 1 discussed in section 7.3.2, see

Eq. (7.35).

(iii) Definition in terms of gfV , the vectorial couplings of the Z to fermion,

sin2 θf∗ ≡
T f,L3 − gfV

2Qf
, (12.4)

where gfV is defined in Eq. (7.77) and we used the fact that all SM fermions have TR3 = 0.

In principle we have here nine different definitions of θ∗, one for each charged fermion type.

See Question 12.2 for one of the ways to obtain experimental sensitivity to gfV .

For any given model, that is, the SM or BSM, one can compute all the relevant corrections to

the tree-level SM predictions as functions of the model parameters. For pedagogical and practical

purposes, we, however, work in a simple framework that represents a large class of models. To do

so, we make the following working assumption:

• The only significant effects are in the electroweak gauge boson propagators. These effects

are called oblique corrections.

This assumption implies that all θf∗ are equal and the relevant one loop effects are flavor universal.

Thus, from now on we do not write the f super-index of θ∗. In some models the assumption that

all corrections are oblique does not hold, yet the corrections are flavor universal.

We denote the oblique corrections to the electroweak gauge boson propagators by ΠAB(q2).

The propagators PAB are defined as follows:

PAB(q2) =
−i

q2 −m2
A

[
δAB +

−iΠAB(q2)

q2 −m2
B

]
. (12.5)

Taking charge conservation into account, we learn that there are four ΠAB’s that do not vanish.

We can choose the set ΠWW , ΠZZ , Πγγ, and ΠγZ(= ΠZγ), corresponding to the mass eigenstates.

Alternatively, we can use Π+−, Π33, Π00, and Π30 (where the Bµ gauge boson is denoted by the

zero subindex) corresponding to the interaction eigenstates. The transition between the two sets

is straightforward.

At q2 = m2
A, the relevant ΠAB can be identified as correction to the mass of the corresponding

gauge boson. Thus, gauge invariance (specifically, m2
γ = 0) guarantees that

Πγγ(q
2 = 0) = ΠγZ(q2 = 0) = 0. (12.6)

To proceed further, we note that the following two points which lead to considerable simplifi-

cations:

• High-energy EWPM depend on ΠWW (m2
W ), ΠZZ(m2

Z) and ΠγZ(m2
Z).
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• For low-energy EWPM, we can expand ΠAB(q2 � m2
W ) in q2, and assume that terms of

order (q2)2 and higher can be neglected:

ΠAB(q2 � m2
W ) = ΠAB(0) + q2Π′AB(0), Π′(q2) ≡ dΠ(q2)

dq2
. (12.7)

Thus, the four functions ΠAB(q2) are replaced by nine numbers.

We now present the effects of the various corrections to the propagators on the three differently-

defined θ’s. Instead of considering each of the three definitions separately, we consider the two

independent differences between them. This has two advantages: First, these differences depend

only on the loop corrections and are independent of the tree level contribution. Second, a loga-

rithmic divergence that appears in the SM loop corrections to each of the sin2 θ’s cancels in the

difference. (Naively, one may expect quadratic divergences, but these are prevented by the Ward

identities.) We have:

sin2 θ0 − sin2 θ∗ =
sin2 2θ

4 cos 2θ

[
Π′γγ(0) +

ΠWW (0)

m2
W

− ΠZZ(m2
Z)

m2
Z

]
+ sin θ cos θ

ΠγZ(m2
Z)

m2
Z

,

sin2 θW − sin2 θ∗ = − 1

m2
Z

[
ΠWW (m2

W )− m2
W

m2
Z

ΠZZ(m2
Z)

]
+ sin θ cos θ

ΠγZ(m2
Z)

m2
Z

. (12.8)

In the first equation, the terms in parenthesis on the RHS correspond to corrections to α, GF

and mZ , respectively. In the second equation, the terms in parenthesis on the RHS correspond to

corrections to the tree level heavy gauge boson masses,

∆m2
W = ΠWW (m2

W ), ∆m2
Z = ΠZZ(m2

Z). (12.9)

The corrections to the gR coupling arise from the mixing between the off-shell photon and the

Z-boson. We learn that, as anticipated, the loop effects are different for the three definitions.

Once we extract the values of sin2 θ from each of the three sets of observables, we can probe these

effects.

12.2.2 The weak mixing angle within the SM

Our analysis so far applies to all models with only oblique corrections. In this subsection we discuss

the specific case of the SM. We make the following approximation:

• We consider only one loop diagrams involving the top and bottom quarks.

Within the SM, these diagrams provide the leading oblique corrections. We thus need to calculate

diagrams of the general form that can be seen in Fig. 12.1.

We do not reproduce the details of the calculation here, but only quote the final results:

sin2 θ0 − sin2 θ∗ =
3α

16π cos2 2θ

m2
t −m2

b

m2
Z

,

sin2 θW − sin2 θ∗ =
−3α

16π sin2 θ

m2
t −m2

b

m2
Z

. (12.10)
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Aµ

qi

Bµ

qj

Figure 12.1: A general form of an oblique correction diagram.

On the RHS of these equations we do not specify which of the three θ’s we use, since the difference

accounts for a higher order correction.

Eqs. (12.10) demonstrate the main point of this section: One can use the observables of the

EWPM to determine parameters outside the pure electroweak sector. Before the discovery of the

top quark, the measured values of the observables on the left-hand side of these equations were

used to determine mt (see Question 12.3). Moreover, the SM was tested by examining whether

the ranges allowed for mt from the two sets of observables overlap.

Let us explain the various factors in Eqs. (12.10). The factor of α/(16π) is typical of electroweak

one-loop effects. The factor of 3 is the color factor of the quarks in the loop. The θ dependence is

different in the two cases, reflecting the specific combination of observables involved in each case.

The factor of (m2
t −m2

b)/m
2
Z deserves a more detailed discussion that is provided in Section 12.3.

An interesting aspect of Eqs. (12.10) has to do with the quadratic dependence on the top

mass, which seems to violate the so-called decoupling theorem. This theorem states that the effect

of heavy states on low energy observables must go to zero as their mass goes to infinity. The

intuition behind this theorem is straightforward. The heavier a state is, the smaller its effects

(when off-shell) become. This can be understood based on the uncertainty principle, or on second

order perturbation theory, or simply by considering the form of propagators in QFT. Yet, the

theorem does not apply to the top contribution to EWPM. The solution to the puzzle lies in the

fact that the SM quarks acquire their masses from the Higgs mechanism. Consequently, their

Yukawa couplings are proportional to their masses. The heavier the top, the stronger its Yukawa

coupling becomes. Indeed, the top-related loop corrections to EWPM depend on the top coupling

to the longitudinal W and Z, which are the DoF that were “eaten” by the SSB. The quadratic

dependence on the top mass reflects the proportionality of the loop corrections to the top Yukawa

coupling, and not to its mass. (In fact, the mt →∞ limit cannot be taken, because perturbation

theory does not hold anymore.)

Additional oblique corrections of interest come from loop diagrams with internal Higgs boson.
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At one loop level, the mh-dependence is logarithmic, and thus the EWPM are less sensitive to mh

than they are to mt. This result is known as the screening theorem. We do not discuss it in detail

here. Two loop contributions are proportional to m2
h, but are small because of the extra loop

factor. We note, however, that the precision of the EWPM was good enough to have sensitivity

to the Higgs-related oblique corrections and provided an allowed range for the Higgs mass well

before it was actually measured. The present allowed range from EWPM (removing all direct

measurements of the Higgs mass, production, and decay rates) is 60 GeV ≤ mh ≤ 127 GeV at the

90% CL.

12.3 Custodial symmetry

The SM Higgs potential has an accidental symmetry. This so-called “custodial symmetry” predicts

tree level relations among various observables. In this subsection we focus on the SM: The fact that

the custodial symmetry is not a symmetry of the full SM makes EWPM sensitive to the custodial

symmetry breaking SM parameters. In the next subsection we focus on BSM physics: The fact

that the symmetry is accidental makes EWPM sensitive to nonrenormalizable terms that violate

the symmetry.

Consider the SM Higgs potential [see Eq. (7.15)]

V = µ2(φ†φ) + λ(φ†φ)2. (12.11)

Since φ is a complex, SU(2)L-doublet scalar field, it has four degrees of freedom:

φ =

(
φ1 + iφ2

φ3 + iφ4

)
. (12.12)

The scalar potential, when written in terms of these four components, depends only on the com-

bination φ2
1 + φ2

2 + φ2
3 + φ2

4, and thus has manifestly an SO(4) symmetry. The four DoF form an

SO(4)-quartet (4) , that is a vector in the space. The potential depends only on the length of the

vector, which is the singlet combination of two 4s. At the algebra level, SO(4) ∼ SU(2)× SU(2).

Out of the six generators, four are also generators of the gauge group SU(2)L × U(1). The two

extra generators are then related to an accidental symmetry of the scalar sector of the SM.

The VEV of the Higgs field breaks three of the generators, leaving (within the pure Higgs

sector) an unbroken SU(2) symmetry. This is the symmetry that is called custodial symmetry.

The symmetry would have applied to the full SM Lagrangian if two conditions were met: g′ = 0

and Y d = Y u. In this limit, the (W1,W2,W3) DoF transform as a triplet under the custodial

symmetry. Consequently, the mass terms induced by the SU(2)L × U(1)Y spontaneous symmetry

breaking are equal for these three DOFs.

The most general mass-squared matrix in the (W1,W2,W3, B) basis, that is consistent with
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U(1)EM gauge invariance, is given by
m2
W 0 0 0

0 m2
W 0 0

0 0 m2
Zc

2
W m2

ZcW sW

0 0 m2
ZcW sW m2

Zs
2
W

 , (12.13)

where sW ≡ sin θ and cW ≡ cos θ. The custodial symmetry requires that the top three diagonal

terms are equal and thus that m2
Zc

2
W = m2

W , namely the ρ = 1 relation.

The custodial symmetry holds at tree level for models with any number of scalar doublets and

singlets. It is however not a symmetry of the full SM. In particular, it is broken by the Yukawa

coupling since Y d 6= Y u (see Question 12.4). The largest breaking parameter is then m2
t − m2

b .

This breaking is communicated to the Higgs sector by loop effects, resulting in violation of the

predictions that follow from the custodial symmetry. This is the reason that the leading correction

to the ρ = 1 relation is proportional to m2
t −m2

b , see Eq. (12.10).

12.4 Probing BSM

Within the SM, the EWPM program is sensitive at tree level to three input parameters and at the

loop level to a few more. Since we have more observables than relevant SM parameters, EWPM

can be used to test the SM. So far, no significant deviation from the SM was found. Furthermore,

as we already mentioned, all the relevant SM parameters are now directly measured, and therefore

the data can be used to constrain BSM physics.

As concerns the probing of BSM physics with EWPM, one can go in either of two ways. First,

one can consider a specific model, calculate the new contributions to the observables, and constrain

the BSM parameters by comparing to the experimental results (just as we did for the SM itself).

In Section 12.4.3, we demonstrate this by a brief discussion of the four generation extension of

the SM. Second, one can consider the effects of nonrenormalizable terms without committing to a

specific model. Under reasonable assumptions, to be specified below, there is only a small number

of dimension-six terms in the SMEFT that affect the EWPM. In Section 12.4.1, we discuss these

operators and how they are constrained by EWPM.

12.4.1 Nonrenormalizable operators and the q2 expansion

In general there are many operators that affect the EWPM. The number of operators with poten-

tially significant effects is, however, much smaller in a large class of models that fulfill the following

three conditions:

1. The scale of the BSM physics is much higher than the electroweak breaking scale, Λ� mW .

(This condition holds, by definition, for BSM physics whose effects can be represented by

nonrenormalizable terms.)
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2. The BSM physics generates only oblique corrections to the relevant observables.

3. There are no contributions from new heavy gauge bosons.

(The analysis below applies to a broader class of models than implied by the third condition, but

we assume this stronger condition for the sake of simplicity.)

The contributions to oblique corrections from nonrenormalizable terms can come from tree-level

diagrams or from loop diagrams. We consider here only tree–level BSM contributions. Conse-

quently, our analysis concerns only operators that involve exactly two electroweak gauge fields and

no fermions. In addition to the two electroweak gauge fields, the operators can have derivatives

and Higgs fields. Tree level contributions come from replacing the Higgs fields in these operators

with their VEV. There are no such dimension-five operators and thus the leading contributions

(for Λ� v) come from dimension-six operators.

With these considerations, we learn that there are only four dimension-six terms that contribute

to the oblique corrections:

Lo.c. =
1

Λ2
(cWBOWB + cHHOHH + cBBOBB + cWWOWW ) , (12.14)

where the cXY ’s are dimensionless coefficients, and the operators are defined as follows (note that

in the literature, a variety of normalizations are used):

OWB = (H†τaH)W a
µνBµν →

1

2
v2W 3

µνBµν ,

OHH = |H†DµH|2 →
1

16
v4(gW 3

µ − g′Bµ)2,

OBB = (∂ρBµν)
2,

OWW = (DρW
a
µν)

2, (12.15)

where τa are the Pauli matrices, and in the second step we replace the Higgs field by its VEV.

In addition to the expansion in inverse powers of Λ, which led us to neglect SMEFT terms of

dimension d > 6, we can expand in powers of q2. This expansion leads to considerable simplifica-

tion of the analysis. Since we deal with oblique corrections, we expand the vacuum polarization

amplitudes ΠAB(q2) with AB = {W+W−,W3W3, BB,W3B}:

ΠAB(q2 � Λ2) = ΠAB(0) + q2Π′AB(0) +
(q2)2

2
Π′′AB(0) + · · · . (12.16)

Within the SMEFT, there are only two dimensionful parameters: v and Λ. The dependence of the

various Π
(n)
AB on v comes from replacing the Higgs field with its VEV, and thus they can depend

only on positive powers of v. On the other hand, the various Π
(n)
AB depend only on inverse powers of

Λ. For example, the contributions of dimension-six terms are proportional to 1/Λ2. Since ΠAB is

dimension-two (and Π
(n)
AB is dimension 2−2n) in mass, we can only have the following dependencies
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on v and Λ of the various terms in the q2 expansion:

ΠAB(0) ∝ v2, v4/Λ2, · · · ,

Π′AB(0) ∝ 1, v2/Λ2, · · · ,

Π
′′

AB(0) ∝ 1/Λ2, · · · ,

Π
(n)
AB(0) ∝ 1/Λ2n−2, v2/Λ2n, · · · . (12.17)

Since we neglect terms of dimension higher than six, we can truncate the q2 expansion at order

(q2)2: Terms of order (q2)3 and higher are suppressed by at least 1/Λ4. One more observation from

the above is that the dimension-six operators affect Π(0), Π′(0) and Π
′′
(0). Specifically, examining

Eq. (12.15), we straightforwardly learn that OWB contributes to Π′W3B
(0), OHH contributes to

ΠW3W3(0), ΠBB(0), and ΠW3B(0), OBB contributes to Π′′BB(0), and OWW contributes to Π′′W3W3
(0)

and Π′′W+W−(0).

We note that the q2 expansion of Eq. (12.7) applies to any model but only to low energy

observables, q2 � m2
W . The q2 expansion of Eq. (12.17) applies to all observables but only to BSM

physics models that are characterized by a scale that is much higher than the electroweak scale,

Λ� v.

12.4.2 The S, T , and U parameters

To study the contributions of dimension-six terms to oblique corrections, we need to keep terms

up to Π
′′

in the q2 expansion. Thus, the four functions, ΠAB(q2), are replaced by twelve numbers,

ΠAB(0), Π′AB(0), and Π
′′
AB(0). Out of these twelve numbers, two combinations vanish due to the

U(1)EM gauge invariance, Πγγ(0) = ΠγZ(0) = 0. Three other combinations are fixed by the three

tree-level SM parameters. The remaining seven parameters are then related to observables, and

can be fitted. The seven parameters are usually called S, T, U, V,W,X, Y . From the theoretical

side, one can obtain the contributions of the four dimension-six terms to these parameters and

finally constrain their coefficients in the Lagrangian.

To provide a simple demonstration of the relation to observables, we truncate the expansion

at order q2. This leaves only three parameters that neither vanish nor are fixed by the tree level

parameters. These are the S, T , and U parameters defined as follows:

αT =
ΠWW (0)

m2
W

− ΠZZ(0)

m2
Z

, (12.18)

αS

sin2 2θ
= Π′ZZ(0)− 2 cos 2θ

sin 2θ
Π′Zγ(0)− Π′γγ(0), (12.19)

αU

4 sin2 θ
= Π′WW (0)− cos2 θΠ′ZZ(0)− sin 2θΠ′γZ(0)− sin2 θΠ′γγ(0). (12.20)

A few comments are in order:
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Figure 12.2: The current bounds on S and T taken from [?]

1. The S, T , and U parameters receive one loop contributions in the SM and possibly also BSM

contributions. One can subtract the SM values and redefine them such that within the SM

they vanish. With this new definition, a non-zero value would be a sign of BSM physics.

The values presented below correspond to this definition.

2. S, T , and U are pure numbers. Their scaling by α−1 relative to ΠAB (or Π′AB) means that

they roughly reflect the allowed size of BSM physics contributions compared to the SM

one-loop contributions.

3. The U parameter rarely provides a significant constraint. The reason is that U arises from

a dimension-eight operator, while S and T arise from dimension-six operators.

4. Any BSM physics that respects the custodial symmetry gives T = U = 0, while S may

be different from zero. More generally, T and U are proportional to custodial symmetry

breaking parameters.

5. The T parameter is closely related to the ρ = 1 relation.

The EWPM determine the allowed ranges for these parameters. The strongest bounds arise

from S and T but there are experimental correlations between them that have to be taken into

account, see Fig. 12.2. Putting U = 0, motivated by the fact that, in the SMEFT, U is suppressed
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by an extra factor of v2/Λ2 compared to T and S, the current experimental bounds read

S = +0.00± 0.07, T = +0.05± 0.06. (12.21)

The contributions of the dimension-six operators to S and T are given by

S =
2 sin 2θ

α

v2

Λ2
cWB, T = − 1

2α

v2

Λ2
cHH . (12.22)

We note that T is proportional to cHH , which is the only custodial symmetry breaking parameter

among these nonrenormalizable terms. Using the experimental upper bounds of Eq. (12.21) as

reference points gives

Λ√
|cWB|

∼> 14 TeV

√
0.07

|S|
,

Λ√
|cHH |

∼> 6 TeV

√
0.11

|T |
. (12.23)

The lesson to draw from this discussion is that EWPM currently have accuracy of order 10% of

the SM one-loop corrections, and consequently probe BSM up to a scale that is roughly one-to-two

orders of magnitude above the weak scale.

12.4.3 The four generation SM

The four generation SM is excluded by several measurements, for example, by the invisible width

of the Z-boson (see Question 8.3). Yet, it provides a simple example of constraining a specific

BSM physics model by the EWPM.

We consider a four generation model where the fourth neutrino is massive, without providing

an explicit mechanism for generating its mass. We further assume that all the fourth generation

fermions are heavier than the top quark and that the splitting within each multiplet is small. We

further assume no significant flavor mixing between the fourth generation and the three known

ones. Under these assumptions we have

S =
1

2π

[
1− 1

3
log

(
m2
u4

m2
d4

)]
+

1

6π

[
1 + log

(
m2
ν4

m2
e4

)]
,

T =
1

2π sin2(2θW )

(
m2
u4
−m2

d4

m2
Z

)
+

1

6π sin2(2θW )

(
m2
ν4
−m2

e4

m2
Z

)
, (12.24)

where mf4 are the masses of the fourth generation fermions. We learn that T is related to the mass

splitting between t4 and b4 and between ν4 and e4, which are the custodial symmetry breaking

parameters in this model. In the case of a degenerate quark doublet and a degenerate lepton

doublet, we have T = 0 and S = 2/(3π). In a way, the S parameter “counts” the number of extra

generations. The current measurement of S by itself excludes an extra degenerate generation (so

that T = U = 0) at the 7σ level. Yet, for non-degenerate fermions, when the correlation with T is

taken into account, the bounds on extra generations are less severe.
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For further reading

• A summary of the relevant EWPM observables and the relevant data can be found in the

PDG.

• Reviews on EWPM can be found, for example, in the PDG review of the SM and in Ref. [39].

• Read more about custodial symmetry in Refs. [40, 41].
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Problems

Question 12.1: Algebra

Most of the algebra for this section can be found in Ref. [2].

1. Derive Eqs. (12.8), see Eq. (21.127), (21.128), and (21.131) of Ref. [2].

2. Derive Eqs. (12.10), see Eqs. (21.157) of Ref. [2]).

Question 12.2: Extracting sin2 θ∗

In order to extract θ∗, we need to measure processes that depend on the couplings of the Z-

boson to fermions. There are many such processes. Here we consider two of these, the ratio of

decay rates,

R` ≡
Γ(Z → `+`−)

Γ(Z → νν̄)
, (12.25)

where ` is a charged fermion, and the forward-backward asymmetry in e+e− → µ+µ− scattering

close to the Z pole,

AµFB ≡
σµF − σ

µ
B

σµF + σµB
, σµF = 2π

∫ 1

0
d(cos θ)

dσµ

d cos θ
, σfB = 2π

∫ 0

−1
d(cos θ)

dσµ

d cos θ
, (12.26)

where θ is the angle between the incoming e− and the outgoing µ. You are asked to show that a

combination of the two can be used to extract θ∗

1. Show that, neglecting the small phase space effects and working at tree level,

R` = 2
[
(g`V )2 + (g`A)2

]
. (12.27)

2. Show that, neglecting the photon-mediated contribution and considering only the Z-mediated

contribution at tree level,

AµFB =
3

4
AeAµ, A` =

2g`V g
`
A

(g`V )2 + (g`A)2
. (12.28)
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3. Find g`V − g`A in terms of R` and AµFB and then use Eq. (12.4) to obtain sin2 θ∗.

Question 12.3: Predicting mt

Here we demonstrate how mt had been predicted using EWPM data before the top quark was

discovered.

1. Using Eqs. (12.10) find the expression for sin2 θ0 − sin2 θW .

2. Use the central values of GF , α, mZ , mW , and mb to determine mt.

3. Compare your result to the direct measurement. Comment on differences between the two.

Question 12.4: Custodial symmetry

Consider the Higgs sector of the SM in the g′ → 0 limit:

Lφ = (Dµφ)†(Dµφ)− Vφ, (12.29)

where

Dµφ =
(
∂µ + i

g

2
σaW a

µ

)
φ, Vφ = µ2(φ†φ) + λ(φ†φ)2. (12.30)

1. Show that Vφ is invariant under an SO(4) symmetry, where the four components of the Higgs

field as defined in Eq. (12.12) transform as (4).

At the algebra level, SO(4) ∼ SU(2)L × SU(2)R. Here SU(2)L is the global version of the SM

gauge group with the same name. Under SU(2)L × SU(2)R, the Higgs field transforms as (2, 2).

We write it then as a matrix:

Φ =
1√
2

( φ̃ φ ) =
1√
2

(
φ3 − iφ4 φ1 + iφ2

−φ1 + iφ2 φ3 + iφ4

)
, (12.31)

where φ̃ is defined in Eq. (8.13).

2. Show that φ̃†φ̃ = φ†φ and use it to show that

Tr
[
Φ†Φ

]
= φ†φ. (12.32)

3. Show that Lφ defined in Eq. (12.29) can be written as

Lφ = Tr
[
(DµΦ)†(DµΦ)

]
− VΦ, (12.33)

where

DµΦ =
(
∂µΦ + i

g

2
σ ·WµΦ

)
, VΦ = µ2

(
Tr
[
Φ†Φ

])
+ λ

(
Tr
[
Φ†Φ

])2
. (12.34)
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4. Under SU(2)L × SU(2)R, the W -boson field transforms as (3, 1), that is, W µ → LW µL†,

while the Φ field transforms as Φ → LΦR†, where L and R are group elements of SU(2)L

and SU(2)R, respectively. Using these transformation properties, show that Lφ is invariant

under SU(2)L × SU(2)R.

5. We now consider SSB. We assign the VEV to φ3. Show that the SO(4) symmetry of Vφ is

broken down to SO(3), with (φ1, φ2, φ4) transforming a triplet (3).

6. Using

〈Φ〉 =
1

2

(
v 0

0 v

)
, (12.35)

show that

L〈Φ〉 6= 〈Φ〉 〈Φ〉R† 6= 〈Φ〉, (12.36)

so that both SU(2)L and SU(2)R are broken.

7. Show that

L〈Φ〉L† = 〈Φ〉. (12.37)

Thus, Lφ is invariant under simultaneous SU(2)L and SU(2)R transformations with L = R,

so that an SU(2)D subgroup remains unbroken. This SU(2)D is identified with the unbroken

SO(3) of the Higgs potential discussed above.

8. Show that the (W1,W2,W3) form a triplet under SU(2)D. This implies that they have the

same mass-squared, and leads to the ρ = 1 relation.

There are two sources of explicit breaking of the SO(4) symmetry: the hypercharge coupling and

the Yukawa couplings. We discuss them in turn.

9. Show that U(1)Y is a subgroup of SU(2)R. To do it, show that under U(1)Y

Φ→ Φe−
i
2
σ3θ (12.38)

and compare it to the transformation of Φ under SU(2)R.

10. Argue that, because U(1)Y is gauged while the rest of SU(2)R is not, g′ 6= 0 implies breaking

of SU(2)R and of SU(2)D.

11. Assign QL into a (2, 1) and QR = (UR, DR) into (1, 2) of SU(2)L × SU(2)R. Show that

LYuk = Y QLΦQR (12.39)

is invariant under SU(2)L × SU(2)R.

12. Show that Eq. (12.39) is the same as the quark terms in LYuk of the SM, Eq. (8.15), when

Y u = Y d = Y .
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13. Argue that because, Y u 6= Y d, SU(2)R and SU(2)D are explicitly broken.

14. Argue that any loop correction to the ρ = 1 relation must be proportional to either g′ or to

the mass splitting between the up and down sector fermions.
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Chapter 13

Flavor changing neutral currents

In this chapter, we discuss Flavor Changing Neutral Currents (FCNC) and CP violation in the

quark sector. These processes are sensitive to loop effects and to nonrenormalizable operators.

The structure of FCNC is affected by the hierarchies in the quark masses and in the CKM mixing

angles, and is thus far from generic.

13.1 Introduction

EWPM, discussed in Chapter 12, test the SM and probe BSM physics. To achieve these goals,

one goes through the following steps:

1. Calculating loop corrections to relevant processes;

2. Checking the consistency of the various observables within the SM;

3. Obtaining the allowed ranges for nonrenormalizable terms.

Similarly, FCNC test the SM and probe BSM physics. The two classes of processes — EWPM

and FCNC — are sensitive to different sectors of the SM. Thus, they probe different classes of

dimension six operators, and the information extracted from them is complementary. In both

cases, the experimental sensitivity is to BSM contributions that are of size comparable to the

corresponding SM one-loop contributions. Yet, the FCNC processes can probe new physics at

higher scales because, in addition to the loop suppression (see Section 9.4), the SM contributions

are suppressed by small flavor parameters, as discussed in Section 13.2.

There are additional interesting differences between EWPM and FCNC. First, while for EWPM

the leading contributions are tree level, and loop contributions provide small corrections, for FCNC

there are no tree-level contributions, and the loop diagrams constitute the leading contributions.

Second, while for EWPM, the QCD corrections are small and the calculations are very precise, for

FCNC the QCD effects are significant, leading to large hadronic uncertainties. Thus, for EWPM,
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precise calculations are necessary and possible. For FCNC, precise calculations are desirable but

less crucial, and at the same time harder to achieve.

The fact that FCNC can probe physics at scales that are much higher than the energy scale

of the relevant experiments has been demonstrated several times in the history of particle physics.

FCNC processes have played an important role in predicting the existence of SM particles before

they were directly discovered, and in predicting their masses:

• The smallness of Γ(KL → µ+µ−) led to predicting the charm quark (see Question 9.6).

• The size of the mass difference in the neutral kaon system, ∆mK , led to a successful prediction

of the charm mass (see Question 13.2).

• The measurement of CP violation in kaon decays led to predicting the third generation (see

section 13.C.3).

• The size of the mass difference in the neutral B system, ∆mB, led to a successful prediction

of the top mass (see Question 13.2).

As mentioned above and discussed in Section 9.4, FCNC processes cannot be mediated at tree

level in the SM. Yet, since there is no symmetry that forbids them, they are mediated at the loop

level. Concretely, the W -mediated interactions lead to FCNC at the one-loop level. Since the

W -boson couplings are charged current flavor changing, an even number of insertions of W -boson

couplings are needed to generate an FCNC process. We consider two classes of FCNC based on

the change in F (the charge under the global [U(1)]6 flavor symmetry of the QCD Lagrangian):

• FCNC decays (∆F = 1 processes) have two insertions of W -couplings.

• Neutral meson mixings (∆F = 2 processes) have four insertions of W -couplings.

13.2 CKM and GIM suppressions in FCNC decays

In this section, we discuss FCNC meson decays, which are ∆F = 1 processes. To demonstrate

the generic features of one-loop FCNC, we consider the example of s → d transitions. Since the

change of flavor QNs is ∆s = −∆d = 1, this transition belongs to the class of ∆F = 1 processes.

The FCNC part of any process that involves s → d transition is plotted in Fig. 13.1(a). For

example, in Fig. 13.1(b) we show a full diagram that contributes to the decay K → πνν̄, and

which includes Fig. 13.1(a) as a sub-diagram. (Diagrams with such a topology are usually called

penguin diagrams.)

By inspecting the diagram in Fig. 13.1(a), we learn that its flavor structure is given by

As→d ∼
∑

i=u,c,t

(VisV
∗
id) f(xi), xi =

m2
i

m2
W

, (13.1)
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(a) (b)

Figure 13.1: (a) One loop diagrams for ∆F = 1 FCNC. (b) A one loop diagram that contributes

to K+ → π+νν̄.

where f(xi) depends on the specific decay. CKM unitarity implies

V ∗udVus + V ∗cdVcs + V ∗tdVts = 0. (13.2)

We can then use this unitarity condition to eliminate one of the three CKM terms in the sum in

Eq. (13.1). We choose to eliminate the u-term and write

As→d ∼
∑
i=c,t

[f (xi)− f (xu)]VisV
∗
id. (13.3)

We draw the following lessons:

• The contribution of the mi-independent terms in f(xi) to As→d vanishes when summed over

all internal quarks.

• As→d would vanish if the up-type quarks were all degenerate and, therefore, it must depend

on the mass-splittings among the up-type quarks.

The explicit dependence on the mass-splittings among the quarks depends on the process. In many

cases, for small xi we have

f(xi) ∼ xi. (13.4)

Using this crude approximation we can write

As→d ∼ [(xt − xu)VtsV ∗td + (xc − xu)VcsV ∗cd] . (13.5)

Inspecting Eq. (13.5), we identify two suppression factors:
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(i) CKM suppression: The amplitude is proportional to at least one off-diagonal CKM matrix

element. Given the specific structure of the CKM matrix, off-diagonal elements are small.

Specifically, |VtsV ∗td| ∼ λ5 and |VcsV ∗cd| ∼ λ where λ is the Wolfenstein parameter defined in

Eq. (9.7).

(ii) GIM suppression: The amplitude is proportional to mass-squared differences between the

up-type quarks. In particular, (xc − xu) ∼ (mc/mW )2. The suppression by factors of small

quark masses is called the Glashow–Iliopoulos–Maiani (GIM) mechanism.

While we derive the results based on one specific example, the CKM and GIM suppressions play a

role in all FCNC processes. For the other FCNC in the down sector, b→ q with q = d, s, we have

Ab→q ∼ (xt − xu)VtbV ∗tq + (xc − xu)VcbV ∗cq. (13.6)

With regard to FCNC in the up sector, for c→ u, we have

Ac→u ∼ (xb − xd)V ∗cbVub + (xs − xd)V ∗csVus, (13.7)

and, for t→ q with q = u, c, we have

At→q ∼ (xb − xd)V ∗tbVqb + (xs − xd)V ∗tsVqs. (13.8)

The CKM suppression applies to FCNC decay rates. It does not necessarily apply, however,

to the corresponding branching ratios. The reason is that branching ratios depend on the ratio

between the FCNC decay rate and the full decay width which, in the down sector, is CKM-

suppressed, and thus the ratio of CKM factors is not necessarily small. In particular, the leading

(FCCC) K decay rate is suppressed by |Vus| ∼ |VcsVcd| and the leading (FCCC) B decay rate is

suppressed by |Vcb| ∼ |VtbVts|.
Several remarks are in order:

1. While the f(xi) ∼ xi approximation is not valid for the top quark, it gives a reasonable order

of magnitude estimate, and we use it for the purpose of demonstration. For example, while

xt/xc ∼ 104, we have for f(x) defined in Eq. (13.11), f(xt)/f(xc) ≈ 103.

2. The exact form of the dependence on the mass splitting is process dependent, but in all

cases the amplitude vanishes when the internal quarks are degenerate. We refer to quadratic

dependence [xi − xj] as hard GIM, and to logarithmic dependence [log(xi/xj)] as soft GIM.

3. The size of FCNC amplitudes increases with the mass of the internal quark. The reason that

this does not violate the decoupling theorem is the same as discussed in the EWPM case,

see Section 12.2.2.
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13.2.1 Examples: K → πνν̄ and B → πνν̄

As examples of ∆F = 1 processes, we consider the semileptonic decays

K+ → π+νν̄, B+ → π+νν̄, (13.9)

which proceed via the s̄→ d̄νν̄ and b̄→ d̄νν̄ transitions.

Consider the following ratios of FCNC-to-FCCC semileptonic decay rates:

RKπ =
Γ(K+ → π+νν̄)

Γ(K+ → π0e+ν)
=

3

2

g4

16π2

∣∣∣∣∣V ∗tsVtd[f(xt)− f(xu)] + V ∗csVcd[f(xc)− f(xu)]

Vus

∣∣∣∣∣
2

, (13.10)

RBπ =
Γ(B+ → π+νν̄)

Γ(B+ → π0e+ν)
=

3

2

g4

16π2

∣∣∣∣∣V ∗tbVtd[f(xt)− f(xu)] + V ∗cbVcd[f(xc)− f(xu)]

Vub

∣∣∣∣∣
2

,

where

f(x) =
x

8

[
2 + x

1− x
− 3x− 6

(1− x)2
log x

]
. (13.11)

For small x, we have

f(x� 1) ≈ x(3 log x+ 1)

4
. (13.12)

Since f(xu)� 1, we have to a very good approximation f(xi)− f(xu) ≈ f(xi) for i = c, t.

A few comments are in order with regard to Eqs. (13.10):

1. The factor of 3 comes from summing over the neutrino flavors, while the factor of 1/2 is an

isospin factor between the P+ → π+ and P+ → π0 (P = K,B) transitions.

2. The g4/16π2 is the loop suppression factor.

3. For RKπ, the t-term is CKM-suppressed, |VtsVtd/Vus| ∼ λ4, but not GIM-suppressed, f(xt) =

O(1). The c-term is GIM-suppressed, f(xc) = O(m2
c/m

2
W ), but not CKM-suppressed,

|VcsVcd/Vus| ' 1. The two terms contribute comparably.

4. For RBπ, the t-term is neither CKM-suppressed, |VtbVtd/Vub| = O(1), nor GIM-suppressed,

f(xt) = O(1). The c-term is not CKM-suppressed, |VcbVcd/Vub| = O(1), but it is GIM-

suppressed, f(xc) = O(m2
c/m

2
W ). Thus, the contribution of the c-term is negligible.

5. As a result of the different CKM and GIM suppression factors, we obtain numerically very

different predictions:

RKπ ∼ 10−9, RBπ ∼ 10−4. (13.13)

These predictions have not been fully tested yet, as we have only experimental upper bounds,

RKπ ∼< 10−8 and RBπ ∼< 0.18.
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The comparison of RKπ and RBπ demonstrates how the CKM and GIM suppression factors

depend crucially on the specific quarks involved, and how they come into play in determining

the various FCNC rates. While for the two specific examples presented here there exist only

experimental upper bounds, many FCNC decays have been observed and their rates measured. To

date, all measured FCNC decay rates in the quark sector agree with the SM predictions.

13.3 CKM and GIM suppressions in neutral meson mixing

In this section, we discuss neutral meson mixing, which is a ∆F = 2 process. This phenomenon is

observed and measured via meson oscillations, as discussed in Appendix 13.A. In Appendix 13.A.4

we present the explicit SM calculation. In this section we show that the general lessons learned

from ∆F = 1 processes about the loop, CKM, and GIM suppression factors of FCNC, mostly

carry over to ∆F = 2 processes.

To demonstrate the features of ∆F = 2 FCNC processes, we consider the example of K0−K0

mixing. It is generated by the sd̄→ ds̄ transition which is a ∆s = −∆d = 2 process. The leading

diagram for this transition is plotted in Fig. 13.2. By inspecting this diagram, we learn that its

flavor structure is given by

Asd̄→ds̄ ∼
∑

i,j=u,c,t

(VisV
∗
idVjsV

∗
jd) S(xi, xj), , (13.14)

where S(xj, xi) [xi ≡ m2
i /m

2
W ] is given explicitly in Eq. (13.68). We draw the following lessons:

• The contribution of the mi-independent terms in S(xi, xj) to Asd̄→ds̄ vanishes when summed

over all internal quarks.

• Asd̄→ds̄ would vanish if the up-type quarks were all degenerate and, therefore, it must depend

on the mass-splittings among the up-type quarks.

To proceed, we use the unitarity condition of Eq. (13.2) and approximate xu = 0 to eliminate the

u-terms in the sum. We obtain:

Asd̄→ds̄ ∼ (VcsV
∗
cd)

2S(xc, xc) + 2VcsV
∗
cdVtsV

∗
tdS(xc, xt) + (VtsV

∗
td)

2S(xt, xt). (13.15)

We conclude that ∆F = 2 amplitudes have, in addition to the loop suppression factor, also the

following suppression factors:

(i) CKM suppression: The amplitude is proportional to a least two off-diagonal CKM matrix

elements.

(ii) GIM suppression: The amplitude depends on the mass-squared differences between the up-

type quarks.
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Figure 13.2: One loop diagrams for ∆F = 2 FCNC.

While we derive the results based on one example, the CKM and GIM suppressions play a role

in the mixing of all neutral mesons. In fact, there are three more ∆F = 2 amplitudes that we

should consider:

Abd̄→db̄ ∼ (VcbV
∗
cd)

2S(xc, xc) + 2VcbV
∗
cdVtbV

∗
tdS(xc, xt) + (VtbV

∗
td)

2S(xt, xt),

Abs̄→sb̄ ∼ (VcbV
∗
cs)

2S(xc, xc) + 2VcbV
∗
csVtbV

∗
tsS(xc, xt) + (VtbV

∗
ts)

2S(xt, xt),

Acū→uc̄ ∼ (V ∗csVus)
2S(xs, xs) + 2V ∗csVusV

∗
cbVubS(xs, xb) + (V ∗cbVub)

2S(xb, xb) (13.16)

which correspond to B0 −B0, B0
s −Bs

0, and D0 −D0 mixing, respectively.

13.3.1 Examples: ∆mK, ∆mB and ∆mBs

The hadronic process of K0 −K0 mixing proceeds via the sd̄→ ds̄ quark transition, and leads to

the mass splitting ∆mK between the two neutral kaon mass eigenstates. The SM calculation gives

[see Eq. (13.72)]

|∆mK |
mK

=
g4

96π2

m2
K

m2
W

BKf
2
K

m2
K

∣∣∣(V ∗csVcd)2S(xc, xc) + 2V ∗csVcdV
∗
tsVtdS(xc, xt) + (V ∗tsVtd)

2S(xt, xt)
∣∣∣ .

(13.17)

To estimate the relative size of the three terms, we note that

|V ∗tsVtd|
|V ∗csVcd|

∼ 10−3,
S(xc, xt)

S(xc, xc)
∼ 10,

S(xt, xt)

S(xc, xc)
∼ 104. (13.18)

We conclude that the contributions of the terms proportional to S(xt, xt) are smaller by a factor

of O(100) than the contribution of the S(xc, xc) term and can thus be neglected:

∆mK

mK

≈ BKf
2
K

m2
K

× g4

96π2
× m2

K

m2
W

× |VcsVcd|2 ×
m2
c

m2
W

. (13.19)

The BKf
2
K/m

2
K ∼ O(1) factor encodes the QCD hadronic matrix element. The m2

K/m
2
W factor

is related to the fact that the flavor changing processes are W -mediated, so we get the scale

suppression. This factor is also present in FCCC tree level processes. The other three factors are

the following:

1. The g4/(96π2) factor represents the one-loop suppression.
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2. The |VcsVcd|2 factor represents the CKM suppression.

3. The m2
c/m

2
W factor represents the GIM suppression.

The B0−B0 and Bs−Bs mixing amplitudes are given in Eqs. (13.69) and (13.70), respectively.

In both cases the S(xt, xt) is the largest of the S-functions while the CKM factors are of the same

order in all three terms. We thus have

∆mB

mB

∝ g4

96π2

(
m2
t

m2
W

)
|VtbVtd|2,

∆mBs

mBs

∝ g4

96π2

(
m2
t

m2
W

)
|VtbVts|2. (13.20)

The GIM- and CKM-suppression factors are thus different among the various neutral meson

systems of the down sector:

• B0
s −B0

s mixing: CKM suppression by |VtbVts|2 ∼ 2× 10−3, and no GIM suppression;

• B0 −B0 mixing: CKM suppression by |VtbVtd|2 ∼ 10−4, and no GIM suppression;

• K0 −K0 mixing: CKM and GIM suppression by |VcsVcd|2(m2
c/m

2
W ) ∼ 10−5.

We learn that the SM predicts hierarchy among the ∆F = 2 processes:

∆mK

mK

� ∆mB

mB

� ∆mBs

mBs

. (13.21)

The experimental results,

∆mK

mK

= 7.0× 10−15,
∆mB

mB

= 6.3× 10−14,
∆mBs

mBs

= 2.1× 10−12, (13.22)

show that this pattern is indeed realized in Nature.

13.3.2 CPV suppression

In some cases, CP violating (CPV) observables are CKM suppressed beyond their CP conserving

(CPC) counterparts. Whether this is the case can be understood by examining the relevant

unitarity triangle: The CPV observables depend on the area of it, while CPC observables depend

on the length-squared of one side. Thus, in cases where the unitarity triangle is squashed (such as

the sd and bs triangles), we can have a situation where the area of the triangle, |JCKM|/2 ∼ λ6,

is much smaller than the length-squared of one of its sides, resulting in an extra suppression for

CPV observables. Explicitly, for FCNC in the down sector, we have

sd : JCKM/|VusVud|2 = O(λ4),

bs : JCKM/|VtbVts|2 = O(λ2),

bd : JCKM/|VtbVtd|2 = O(1). (13.23)

CP asymmetries measure the ratios between the CPV difference between two CP-conjugate

rates and the CPC sum of these rates:
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• CPV in K0 − K0 mixing is the source of δL, the CP asymmetry in KL → π`ν defined in

Eq. (13.85);

• CPV in the interference of Bs−Bs mixing with b→ cc̄s decay is the source of Im(λψφ), the

CP asymmetry in Bs → ψφ defined similarly to Eq. (13.87);

• CPV in the interference of B0−B0 mixing with b→ cc̄d decay is the source of Im(λD+D−),

the CP asymmetry in B → D+D− defined in Eq. (13.87).

The pattern of a possible significant CP suppression in the sd sector, possible intermediate CP

suppression in the bs sector, and no CP suppression in the bd sector, is manifest in the SM

predictions:

δL ∝ JCKM/|VusVud|2 ∼ 10−3,

Im(λψφ) ∝ JCKM/|VtbVts|2 ∼ 10−2,

Im(λD+D−) ∝ JCKM/|VtbVtd|2 ∼ 1. (13.24)

Experiments confirm this pattern:

δL = (3.32± 0.06)× 10−3,

Im(λψφ) = (5.1± 2.4)× 10−2,

Im(λD+D−) = −0.76+0.15
−0.13. (13.25)

13.3.3 Summary

Within the SM, we identify four possible suppression factors of FCNC processes relative to FCCC

ones :

1. Loop suppression.

2. CKM suppression.

3. GIM suppression in processes that are not dominated by the top quark contribution.

4. CPV suppression in some of the processes related to squashed unitarity triangles.

According to the distinction that we made in Section 9.3 between a SM and the SM, the loop

suppression of FCNC is a feature of a SM, as it is the outcome of the symmetry and particle

content. On the other hand, the CKM, GIM, and CPV suppressions are features of the SM, as

they are the outcome of the specific values of the SM parameters, namely the smallness of CKM

mixing angles and of quark masses.
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13.4 Testing the CKM sector

Within the SM, the CKM matrix is the only source of flavor changing processes and of CP violation.

In Section 9.3 we use only tree level processes to extract the values of CKM parameters. Here

we add FCNC to the set of CKM measurements to form a global test of the SM. The primary

question is whether the long list of measurements can be fitted by the four CKM parameters.

The present status of our knowledge of the absolute values of the various entries in the CKM

matrix is given in Eq. (9.5). The values there take into account all the relevant tree-level and loop

processes. Yet, as explained above, the test of the SM is stronger when we reduce the above to

the four CKM parameters. Indeed, the following ranges for the four Wolfenstein parameters are

consistent with all measurements:

λ = 0.2265±0.0005, A = 0.790±0.015, ρ = 0.145±0.017, η = 0.366±0.011. (13.26)

For the purpose of demonstration, it is useful to project the individual constraints onto the

(ρ, η) plane:

• Charmless semileptonic B decays can be used to extract [see Question 9.3]∣∣∣∣VubVcb

∣∣∣∣2 = λ2(ρ2 + η2). (13.27)

• B → DK decays can be used to extract [see section 13.C.1]

tan γ =

(
η

ρ

)
. (13.28)

• SψKS , the CP asymmetry in B → ψKS, is used to extract [see Section 13.C.2]

sin 2β =
2η(1− ρ)

(1− ρ)2 + η2
. (13.29)

• The CP asymmetries of various B → ππ, B → ρπ, and B → ρρ decays depend on the phase

[see Question 13.4]

α = π − β − γ. (13.30)

• The ratio between the mass splittings in the B and Bs systems depends on [see section 13.A.4]∣∣∣∣VtdVts
∣∣∣∣2 = λ2[(1− ρ)2 + η2] (13.31)

• The CP violation in K → ππ decays, εK , depends in a complicated way on ρ and η [see

Eq. (13.110)]

The resulting constraints are shown in Fig. 13.3. The consistency of the various constraints is

impressive. This is a triumph of the SM in that such a variety of measurements, with different

sources of uncertainties, all agree to a high precision. We conclude that the flavor structure of the

SM passes a highly non-trivial test.
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Figure 13.3: Allowed region in the ρ, η plane. Superimposed are the individual constraints from

charmless semileptonic B decays (|Vub|), mass differences in the B0 (∆md) and Bs (∆ms) neutral

meson systems, and CP violation in K → ππ (εK), B → ψK (sin 2β), B → ππ, ρπ, ρρ (α), and

B → DK (γ). Taken from Ref. [27].

13.5 Probing BSM

In this section we go beyond testing the self-consistency of the CKM picture of flavor physics and

CP violation. The aim is to quantify how much room is left for BSM physics in the flavor sector and

to translate these constraints into lower bounds on the scale of higher-dimension flavor-violating

operators. We make the following working assumption:

• The contribution of new physics to FCCC processes, where the SM contributions are tree-

level, can be neglected.

On the other hand, we allow BSM physics of arbitrary size and phase to contribute to FCNC

processes.

13.5.1 New physics contributions to B0 −B0 mixing

We consider BSM effects in the FCNC process of B0 −B0 mixing, which plays a role in the mass

splitting ∆mB and in the CP asymmetry SψKS . The SM amplitude is given by Eq. (13.69). The

modification of the mixing amplitude by general BSM physics can be parameterized as follows:

MBB = MSM
BB

∆d, (13.32)

where ∆d is a dimensionless complex parameter. BSM physics will be signalled by ∆d 6= 1. Our

aim is to find the phenomenological constraints on ∆d.
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Our first step is to use all relevant tree level processes, which under our assumption, can be

used to determine the CKM parameters. This was done in Section 9.3 and the results of this fit

were shown in Fig. 9.2. Our second step is to use ∆B = 2 processes to determine ∆d:

• The mass splitting between the two neutral B-mesons is given by

∆mB = 2|MSM
BB

(ρ, η)| × |∆d|. (13.33)

• The CP asymmetry in B → ψKS is given by

SψKS = sin

[
2arctan

(
η

1− ρ

)
+ arg(∆d)

]
. (13.34)

The results of the fit are

Re (∆d) = +0.94+0.18
−0.15, Im (∆d) = −0.11+0.11

−0.05. (13.35)

We learn that BSM physics can contribute to the B0 − B0 mixing amplitude up to about 20% of

the SM contribution.

Analogous upper bounds can be obtained for BSM contributions to the K0−K0 and B0
s −B0

s

mixing amplitudes.

13.5.2 Probing the SMEFT

Assuming that new degrees of freedom that have flavor changing couplings to quarks are much

heavier than the electroweak breaking scale, their effects on low energy processes, such as neutral

meson mixing, can be presented as higher dimension operators. Then, bounds such as Eq. (13.35),

constrain the coefficients of such operators.

Consider a simple example, where we have a single dimension-six operator that contributes to

∆d:
zbd
Λ2

(QLdγµQLb)(QLdγ
µQLb). (13.36)

where QLd and QLb are the SU(2)-doublet quark fields whose T3 = −1/2 members are the dL

and bL fields [see Eq. (8.29)], and where we separated the coefficient into a dimensionless complex

coupling, zbd, and a high energy scale, Λ. We further define Λ̃ = Λ/
√
zbd. We consider the bound

that can be obtained from ∆mB. Comparing Eqs. (13.63) and (13.36), we obtain

|∆d| − 1 =

∣∣∣∣∣ 1

Λ̃2CSM

∣∣∣∣∣ ≈ 1

|Λ̃2|
× 2π2

|V ∗tdVtb|2S(xt, xt)G2
Fm

2
W

. (13.37)

The bound of Eq. (13.35) translates into a lower bound on Λ:

Λ̃ ∼> 103 TeV. (13.38)
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i, j Λ̃ [TeV] CPC Λ̃ [TeV] CPV Observables

s, d 9.8× 102 1.6× 104 ∆mK ; εK

b, d 6.6× 102 9.3× 102 ∆mB; SψK

b, s 1.4× 102 2.5× 102 ∆mBs ; Sψφ

Table 13.1: Lower bounds from CPC and CPV ∆F = 2 processes on the scale of new physics Λ̃,

for (QLiγµQLj)(QLiγ
µQLj) operators.

Using SψKS , one can obtain analogous bounds for various operators that contribute to CP violation

in B0 − B0 mixing. We can also obtain bounds for operators that affect other ∆F = 2 processes.

Some of these bounds are given in Table 13.1.

The following points are worth emphasizing:

1. BSM physics can contribute to FCNC at a level comparable to the SM contributions even if

it takes place at a scale that is five orders of magnitude above the electroweak scale.

2. If the BSM physics has a generic flavor structure, that is zij = O(1), then its scale must be

above 104 TeV.

3. It could be that there are new particles with mass of order a TeV, but then their flavor

structure must be far from generic, |zij| � 1.

4. The pattern of the bounds — those from K0 are stronger than those from B0 which are

stronger than those from Bs — is directly related to the strength of the flavor (CKM and

GIM) suppression we have in the SM, as discussed in Section 13.3.1. The reason for that is

that the experimental accuracy and the QCD uncertainties are similar for the three cases.

It is instructive to compare the FCNC and EWPM bounds. The EWPM bounds are of order

10 TeV, see Eq. (12.23), while FCNC bounds, as can be seen from Table 13.1, are as high as 104

TeV. In both cases the SM explains the data well, and the strength of the bound depends on

the theoretical and experimental errors, which are roughly at the same level. The difference in

the strength of the FCNC and the EWPM bounds stems from the difference in the suppression

factors. In both cases, the relevant SM effects are at the one-loop level. Yet, for the FCNC, as

we discussed, there are additional suppression factors: CKM, GIM, and CPV. These suppression

factors result in a much smaller SM effects and thus stronger bounds.

For further reading

• There are many reviews and books about flavor physics, for example, Refs. [28, 30].

230



• For a review on flavor and BSM see, for example, Ref. [42].
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Appendix

In these appendices we discuss the phenomenology of meson mixing and CP asymmetries, both

in general (Sections 13.A and 13.B) and in the SM (Sections 13.A.4 and 13.C). We include the

general discussion here since the formalism is rarely discussed in QFT courses, yet these processes

play a major role in probing and testing the SM.

13.A Neutral meson mixing and oscillation

13.A.1 Introduction

Our discussion refers to the CP conjugate pair of neutral pseudoscalar mesons, P 0 − P 0, for each

of the four cases, P = K,D,B,Bs. Each of these has well defined flavor QNs, and is the lightest

with these QNs. Thus, within QCD and QED, they are stable and do not mix with their anti-

particle. The weak interaction, however, does not respect these flavor symmetries and thus P 0 and

P 0 decay. Moreover, since these states are neutral under the unbroken symmetries of the SM, the

weak interaction leads to mixing between them. This mixing is generated by P 0 ↔ P 0 transition

amplitudes. The mixing lifts the degeneracy between the masses mP and mP , resulting in two mass

eigenstates which are superpositions of P 0 and P 0. The mass eigenstates have different masses,

∆m 6= 0, and different widths, ∆Γ 6= 0.

In all four cases (P = K,D,B,Bs), the mass difference ∆m is experimentally measurable and

theoretically informative:

• In general, the mesons that are produced by QCD and QED interactions are those with well

defined flavor QNs. The fact that, for the neutral K, D, B, and Bs mesons, the flavor eigen-

states are not mass eigenstates, implies that the time evolution of these states is nontrivial.

In particular, they undergo flavor oscillations with measurable oscillation frequency set by

∆m.

• Neutral meson mixing is an FCNC process. Thus, as discussed in the main text, ∆m provides,

within the SM, indirect measurements of CKM parameters, and probes, beyond the SM, very

high energy scales.
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Note that flavor mixing and flavor oscillations, while related, are not the same. Flavor mixing,

or flavor changing transitions, refer to amplitudes or processes where the initial and final states

carry different flavor QNs. Flavor oscillations refer to a phenomena where the time evolution of a

state exhibits sinusoidal change of the flavor QNs.

Consider the case where initially, at t = 0, the neutral meson state is some specific combination

of P 0 and P 0:

|ψP (0)〉 = a(0)|P 0〉+ b(0)|P 0〉 . (13.39)

For example, an initial pure P 0 state corresponds to a(0) = 1 and b(0) = 0. The state evolves in

time, and acquires also components that correspond to all possible decay final states {f1, f2, . . .}:

|ψP (t)〉 = a(t)|P 0〉+ b(t)|P 0〉+ c1(t)|f1〉+ c2(t)|f2〉+ · · · . (13.40)

As amplitude such as 〈P 0|H|P 0〉 represents flavor mixing. The resulting sinusoidal time depen-

dence of a(t) and b(t) represents flavor oscillations.

13.A.2 Flavor mixing

To obtain the time dependent coefficients a(t), b(t), ci(t) of Eq (13.40), we need to find the matrix

elements of the Hermitian Hamiltonian H between the initial state and all possible final states,

a formidable task. Since our interest lies, however, in obtaining only a(t) and b(t), we can use a

simplified formalism, where we deal with a 2× 2 matrix, with the matrix elements of an effective

non-Hermitian Hamiltonian H between P 0 and P 0 states only. The non-Hermiticity is related to

the possibility of decays, which makes the {P 0, P 0} system an open one.

Before we proceed, let us clarify a semantic issue. The effective HamiltonianH is a combination

of operators. What we need for our purposes is its matrix elements between specific meson states.

We denote the matrix element by Hαβ with α, β = P, P .

The complex matrix H can be written in terms of Hermitian matrices M and Γ:

H = M − i

2
Γ . (13.41)

The matrices M and Γ are associated with transitions via off-shell (dispersive) and on-shell (ab-

sorptive) intermediate states, respectively. Diagonal elements of M and Γ are associated with the

flavor-conserving transitions P 0 → P 0 and P 0 → P 0. The CPT symmetry implies that the diag-

onal elements are equal, MPP = MPP and ΓPP = ΓPP . The off-diagonal elements are associated

with the flavor changing transitions P 0 ↔ P 0 and they are of significant interest for us. The phase

θP = arg(MPPΓ∗
PP

), (13.42)

if different from zero, θP 6= 0, implies CP violation.

Since H is not a diagonal matrix, the states that have well defined masses and decay widths

are not P 0 and P 0, but rather the eigenvectors of H. We denote the light and heavy eigenstates by
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PL and PH with masses mH > mL. Another possible choice, which is standard for K mesons, is to

define the mass eigenstates according to their lifetimes. We denote the short-lived and long-lived

eigenstates by KS and KL with decay widths ΓS > ΓL. (The KL meson is experimentally found

to be the heavier state.)

Diagonalizing H we find that the eigenstates of H are given by

|PL,H〉 = p|P 0〉 ± q|P 0〉, (13.43)

where (
q

p

)2

=
M∗

PP
− (i/2)Γ∗

PP

MPP − (i/2)ΓPP
, |p|2 + |q|2 = 1. (13.44)

Since H is not Hermitian, the eigenstates need not be orthogonal to each other, that is 〈PH |PL〉 =

|p|2 − |q|2 can be different from zero. The eigenvalues of H can be written as

µH,L = mH,L +
i

2
ΓH,L, (13.45)

such that the masses and decay-widths of the eigenstate are given by the real and imaginary parts

of the eigenvalues, respectively. The average mass and the average width are given by

m ≡ mH +mL

2
, Γ ≡ ΓH + ΓL

2
. (13.46)

The mass difference ∆m and the width difference ∆Γ are defined as follows:

∆m ≡ mH −mL, ∆Γ ≡ ΓH − ΓL. (13.47)

Here ∆m is positive by definition, while the sign of ∆Γ is to be determined experimentally. (Al-

ternatively, one can use the states defined by their lifetimes to have ∆Γ ≡ ΓS − ΓL positive

by definition, in which case the sign of ∆m has to be determined experimentally.) Solving the

eigenvalue equation gives

(∆m)2 − 1

4
(∆Γ)2 = 4|MPP |

2 − |ΓPP |
2, ∆m∆Γ = 4Re

(
MPPΓ∗

PP

)
. (13.48)

Two limits are of particular interest:

• Consider the case where H is CP symmetric. Then θP = 0. As concerns the eigenvectors,

Eq. (13.44) gives ∣∣∣∣∣qp
∣∣∣∣∣ = 1 . (13.49)

It follows that the mass eigenstates are also CP eigenstates, and are orthogonal to each other,

〈PH |PL〉 = 0. As concerns the eigenvalues, Eq. (13.48) gives

∆m = 2|MPP |, |∆Γ| = 2|ΓPP |. (13.50)
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• Another limit of interest is when we allow CP violation, but consider |ΓPP | � |MPP |. In

that case, working to leading order in |ΓPP/MPP | we have

∆m = 2|MPP |, |∆Γ| = 2|ΓPP | cos θP . (13.51)

It is interesting to note that, within the SM, ∆m = 2|MPP | to a very good approximation for

the four mesons that we consider. This is because |ΓPP | � |MPP | for the B and Bs system and

|θP | � 1 for the K, D, and Bs systems.

13.A.3 Flavor oscillation

To study the time evolution of the neutral mesons, it is convenient to define the dimensionless

ratios,

x ≡ ∆m

Γ
, y ≡ ∆Γ

2Γ
, (13.52)

(note that, by definition, x ≥ 0 and |y| ≤ 1), the decay amplitudes of P 0 and P 0 into a final state

f ,

Af = 〈f |H|P 0〉, Af = 〈f |H|P 0〉, (13.53)

and the parameter λf :

λf ≡
q

p

Af
Af

. (13.54)

Our normalization is such that

Γ(P 0 → f) = |Af |2, Γ(P 0 → f) = |Af |2. (13.55)

We denote the time-evolved state of an initial state |P 0〉 by |P 0(t)〉, and that of an initial state

|P 0〉 by |P 0(t)〉, where t is defined in the meson rest-frame. For the mass eigenstates, the time

evolution is simple,

|PL(t)〉 = e−imLt−
1
2

ΓLt|PL〉, |PH(t)〉 = e−imH t−
1
2

ΓH t|PH〉. (13.56)

For the flavor eigenstates, the time evolution is more complicated,

|P 0(t)〉 = g+(t)|P 0〉 − (q/p)g−(t)|P 0〉 , |P 0(t)〉 = g+(t)|P 0〉 − (p/q)g−(t)|P 0〉 , (13.57)

where

g±(t) =
1

2

(
e−imH t−

1
2

ΓH t ± e−imLt−
1
2

ΓLt
)
. (13.58)

We define the rescaled time dependent decay rates as

Γ̂[P 0(t)→ f ] ≡ dΓ[P 0(t)→ f ]

dt
× 1

e−Γt|Af |2
. (13.59)
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They are given by

2Γ̂[P 0(t)→ f ] = (1 + |λf |2) cosh(yΓt) + (1− |λf |2) cos(xΓt)

+ 2Re(λf ) sinh(yΓt)− 2Im(λf ) sin(xΓt),

2Γ̂[P 0(t)→ f ] = (1 + |λf |−2) cosh(yΓt) + (1− |λf |−2) cos(xΓt)

+ 2Re(λ−1
f ) sinh(yΓt)− 2Im(λ−1

f ) sin(xΓt). (13.60)

We next introduce the notion of “flavor tagging.” The flavor eigenstates P 0 and P 0 have a well

defined flavor content. For example, B0 has the QN of a b̄d state. The term flavor tagging refers

to the experimental determination of whether a neutral P meson is in a P 0 or a P 0 state. In some

cases, the final state of the decay informs us about the flavor of the state at time of the decay.

This is the case when the decay is into a flavor-specific final state, namely, a state f that can

come from either P 0 or P 0 state, but not from both. In other words, flavor specific decays refer to

cases where either Af = 0 or Af = 0. Semi-leptonic decays provide very good flavor tags. Take,

for example, the quark transitions b → cµ−ν̄ and b̄ → c̄µ+ν, which correspond to the following

semileptonic B-meson decays:

B
0 → Xcµ

−ν̄, B0 → Xc̄µ
+ν. (13.61)

Here Xc (Xc̄) corresponds to a hadronic system with a charm number of +1 (−1). The charge of

the final lepton is correlated with the flavor of the initial meson: µ+ comes from a B0 decay, while

µ− comes from a B0 decay. Of course, before the meson decays it could be in a superposition of

B0 and B0. The decay acts as a quantum measurement. In the case of semileptonic decays, it acts

as a measurement of flavor.

The oscillation formalism is simplified in the case of flavor-tagged decay. Take the case of

Af = 0 and, therefore, λf = 0. We further simplify the discussion by assuming |q/p| = 1 and

y = 0. We obtain:

Γ̂[P 0(t)→ f ] =
1 + cos(∆mt)

2
, Γ̂[P 0(t)→ f ] =

1− cos(∆mt)

2
. (13.62)

We see that the flavor oscillates with frequency of ∆m in the rest frame. The general case of

Eq. (13.60) involves deviations from pure exponential decay, which depend on both ∆m and ∆Γ.

Moreover, for a flavor-specific final state, we can interpret Γ̂[P 0(t) → f ] as the time dependent

probability of P 0 → P 0 and Γ̂[P 0(t)→ f ] as the time dependent probability of P 0 → P 0.

13.A.4 SM calculations of the mixing amplitude

We present the SM calculation of the mixing amplitude MBB and its generalization to the other

meson systems. The leading diagrams that contribute to MBB are one loop diagrams that are

called “box diagrams” and are displayed in Fig. 13.2. We can write the transition amplitude as

AB0→B0 = CSM(d̄LγµbL)(d̄Lγ
µbL). (13.63)
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The normalized matrix element is related to the amplitude via

MBB =
1

2mB

〈
B0|AB0→B0|B0

〉
, (13.64)

and thus

MBB =
CSM

2mB

〈
B0|(d̄LγµbL)(d̄Lγ

µbL)|B0
〉
. (13.65)

The non-perturbative QCD effects are encoded in the hadronic matrix element, which we param-

eterize as follows: 〈
B0|(d̄LγµbL)(d̄Lγ

µbL)|B0
〉

= −1

3
m2
BBBf

2
B, (13.66)

where BB is a number and fB is the B-meson decay constant. Lattice calculations give
√
BBfB ≈

0.22 GeV. This is where the hadronic uncertainties lie.

The weak interactions effects are encoded in CSM, which is calculated from the box diagrams:

CSM =
G2
Fm

2
W

2π2
×
[
(VcbV

∗
cd)

2S(xc, xc) + (VtbV
∗
td)

2S(xt, xt) + (VcbV
∗
cd)(VtbV

∗
td)S(xt, xc)

]
, (13.67)

where xi = m2
i /m

2
W , we approximate xu = 0, and S is the loop function:

S(xi, xj) = xixj

[
− 3

4(1− xi)(1− xj)
+

log xi
(xi − xj)(1− xi)2

(
1− 2xi +

x2
i

4

)
+

log xj
(xj − xi)(1− xj)2

(
1− 2xj +

x2
j

4

)]
. (13.68)

Note that S(0, x) = 0. Taking into account the values of the quark masses and CKM elements,

we conclude that the term proportional to S(xt, xt) dominates over those proportional to S(xt, xc)

and S(xc, xc), and thus

MBB ≈
G2
F

12π2
mBm

2
W (BBf

2
B)(VtbV

∗
td)

2S(xt, xt). (13.69)

This result is subject to known radiatve crrection that are of O(1).

Eq. (13.69) can be straightforwardly generalized to other systems. For MBsBs
, we replace

d→ s:

MBsBs
≈ G2

F

12π2
mBsm

2
W (BBsf

2
Bs)(VtbV

∗
ts)

2S(xt, xt) . (13.70)

The ratio ∆mB/∆mBs is particularly interesting:

∆mB

∆mBs

=
mBBBf

2
B

mBsBBsf
2
Bs

∣∣∣∣VtdVts
∣∣∣∣2 . (13.71)

In the SU(3)F limit, the hadronic matrix elements of B and Bs are the same. Consequently, in the

ratio of Eq. (13.71), the hadronic uncertainty is only in the correction to the SU(3)F limit, and is

therefore small. Thus, the ratio ∆mB/∆mBs provides an excellent measurement of |Vtd/Vts|.
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Table 13.2: The experimental values of the neutral meson mixing parameters. In all cases (includ-

ing the K meson system) we define x and y as in Eqs. (13.47) and (13.52). For the K0 system, the

error on y is well below a permill and thus we do not include an error. For the B0 system, there

is only an upper bound on |y|.

P m [GeV] Γ [GeV] x y

K0 0.498 3.68× 10−15 0.945± 0.001 −0.997

D0 1.86 1.60× 10−13 0.0039± 0.0018 +0.0065± 0.0009

B0 5.28 4.33× 10−13 0.775± 0.006 −0.007± 0.009

Bs 5.37 4.34× 10−13 26.82± 0.23 −0.061± 0.008

For MKK , we replace b→ s:

MKK =
G2
F

12π2
mKm

2
W (BK)f 2

K)
[
(VcsV

∗
cd)

2S(xc, xc) + (VtsV
∗
td)

2S(xt, xt) + (VcsV
∗
cd)(VtsV

∗
td)S(xt, xc)

]
.

(13.72)

Lattice results gives BK = 0.86± 0.24.

For the four systems, P = B,Bs, D,K, the calculation of MPP translates into the calculation

of the mass splitting ∆MP = 2|MPP |. (In the D system, however, the calculation of MDD is

complicated, and we do not discuss it here.)

The numerical values of the mixing parameters are presented in Table 13.2. The SM calculations

outlined above agree well with the data.

13.B CP violation

CP asymmetries arise when two processes related by CP conjugation differ in their rates. Given

the fact that CP violation is related to a phase in the Lagrangian, all CP asymmetries must arise

from interference effects.

To date, CP violation has been observed (at a level higher than 5σ) in about thirty different

hadron decay modes, involving b or c or s decays. It has not been established in other quark

decays, nor in the leptonic sector, nor in flavor diagonal processes. Here we present the formalism

relevant to measuring CP asymmetries in meson decays.

13.B.1 Notations and formalism

We discuss here the specific case of B-meson decays, but our discussion applies to all meson decays.

Our starting points are Eqs. (13.60), which give the time-dependent decay rates of B0 and B0. We

also use the parameter λf , defined in Eq. (13.54).
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Consider Af , the B → f decay amplitude, and Af , the amplitude of the CP conjugate process,

B → f . There are two types of phases that may appear in these decay amplitudes:

• CP-odd phases, also known as weak phases. They are complex parameters in any Lagrangian

term that contributes to Af , and appear in a complex conjugate form in Af . In other words,

CP violating phases change sign between Af and Af . In the SM, these phases appear only

in the couplings of the W±-bosons, hence the CP violating phases are called “weak phases.”

• CP-even phases, also known as strong phases. Phases can appear in decay amplitudes even

when the Lagrangian parameters are all real. They arise from contributions of intermediate

on-shell states, and can be identified with the e−iHt term in the time evolution Schrödinger

equation. These CP conserving phases appear with the same sign in Af and Af . In meson

decays, the intermediate states are typically hadronic state with the same flavor QN as the

final state, and their dynamics is driven by strong interactions, hence the CP conserving

phases are called “strong phases.”

It is useful to factorize an amplitude into three parts: the magnitude ai, the weak phase φi,

and the strong phase δi. If there are two such contributions we write

Af = a1e
i(δ1+φ1) + a2e

i(δ2+φ2), Af = a1e
i(δ1−φ1) + a2e

i(δ2−φ2). (13.73)

where we always can choose a1 ≥ a2. It is further useful to define

φf ≡ φ2 − φ1, δf ≡ δ2 − δ1, rf ≡
a2

a1

. (13.74)

For neutral meson mixing, it is useful to write

MBB = |MBB|e
iφM , ΓBB = |ΓBB|e

iφΓ , (13.75)

such that for θB, defined in Eq. (13.42), we have

θB = φM − φΓ. (13.76)

Note that each of the phases appearing in Eqs. (13.73) and (13.75) is convention dependent, but

combinations such as δ1 − δ2, φ1 − φ2, φM − φΓ, are physical.

In neutral meson decays the phenomenology of CP violation is particularly rich thanks to

the fact that meson mixing, as described in Section 13.A, can contribute to the CP violating

interference effects. One distinguishes three types of CP violation in meson decays, depending on

which amplitudes interfere:

1. In decay: The interference is between two decay amplitudes.

2. In mixing: The interference is between the absorptive and dispersive mixing amplitudes.
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Figure 13.4: The three types of CPV.

3. In interference of decays with and without mixing: The interference is between the direct

decay amplitude and a first-mix-then-decay amplitude.

In Fig 13.4 we give a schematic description of these three types. CP violation in decay cor-

responds to interference between a1 and a2. CP violation in mixing corresponds to interference

between MBB and ΓBB. CP violation in interference of decays with and without mixing corre-

sponds to interference between Af and MBBAf . We discuss these three types below.

For the discussion of CP violation in the K0−K0 system, we use a somewhat different notation.

The reason is that, since the lifetimes of KS and KL are so different, experiments often identify

these mass eigenstates, rather than the flavor-tagged decays, as done in most measurements of CP

violation in the B0 −B0 system. Thus, for K-mesons, we define

εf ≡
1− λf
1 + λf

. (13.77)

The converse relation reads

λf ≡
1− εf
1 + εf

. (13.78)

Historically, CP violation was first observed in the KL → π+π− decay and thus we denote επ+π− =

εK . For modes with |Āf/Af | − 1� |q/p| − 1, as is the case for f = π+π−, we can set |Āf/Af | = 1

and then we have |q/p| = |λf |.
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13.B.2 CP violation in decay

CP violation in decay corresponds to

|Af/Af | 6= 1. (13.79)

In charged particle decays, this is the only possible contribution to the CP asymmetry:

Af ≡
Γ(B− → f−)− Γ(B+ → f+)

Γ(B− → f−) + Γ(B+ → f+)
=
|Af−/Af+|2 − 1

|Af−/Af+|2 + 1
. (13.80)

Using Eq. (13.73), we obtain, for rf � 1,

Af = 2rf sinφf sin δf . (13.81)

This result shows explicitly that we need two decay amplitudes, that is, rf 6= 0, with different

weak phases, φf 6= 0, π and different strong phases, δf 6= 0, π.

A few comments are in order:

1. In order to have a large CP asymmetry, we need each of the three factors in (13.81) not to

be small.

2. A similar expression holds for the contribution of CP violation in decay in neutral meson

decays. In this case there are, however, additional contributions from mixing, as discussed

below.

3. Another complication with regard to neutral meson decays is that it is not always possible

to tell the flavor of the decaying meson, that is, if it is B0 or B0. This can be a problem or

a virtue.

4. In general, the strong phase is not calculable since it is related to QCD. This is not a problem

if the aim is just to demonstrate CP violation, but it is if we want to extract the weak

parameter φf . In some cases, however, the strong phase can be independently measured,

eliminating this particular source of theoretical uncertainty.

13.B.3 CP violation in mixing

CP violation in mixing corresponds to

|q/p| 6= 1 . (13.82)

In decays of neutral mesons into flavor specific final states (Af = 0 and, consequently, λf = 0),

and, in particular, semileptonic neutral meson decays, this is the only source of CP violation:

ASL(t) ≡ Γ̂[B0(t)→ `+X]− Γ̂[B0(t)→ `−X]

Γ̂[B0(t)→ `+X] + Γ̂[B0(t)→ `−X]
=

1− |q/p|4

1 + |q/p|4
. (13.83)
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Using Eq. (13.44), we obtain, for |ΓBB/MBB| � 1,

ASL = − |ΓBB/MBB| sin(φM − φΓ). (13.84)

Two comments are in order:

1. Eq. (13.83) implies that ASL(t), which is an asymmetry of time-dependent decay rates, is

actually time independent.

2. The calculation of |ΓBB/MBB| is difficult, since it depends on low-energy QCD effects. Hence,

the extraction of the value of the CP violating phase φM − φΓ from a measurement of ASL

involves, in general, large hadronic uncertainties.

CP violation in K0−K0 mixing is measured via a semileptonic asymmetry which is defined as

follows:

δL ≡
Γ(KL → `+ν`π

−)− Γ(KL → `−ν`π
+)

Γ(KL → `+ν`π−) + Γ(KL → `−ν`π+)
=

1− |q/p|2

1 + |q/p|2
≈ 2Re(εK), (13.85)

where we use Eq. (13.78) and the fact that |εK | � 1. This asymmetry is different from the one

defined in Eq. (13.83) in that the decaying meson is the neutral mass eigenstate, rather than the

flavor eigenstate, hence the different dependence on |q/p|.

13.B.4 CP violation in interference of decays with and without mixing

CP violation in interference of decays with and without mixing corresponds to

Im(λf ) 6= 0. (13.86)

A particular simple case is the CP asymmetry in decays into final CP eigenstates. Moreover, a

situation that is relevant in many cases is when one can neglect the effects of CP violation in

decay and in mixing, that is when |AfCP /AfCP | ≈ 1 and |q/p| ≈ 1. In this case, λfCP is, to a good

approximation, a pure phase, |λfCP | = 1. We further consider the case where we can neglect y

(|y| � 1). Then,

AfCP (t) ≡ Γ[B0(t)→ fCP ]− Γ[B0(t)→ fCP ]

Γ[B0(t)→ fCP ] + Γ[B0(t)→ fCP ]
= Im(λfCP ) sin(∆mBt). (13.87)

The approximations made above are valid in cases that |ΓBB/MBB| � 1 and a2 � a1, which lead

to
q

p
=

M∗
BB

|MBB|
= e−iφM ,

AfCP
AfCP

= e−2iφA , (13.88)

where φM is defined in Eq. (13.75), and φA = φ1 is defined in Eq. (13.73). We then get

Im(λfCP ) = Im
(
M∗

BB

|MBB|
AfCP
AfCP

)
= − sin(φM + 2φA). (13.89)
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We learn that a measurement of a CP asymmetry in a process where these approximations are valid

provides a direct probe of the weak phase between the mixing amplitude and the decay amplitude.

For the case where we measure decays of the KL and KS mass eigenstates into final CP-even

eigenstates, one obtains (see Question 13.1).

Amass
fCP
≡ Γ(KL → fCP )

Γ(KS → fCP )
=

∣∣∣∣∣1− λfCP1 + λfCP

∣∣∣∣∣
2

= |εfCP |2. (13.90)

In particular, for fCP = π+π− we have

Amass
π+π− = |εK |2. (13.91)

13.C SM calculations of CPV

In this appendix, we give several examples of CPV observables that are used to test the CKM

mechanism of flavor mixing, and which are mentioned in the main text.

13.C.1 Extracting γ from B → DK

The angle γ, defined in Eq. (9.20), is extracted with small theoretical uncertainties from a combi-

nation of the following three B → DK decay modes:

B+ → D0K+, B+ → D0K+, B+ → DCPK
+, (13.92)

where DCP is a D state that decays into a CP eigenstate. For the sake of concreteness, we

take DCP = (K+K−)D, namely the state that decays into K+K−. We neglect D0 − D0 mixing

(xD = yD = 0) and CP violation in D decays. Then,

DCP =
1√
2

(D0 +D0). (13.93)

The B+ → DCPK
+ can proceed in two ways, see Fig. 13.5:

1. B+ → D0K+ followed by D0 → K+K−. The corresponding quark transitions are b̄ → c̄us̄

followed by c̄→ s̄sū. The CKM factors are

(V ∗cbVus)(VcsV
∗
us). (13.94)

2. B+ → D0K+ followed by D0 → K+K−. The corresponding quark transitions are b̄ → ūcs̄

followed by c→ ss̄u. The CKM factors are

(V ∗ubVcs)(V
∗
csVus). (13.95)
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(a) (b)

Figure 13.5: (a) B+ → D0K+ and (b) B+ → D0K+.

CP violation comes from the interference between these decay amplitudes. To a very good approx-

imation, it is proportional to the relative weak phase,

arg

(
V ∗ubVus
V ∗cbVcs

)
≈ −γ, (13.96)

Let us define the following pairs of CP conjugate amplitudes:

AD0K+ ≡ A(B+ → D0K+), AD0K− ≡ A(B− → D0K−),

AD0K+ ≡ A(B+ → D0K+), AD0K− ≡ A(B− → D0K−),

ADCPK+ ≡ A(B+ → DCPK
+), ADCPK− ≡ A(B− → DCPK

−) . (13.97)

Since the B± decays into D0 and D0 are tree level, with a single CKM phase for each amplitude,

we have

|AD0K+| = |AD0K−|, |AD0K+| = |AD0K−|. (13.98)

Given Eq. (13.93), we have

ADCPK+ =
AD0K+ + AD0K+√

2
, ADCPK− =

AD0K− + AD0K−√
2

. (13.99)

The decay amplitudes AD0K+ and AD0K+ differ in magnitude, weak phase, and strong phase. The

weak phase difference is γ, see Eq. (13.96). We define the ratio of sizes r and the strong phase

difference δ via
AD0K+

AD0K+

= rei(δ+γ),
AD0K−

AD0K−
= rei(δ−γ). (13.100)
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We obtain the four different decay rates:

Γ(B+ → D0K+) = Γ(B− → D0K−) = |AD0K+|2,

Γ(B+ → D0K+) = Γ(B− → D0K−) = |AD0K+|2r2,

Γ(B+ → DCPK
+) = |ADCPK+|2 =

|AD0K+|2

2

[
1 + r2 + 2r cos(δ + γ)

]
,

Γ(B− → DCPK
−) = |ADCPK+|2 =

|AD0K+|2

2

[
1 + r2 + 2r cos(δ − γ)

]
. (13.101)

We have four measurements that depends on four parameters, that is, γ, |AD0K+|, r, and δ. Thus,

we can extract γ up to a discrete ambiguity. The crucial point is that we do not need to calculate

the magnitude of the amplitudes and the strong phase. Instead, they are extracted from the

measurements. Thus, B → DK decays provide a theoretically clean determination of the CP

violating phase γ.

13.C.2 Extracting β from B → D+D−

The CP asymmetry in the B → D+D− decays can be translated into a value of sin 2β [β is defined

in Eq. (9.20)], with small theoretical uncertainties. In practice, the best measurement of sin 2β is

provided by the B → ψKS decay, but it involves a theoretical subtlety, and therefore we leave its

analysis to Question 13.5.

Assuming that the approximations that led to Eq. (13.87) are valid, we have

AD+D−(t) = Im(λD+D−) sin(∆mBt). (13.102)

We thus need to calculate λD+D− .

1. Given that |ΓBB/MBB| � 1, Eq. (13.69) leads to

q

p
=

M∗
BB

|MBB|
=
V ∗tbVtd
VtbV ∗td

. (13.103)

2. The decay is dominated by the tree-level b → cc̄d decay, so we neglect loop corrections and

obtain
AD+D−

AD+D−
=
V ∗cbVcd
VcbV ∗cd

. (13.104)

Note that all the hadronic part in the amplitudes cancels in the ratio.

Using Eq. (13.89), and combining Eq. (13.103) and Eq. (13.104), we obtain

λD+D− =
q

p

AD+D−

AD+D−
=
V ∗tbVtd
VtbV ∗td

V ∗cbVcd
VcbV ∗cb

= −e−2iβ, (13.105)

and consequently

Im(λD+D−) = sin 2β. (13.106)

This result demonstrates the power of CP asymmetries in measuring CKM parameters. The

experimental measurement translates, up to a discrete ambiguity, directly into the value of a CKM

parameter, β.
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13.C.3 CP violation from K decays

CPV was discovered in neutral kaon decays, via measurements of εK , defined in Eq. (13.77), using

the following two observables:

1. CPV in the K → π`ν decays, defined in Eq. (13.85), provides a measurement of Re(εK):

δL = 2Re(εK). (13.107)

2. CPV in the KL → ππ decay, defined Eq. (13.91), provides a measurement of |εK |:

Amass
π+π− = |εK |2. (13.108)

The experimental central values, δL = 3.32× 10−3 and Amass
π+π− = 4.97× 10−6, give

|εK | = 2.23× 10−3, arg(εK) = 43.5o. (13.109)

The SM calculation for 2Re(εK) gives

2Re(εK) =
G2
Fm

2
W

12π2
× f 2

KBK ×
mK

∆mK

(13.110)

× JCKM

|λu|2
×
(
Re[λuλ∗c ][Scc − Sct] +Re[λuλ∗t ][Stt − Sct]

)
,

where we use the shorthand notations

Sij = S(xi, xj), λi = VisV
∗
id, (13.111)

and Eq. (9.11), which implies JCKM = Im(λuλ
∗
c) = −Im(λuλ

∗
t ).

Historically, the discovery of CPV in kaons gave the basis to predict the existence of a third

generation, at a time when only the the u, d and s quarks were known.
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Problems

Question 13.1: Algebra

1. Diagonalize H defined in Eq. (13.41) and derive Eqs. (13.43), (13.44), and (13.48).

2. Any non-degenerate eigenstate of the Hamiltonian must be also an eigenstate of all oper-

ators that commute with the Hamiltonian. Thus, if CP were a good symmetry, all non-

degenerate mass eigenstates must be also CP eigenstates. Show that if we impose CP, we

obtain Eqs. (13.49) and (13.50).

3. In the limit of |ΓPP | � |MPP |, derive Eqs. (13.51).

4. Derive Eqs. (13.62) under the assumptions stated in the text.

5. Starting from Eqs. (13.60), derive Eq. (13.87) under the assumptions stated in the text.

6. Using Eq. (13.73), find the expression for Af defined in Eq. (13.80) in terms of rf , φf and

δf . Then apply the rf � 1 approximation to get Eq. (13.81).

7. Derive Eq. (13.90).

Question 13.2: Determining mc and mt from neutral meson mixing

Historically, the first estimates of mc and mt came from ∆mK and ∆mB, respectively.

1. Determine mc using the theoretical expression for and the experimental value of ∆mK , and

the values of the CKM elements. Put mu = 0.

2. Explain why it is practically impossible to get an estimate for mt using ∆mK .

3. Determine mt using the theoretical expression and the experimental value of ∆mB, and the

values of the CKM elements. Put mc = 0.
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4. Compare your results to the direct measurements of mc and mt and comment on any differ-

ence.

Question 13.3: Mixing beyond the SM

Consider the SM+χ model defined in Question 9.8. This model exhibits tree-level non-diagonal

couplings of the Z-boson. The non-diagonal Zbd coupling can be written as

−LZbd = −Ûbd
g

2 cos θW
dLγ

µbLZµ, (13.112)

where Ûbd, defined in Question 9.8, is dimensionless and complex. We assume |Ûbd| � 1 and thus

we can approximate the 3× 3 CKM matrix as unitary, and use its values as extracted within the

SM.

1. In this model there is a tree level contribution to B0 − B0 mixing. Similarly to the SM

amplitude in Eq. (13.63), we write

AT
B0→B0 = CT(dLγµbL)(dLγ

µbL). (13.113)

Draw the tree-level Z-exchange diagrams that contributes to the mixing and evaluate CT.

(You can neglect effects of order m2
B/m

2
Z .) How does it depend on Ûdb?

2. We define ∆d In Eq. (13.32), which we write now as

MT
BB

= MSM
BB

∆d. (13.114)

Find ∆d in terms of Ûbd and the SM parameters.

3. The bounds on the real and imaginary parts of ∆d are given in Eq. (13.35). Using |∆d| < 0.2

and S(xt, xt) ≈ 2.5, obtain the bound on |Ûbd|.

4. We write the mass terms that involve the χ field as

mχχχLχR + (v/
√

2)YχiDLiχR, i = 1, 2, 3. (13.115)

We assume that mχχ � v and Yχi ∼ 1. Argue that under these assumptions it is expected

that

|Ûbd| ∼
v2

m2
χχ

. (13.116)

Recall that a non-hermitian matrix M can be diagonalized by the bi-unitary transformation

VLMV †R. To find VL (VR), it is simpler to consider the hermitian matrix MM † (M †M), as it

is diagonelized by VL (VR).
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5. Given the bounds on |Ûbd|, what can you say about mχχ? Comment about the numerical

value.

Question 13.4: CP violation in B → π+π−

The time dependent CP asymmetry in B → π+π− probes the UT angle α.

1. Draw the tree level decay diagrams for A ≡ A(B0 → π+π−) and A ≡ A(B
0 → π+π−), and

write down the CKM factors at the various vertices.

2. Argue that, in the tree level approximation, A/A is a pure phase and express it in terms of

CKM elements.

3. In the approximation that |A/A| = 1 and |q/p| = 1, λπ+π− is also a pure phase. Show that

the phase of λπ+π− is 2α.

4. There are also contributions from one-loop diagrams to B → π+π−. Draw a representative

diagram, keeping all internal quarks, and show that this loop-amplitude provides a weak

phase that is different from the phase of the tree diagram.

5. Estimate the relative error on the extracted value of α introduced by neglecting the loop

amplitude.

Question 13.5: CP violation in B → ψKS

1. Given that |ΓBB/MBB| � 1 we define

M∗
BB

|MBB|
≡ eiφB (13.117)

Using Eq. (13.69) find φB in terms of ratio of CKM matrix elements.

2. Write down the underlying quark transition for B0 → ψKS. Draw the tree level diagram.

What is the CKM dependence of this diagram?

The B0 → ψKS decay can be considered as B0 → ψK0 followed by K0 → ππ, which (neglecting

CP violation in K0 −K0 mixing) projects it onto the KS state:

AψKS = AψK × A(K → ππ) (13.118)
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3. We define
AψK
AψK

= exp[−2iφψK ]. (13.119)

Find φψK in terms of ratio of CKM matrix elements.

4. We define
A(K → ππ)

A(K → ππ)
= exp[−2iφK→ππ]. (13.120)

Find φK→ππ in terms of ratio of CKM matrix elements.

5. We define
AψKS
AψKS

= exp[2iφψKS ]. (13.121)

Explain why under the assumption made above φψKS = φψK +φK→ππ and find φψKS in terms

of ratio of CKM matrix elements.

6. Argue that, under the assumptions we made here, |λψKS | = 1.

7. Given that |λψKS | = 1, we can use the expression in Eq. (13.87). Show that ImλψKS = sin 2β.

We learn that aψKS measures the angle β of the unitarity triangle.

Question 13.6: Comparing CP violation in B → ψKS and B → φKS

1. Write down the underlying quark transition for B0 → φK0. Explain why there is no tree

level diagram.

2. The leading one loop diagrams for B0 → φK0 are gluonic penguin diagrams. Draw a rep-

resentative diagram keeping all internal quarks in the loop. Using CKM unitarity eliminate

the t-term and write the amplitude in a way similar to Eq. (13.3).

3. Argue that, to a good approximation, we can write the ratio of amplitude as a pure phase:

AφKS
AφKS

= exp[2iφφKS ]. (13.122)

Find φφKS in terms of ratio of CKM matrix elements.

4. Argue that, under the assumptions we made here, |λφKS | = 1.

5. Using Eq. (13.89), we learn that each of aψKS and aφKS measures an angle of the unitarity

triangle. Show that ImλψKS = ImλφKS = sin 2β.

6. Under the assumptions we made, aψKS = aφKS . Find in the PDG their measured values and

check if the central values are within 2σ from each other.
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7. Assume that, in the future, experiments establish a statistically significant difference between

aψKS and aφKS . Below are three possible explanations for such a discrepancy. For each

explanation, discuss whether it can resolve such a discrepancy.

(a) There are SM contributions that we neglected.

(b) There is a BSM contribution to B0 − B0 mixing, with a weak phase that is different

from the SM one.

(c) There is a BSM contribution to the gluonic penguin, with a weak phase that is different

from the SM one.

Question 13.7: The neutral K-meson system

We consider the following neutral K-meson decays:

K0 → ππ, K0 → πππ, (13.123)

where we keep the electric chargse of the pions implicit. We assume that the isospin and CP

symmetries are respected, which turn out to be very good approximations.

1. Explain why, in the CP limit, the two eigenstates, KS and KL, must also be CP eigenstates.

2. Explain why the CP-odd state cannot decay into two pions.

3. Looking at the data, which of the two states, KS or KL, can be identified as the CP even

state?

4. Taking into account the experimental values of mπ and mK , explain why we should expect

Γ(K0 → ππ)� Γ(K0 → πππ). (13.124)

5. The K0 → ππ is the dominant decay modes of K0. Check it explicitly by looking at

BR(KS → ππ). Explain why this fact together with Eq. (13.124) imply that ΓS � ΓL.

6. Experimentally yK ≈ 1. How would the value of yK change if the kaon were slightly heavier

(with the pion mass unchanged)?

Question 13.8: CP violation in K → ππ and K → π`ν

We introduce the following notations:

y12 ≡
|ΓKK |

Γ
, x12 ≡

2|MKK |
Γ

, φ12 ≡ arg

(
MKK

ΓKK

)
. (13.125)
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Using these notations, Eqs. (13.48) can be written as

xy = x12y12 cosφ12, x2 − y2 = x2
12 − y2

12, (13.126)

where x ad y are defined is Eqs. (13.52). We further define

λππ = |λππ|eiφππ . (13.127)

As discussed in Question 13.7, the two pion states give the dominant contributions to the width

difference. We can then assume that

Im
(

ΓKK
Aππ
Aππ

)
= 0. (13.128)

The K → ππ decay is dominated by a single CKM phase, so we can also assume that

|Aππ/Aππ| = 1. (13.129)

1. Using Eqs. (13.44), (13.126), and (13.125) show that

(x2 + y2) |q/p|2 = x2
12 + y2

12 + 2x12y12 sinφ12. (13.130)

2. Using, in addition, Eqs. (13.128) and (13.129), show that

x2 cos2 φππ − y2 sin2 φππ = x2
12 cos2 φ12. (13.131)

3. In the SM, both MKK and ΓKK are dominated by the first two generations, and thus we

expect φ12 � 1. Under this assumption, show that

|q/p| − 1 =
(y/x) tanφ12

1 + (y/x)2
, tanφππ =

− tanφ12

1 + (y/x)2
. (13.132)

4. Use the above to show that
y

x
=

1− |q/p|
tanφππ

. (13.133)

5. Show that Eq. (13.133) translates into the following relation between measured observables:

[Re(εK)]2

|εK |2
=

y2

x2 + y2
. (13.134)

6. Use the experimental values of δL, Amass
ππ , y, and x to check Eq. (13.134) and comment about

the comparison.
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Question 13.9: Time scales in meson oscillations

In the following, we consider the four neutral meson systems, P = K,D,B,Bs. There are

various time scales involved in neutral meson mixing: ∆m, ∆Γ, and Γ. Understanding the hierarchy

(or lack of hierarchy) between them leads to insights and simplifications. We use the dimensionless

quantities x and y, defined in Eq. (13.52), to understand the possible hierarchies between the

relevant time scales.

Evaluate P(P 0 → P 0) and P(P 0 → P 0) in the following limits:

1. y = 0 and x � 1 (“slow oscillation”). Keep the leading order terms in x in each case.

Explain the result. Which of the four neutral meson systems fall into this category?

2. y = 0 and x � 1 (“fast oscillation”). Argue that in this case you can average over the

oscillations. Give the time averaged oscillation to first order in 1/x. Explain the result.

Which of the four neutral meson systems fall into this category?

3. y = 0 and x ∼ 1. In this case we have to use the full formula. Which of the four neutral

meson systems fall into this category?

4. Derive a generalization of Eq. (13.62), still keeping λf = 0, but taking into account finite x

and y.

5. |y| � x ∼< 1. Argue that in this case the effect of the width difference is quadratic in y.

Which of the four neutral meson systems fall into this category?

6. y ∼ x� 1. Argue that in this case the width difference is as important as the mass difference.

Which of the four neutral meson systems fall into this category?

7. 1 − |y| � 1. Argue that in that case, independent of the value of x, at late times you can

think about the state as the long-lived one. What can be considered “late times”? Which of

the four neutral meson systems fall into this category?

There are few other limits that are not realized in the four neutral meson systems, and thus we do

not elaborate on them.
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Chapter 14

Neutrinos

The SM has an accidental U(1)e×U(1)µ×U(1)τ symmetry, also known as lepton flavor symmetry.

Experiments established, however, that lepton flavor is not conserved, which provides unambiguous

evidence for physics beyond the (renormalizable) SM.

Predictions that depend on accidental symmetries of the SM are violated in generic extensions

of it. In Chapter 12, we encountered d = 6 terms that violate the approximate custodial symmetry

of the scalar sector of the SM, and are consequently constrained by EWPM. In Chapter 13, we

encountered d = 6 terms that violate the approximate flavor symmetries of the SM, and are

consequently constrained by measurements of FCNC processes. In this chapter, we encounter

d = 5 terms that violate the accidental lepton number and lepton flavor symmetries of the SM,

and discuss how they can be experimentally probed.

14.1 Introduction

The accidental lepton flavor symmetry of the SM predicts that lepton flavor is conserved. Thus, for

example, the µ→ eγ process is forbidden, since it violates both muon number and electron number

by one unit. Indeed, this and many other lepton flavor violating processes that have been searched

for in experiments, were not observed. Yet, neutrino oscillation experiments have observed lepton

flavor transitions, thus violating lepton flavor conservation. These experiments involve a source

that produces neutrinos of a given flavor, and a detector, placed at a large distance from the source,

that determines their flavor upon arrival. In this way, νµ → ντ transitions were established for

neutrinos produced in the atmosphere of Earth (atmospheric neutrinos), and νe → νa (a = µ, τ)

transitions were established for neutrinos produced in the Sun (solar neutrinos). These results were

independently confirmed using neutrinos produced in nuclear reactors and particle accelerators.

To test conservation of total lepton number, a very different type of experiments is needed.

These experiments search for nn → ppee processes, known as neutrinoless double-beta decay. So

far no such process has been observed, and thus there is no experimental indication that total
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lepton number is violated.

The observed lepton flavor violation is well explained if neutrinos have masses and there is lepton

mixing, similar to the mixing in the quark sector. The smallness of neutrino masses compared to

the charged fermions, mν ∼< 1 eV, and the fact that they have neither strong nor electromagnetic

interaction, have made the search for neutrino oscillations a very challenging one, and the discovery

of neutrino masses a triumph of experimental particle physics.

When an accidental symmetry is experimentally shown to be violated, one should consider

first the lowest dimension non-renormalizable terms that break the symmetry. This is done in

Section 14.2, where we show that d = 5 terms break the lepton flavor symmetry. The SM ex-

tended to include the d = 5 terms is a low energy effective theory. In Section 14.3 we present a

renormalizable theory that can generate the effective d = 5 terms. In Appendix 14.A, we discuss

the way the neutrino parameters are probed.

14.2 The νSM

14.2.1 Defining the νSM and the Lagrangian

In Section 8.1 we defined the SM. The model that we call the νSM has the same symmetry and

particle content as the SM, but it extends the SM Lagrangian, given in Section 8.2, to include the

most general d = 5 terms. In fact, there is a single class of dimension-five terms that depend on

SM fields and obey the SM imposed symmetries. These terms involve two SU(2)-doublet lepton

fields and two SU(2)-doublet scalar fields:

LνSM = LSM +
zνij
Λ
φφLTLiLLj + h.c., (14.1)

where LSM is the lagrangian of the renormalizable SM [see Eq. (8.16)], zνij is a symmetric complex

3 × 3 matrix of dimensionless couplings, Λ is a high mass scale, Λ � v, and, as explained in

Section 1.2.2, for the sake of simplicity, we write LTL instead of LcL.

14.2.2 The neutrino spectrum

With φ acquiring a VEV, 〈φ0〉 = v/
√

2 [see Eq. (7.18)], LνSM in Eq. (14.1) has a piece that

corresponds to Majorana masses for the neutrinos. For a single generation, we would have

LνSM,mass =
1

2
mνν

Tν, mν =
v2

Λ
zν . (14.2)

For three generations, we have a 3× 3 mass matrix:

LνSM,mass =
1

2
(mν)ijν

T
i νj, (mν)ij =

v2

Λ
zνij. (14.3)
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The matrix mν can be brought to a diagonal and real form by a unitary transformation:

V ∗νLmνV
†
νL = m̂ν = diag(m1,m2,m3), (14.4)

where VνL is a 3 × 3 unitary matrix. Majorana mass matrices are always symmetric. While

the diagonalization of a general mass matrix M involves a general bi-unitary transformation, as

in Eq. (7.97), for a symmetric mass matrix the diagonalization is by a unitary matrix and its

transpose, as in Eq. (14.4). (Denoting the unitary matrix by V ∗, rather than by V , simplifies the

discussion further below.)

We denote the corresponding neutrino mass eigenstates by ν1, ν2, ν3. What oscillation experi-

ments have determined are neutrino mass-squared differences,

∆m2
ij ≡ m2

i −m2
j , (14.5)

with i = 1, 2, 3 and i 6= j. By convention,

|∆m2
3i| > ∆m2

21 > 0. (14.6)

In other words, the convention is such that the states ν1 and ν2 are the ones separated by the

smallest |∆m2
ij| with m2 > m1.

The values extracted from neutrino oscillation experiments are

∆m2
21 = (7.39± 0.21)× 10−5 eV 2, (14.7)

|∆m2
31| = (2.510± 0.031)× 10−3 eV 2.

The following two features of the neutrino spectrum are still not experimentally determined:

(i) The absolute mass scale of the neutrinos (any of the mi’s).

The possibilities range from quasi-degenerate neutrino masses to highly hierarchical (with

the lightest possibly massless).

(ii) The mass ordering (sign of ∆m2
3i).

It is not yet known experimentally whether m3 is heavier (“normal ordering”) or lighter

(“inverted ordering”) than m2 and m1.

While the measurements of the neutrino mass-squared differences do not tell us the individual

masses of the neutrinos, they do provide lower bounds on two mass eigenvalues: There is at least

one neutrino mass heavier than
√
|∆m2

32|,

mheaviest ≥
√
|∆m2

32| ∼ 0.05 eV, (14.8)

and there is at least one additional mass heavier than
√

∆m2
21 ∼ 0.009 eV.

As concerns an upper bound on neutrino masses, experiments and cosmological observations

set it at a scale of order 1 eV. We present the experimental upper bounds in Appendix 14.B. We

do not elaborate much on the cosmological bounds, but mention them in Section 15.2.2.
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14.2.3 The neutrino interactions

The SM interactions whose structure is most significantly modified due to the addition of the

dimension-five terms are the charged current weak interactions in the lepton sector. Similar to

the quark sector, the W -couplings to lepton mass eigenstate pairs are no longer universal, but

characterized by a mixing matrix.

To understand how the leptonic mixing matrix arises, we follow the steps of the analysis of

the quark sector in Section 8.4.4. In the interaction basis, the charged current weak interaction is

given by [see Eq. (8.47)]

LW,` = − g√
2

∑
`=e,µ,τ

(
`L W/

−ν`L + h.c.
)
. (14.9)

Transforming to the mass basis, we obtain

LW,` = − g√
2

(
`αPLW/

−Uαiνi + h.c.
)

(14.10)

Here α = e, µ, τ denotes the charged lepton mass eigenstates, and i = 1, 2, 3 denotes the neutrino

mass eigenstates. The lepton mixing matrix U is unitary. Starting from an arbitrary interaction

basis, it is given by

U = VeLV
†
νL, (14.11)

where VνL is defined in Eq. (14.4) and VeL is defined in Eq. (7.97)]. While each of VeL and VνL is

basis-dependent, the combination VeLV
†
νL is not. Explicitly, we denote the entries of U as follows:

U =


Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (14.12)

The matrix U plays a role in the lepton sector similar to the role of the CKM matrix V in the quark

sector. It is usually called the leptonic mixing matrix or the Pontecorvo-Maki-Nakagawa-Sakata

(PMNS) matrix. We conclude:

• The leptonic charged current weak interactions in the mass basis are neither universal nor

diagonal. Instead, they involve the unitary mixing matrix U .

As concerns the other SM interactions, they are either not affected at all or modified in a

negligible way:

1. Since the neutrinos couple to neither the gluon nor the photon, neither the strong nor the

EM interactions are modified.

2. The Z-mediated neutral current weak interactions are modified in a trivial way. Transforming

from the interaction basis [see Eq. (7.63)] to the mass basis, we find that the NCWI remain

diagonal and universal:

LZ,ν =
g

2 cos θW
νiZ/ νi. (14.13)
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Table 14.1: The νSM lepton interactions.

Interaction Force carrier Coupling Leptons Properties

Electromagnetic γ eQ `i`i Universal

NC weak Z0 (g/ cos θW )(T3 − s2
WQ) `i`i, νiνi Universal

CC weak W± (g/
√

2)Uij `iνj Unitary U

Yukawa h mi/v `i`i, νiνi Diagonal

3. The dimension-five terms generate Yukawa interactions of the Higgs boson with the neutrinos:

Lh,ν =
2mi

v
hνTi νi +

mi

v2
hhνTi νi. (14.14)

Similar to the charged fermions, the neutrino Yukawa couplings are diagonal but not univer-

sal. The size of the Yukawa couplings is, however, tiny, of order mi/v ∼< 10−11, leading to

unobservably small effects.

The νSM-lepton interactions are summarized in Table 14.1, which is the νSM modification of

the SM interactions given in Table 7.2.

14.2.4 Global symmetries and parameters

The dimension-five terms in Eq. (14.1) break the U(1)e × U(1)µ × U(1)τ accidental symmetry of

the SM. With the addition of only d = 5 terms, all that remains of the Gglobal
SM symmetry of the

SM [see Eq. (8.59)] is baryon number symmetry:

Gglobal
νSM = U(1)B. (14.15)

This symmetry is, however, anomalous and broken by non-perturbative effects. In addition, it is

broken by dimension-six terms.

Total lepton number, conventionally denoted by L, is the sum of the three lepton flavor numbers,

U(1)L = U(1)e+µ+τ . The νSM breaks not only the lepton flavor symmetries separately, but also

their sum, namely the total lepton number. Experiments, however, have so far established the

violation of electron, muon, and tau number separately, but not the violation of total lepton

number.

The number of physical parameters in the quark sector remains unchanged from the SM: six

quark masses and four CKM parameters, of which one is imaginary. This is not the case in the

lepton sector. We proceed to count and identify the physical parameters in the νSM that add to

those of the LSM [see section 7.5.3]. The Lagrangian of Eq. (14.1) involves the 3×3 matrix Y e [see

Eq. (8.16)] with 9 real and 9 imaginary parameters, and the symmetric 3× 3 matrix zν with 6 real
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and 6 imaginary parameters. The kinetic and gauge terms have a U(3)L×U(3)E symmetry, that is

completely broken by the Y e and zν terms. Thus, the number of physical lepton flavor parameters

is 30 − 2 × 9 = 12, out of which 9 are real and 3 are imaginary. Six of the real parameters are

the three charged lepton masses me,µ,τ and the three neutrino masses m1,2,3. We conclude that the

3× 3 lepton mixing matrix U depends on three real mixing angles and three phases.

14.2.5 The PMNS matrix

A convenient parametrization of the PMNS matrix U is the following:

U =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

× diag(1, eiα1 , eiα2), (14.16)

where sij ≡ sin θij and cij ≡ cos θij.

The lepton mixing matrix U depends on three phases. The phase δ arises in a way similar to

the KM phase of the quark mixing matrix. The phases α1 and α2 are called Majorana phases,

and have no analog in the CKM matrix V , Eq. (9.3). The reason that U depends on three

phases while V depends on only a single phase lies in the fact that the Lagrangian of Eq. (14.1)

leads to Majorana masses for neutrinos. Consequently, there is no freedom in changing the mass

basis by redefining the neutrino phases, as such redefinition will introduce phases into the neutrino

mass terms. While redefinitions of the six quark fields allow one to remove five non-physical phases

from V , redefinitions of the three charged lepton fields allow one to remove only three non-physical

phases from U . The two additional physical phases in U are called “Majorana phases,” since they

appear as a result of the (assumed) Majorana nature of neutrinos. They affect total lepton number

violating processes.

The theoretical discussions of mixing in the quark and lepton sector are very similar. The

way that experiments probe these mixings are, however, very different. For particles that have

electromagnetic (and strong) interactions — as is the case for the quarks and the charged leptons

— experiments identify the mass eigenstates. For particles that have only weak interactions —

as is the case for the neutrinos — experiments identify the interaction eigenstates. Explicitly, the

neutrinos are identified as νe or νµ or ντ according to whether their production or detection are

associated with an e or µ or τ lepton, respectively.

The difference in the experimental probes suggests also an alternative way to think about

lepton mixing. The point that is common to quarks and the leptons is that there are three

relevant matrices in each sector — two mass matrices and one matrix for the W -couplings — and

only two can be simultaneously diagonal. For quarks, it is convenient to work in the mass basis,

where mu and md are diagonal but V is not. For leptons, it is often more convenient to work in

an interaction basis, where me and the W couplings are diagonal, but mν is not.
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Note also a subtle difference between V and U in the convention for the order of indices. In V ,

the first index corresponds to the T3 = +1/2 component of the doublet and the second one to the

T3 = −1/2 component. In U , it is the other way around.

Neutrino flavor transitions have been observed for solar, atmospheric, reactor, and acceler-

ator neutrinos. Five flavor parameters have been measured: two mass-squared differences [see

Eq. (14.7)] and the three mixing angles (we describe the experimental determination of the lepton

mixing parameters in Appendix 14.A):

sin2 θ12 = 0.310± 0.013,

sin2 θ23 = 0.565± 0.022,

sin2 θ13 = 0.0226± 0.0007. (14.17)

The present status of our knowledge of the absolute values of the various entries in the lepton

mixing matrix can be summarized as follows:

|U | =


0.80− 0.84 0.52− 0.59 0.14− 0.16

0.23− 0.48 0.46− 0.67 0.65− 0.78

0.30− 0.53 0.50− 0.70 0.61− 0.75

 . (14.18)

The Dirac phase, δ, and the two Majorana phases, α1 and α2 are still not experimentally deter-

mined.

14.2.6 Testing the νSM

While all neutrino-related experimental results to date can be accommodated in the νSM, there

are other models that are consistent with the data. Here we briefly mention a few tests that can

probe the νSM.

1. In the νSM, total lepton number is broken and the neutrinos have Majorana masses. Ex-

perimentally, however, we do not know the nature of the neutrino mass. If experiments

establish lepton number violation via the observation of neutrinoless double beta decays, it

would confirm that aspect of the νSM.

2. So far lepton flavor violation was only observed in neutrino oscillation experiments. Yet, it

could also be searched for in decays involving charged leptons, such as µ → eγ, Z → τµ,

and h → τe. The νSM predicts that these decay rates are tiny, much below any possible

experimental sensitivity [see Question 14.3]. If experiments observe lepton flavor violation in

charged lepton or Z-boson or h-boson decays, it will indicate that there are sources of lepton

flavor violation beyond the νSM.

3. In the νSM, there are three charged leptons and three neutrinos, and consequently the 3× 3

PMNS matrix is unitary. If experiments establish that U is not unitary, additional leptons

must exist in Nature.
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14.2.7 The scale Λ

In the νSM, the scale of neutrino masses depends on the scale Λ in the coefficients of the dimension-

five terms. As long as experiments involve energies E � Λ, what is probed is the combination

zν/Λ. Thus, there is an ambiguity in the definitions of Λ and zν . The separation of the coefficient

of a d = 5 term to a dimensionless coupling and a scale is meaningful when we discuss a full

high energy theory which generates the effective term. What we refer to as the scale of a non-

renormalizable term is Λ/zν (or, in case that zν is a matrix, as in Eq. (14.1), Λ/zνmax, where zνmax

is the largest eigenvalue of zν).

The effective low energy Lagrangian of Eq. (14.1) where, by definition, Λ � v, predicts that

the neutrino masses are much lighter than the weak scale:

m1,2,3 ∼< v2/Λ� v. (14.19)

The fact that experiments find that indeed mν � mZ makes the notion that neutrino masses

are generated by d = 5 terms very plausible. In fact, all fermions of the SM except for the top

quark are light relative to mZ . The lightness of charged fermions is related to the smallness of the

corresponding Yukawa couplings. The question of why Yukawa couplings are small may find an

answer in a more fundamental theory, beyond the SM. The neutrinos, however, are not only much

lighter than mZ , but also lighter by at least six orders of magnitude than all charged fermions.

This extreme lightness of the neutrinos is explained if their masses are generated by d = 5 terms.

The SM cannot be a valid theory above the Planck scale, Λ ∼< MPl. We thus expect that mi ∼>
v2/MPl ∼ 10−5 eV. A more relevant scale might be the GUT scale. As discussed in Section 11.4,in

GUTs, a unifying simple group is spontaneously broken to the SM gauge group at a scale ΛGUT =

O(1016 GeV). If the d = 5 terms are generated at ΛGUT then, with zν ∼ 1, we expect mν ∼ 10−2

eV.

Conversely, an experimental lower bound on neutrino masses provides an upper bound on

Λ/zν . Note, however, that the combination of a measurement of Λ/zν and the assumption that zν

is generated by perturbative physics, and therefore zν ∼< 1, translates into an upper bound on Λ

itself. Using the lower bound of Eq. (14.8) and the relation of Eq. (14.19), we conclude that the

SM cannot be a valid theory above the scale

Λ ∼<
v2

mν

∼ 1015 GeV, (14.20)

and, in particular, up to the Planck scale. Furthermore, this upper bound is intriguingly close to

the GUT scale.

14.3 The NSM: The SM with singlet fermions

In Section 14.2 we introduced the νSM and showed that the addition of non-renormalizable,

dimension-five terms to the SM Lagrangian generates neutrino masses and, moreover, explains
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why they are much lighter than the charged fermions. Non-renormalizable terms must arise from

a more fundamental theory. For the full high energy theory we again write only renormalizable

terms. One uses the term “UV-completion” for a full high energy theory that leads to the effective

theory. In general there is a number of possible UV-completions for a given effective theory.

In this section we present the NSM, a model that serves as an example of a full high energy

theory that generates the νSM at low energy. This extension amounts to adding heavy gauge-

singlet fermions to the SM. The way these singlet fields generate masses to the light neutrinos is

called the seesaw mechanism. The reason for this name, as explained below, is that the heavier

the singlet fermions, the lighter the neutrinos.

The Lagrangian Ld=5 of Eq. (14.1) can come not only from the NSM, but also from other

high-energy theories. In particular, there are three types of seesaw models which differ by the

representation of the heavy fields that one adds to the SM:

• Type I seesaw: (1, 1)0 fermion fields. (This is the NSM discussed below.)

• Type II seesaw: (1, 3)−1 scalar fields. (See Question 14.5.)

• Type III seesaw: (1, 3)0 fermion fields. (See Question 14.4.)

All three types of seesaw models predict that the light neutrinos have Majorana masses, and that

their mass scale is inversely proportional to the mass scale of the new heavy particles and, in

particular, much lower than the electroweak breaking scale.

14.3.1 Defining the NSM

The NSM is defined as follows:

(i) The symmetry is a local

SU(3)C × SU(2)L × U(1)Y . (14.21)

(ii) There are three fermion generations (i = 1, 2, 3), each consisting of six different representa-

tions:

QLi(3, 2)+1/6, URi(3, 1)+2/3, DRi(3, 1)−1/3, LLi(1, 2)−1/2, ERi(1, 1)−1, NRi(1, 1)0.

(14.22)

(iii) There is a single scalar multiplet:

φ(1, 2)+1/2. (14.23)

The presence of a scalar allows for SSB. We define the NSM as the model that exhibits the

following breaking pattern:

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)EM. (14.24)
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14.3.2 The NSM Lagrangian

The NSM has the same gauge group, the same scalar content, and the same pattern of spontaneous

symmetry breaking as the SM. In the fermion sector, all the SM representations are included. The

only difference is the addition of the fermionic NRi fields. These fields are usually called “right-

handed neutrinos”. Since the imposed symmetry is the same, all the terms that appear in the

SM Lagrangian appear also in the NSM Lagrangian. The NSM Lagrangian has, however, several

additional terms. These are all the terms that involve the NRi fields. We can write:

LNSM = LSM + LN , (14.25)

where LSM is the lagrangian of the renormalizable SM [see Eq. (8.16)].

Our task is to find the specific form of LN . We note the following points in this regard:

1. Given that the NR fields are singlets of the gauge group, we have DµNR = ∂µNR.

2. Since the NR fields are singlets of the gauge group, they can have Majorana mass terms.

3. The combination LLNR transforms as (1, 2)+1/2 under the gauge group, and can thus have a

Yukawa coupling to the scalar doublet.

We thus obtain the most general form for the renormalizable terms in LN :

LN = iNRi∂/NRi −
(

1

2
MN

ij N
T
RiNRj + Y ν

ijLLiφ̃NRj + h.c.
)
, (14.26)

where φ̃ is defined in Eq. (8.13), MN is a symmetric 3× 3 complex matrix of dimension-one mass

terms, and Y ν is a general 3× 3 complex matrix of dimensionless Yukawa couplings.

14.3.3 The NSM spectrum

As concerns the bosonic spectrum, it remains unchanged from the SM. As concerns the fermionic

spectrum, we note that, since the NR fields are singlets of the full gauge group, they are also singlets

of the unbroken subgroup, namely they transform as (1)0 under SU(3)C × U(1)EM. This means

that also the spectrum of the charged fermions (quarks and charged leptons) remains unchanged

from the SM.

As concerns the neutrinos (the νL components of the SU(2)-doublet leptons and the NR fields),

taking into account the spontaneous symmetry breaking, we find the following mass terms in LN :

−LN ,mass =
1

2
MN

ij N
T
RiNRj +

Y ν
ijv√
2
νLiNRj + h.c.. (14.27)

This gives a 6× 6 neutrino mass matrix, that can be decomposed into four 3× 3 blocks as follows

[see Eq. (2.20)]:

Mν =

(
0 mD

mT
D MN

)
, mD =

vY ν

√
2
. (14.28)

263



To obtain the six neutrino mass eigenstates, we need to diagonalize Mν .

Note that the neutrino sector of the NSM has six mass eigenstates, in contrast to the charged

lepton, the up-quark, and down-quark sectors, where there are three mass eigenstates in each. The

reason is that charged fermions have Dirac masses, and each mass eigenstate has four DoF. The

neutrinos have Majorana masses, and each mass eigenstate has only two DoF. The total number

of DoF is thus the same in each of the four sectors.

Before we analyze the neutrino spectrum of the three generation NSM, we gain some intuition

by analyzing the simpler, one generation NSM, where we have only one copy of the L and N fields,

and thus two neutrino mass eigenstates, which we write as

ν1 = cos θ νL + sin θ N c
R, N1 = − sin θ νL + cos θ N c

R. (14.29)

Without loss of generality, we choose a basis where the symmetric 2× 2 matrix Mν of Eq. (14.28)

is real: MD = MT
D and MN are real numbers. Inspired by both phenomenology and theoretical

model building, we assume that MN � v. Since MD ∼< v, it follows that MN � mD. To leading

order in mD/M
N , we obtain the following mass eigenvalues and mixing angle:

mν1 =
m2
D

MN
, mN1 = MN , sin θ =

mD

MN
. (14.30)

The neutrino mass terms in the Lagrangian are written as

−LN ,mass =
1

2
mN1N

T
1 N1 +

1

2
mν1ν

T
1 ν1 + h.c.. (14.31)

These results demonstrate two points about the see-saw mechanism:

1. The light mass is inversely proportional to the heavy one. This is the reason why the

mechanism that generates masses for the light neutrinos via their Yukawa couplings to heavy

neutrinos is called the see-saw mechanism: the higher one side of the seesaw, the lower the

other side.

2. The mixing angle between the two states is very small. The light state is almost a pure upper

component of an SU(2)-doublet ν, while the heavy one is almost a pure SU(2)-singlet N .

We now return to the three generation case. Without loss of generality, we can choose a basis

where MN of Eq. (14.28) is diagonal and real:

MN = M̂N = diag(M1,M2,M3). (14.32)

Unlike the SM, which has a single dimensionful parameter, v, the NSM has four dimensionful

parameters: v,M1,M2,M3. We assume that the Majorana masses of the heavy states are of the

same scale, denoted as mN , which is much higher than the weak scale:

mN ∼M1 ∼M2 ∼M3 � v. (14.33)
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To diagonalize Mν , we first use the unitary matrix K to block-diagonalize it:

KMνK
T =

(
mν 0

0 M̂N

)
. (14.34)

To leading order in v/mN we have

K =

(
1 −mDM̂

−1
N

M̂−1
N mT

D 1

)
, mν = −mDM̂

−1
N mT

D, (14.35)

where we omitted terms of order v2/m2
N . The lower-right block in Eq. (14.34) is already diagonal.

The upper-left block, mν , can be diagonalized by a further unitary transformation:

m̂ν = V ∗νLmνV
†
νL = diag(m1,m2,m3). (14.36)

We thus learn the following points:

1. There are three heavy Majorana neutrinos of masses M1,M2,M3. We call these states

N1, N2, N3. These mass eigenstates are approximately SU(2)-singlet states, but have a small,

O(v/mN), SU(2)-doublet component. The masses are, by assumption, much larger than the

electroweak scale.

2. There are three light neutrinos of masses m1,m2,m3, of order v2/mN . We call these states

ν1, ν2, ν3. These mass eigenstates are approximately SU(2)-doublet states, but have a small,

O(v/mN), SU(2)-singlet component. The masses are much smaller than the electroweak

scale.

We conclude that the spectrum of the NSM has three different scales:

• The masses of all massive bosons and of the charged fermions are of order v.

• The masses of the (approximately) singlet neutrinos are heavy, of order mN .

• The masses of the (approximately) doublet neutrinos are light, of order v2/mN .

14.3.4 The NSM interactions

The neutrino sector of the NSM has neither strong nor electromagnetic interactions. The νi and

Ni states do have, however, weak and Yukawa interactions.

The charged current weak interactions are given by

LW,` = − g√
2
`PLW/

−(UW
`ν UW

`N)

(
ν

N

)
+ h.c.. (14.37)

Here UW = (UW
`ν UW

`N) is the 3× 6 lepton mixing matrix connecting the three charged lepton mass

eigenstates (` = e, µ, τ) to the six neutrino mass eigenstates (ν = ν1, ν2, ν3 and N = N1, N2, N3).
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The entries of the UW
`N block are small, of O(v/mN). Thus, to zeroth order in v/mN , only the light

neutrinos couple to the W -boson, with the mixing matrix

UW
`ν = VeLV

†
νL, (14.38)

which is the same as the mixing matrix (14.11) of the νSM.

The neutral current weak interactions are given by

LZ,ν =
g

2cW
(ν N)Z/

(
UZ
νν UZ

νN

UZ
Nν UZ

NN

)(
ν

N

)
. (14.39)

Here UZ is a 6× 6 mixing matrix among the six neutrino mass eigenstates (ν1, ν2, ν3, N1, N2, N3).

The entries of the UZ
νN and UZ

Nν blocks are of O(v/mN), while the entries of the UZ
NN block of

O(v2/m2
N). As for UZ

νν , it is very close to a unit matrix up to effects of O(v2/m2
N). Thus, to zeroth

order in v/mN ∼ mν/v, only the light neutrinos couple to the Z-boson, with a mixing matrix

UZ
νν = 1 +O

(
m2
ν

v2

)
. (14.40)

We conclude that non-diagonal and non-universal effects in the Z couplings to the light neutrinos

are unobservably small effects and thus, to a very good approximation, the light neutrinos couplings

are universal, as in the νSM.

While the deviations from diagonality and universality are quantitatively very small, it is worth

emphasizing a qualitative point with regard to these deviations. As explained in Section 9.4, the

universality of the Z couplings holds only if all fermions of given chirality and given color and

charge come from the same SU(2) × U(1) representation. In the NSM, neutrinos come from

two different types of SU(2) × U(1) representations, (2)−1/2 and (1)0, and therefore there is no

universality in the couplings of the Z-boson to neutrinos. The NSM demonstrates then that the

absence of tree-level FCNC is a rather special feature of the SM, that is violated in general by

BSM physics.

The Yukawa interactions, as can be learned from the Lagrangian LN of Eq. (14.26), connects

the heavy Ni and light νj states. Thus, unlike the Yukawa interactions of the SM, in the NSM the

Higgs boson has off-diagonal couplings. As explained in Section 9.4, the special SM features which

lead to diagonality are, first, that for a given fermion sector all fermions are chiral and charged

and therefore there are no bare mass terms and, second, that the scalar sector has a single Higgs

doublet. In the neutrino sector of the NSM, the first condition is violated, and the Higgs boson

has neutrino flavor changing couplings.

The Yukawa and weak interactions of the Ni states imply that they are unstable, and decay

to a light lepton (neutral or charged) and a boson (h, Z, or W ). By assumption, however, the Ni

particles are heavy, and thus cannot be produced in experiments, and their interactions cannot be

directly probed. We thus do not study their interactions any further here. We note, however, that

the Yukawa interactions of the Ni particles might be the source of the baryon asymmetry of the

Universe, a scenario that is known by the name of leptogenesis. See Section 15.3.3 for a discussion.
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14.3.5 The low energy limit of the NSM

In this section we show that the low energy limit of the NSM reproduces the νSM. Thus, the

NSM constitutes a UV-completion of the νSM. We do not present a formal derivation (based on

integrating out the heavy modes) of this statement, but rather provide an intuitive explanation.

The first point concerns the field content of the NSM and the νSM. Since the Ni neutrinos are

very heavy, they are not directly produced in current experiments. (Given that they are almost

pure gauge-singlets, it would be difficult to produce them even if it were kinematically possible to

do so.) Thus, at low energy, we can only observe their virtual effects. All other fields are at or

below the electroweak scale. Their list is the same as the νSM list of fields.

The second point concerns the mass of the light neutrinos. Comparing Eq. (14.2) to Eq. (14.30),

we observe that they would assume the same form if we were to identify

zν

Λ
=

(Y ν)2

MN

. (14.41)

We can then further identify Λ as the mass of the heavy neutrino, Λ = MN , and zν as the square

of the Yukawa coupling, zν = (Y ν)2. In the three generation case, we have

zνij
Λ

=
[
Y ν(MN)−1Y νT

]
ij
. (14.42)

We can use Feynman diagrams to come to the same conclusion. While we usually use Feynman

diagrams to calculate amplitudes, we can also use them to describe masses. A charged lepton mass

is described by the diagram in Fig. 14.1(a), a neutrino mass in the νSM is described by the diagram

in Fig. 14.1(b), and a neutrino mass in the NSM is described by the diagram in Fig. 14.1(c). For

the latter, since mN is very large, we can replace the propagator by a point-like vertex, which

would give Fig. 14.1(b). We learn that, treating the heavy fields as non-dynamical, we get the

relevant diagram in the effective theory.

The third point concerns the lepton interactions. In the νSM, the neutrinos are purely SU(2)-

doublets. Their CCWI involve the mixing matrix U defined in Eq. (14.11), and their NCWI are

universal [see Eq. (14.13)]. In the NSM, they have a small SU(2)-singlet component. However, to

zeroth order in v/mN , the singlet component in the light neutrinos vanishes. Their CCWI mixing

matrix is UW
`ν given by Eq. (14.38), which is the same as Eq. (14.11). Their NCWI mixing matrix

is UZ
νν given by Eq. (14.40), which is universal to leading order in mν/v.

We learn that the NSM is indeed a possible UV completion of the νSM.

14.3.6 The case of mN � v: Sterile neutrinos

So far we worked under the assumption of Eq. (14.33), that is, mN � v. Here we comment on

the consequences of an opposite hierarchy, mN � v. In this case the Ni DoF cannot be integrated

out, and the low energy limit of the theory does not generate the νSM.
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Figure 14.1: lepton masses: (a) The electron mass. (b) The neutrino mass in the νSM. (c) the

neutrino mass in the NSM.

Let us first discuss the special case of MN = 0. Setting MN to zero requires that we postulate

a global symmetry, in addition to the gauge symmetry of the SM. A good candidate model, where

MN is forbidden but Y ν is allowed, is one where we impose lepton number symmetry and assign

the Ni fields with L = 1. (Note that, while lepton number is an anomalous symmetry, U(1)B−L is

non-anomalous and achieves the same renormalizable Lagrangian, namely LNSM with MN = 0.)

With MN = 0, the neutrinos are massive Dirac particles, similarly to the charged fermions.

This should be the case, since in this model the neutrinos carry a conserved charged (L, or B−L).

We emphasize, however, that in order to extend the SM in a way that would make the neutrinos

Dirac fermions, one needs not only to add matter fields, but also impose a global symmetry.

Moreover, in the NSM, the lightness of the doublet neutrinos is explained by a new high scale

of physics. In contrast, the lightness of Dirac neutrinos requires that their dimensionless Yukawa

couplings are set to be tiny.

For mN 6= 0 but mN � v, we have to consider two cases. First, in case that mN ∼> Y νv, there

are six very light Majorana mass eigenstates. Light states that are dominantly electroweak singlets

are called sterile neutrinos, while those that are dominantly electroweak doublets are called active

neutrinos. Sterile neutrinos can significantly change the neutrino phenomenology, but so far there

is no conclusive evidence for their existence. Second, in case that mN � Y νv, the six Majorana

mass eigenstates divide into three pairs of what is called pseudo-Dirac neutrinos. Each pair is

quasi-degenerate, with an average mass of order yνv and splitting of order mN .

The question of whether the neutrinos are Majorana or Dirac fermions is not yet experimentally
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decided. If neutrinoless double beta decay is observed (see discussion in Appendix 14.B.2), it will

prove their Majorana nature.

14.4 Open questions

Experimental data prove that neutrinos are massive and that there is lepton mixing. Specifically,

experiments measured two mass-squared differences and the three mixing angles. Yet, there is

more to learn experimentally about neutrino masses and mixing:

1. Is the neutrino spectrum hierarchical or quasi-degenerate?

2. Is the neutrino mass ordering normal or inverted?

3. Is CP violated in the PMNS matrix?

While the νSM is an attractive candidate theory to encompass the low energy description of the

neutrino sector, there are several open questions where experiments might further support or falsify

the νSM:

4. Are the neutrinos Dirac or Majorana fermions?

5. Are there sterile neutrinos, that is, other light states that mix with the active neutrinos?

6. Are there dimension six operators that significantly affect the neutrino interactions?

If the νSM continues to be supported by experiments, the following question will still be open:

7. What is the full high energy theory that generates the νSM as its low energy limit?

This list of open questions explains why experimental neutrino physics is a very active field of

research.

For further reading

There are many reviews and books about neutrino physics, for example

• For a general review, see Refs. [43, 44, 45].

• For review on neutrinoless double beta decays, see Ref. [46].

• For review on experimental aspects, see Ref. [47].

• For review on astrophysical aspects of neutrinos, see Ref. [48].
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Appendix

14.A Neutrino oscillations

In this appendix, we explain how neutrino masses and mixing are probed. Our analysis here is

mostly model independent but, for the sake of concreteness, we assume the νSM. The results can

be easily modified for other models.

Fluxes of neutrinos are produced in both natural sources, such as the Sun or cosmic rays

hitting the atmosphere, and artificial sources, such as accelerators or nuclear reactors. These

various sources are used to study neutrino masses and mixing, providing sensitivities to large

regions of the parameter space.

14.A.1 Neutrino oscillations in vacuum

In experiments, neutrinos are often produced and detected by charged current weak interactions.

Thus, the states that are relevant to production and detection are the SU(2)L-doublet partners of

the charged lepton mass eigenstates, namely νe, νµ, ντ . On the other hand, the eigenstates of free

propagation in spacetime are the mass eigenstates, ν1, ν2, ν3. In general, the interaction eigenstates

(also known as flavor eigenstates) are different from the mass eigenstates:

|να〉 = U∗αi|νi〉 (α = e, µ, τ ; i = 1, 2, 3), (14.43)

where U is the PMNS matrix defined in Eq. (14.11). Consequently, flavor is not conserved during

propagation in spacetime and, in general, we may produce να but detect νβ 6= να.

The probability Pαβ of producing neutrinos of flavor α and detecting neutrinos of flavor β is

calculable in terms of the following inputs:

• The neutrino energy E;

• The distance between source and detector L;

• The mass-squared differences ∆m2
ij ≡ m2

i −m2
j ;

• The parameters, mixing angles and the Dirac phase, of the mixing matrix U .
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Starting from Eq. (14.43), we can write the expression for the evolution of a state that started as

a να. We denote the time evolved state as |να(t)〉 and obtain

|να(t)〉 = U∗αi|νi(t)〉, (14.44)

where |να(0)〉 ≡ |να〉 and

|νi(t)〉 = e−iEit|νi(0)〉. (14.45)

The probability of a state that is produced as να to be detected as νβ is given by

Pαβ = |〈νβ|να(t)〉|2 . (14.46)

In all cases of interest, the neutrinos are ultra-relativistic, and we then approximate

Ei = p+
m2
i

2p
, Ei − Ej =

∆m2
ij

2p
, (14.47)

where p is the momentum of the neutrinos. Explicit calculation [see Question 14.1] gives

Pαβ = δαβ − 4
∑
j>i

Re
(
UαiU

∗
βiU

∗
αjUβj

)
sin2

(
∆m2

ijL

4E

)
+ 2

∑
j>i

Im
(
UαiU

∗
βiU

∗
αjUβj

)
sin

(
∆m2

ijL

2E

)
,

(14.48)

where we use the approximations p = E and L = t in the final result.

Applying this calculation to a two-generation case, where there is a single mixing angle, θ, (and

no relevant phase) and a single mass-squared difference,

U =

(
cos θ sin θ

− sin θ cos θ

)
, ∆m2 = m2

2 −m2
1, (14.49)

we obtain, for α 6= β,

Pαβ = sin2 2θ sin2 x, x ≡ ∆m2L

4E
. (14.50)

We learn that the time evolution of neutrinos that are produced in a flavor eigenstate exhibits

oscillations (as a function of time or, equivalently, distance) between the different flavor eigenstates.

This phenomenon is known as “neutrino oscillations.”

The expression for Pαβ in Eq. (14.50) depends on two parameters that are related to the

experimental design, E and L, and two that are parameters of the Lagrangian, ∆m2 and sin 2θ.

To allow observation of neutrino oscillations and measurements of the neutrino parameters, Nature

better provides a value of sin2 2θ that is not tiny. Furthermore, one has to design the experiment

appropriately:

• If E/L� ∆m2, then Pαβ → 0 and there is no sensitivity to the neutrino parameters.

• If E/L ∼ ∆m2, then Pαβ is sensitive to both ∆m2 and sin θ.
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Table 14.2: Neutrino oscillation experiments. The column ∆m2 gives the range to which the

corresponding class of experiments is sensitive. For solar neutrinos, flavor transitions can occur as

a result of vacuum oscillations (VO), presented in Section 14.A.1, or of the MSW effect, presented

in Section 14.A.2. SB and LB stand for “short baseline” and “long baseline,” respectively.

Source E[MeV] L[km] ∆m2[eV2]

Solar (VO) 1 108 =⇒ 10−11 − 10−9

SB Reactor 1 0.1− 1 =⇒ 10−3 − 10−2

LB Reactor 1 102 =⇒ 10−5 − 10−3

Atmospheric 103 101 − 104 =⇒ 10−5 − 1

SB accelerator 103 − 104 0.1 =⇒ ∼> 0.1

LB accelerator 104 102 − 103 =⇒ 10−3 − 10−2

Source n0[cm−3] r0[cm] ∆m2[eV2]

Solar (MSW) 6× 1025 7× 109 =⇒ 10−9 − 10−5

• If E/L � ∆m2, then the oscillations average out, and Pαβ = 1
2

sin2 2θ is sensitive to θ but

not to ∆m2.

To obtain a more quantitative intuition, it is useful to write

x ≈ 1.27

(
∆m2

eV2

)(
L

km

)(
GeV

E

)
. (14.51)

Typical values of E and L for the various classes of experiments, and the corresponding range of

∆m2 that can be probed, are given in Table 14.2.

It is interesting to understand the differences between neutrino oscillations and neutral meson

oscillations (discussed in Section 13.A):

1. Mesons decay while the neutrinos are stable (at least on the time scale of experiments).

This brings the meson decay width into the analysis of the time evolution of mesons, see

Eq. (13.62).

2. Neutrino oscillations depend on the mixing angle. In neutral meson mixing, we consider

particle-antiparticle oscillation. In this case, CPT requires that the two diagonal elements

in the mass matrix are equal and thus the mixing angle is maximal at π/4.

3. The argument of the time-dependent oscillations is (∆m)t for mesons [see Eq. (13.62)], and

(∆m2)t/(2E) for neutrinos [see Eq. (14.50)]. This apparent difference, however, is nothing

but the effect of relativistic time dilation. Using, for the quasi-degenerate mesons, ∆m =

∆m2/(2m), and for the ultra-relativistic neutrinos t = τ/γ (with τ the proper time) and

γ = E/m, the dependencies on time and mass become the same.
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14.A.2 The MSW effect

To describe the propagation of neutrinos in matter, modifications to the oscillation formalism

are necessary. Matter generates a potential to the neutrinos that affects their propagation. This

effect is similar to the effect of medium on photon propagation which results in a refraction index.

For photons, the interaction leads to a speed of light in matter that is smaller than in vacuum.

Furthermore, it generates dispersion where the velocity depends on the energy. For neutrinos

propagating in matter, the velocity does not change, but flavor oscillations are significantly affected.

The smallness of the relevant cross-sections makes most effects of neutrino scattering off medium

negligible. This is, however, not the case for forward scattering, where there is no energy or

momentum exchange between the neutrinos and the medium. The effect of forward scattering is

to induce effective masses for the neutrinos. The resulting modification to Pαβ of Eq. (14.50) is

known as the Mikheyev-Smirnov-Wolfenstein (MSW) effect.

For the current measurements of neutrino flavor transitions, the relevant effects come from

neutrino propagation in the Sun or in Earth. In both cases, matter consists of electrons, protons,

and neutrons. In particular, there are neither muons nor tau nor anti-leptons in the medium.

All neutrinos have the same (universal) neutral current weak interactions. In contrast, in

medium that contains electrons, but neither muons nor tau-leptons, only νe’s have charged cur-

rent weak interactions with matter. The effective potential induced by the charged current weak

interactions of νe is a vector potential and it is given by (see Question 14.7)

Vµ = (VC , 0, 0, 0), VC =
√

2GFne. (14.52)

VC ≈ 7.6
ne

np + nn

(
ρ

1014g/cm3

)
eV , (14.53)

where ni (i = e, p, n) stands for the number density, and ρ is the mass density. At the solar core,

ρ ∼ 100 g/cm3, which gives rise to VC ∼ 10−12 eV, while at the Earth core, ρ ∼ 10 g/cm3, which

gives rise to VC ∼ 10−13 eV.

Current data suggests that mν ∼> 10−3 eV, and thus mν � VC . One may then naively think

that matter effects are irrelevant. Matter effects, however, arise from vector interactions while

masses are scalar operators. Consequently, the right comparison to make is between m2
ν and EVC ,

where E is the neutrino energy. Since E � mν , matter effects can be important. To see how this

enhancement of matter effects arises, consider the dispersion relation of the neutrino in vacuum,

pµp
µ = m2. In matter, it is modified as follows:

(pµ − Vµ)(pµ − V µ) = m2. (14.54)

Writing the dispersion relation as E2 = p2 +m2
m and using Eq. (14.52), we learn that the effective

mass-squared in matter, m2
m, is given by

m2
m = m2 + Ae, Ae ≡ 2EVC , (14.55)
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where we neglected terms of order V 2
C . It is the vector nature of the weak interaction that makes

matter effects relevant.

For the sake of simplicity, we proceed in our analysis of the matter effects in a two neutrino

framework. We consider ultra-relativistic neutrinos, where we approximate the Hamiltonian as

H =
√
p2 +m2 ≈ p + m2/(2p). In vacuum, in the mass basis (ν1, ν2), the Hamiltonian can be

written as

H = p+
1

2p

(
m2

1 0

0 m2
2

)
. (14.56)

In the interaction basis (νe, νµ), we have

H = p+
m2

1 +m2
2

4p
+

1

4p

(
−∆m2 cos 2θ ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ

)
. (14.57)

In matter that contains only electrons, protons and neutrons, the Hamiltonian in the interaction

basis is modified from its vacuum form of Eq. (14.57):

H = p+
m2

1 +m2
2

4p
+

1

4p

(
2Ae −∆m2 cos 2θ ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ

)
, (14.58)

where Ae is the effective potential defined in Eq. (14.55) and we used the leading order relation

p = E. Omitting the part in the Hamiltonian that is proportional to the unit matrix in flavor

space (which plays no role in the oscillations), we can define the effective mass-squared difference

and mixing angle in matter:

∆m2
m =

√
(∆m2 cos 2θ − Ae)2 + (∆m2 sin 2θ)2, (14.59)

tan 2θm =
∆m2 sin 2θ

∆m2 cos 2θ − Ae
,

where the subindex m stands for matter.

The oscillation probability in matter with constant ne is simply obtained from Eq. (14.50) by

replacing ∆m2 and θ with ∆m2
m and θm:

Pαβ = sin2 2θm sin2 xm , xm =
∆m2

mL

4E
. (14.60)

The following points are worth mentioning regarding Eq. (14.60):

1. If mixing in vacuum vanishes, θ = 0, so does mixing in matter, θm = 0.

2. The vacuum result is reproduced for Ae = 0, as it should.

3. For |Ae| � ∆m2 cos 2θ, the matter effect is a small perturbation to the vacuum result.

4. For |Ae| � ∆m2 cos 2θ, the neutrino mass is a small perturbation to the matter effect. In

that case the oscillations are highly suppressed since the effective mixing angle is very small.
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5. For Ae = ∆m2 cos 2θ, the mixing is maximal, θm = π/4, namely, it is on resonance.

When the matter density is not constant, there are further modifications to the oscillation

formalism. For a neutrino propagating in a varying matter density, the effective neutrino mass

and mixing change while propagating. Then, the flavor composition of the neutrinos along their

path is a function of the medium density profile. We do not elaborate on this, but mention that

it is a very important effect for solar neutrinos.

14.B Direct probes of neutrino masses

The measurements of neutrino oscillations in vacuum and in matter probe mass-squared differences

(∆m2
ij), but not the absolute mass scale (mi or mj). Here we discuss experimental ways to measure

the neutrino mass. Specifically, we discuss kinematic tests for neutrino masses and neutrinoless

double beta decay. To date, these measurements have provided only upper bounds.

14.B.1 Kinematic tests

In decays that produce neutrinos, the decay spectra are sensitive to neutrino masses. For example,

in the π → µν decay, the muon momentum is fixed (up to tiny width effects) by the masses of the

pion, the muon, and the neutrino. To first order in m2
ν/m

2
π, the muon momentum in the pion rest

frame is given by

|~p | = 1

2mπ

(
m2
π −m2

µ −
m2
π +m2

µ

m2
π −m2

µ

m2
ν

)
. (14.61)

Since the correction to the massless neutrino limit is proportional to m2
ν , the kinematic tests are

not very sensitive to small neutrino masses. The current best bounds obtained using kinematic

tests are the following:

mν < 18.2 MeV from τ → 5π + ν ,

mν < 190 KeV from π → µν ,

mν < 1.1 eV from 3H→3He + e+ ν . (14.62)

The combination of oscillation experiments, which are sensitive to the neutrino mass-squared

differences and mixing angles, and kinematic tests, which are sensitive to the neutrino masses

themselves, implies that all three neutrino masses are bounded by

mi < 1.1 eV, (14.63)

for i = 1, 2, 3.
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14.B.2 Neutrinoless double-beta (0ν2β) decay

Neutrino Majorana masses violate lepton number by two units. Therefore, if neutrinos have

Majorana masses, we expect that there are also ∆L = 2 processes. The smallness of the neutrino

masses indicates that such processes have very small rates. Therefore, the only practical way to

look for a ∆L = 2 process is in cases where the corresponding ∆L = 0 process is forbidden or highly

suppressed. Neutrinoless double-beta (0ν2β) decay, where the single beta decay is forbidden, is

such a process. An example of such a process is

32
76Ge→ 34

76 Se + 2e− . (14.64)

The only physical background to 0ν2β decay is from double-beta decay with two neutrinos (2ν2β).

The 0ν2β decays are sensitive to the following combination of neutrino parameters:

mββ =
3∑
i=1

miU
2
ei. (14.65)

The best bound derived from 0ν2β decay is mββ < 0.26 eV. We emphasize the following points:

1. If the neutrinos are Dirac particles, lepton number is conserved, and their masses do not

contribute to 0ν2β decays.

2. The 0ν2β decay rate depends not only on m2
ββ but also on some nuclear matrix elements.

Those matrix elements introduce theoretical uncertainties in extracting mββ from the signal,

or in deriving an upper bound on mββ if no signal is observed.

3. The 0ν2β decay is sensitive to other ∆L = 2 operators, and not only to the neutrino Majorana

masses. Thus, the relation between the 0ν2β decay rate and the neutrino mass is model

dependent.
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Problems

Question 14.1: Algebra

1. Restore all the indices that are implicit in Eq. (14.1).

2. Show that Eq. (14.3) arises from Eq. (14.1) when the Higgs field is replaced by its VEV,

Eq. (7.18).

3. Show that Eq. (14.27) arises from Eq. (14.26) when the Higgs field is replaced by its VEV,

Eq. (7.18).

4. Derive Eq. (14.30) (see Question 3.5).

5. Derive Eq. (14.48). It is useful to recall that

Pαβ = |〈νβ|να(t)〉|2 =

∣∣∣∣∣∑
i

〈νβ|νi〉〈νi|να(t)〉
∣∣∣∣∣
2

. (14.66)

6. Derive expressions for the difference between the T -conjugate processes,

∆T ≡ P (νe → νµ)− P (νµ → νe), (14.67)

and for the difference between the CP -conjugate processes,

∆CP ≡ P (νe → νµ)− P (ν̄e → ν̄µ). (14.68)

Show that in the limit of CP conservation, which you can take as the case where U is real,

∆T = ∆CP = 0.

7. Explain why CPT implies that ∆T −∆CP = 0 and check that this is indeed the case.

8. Derive Eqs. (14.59) and (14.60).

9. For propagation in matter where

xm � 1, rc ≡
|Ae|

∆m2 cos 2θ
� 1, (14.69)

we can approximate sinxm ∼ xm in Eq. (14.60). Show that is this case, to first order in rc,

the transition probability in matter, Pαβ of Eq. (14.60), is equal to the one of Eq. (14.50).

277



Question 14.2: Neutrino lifetime

In the SM, the neutrinos are massless and thus stable. In the νSM, however, they are mas-

sive and non-degenerate, and thus the two heavier states decay. For simplicity, consider a two-

generation model with m1 = 0, m2 = 1 eV and a mixing angle θ = π/4. The two leading decay

modes for ν2 are

ν2 → ν1γ, ν2 → ν1ν̄1ν1. (14.70)

1. Explain why there are no tree level contributions to ν2 decay.

2. Draw the diagrams for the decay modes in Eq. (14.70).

3. Estimate the partial decay width for each of the two modes, and the lifetime of ν2.

4. In the NSM, there is a tree level contribution to one of the two modes in Eq. (14.70).

Draw the relevant tree level diagram, and explain why the other mode does not have such a

contribution.

5. Estimate the tree-level and the one loop amplitudes and compare them.

6. The best bound on the neutrino lifetime comes from the observation of a burst of neutrinos

from SN1987A, a supernova that occurred about 170,000 light-years away. The neutrino

signal lasted O(10 seconds). Had the neutrinos decayed along the way to Earth, the neutrino

signal would have spanned a significantly longer time window. Explain why.

7. Estimate a bound on the lifetime of the neutrino by requiring that it is longer than the time

it took the neutrinos to travel to Earth from SN1987A. Make sure to convert the lab-frame

time to the proper time using the fact that the neutrino energies in the lab were of order 10

MeV.

8. Compare the theoretical calculation of the neutrino lifetime in the νSM and the observational

bound from SN1987A. Does the SN1987A bound provide a meaningful constraint on the

parameters of the νSM?

Question 14.3: FCNC charged lepton decays

In the SM, µ → eγ is forbidden due to the accidental lepton flavor symmetry. In the νSM,

however, the symmetry is broken, so we expect µ→ eγ to occur.
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1. Explain why µ→ eγ is not allowed at tree level.

2. Draw the leading one loop diagrams for µ→ eγ in the νSM.

3. Find the ratio
Γ(µ→ eγ)

Γ(µ→ eνν̄)
(14.71)

in terms of couplings and the neutrino masses and mixing angles.

4. Based on the available data on the masses and mixing angles, give a numerical prediction of

the ratio in Eq. (14.71). Check your estimate against the experimental bound, and comment

about it.

Question 14.4: The type III see-saw model

Consider an extension of the one generation SM where we add a right-handed fermion field

NR(1, 3)0. This mechanism to generate neutrino masses is called the type III see-saw.

1. What are the electric charges of the different component in N?

2. We write

L = LSM + LN , (14.72)

where LN includes all the terms that involve NR. Write LN explicitly [the analogue of

Eq. (14.26) for the NSM]. Write the covariant derivative DµNR explicitly. In the Yukawa

term, make sure you use correctly φ or φ̃. Denote the Majorana mass term for NR by MN .

From this point on we assume MN � v.

3. Show that the light neutrino acquires a mass of the form mν = cv2/MN , and find c.

4. Both the neutral and the charged components of N mix with the SM fields. The mixing

generates a mass splitting between the charged and neutral components of N . Estimate the

size of the splitting.

5. The mass splitting you found above is rather small and, in fact, negligible compared to those

generated by one loop effects. Discuss where these one loop effects come from, and estimate

their size.

6. Argue that the low energy limit of the model is the one generation νSM.

Question 14.5: Neutrino masses in the LRS model (type II see-saw)

Consider the LRS model of Question 7.10 with Ng = 1.
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1. Are there bare mass terms for any fermions in the model?

2. Write down the most general LYuk that involves the lepton fields, LL and LR, and the three

scalar fields, Φ, ∆L and ∆R.

3. We denote the VEVs of Φ by k1 and k2 as we did in Question 7.10. We further denote

vL = 〈∆L〉 and vR = 〈∆R〉. Write down the mass terms for the leptons in terms of k1, k2, vL

and vR. Use the notation of Eq. (7.149).

4. Write the mass eigenstates as

ν = cos θ νL + sin θ νcR, N = − sin θ νL + cos θ νcR. (14.73)

Assume the hierarchy of VEVs as in Eq. (7.150). Working to leading order in the small ratios

of VEVs, find mν , mN and θ. Check that

mN ∼ vR, mν ∼ max

(
vL,

k2

vR

)
, θ ∼ k

vR
. (14.74)

5. An analysis of the scalar potential shows that generically k2 ≡ k2
1 + k2

2 ∼ vLvR. Using this

relation, show that

mν ∼
k2

mN

, (14.75)

which is the seesaw result.

6. Take Ng = 2. In the LRS model, there are two tree level, vector-boson mediated Feynman

diagrams that contribute to muon decay. Draw the two diagrams.

7. Argue that the interference between the two amplitudes is very small and can be neglected.

8. Find the ratio of the two amplitudes in terms of the coupling constants and the masses of

the vector bosons, and then express it in terms of the VEVs. Denote this ratio by rR/L

9. What bound on the VEVs can you deduce from the experimental bound rR/L < 0.033 ?

Question 14.6: Solar neutrinos

Matter effects in the Sun play a major role in suppressing the νe flux arriving to Earth from

the Sun. In the early days of solar neutrino experiments, however, the possibility that vacuum

oscillations between the Sun and the Earth play a role was viable. In this question, we explore this

scenario. For simplicity, consider a two generation model. We denote the mass-squared difference

by ∆m2. For the neutrino energy, take Eν ∼ 1 MeV.
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1. Estimate ∆m2 that corresponds to oscillation length of order the distance between the Sun

and Earth.

2. A consequence of this scenario is a seasonal variation of the oscillation probability. Estimate

the relative effect of the seasonal variation as a function of ∆m2, Eν , and the parameters of

the Earth-Sun system.

3. The flux of electron neutrinos arriving to Earth is about a third of the flux produced in

the Sun. Assuming vacuum oscillations, and that the data is collected over several years,

estimate the mixing angle and put a bound on ∆m2.

Question 14.7: Matter effects

In the analysis of matter effects on neutrino propagation, we average over the background,

effectively reducing an interaction term into an effective mass term. The starting point is the

low-energy effective Lagrangian for the leptonic W interaction,

L = Lfree + Lint, (14.76)

where

Lfree = νL(i∂/−m)νL, Lint =
√

2GF (νL γµ νL) (ē γµ(1− γ5) e) . (14.77)

Averaging over the background matter amounts to

ē γµ(1− γ5) e→ ne 〈Mµ〉bg Mµ ≡ 〈e(p,λ)|ē γµ (1− γ5) e|e(p,λ)〉. (14.78)

Here p and λ denote, respectively, the momentum and polarization vectors of the background

electrons. For the electron number density ne, and for the averaged value in matter of any operator

x, we have

ne =
∑
λ

∫ d3p

(2π)3
fe(p,λ) , 〈x〉bg =

1

ne

∑
λ

∫ d3p

(2π)3
fe(p,λ)x(p,λ) , (14.79)

where fe(p,λ) is the electron distribution function. The result of this avaraging leads to an effective

free Lagrangian for the neutrinos:

L = νL [i∂/−m− Vµγµ] νL. (14.80)

1. Show that

Vµ =
√

2GF nf

[〈
pµ
Ee

〉
bg

− me

〈
sµ
Ee

〉
bg

]
, (14.81)

where 〈...〉bg is defined in Eq. (14.79). The spin vector sµ is defined as follows:

sµ ≡
(
p · λ
me

,λ+
p (p · λ)

me (me + Ee)

)
, (14.82)
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and satisfies s2 = −1 and sµ p
µ = 0. You can assume that the background electrons are free,

so that the following plane wave expansion for the field operators can be used:

〈e(p,λ)|e γµ (1− γ5) e|e(p,λ)〉 =
1

2Ee
ue(p,λ) γµ (1− γ5)ue(p,λ). (14.83)

Moreover you can use the following identity:

e(p,λ) e(p,λ) =
1

2
(p/+me) (1 + γ5s/) , (14.84)

and thus

Mµ = 〈e(p,λ)|e γµ (1− γ5) e|e(p,λ)〉

=
1

2Ee
e(p,λ) γµ (1− γ5) e(p,λ)

=
1

4Ee
Tr
[
γµ (1− γ5) (p/+me) (1 + γ5s/)

]
. (14.85)

2. For a uniform unpolarized background, show that

Vµ = (VC , 0, 0, 0), VC =
√

2GFne , (14.86)

thus confirming Eq. (14.52)

3. Using Eq. (14.80) and assuming E � mν and E � VC , show that

E2 = p2 +m2
m, m2

m = m2 + 2EVC , (14.87)

thus confirming Eq. (14.55). Here E is the neutrino energy and p is its monetum.
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Chapter 15

Cosmological tests

In Chapter 14 we described the experimental evidence that the SM is not the full theory of Nature:

Neutrino flavor transitions imply that the SM needs to be extended. At the time of writing of this

book, this is the only effect beyond the SM that is established by particle physics experiments.

Yet, there is additional data that cannot be explained within the SM, coming from observations

related to astrophysics and cosmology. In this chapter we describe these topics.

15.1 The interplay of particle physics and cosmology

Cosmology and astrophysics provide tests of the SM. It should not come as a surprise that one can

gain insights into particle physics from astrophysics, as it often involves long distances and high

densities that cannot be reached in terrestrial experiments. Think, for example, of the Sun: its

burning goes through weak interactions, and the propagation of neutrinos through its high-density

plasma can (and did) reveal new features of neutrinos. It should be even less of a surprise that

cosmology can test the SM: Various features of the present Universe were determined by events that

involved a huge range of energy scales and, in particular, energy scales well above the weak scale

and beyond the direct reach of any terrestrial experiments. Two examples of cosmology-related

observations that are consistent with our present understanding of atomic, nuclear and particle

physics are the Cosmic Microwave Background (CMB) radiation and Big Bang Nucleosynthesis

(BBN).

In this chapter, we focus on two features of the Universe that are inconsistent with the SM:

dark matter (DM) and the Baryon Asymmetry of the Universe (BAU). Unlike the case of neutrino

masses, it is not enough to consider higher dimension terms in order to simply explain these

inconsistencies. New degrees of freedom have to be introduced in order to explain the relevant

observations. In both cases, the prospects of directly probing the new physics in future experiments

are unclear. Some of the candidate theories introduce degrees of freedom with masses that are

below, or not much higher, than the weak scale, and which can, in principle, be directly discovered
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in experiments. Other candidate theories involve very heavy new particles and thus demonstrate

that directly probing the solutions to these puzzles may be beyond the reach of direct experimental

probes.

To follow the particle physics aspects of this section, some knowledge of cosmology is needed.

We provide a very basic introduction to cosmology in Appendix 15.A.

15.2 Dark Matter

The term “Dark Matter” (DM) refers to massive particles with the following properties:

• Stable or, at least, have lifetimes that are much longer than the age of the Universe.

• Interacting weakly, or not interacting at all, with the SM particles. Specifically, they carry

neither color nor electromagnetic charge.

15.2.1 The observational evidence

The evidence for DM comes from astrophysics and cosmology. There is a variety of relevant

observations, and they span a variety of scales, from galaxies to the universe as a whole.

(i) Rotation curves in galaxies. Stars at distance r from the center of a galaxy have a rotational

velocity vr given by

v2
r = GN

M(r)

r
, (15.1)

where GN is the Newton constant, and M(r) is the mass of all objects within the radius r assuming

that the mass does not depend on the angular coordinates. Let us define a radius R within which

the bulk of the mass of the galaxy is contained. The rotational velocity of stars further away, at

r > R, falls off as v2
r ∝ 1/r. Observations, however, are inconsistent with this expectation. When

we take R to be the radius within which the bulk of the luminous matter in the galaxy is contained,

we observe that vr(r) is roughly a constant for stars much further away from the the core of the

galaxy. This can be explained if M(r) ∝ r at these distances, which requires that, in addition to

the luminous matter in the core of the galaxy, there is a halo of dark matter, with mass density

ρ(r) ∝ 1/r2. (Of course, at some even larger radius, the mass density must fall much faster to be

consistent with a finite mass of the galaxy.)

(ii) Gravitational lensing. Massive objects warp spacetime around them, causing light to

deflect. As a result, light from distant sources bends when passing near massive objects. Strong

lensing allows light from a distant source to arrive at observers on Earth after traveling in multiple

different paths. Consequently, a source can appear as, for example, an Einstein ring. The radius-

squared of the ring is proportional to the mass inside it. Even the much more common, but less

dramatic, weak lensing distorts light sources in a way that allows us, statistically, to map the mass
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distribution between these sources and Earth. Thus, gravitational lensing measures the total mass

of various objects. In some cases, the result is that the luminous mass accounts for only a small

part of the total mass. A prime example of evidence for DM is the Bullet Cluster. It actually

consists of two clusters that have collided. We observe components of the Bullet Cluster in three

different ways: the galaxies via optical images, the hot gas via X-ray, and the mass distribution

via gravitationally-lensed images of background galaxies. The combination of these observations

implies that there is a significant component of DM in the Bullet Cluster.

(iii) The cosmic microwave background (CMB) and the large scale structure. Measurements of

anisotropies in the CMB and of the distribution of galaxies, when fitted to cosmological parameters,

provide quantitative information on the energy density of DM:

ΩDM = 0.26± 0.01, (15.2)

about five times larger than the energy density of baryonic matter,

Ωb = 0.048± 0.001. (15.3)

Another feature of DM, deduced from the analysis of structure formation in the Universe, is that

most DM should be “cold”, that is, non-relativistic at the start of galaxy formation.

We conclude that there must exist DM, but since we observe it only though its gravitational

effects, the question remains of what particles constitute the DM.

15.2.2 Neutrinos cannot be the DM

The νSM does have DM particles among its list of elementary particles. These are the neutrinos,

which carry neither color charge nor electromagnetic charge, and are stable on the cosmologi-

cal scale. Can they constitute the dark matter of the Universe? The answer is negative. We

present three reasons for this answer, each related to a different scale: the Universe, the large scale

structure, and galaxies.

(i) Cosmology. Due to the weak interactions, neutrinos have been in thermal equilibrium

at high enough temperature. Thus we can calculate their number density today and find [see

Question 15.2]:
[n(νi)]0
[nγ]0

=
3

11
→ [n(νi)]0 ≈ 110/cm3, (15.4)

where we use [nγ]0 ≈ 410/cm3. The neutrino contribution to the mass density of the universe is

given by

Ων =

∑
imi[n(νi)]0

ρc
. (15.5)

Within the currently allowed range for neutrino masses, the maximum contribution arises in case

that the neutrinos are quasi-degenerate, with masses at the experimental upper bound of mν ∼< 1
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eV for each mass eigenstate [see Eq. (14.63)]. In that case we have

Ων = 0.07×
∑
imi

3 eV
=⇒ Ων ∼< 0.25 ΩDM. (15.6)

If the neutrino masses are hierarchical with normal ordering, Σmν ∼ 0.06 eV and Ων ≈ 0.005ΩDM.

We conclude the neutrinos cannot be the dominant component of the DM.

(ii) Galaxy clusters. The large scale structure implies that most of the DM particles should

be cold, that is, non-relativistic at the time of structure formation. Neutrinos, however, constitute

hot dark matter, that is, they were relativistic at the time of structure formation. Thus, neutrinos

cannot constitute a dominant component of the DM.

(iii) Galaxies. The Tremaine-Gunn bound is a generic lower bound on the mass of fermionic

DM. The idea is that the lighter the DM is, the larger the number of particles needed to get the

required total mass. For fermions, the higher the density is, the more high energy states occupied.

For a small enough mass, the DM particles occupy states with a velocity that is larger than the

escape velocity of the galaxy, and these states are not confined to the galaxy. The lower bound is

given by

m(fermionic DM) ∼> 70 eV. (15.7)

Given that mν < 1.1 eV [see Eq. (14.63)], neutrinos are excluded from being the DM at the galactic

scale.

15.2.3 The χSM

Given the arguments above, the DM particles must come from beyond the list of SM particles.

There are many different theoretical ideas as to what the DM particles can be and what mechanism

determines their relic abundance. The most intensively studied class of models has been that of

weakly interacting massive particles (WIMPs). (“Weak” refers here to an interaction that is of

strength similar to the SM weak interactions, and not necessarily to W - or Z-mediated interaction.)

In this section, we explain the motivation for WIMPs as dark matter particles. We do so by

presenting a specific effective WIMP model that we call the χSM.

The χSM is defined as follows:

(i) The symmetry, and the pattern of spontaneous symmetry breaking, are as follows:

SU(3)C × SU(2)L × U(1)Y × Z2 → SU(3)C × U(1)EM × Z2. (15.8)

(ii) All the SM fields are even under the Z2 symmetry.

(iii) There is a single real scalar field beyond the SM which is odd under the Z2 symmetry:

χ(1, 1)0,−. (15.9)
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The χSM has the same gauge group, the same pattern of spontaneous symmetry breaking, and the

same fermion content as the SM. Since all SM fields are even under the Z2 symmetry, all the terms

that appear in the SM Lagrangian appear also in the χSM Lagrangian. The χSM Lagrangian has,

however, several additional terms. These are all the terms that involve the χ field. We can write:

LχSM = LSM + Lχ. (15.10)

The most general form of the renormalizable terms in Lχ is the following:

Lχ =
1

2
(∂µχ)(∂µχ)− 1

2
m2
χχ

2 − 1

4
λχχ

4 − Zχφ
2
χ2φ†φ, (15.11)

where φ is the SM Higgs field and mχ is the mass of χ. We assume that λχ > 0, to ensure that χ

does not acquire a VEV. We are interested in the interactions between χ and the SM fields, which

is given by Zχφ.

The χ particle is a DM candidate:

• It is stable. The reason is that it is the only and, in particular, the lightest Z2-odd particle.

• It carries neither color nor electromagnetic charge.

What remains to be understood is whether the parameters of Lχ can lead to the observed relic

abundance, as quoted in Eq. (15.2).

Let us follow the time evolution of the number density of χ. We assume that it has been

in thermal equilibrium in the early Universe. There are three relevant parameters: The number

density, nχ, the annihilation cross section of χ-pairs into SM particles, σA, and the temperature-

dependent Hubble constant, H. The condition for freeze-out, Eq. (15.49), is Γi = H, where in our

case, Γi = nχ 〈σAvχ〉 (vχ is the relative velocity of the incoming χ particle) and we consider only

the case where TF < mχ. We distinguish three stages:

1. T > mχ. The number density of χ is equal to the equilibrium number density [see Eq. (15.45)]:

nχ ∝ T 3. (15.12)

2. TF < T < mχ. When T falls below mχ, but before freeze-out, the number density is equal

to the equilibrium number density, and is exponentially suppressed [see Eq. (15.46)]:

nχ ∝ (mχT )3/2 exp(−mχ/T ). (15.13)

3. T ≤ TF . At freeze-out, we roughly have

nFχ 〈σAvχ〉 ∼ H ∼ T 2
F

mPl

. (15.14)

Later, the number density nχ is only diluted by the expansion of the Universe

nχ(T < TF ) ∝ T 3. (15.15)
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To obtain the current energy density of χ, it is convenient to consider the ratio ρ0
χ/ρ

0
γ. At

TF , the photon number density is nFγ ∝ T 3
F . For T < TF , the number densities of both the DM

particles and photons scale like T 3 but, in addition, the photon energy scales like Eγ ∼ T . We

further use the fact that TF/mχ is approximately independent of mχ. We obtain:

ρ0
χ

ρ0
γ

∼
ρFχ
ρFγ

TF
T0

∝ 1

T0mPl 〈σAvχ〉
. (15.16)

We learn that the observed energy density of the DM provides a measurement of the χ annihilation

cross section, such that 〈σAvχ〉 ∝ 1/(T0mPl). When inserting the numerical factors that are implicit

in the above evaluation, and relaxing some of the simplifying assumptions, the result is

Ωχ

0.26
≈ 1pb

〈σAvχ〉
≈ (20 TeV)−2

〈σAvχ〉
. (15.17)

where pb stands for a picobarn.

We can translate Eq. (15.17) into a requirement on the χSM parameters. Using σA = σ(χχ→
φφ†) and assuming mχ � mh, we obtain [see Questions 15.3, and in particular Eq. (15.58)]

〈σAvχ〉 =
1

16π

Z2
χφ

m2
χ

. (15.18)

Eq. (15.17) then gives
mχ

Zχφ
≈ 3 TeV. (15.19)

A few comments are in order:

1. Our working assumption that mχ � mh is satisfied as long as Zχφ is not tiny.

2. The required cross section indicates that mχ/Zχφ is not far above the weak scale.

3. The required annihilation cross section for the DM is of the order of weak interaction cross

section. This intriguing coincidence is known as “the WIMP miracle.” It might indicate that

the physics of the DM is related to the weak scale and, in particular, to models that aim

to solve the Higgs fine-tuning problem. Yet, given the absence of experimental evidence for

new degrees of freedom at the TeV scale, it is still unknown whether this is the case.

4. The χSM, and many other DM models, predict new states that are at the weak scale. These

models motivate a large variety of experimental searches. Thus, the search for DM is a field

of intensive experimental activity.

15.3 Baryogenesis

There is more matter than antimatter in the Universe. All structures in the observable Universe

– stars, galaxies, clusters – are made of matter particles: protons, neutrons, and electrons. Anti-

matter particles (in short, “antiparticles”) come only from late time processes and do not make
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any structure. This inequality between the number densities of matter particles and antiparticles

is called, in the physics jargon, “baryon asymmetry”. Baryogenesis refers to dynamical generation

of the baryon asymmetry. As we discuss in this section, baryogenesis via SM processes cannot

explain the observed baryon asymmetry, which must then come from BSM processes.

15.3.1 The observational evidence

The baryon asymmetry of the Universe (BAU) is usually expressed as a ratio of number densities:

ηB ≡
nB − nB̄

nγ

∣∣∣∣∣
0

= (6.21± 0.16)× 10−10. (15.20)

Here nB, nB̄, and nγ are the number densities of, respectively, baryons, antibaryons, and photons.

An equivalent way of presenting the asymmetry is in terms of the baryonic fraction of the critical

energy density:

ΩB = 0.0493± 0.0006. (15.21)

The value of the baryon asymmetry of the Universe is inferred in two independent ways. The first

way is via Big Bang Nucleosynthesis (BBN). This chapter in cosmology predicts the abundances

of the light elements, H, D, 3He, 4He, and 7Li. These abundances depend on a single parameter,

which is ηB. The second way is from measurements of the cosmic microwave background (CMB)

radiation. The fact that the two determinations agree gives much confidence in the value of the

BAU.

As concerns leptons, the electron asymmetry should cancel the proton asymmetry, to guaran-

tee the observed electromagnetically neutral Universe. The total lepton asymmetry is, however,

unknown, since the primordial neutrinos (the cosmic neutrino background, CνB) have not been

observed to date. Moreover, if the neutrinos are Majorana fermions, it is not clear how to define

the lepton asymmetry, since lepton number is not a conserved quantity.

Standard cosmology implies that the Universe has started from a state with equal numbers

of baryons and antibaryons. In particular, both have vanishing number densities at the end of

inflation. It follows that the BAU must have been generated dynamically, a scenario that is known

by the name of baryogenesis.

15.3.2 Sakharov conditions

Sakharov formulated three necessary conditions for baryogenesis, that is for a dynamical generation

of a baryon asymmetry:

1. Baryon number violation: If baryon number were conserved — ∆B = 0 in all processes —

then a Universe that starts with ηB = 0, namely total baryon charge zero, will remain with

ηB = 0 at all times and, in particular, cannot evolve into a state with ηB 6= 0.
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2. C and CP violation: If C and/or CP were conserved, then processes that change baryon

number by ∆B would proceed at the same rate as the C- or CP -conjugate processes, which

change baryon number by −∆B, resulting in no net asymmetry.

3. Out of equilibrium dynamics: In thermal equilibrium, processes that generate a baryon

asymmetry, and the inverse processes that erase this asymmetry, proceed at the same rate

and no net asymmetry is left.

These necessary ingredients are all present in the SM:

1. Baryon number is an anomalous accidental symmetry of the SM. Consequently, baryon num-

ber violating processes are forbidden at any order in perturbation theory but do occur non-

perturbatively via the so-called sphaleron processes. These processes involve nine left-handed

quarks (three of each generation) and three left-handed leptons (one from each generation).

They violate lepton number and baryon number by 3 units each, but conserve B − L. The

physics of sphalerons is an advanced QFT topic, beyond the scope of this book, and we do

not elaborate on it.

2. The SM violates C as it is a chiral theory. The SM violates CP via the phase in the CKM

matrix.

3. Departure from thermal equilibrium occurs at the electroweak phase transition (EWPT).

Quantitatively, however, the SM fails to explain the observed asymmetry:

1. Baryon number violation does not pose a problem. At zero temperature, the amplitude of

the baryon number violating processes is proportional to e−8π2/g2
, which is too small to have

any observable effect. At high temperatures (T � TEWPT, where TEWPT is the temperature

where the electroweak phase transition starts to take place, of order the weak scale), however,

these transitions are faster than the expansion rate of the Universe. Consequently, there is

no suppression of the baryon asymmetry due to B violation.

2. CP violation provides a strong suppression. The baryon asymmetry of the Universe is a CP

violating observable. As explained in Section 9.2.4, CP violation in the SM is proportional

to XCP , defined in Eq. (9.15). In fact, ηB is proportional to the dimensionless quantity

XCP/T
12
EWPT. Given the values of the quark masses and CKM parameters, one obtains a

suppression factor of order 10−20. Thus, the KM mechanism cannot account for the observed

baryon asymmetry of ηB ∼ 10−9. We learn that baryogenesis implies that there must exist

new sources of CP violation, beyond the phase of the CKM matrix of the SM.

3. The non-equilibrium condition provides another source of suppression. For successful baryo-

genesis, the EWPT should be first order, which could have been the case if mh were smaller
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than about 60 GeV. Given the experimental value, mh ∼ 125 GeV, within the SM the EWPT

is a smooth crossover, and most of the generated asymmetry is washed out. We learn that

baryogenesis implies that there must exist BSM physics that either provides an instance of

departure from thermal equilibrium additional to the EWPT, or modifies the EWPT itself.

We learn that baryogenesis requires extending the SM in two ways. BSM physics must introduce

new sources of CP violation, and either provide a departure from thermal equilibrium in addition

to the EWPT, or modify the EWPT to make it first order. There are many proposals of how

to extend the SM such that successful baryogenesis is achieved. Below we briefly describe one of

them: baryogenesis via leptogenesis or, in short, leptogenesis.

15.3.3 Leptogenesis

The general idea of leptogenesis is that the BAU originates from processes in the lepton sector.

A lepton asymmetry is produced at temperatures above the weak scale, and the B + L-violating

sphaleron interactions convert a large fraction of it into a baryon asymmetry. Thus, any model of

leptogenesis above the week scale is also a model of baryogenesis.

Here we consider a specific model that can lead to successful leptogenesis: The NSM presented

in Section 14.3. For simplicity, we consider a two generation NSM and assume that MN � v.

While the NSM is motivated by the seesaw mechanism for light neutrino masses, the addition of

the Yukawa (Y ν) and mass (MN) terms of Eq. (14.26) has an additional intriguing consequence:

The physics of the singlet fermions NR leads to leptogenesis. The three Sakharov conditions for

leptogenesis are fulfilled in the NSM:

1. Lepton number violation: Since lepton number cannot be consistently assigned to the NR

fields in the presence of both Y ν and MN , the Lagrangian terms in Eq. (14.26) violate L. .

2. CP violation: Since there are irremovable phases in the Lagrangian of Eq. (14.26), it provides

new sources of CP violation.

3. Departure from thermal equilibrium: The interactions of the Ni particles are only of the

Yukawa type. These interactions can be slower than the expansion rate of the Universe, in

which case the singlet fermions decay out of equilibrium.

Thus, in the NSM, all the conditions necessary for leptogenesis are qualitatively fulfilled. The

question of whether the NSM can successfully explain the observed baryon asymmetry is thus a

quantitative one.

We consider leptogenesis via the decays of N1, the lightest of the singlet fermions Ni. For

simplicity, we assume that the decay is into a single flavor α,

N1 → Lαφ, N1 → Lαφ
†. (15.22)
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Figure 15.1: The diagrams contributing to the CP asymmetry εCP .

The baryon asymmetry can be written as follows:

ηB = ηin × Csphal × ηeff × εCP . (15.23)

The four factors on the right hand side of Eq. (15.23) represent the following physics aspects:

1. ηin = nN1/nγ represents the number density of N1 at temperature T � M1, where they are

assumed to be in thermal equilibrium, and before they decay.

2. εCP is the CP asymmetry in N1 decays. That is, statistically speaking, 1/εCP decays of N1,

generate one more L̄ than L’s.

3. ηeff is the efficiency factor that encodes the deviation from thermal equilibrium. It reduces

the asymmetry by 0 ≤ ηeff ≤ 1. In particular, ηeff = 0 is the limit of N1 in perfect equilibrium,

so no asymmetry is generated.

4. Csphal describes the dilution of the asymmetry due to the processes which redistribute the

asymmetry that was produced in the lepton sector into the baryon sector.

These factors can be calculated, with εCP and ηeff depending on the Lagrangian parameters.

The final result can be written (with some simplifying assumptions) as

ηB ∼ 10−2 ηeff εCP . (15.24)

The CP asymmetry is generated by the diagrams of Fig. 15.1. We define x ≡ M1/M2. In the

small x limit we get

εCP =
Γ(N1 → Lαφ)− Γ(N1 → Lαφ

†)

Γ(N1 → Lαφ) + Γ(N1 → Lαφ†)
=

3x

16π

1

(Y ν†Y ν)11

Im
{[

(Y ν†Y ν)12

]2}
. (15.25)

The washout effect is given by

ηeff ∼
10−3 eV

m̃
. (15.26)

where m̃ is given by

m̃ ≡ (Y ν†Y ν)11
v2

M1

. (15.27)
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The plausible range for m̃ is the one suggested by the light neutrino masses, 10−3 − 1 eV (see

Chapter 14).

Putting together Eqs. (15.24), (15.25), (15.26) and (15.27), we conclude that successful lepto-

genesis requires
M1

M2

Im[(Y ν†Y ν)2
12]

(Y ν†Y ν)11

10−3 eV

m̃
∼ 10−8. (15.28)

The condition in Eq. (15.28) can be satisfied in a large part of the parameter space of the NSM,

simultaneously with fitting the neutrino mass and mixing parameters.

Leptogenesis, while theoretically a very attractive scenario, is very difficult to test experimen-

tally. The new degrees of freedom are heavy and have neither strong, nor electromagnetic, nor

weak interactions (except for the small mixing with the SU(2)-doublet neutrinos), and thus are

unlikely to be produced and detected in experiments. The idea of leptogenesis might remain a

plausible but unproven explanation of the baryon asymmetry.

15.4 Open questions

The SM, and its νSM extension, fail to account for dark matter and for the baryon asymmetry

of the Universe. Thus, particle cosmology provides clues for the theory that extends the νSM. A

large variety of experiments are seeking to shed further light on the relevant questions:

1. What is the nature — mass, spin, and couplings — of the DM particles?

2. What are the CP violating source and the mechanism of departure from thermal equilibrium

that drive baryogenesis?

On the first question, there are three classes of experiments. Denoting a generic DM particle

by χ, and a SM particle by ψ, direct searches look for signals coming from processes of the type

χ + ψ → χ + ψ, indirect searches look for signals coming from χ + χ → ψ + ψ, and collider

experiments look for signals coming from ψ + ψ → χ+ χ.

On the second question, experiments that seek to find further clues for leptogenesis aim to

establish CP violation in the lepton sector via measurements of neutrino oscillations, and to

establish the Majorana nature of neutrino masses via neutrinoless double beta decay. Experiments

that seek to find clues for electroweak baryogenesis aim to find evidence of modified EWPT by

measuring Higgs couplings or searching for new DoF that couple to the Higgs boson, and to find

CP violation in processes involving the Higgs boson.

For further reading

There are many textbooks and reviews about cosmology. Here are a few examples:

293



• More details and rigorous derivations of general results in particle cosmology are presented

presented in Refs. [49, 50, 51, 52, 53, 54].

• For a review of DM, see Ref. [55].

• For a review of neutrinos in cosmology, see Ref. [56].

• For a review of leptogenesis, see Ref. [57].
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Appendix

15.A Introduction to cosmology

In this Appendix, we briefly review some basic ingredients of cosmology that are relevant to

particle physics. In particular, we focus on issues that are needed in order to follow our discussion

of baryogenesis and of dark matter in the main text.

The Big Bang model of cosmology is by now well established. It is based on the observation that

the Universe is expanding, from which it follows that the early Universe was dense and hot. This

implies that for cosmology we should use the tools of classical general relativity, thermodynamics,

and statistical mechanics.

The relevant “chronological” history of the Universe starts in an epoch of inflation, during

which almost all the energy in the Universe was stored in a field called the inflaton. Inflation ends

by reheating, where the energy stored in the inflaton field converts into the known (and maybe

some yet unknown) particles that were in thermal equilibrium at a very high temperature. The

highest temperature is called the reheat temperature, TRH. The value of this temperature must be

above a few MeV, and can be much larger. We assume mW � TRH �MPl.

Particle physics starts to play a significant role after reheating. All the known particles were

in thermal equilibrium at T � mW , and therefore the time evolution of their number and energy

densities is independent of the initial conditions. This fact makes cosmology very predictive. As

far as particle physics is concerned, the details of inflation are unimportant.

After reheating, the Universe expanded and cooled. At various times (or, equivalently, tem-

peratures), particles dropped out of equilibrium. The unstable particles decayed and the Universe

evolved into its present state, with protons, neutrons, electrons, neutrinos, photons, and probably

at least one more type of particle, called dark matter, whose exact properties are yet unknown.

The more formal discussion below aims to obtain the number densities of particles in the

Universe. These number densities depend on the particle interactions, hence the connection to

particle physics. In Section 15.A.1 we discuss the metric of the universe, as that is our tool to

incorporate the expansion. In Section 15.A.2 we use thermodynamics to calculate the densities.
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15.A.1 The dynamical metric

In principle, given the matter and energy distribution in the Universe, one can derive the metric of

the Universe as a solution of Einstein equations. In practice, this is an impossible task for general

mass and energy distributions. What makes this derivation feasible are two assumptions about

these distributions: homogeneity and isotropy in space. While these may seem unjustified based

on local observations which show a lot of structure, they do provide a very good approximation at

scales above 100 Mpc. With these approximations, we can determine the metric of the Universe

that is valid at large scales, which is what is relevant for cosmology.

In general the geometry of the universe can be open, flat, or closed. Inflation predicts, and

observations confirm, that the Universe is very close to flat. The metric for a homogeneous,

isotropic and flat Universe is given by

ds2 = −dt2 + a2(t)
[
dx2 + dy2 + dz2

]
, (15.29)

where a(t) is called the scale factor. By definition, a(t0) = 1. (In cosmology, subindex zero

indicates “at present time.”) The effect of the expansion is entirely encoded in the scale factor

a(t). From this point on, we usually keep the time dependence of various parameters implicit.

We define the Hubble constant:

H ≡ ȧ

a
. (15.30)

Since H is time-dependent, the term “Hubble constant” is somewhat misleading. It is, however,

space-independent. One often replaces H with the dimensionless parameter h:

h ≡ H0

100 km/(s Mpc)
, (15.31)

where H0 is the present-day Hubble constant. Observations find h ≈ 0.7.

The energy density of the Universe has contributions from radiation, matter, and vacuum

energy. The dependence of the energy density ρX (x = r,m, v for radiation, matter, vacuum,

respectively) on the scale factor is different for each of these three components:

ρX ∝ a−n with n =


3 matter,

4 radiation,

0 vacuum energy.

(15.32)

“Matter” refers to non-relativistic species, in which case n = 3 is a simple geometrical factor.

“Radiation” refers to ultra-relativistic particles (either massless or not), in which case there is an

extra factor of 1/a due to the red-shift of the energy. “Vacuum energy” refers to the case of no

dilution. This case does not correspond to known particles but, for example, to the cosmological

constant.

The total energy density of a flat Universe is called “the critical density,” and is given by

ρc =
3H2

8πGN

, (15.33)
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where GN is the Newton constant. Numerically, the present critical density is given by

ρc = 10.53672(24) h2 keV cm−3. (15.34)

We define

Ωi =
ρi
ρcrit

, Ω =
∑
i

Ωi. (15.35)

For a flat universe Ω = 1. In this case we can invert the relation of Eq. (15.33) and obtain H as a

function of the critical density:

H2 =
8πGNρc

3
. (15.36)

Thus, the energy density determines the expansion rate H.

Due to the different time dependencies for the various components, Ωi changes in time even

though Ω = 1 does not. Specifically, as time goes on and a increases, Ωr and Ωm decrease (the

former faster than the latter), while Ωv increases correspondingly to keep Ω = 1. Observations

imply the following present values:

Ωr ≈ 5.4× 10−5, Ωm ≈ 0.31, Ωv ≈ 0.69. (15.37)

Given a situation where the Universe has only one dominant component, the solution for a(t)

is simple: a(t) ∝ t2/3 for matter domination, a(t) ∝ t1/2 for radiation domination, and a(t) ∝ eHt

for vacuum energy domination. In all cases, a(t) is a monotonic rising function of t, that is, the

Universe is expanding.

For completeness we also mention the equation of state which gives the relation between the

energy density ρ and the pressure p:

p = ωρ, (15.38)

where ω = n/3− 1 with n defined in Eq. (15.32) and thus

ωr = 1/3, ωm = 0, ωv = −1. (15.39)

15.A.2 Thermodynamics in the Universe

It is possible to calculate the relic abundance of all particles that have been in thermal equilibrium

at some stage of the history of the Universe. (By relic abundance we refer to the present number

density.) This applies to all particles with m� TRH and large enough couplings and, in particular,

assuming that TRH � mW , to all the SM particles.

The momentum distribution of a specific type of particle in thermal equilibrium is given by

f(p) =
1

e[E(p)−µ]/kT ± 1
, (15.40)
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where the plus (minus) sign corresponds to fermions (bosons), k is Boltzmann factor, and µ is the

chemical potential which corresponds to an asymmetry between particles and antiparticles. The

number and energy densities are given by

ni =
gi

(2π)3

∫
fi(p)d

3p, ρi =
gi

(2π)3

∫
E(p)fi(p)d

3p, (15.41)

where gi is the number of DoF. Given Eq. (15.32), it is clear that early enough the Universe

was radiation dominated. In that era, the total energy density is given by the energy density in

relativistic particles. We obtain [see Question 15.1]

ρ =
∑
i

ρi =
π2

30
g∗T

4, (15.42)

where g∗ counts the effective number of relativistic degrees of freedom that are in thermal equilib-

rium,

g∗ =
∑

bosons

gi +
7

8

∑
fermions

gi. (15.43)

Using Eq. (15.36), we obtain a relation between the expansion rate and the temperature in the

radiation dominated era,

H2 =
8π3GNg∗

90
T 4. (15.44)

We are interested in the relic abundance of stable particles, and distinguish the cases that

µi = 0 and µi 6= 0. The µi = 0 case applies when there is no asymmetry between particles and

antiparticles (or when the asymmetry can be neglected). In particular, it applies to particles that

are their own antiparticles (such as the photon or Majorana neutrinos). For high temperatures,

T � mi, the number density at thermal equilibrium is given by

ni = Kgi
ζ(3)

π2
T 3, (15.45)

whereK = 3/4(1) for fermions (bosons), and the Riemann zeta function has the value of ζ(3) ≈ 1.2.

For low temperatures, T � mi, the number density at thermal equilibrium is given by

ni = gi

(
miT

2π

)3/2

e−mi/T . (15.46)

The exponential suppression of the number density when T � mi is called “Boltzmann suppres-

sion”.

The µi 6= 0 case applies when there is an asymmetry between particles and anti-particles. We

limit our discussion to fermions that carry a conserved charge. In this case, the excess (summed

over all particles carrying the relevant charge) is only diluted by the expansion of the Universe.

Assuming there is just one type of particle that carries the charge, we obtain

∆ni ≡ ni − ni =
giµ

3
i

6
, (15.47)
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In case that the “would-be” number density for the µi = 0 case is much smaller than the asymmetry

(ni(µi = 0) � ∆ni), then all the antiparticles (which, by definition, have smaller number density

than the particles) annihilate, and ∆ni = ni.

The next step is to obtain the number density of particles after they drop out of thermal equi-

librium. While dropping out is a gradual process, which can be followed by solving the Boltzmann

equations, it is often a good approximation to think of the transition from thermal equilibrium to

complete decoupling as instantaneous. We define (see below) a freeze-out temperature, TF , such

that for T > TF we take the number density to be that of thermal equilibrium, while for T < TF

the number density is diluted only by the expansion of the Universe.

The transition from equilibrium to decoupling depends on the interplay between the strength

of the interaction and the expansion of the Universe. We define the interaction rate of particle i

as Γi. There are two kinds of interaction: scattering and decays. For decays, Γi corresponds to

the decay width of the particle. For scattering,

Γi =
∑
j

nj 〈σijv〉 , (15.48)

where nj is the number density of the particle j on which i scatters, σij is the cross section of the

scattering process, and v is the typical relative velocity between i and j. The cross section, in

general, depends on the specific energies of the particles that collide, and thus we average over it.

We use 〈...〉 to indicate thermal averaging.

The freeze-out temperature is then taken as the temperature at which

Γi(TF ) = H(TF ). (15.49)

The intuition is that for Γi � H the expansion can be neglected and thus a particle is at equilib-

rium. In the opposite limit, Γi � H, the typical time between interactions is longer than the age

of the Universe. Another way to understand the choice of Eq. (15.49) as the definition of freeze-out

is to require that after freeze-out and until today, the number of interactions has been less than

one. The number of interactions is given by

niint =
∫ t0

tF
Γi(t)dt =

∫ a0

aF

Γi(a)

H
d(log a) ≈ Γi

H

∣∣∣∣
t=tF

, (15.50)

where, in the last stage, we assume that Γi and H do not have a very strong dependence on a.

The definition of the freeze-out time is tF such that niint = 1.

We learn that the stronger the interaction, the lower is TF and the smaller the relic abundance.

While the number density depends strongly on the scattering cross section, the temperature is not

very sensitive to it. For interaction strength of the order of the weak interaction, we have

TF ∼ m/20, (15.51)

with only logarithmic sensitivity of TF on Γi.
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After freeze-out, the momentum distribution for a stable particle is given, to a good approxima-

tion, by Eq. (15.40), but with T as a parameter that is not the temperature in the thermodynamic

meaning of the word. At present, the temperature of the photons, usually called the temperature

of the Universe, is given by T0 = 2.7255(6) Kelvin. This temperature is just the parameter that

characterizes the distributions. Note also that after decoupling, and with the above understanding

of temperature, various stable particles can have different temperatures.

The freeze-out condition shows explicitly where particle physics plays a role: It is the decay

rate and the scattering cross section that eventually determine the number densities of particles.

Measuring the relic abundance is a probe of the interaction rate, that is, of particle physics.

15.A.3 Observables

There are several observables that are used to determine the cosmological model and its parameters.

Here we briefly list the ones that are used to determine the relevant number and energy densities.

(i) Cosmic Microwave Background (CMB). When the temperature of the Universe dropped

below about 1 eV, neutral atoms formed. At that point, the radiation, which had been in thermal

equilibrium with the plasma at earlier times, freezed out, and follows its blackbody spectrum until

today. These photons have been observed, providing pivotal evidence for the Big Bang theory. The

CMB encodes a lot of information. In particular, there are very small, O(10−5), deviations from a

perfect isotropic blackbody spectrum. These deviations are sensitive to the details of the Universe

when the photon freeze-out occurred. Examples that are relevant for us include sensitivity to the

energy density of dark matter, ΩDM, to the ratio of baryon to photon number densities, ηB, and

to neutrino masses,
∑
imi.

(ii) Big Bang Nucleosynthesis (BBN). At very high temperatures, neutrons and protons were

in a plasma with almost identical number densities. When the temperature dropped below about 1

MeV, two processes began to take place. The neutrons started to decay, and protons and neutrons

started to form bound states. Detailed calculations show that almost all the neutrons that did not

decay ended up in 4He, with much smaller amounts of D, 3He, and 7Li. The relic number densities

of these light elements depend on a single parameter, which is ηB.

(iii) Large scale structure (LSS). At large distance scales, we expect the Universe to be isotropic

and homogeneous. At smaller scales, we do have structure: galaxies and clusters. To probe the

structure of the Universe, surveys of galaxies are performed and their distributions extracted.

This provides information about the deviation from isotropy and homogeneity, which is sensitive

to parameters like the velocity of the Dark Matter.

(iv) Supernova Survey. Far away Supernovae provide another class of cosmological observations.

Since the intrinsic luminosity of supernovae is known, they can be used, to a good approximation,

as standard candles. Using their redshift, one can also measure their velocity and thus check the

distance-to-velocity relations. This dependence can be used to extract the fraction of dark energy
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in the Universe, Ωv.
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Problems

Question 15.1: Algebra

1. Using Eq. (15.14), derive Eq.(15.16).

2. Derive Eq. (15.50): ∫ t0

tF
Γi(t)dt =

∫ a0

aF

Γi(a)

H
d(log a). (15.52)

3. Explain the factor of 7/8 in Eq. (15.43). To do so, show that the energy density per fermionic

degree of freedom is 7/8 that of a bosonic one. It is useful to recall the following identity:∫ ∞
0

dx
xn

ex − 1
=

1

(1− 2n)

∫ ∞
0

dx
xn

ex + 1
. (15.53)

4. Using Eqs. (15.40), (15.41), and (15.53), and

∫ ∞
0

dx
x(n)

ex − 1
= n!× ζ(n+ 1) (15.54)

with ζ(3) ≈ 1.2, ζ(4) = π4/90, derive Eqs. (15.42) and (15.45).

Question 15.2: The neutrino temperature

In this question, you are asked to derive Eq. (15.4). At very early times, the neutrinos and

the photon were in thermal equilibrium with each other and with other DoF. Then the neutrinos

decoupled, and later the remaining degrees of freedom. This chain of events led to Tν 6= Tγ.

1. Neutrinos decouple at a temperature Tν,F when Γint ∼ H ∼ T 2/mPl. The neutrino cross

section is given by 〈σv〉 ∼ G2
FT

2 and the neutrino number density is given by n ∼ T 3 [see

Eq. (15.45)]. Thus, Γint = n 〈σv〉 ' G2
FT

5. Find Tν,F in terms of GF and MPl. Show that

numerically Tν,F ≈ 1 MeV.
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At Tν,F , the photon and the neutrino temperatures are the same, Tν = Tγ. Below Tν,F , the

neutrinos are diluted by the expansion of the Universe: Tν ∼ a−1. The photon temperature,

however, goes through a more complicated evolution that has to do with e+e−-annihilation.

2. Show that, after e+e−-annihilation (at temperature Te,ann ∼ me), the effective number of

DoF changes from g = 11/2 to g = 2.

3. For particles in thermal equilibrium at that era, g(aT )3 remains constant (where g is the

effective number of relativistic degrees of freedom). Show that this implies that aTγ increases

by (11/4)1/3 as a result of e+e− annihilation.

4. Derive Eq. (15.4), that is, show that today

Tγ,0
Tν,0

=
(

11

4

)1/3

≈ 1.40 =⇒ Tν,0 ≈ 1.95 K. (15.55)

Use Tγ,0 ≈ 2.73 K.

Question 15.3: The WIMP cross section

Consider the χSM and the Lagrangian in Eq (15.11). We study the χχ→ hh scattering process.

We assume that mχ � mh, that is, we set mh = 0 in the calculation. We further consider the case

of non-relativistic collision, that is, in the center of mass |~pχ| � mχ.

1. There are three tree-level diagrams for the χχ→ hh process: one with a Higgs propagator,

one with a χ propogator, and one without any propagator. Draw them and argue that the

diagrams with propagators can be neglected.

2. Show that

σ(χχ→ hh) =
Z2
χφ

16πm2
χ

. (15.56)

Remember to include symmetry factors due to Wick contractions and due to outgoing iden-

tical particles.

3. Consider all the processes of the form χ + χ → fSM+fSM where fSM is a SM particle, and

argue that the most important ones are χχ→ hh, χχ→ W+W−, and χχ→ ZZ.

4. Show that, within our approximation,

σv ≡
∑

σ(χχ→ fSMfSM)v ≈ 4σ(χχ→ hh)v, (15.57)

and thus that

〈σv〉 =
1

4π

Z2
χφ

m2
χ

. (15.58)

Note that, when σv is independent of the kinematics, σv = 〈σv〉.
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5. Using the required value of 〈σv〉 of Eq. (15.17), find mχ/Zχφ, that is, verify Eq. (15.19).

Question 15.4: Leptogenesis

In this question, we discuss some of the properties of the CP asymmetry that is generated by

the decay of N1, Eq. (15.25).

1. Work out the dependence on the Yukawa couplings separately for the numerator and the

denominator in Eq. (15.25). What assumptions did you have to make in order to recover the

result of Eq. (15.25)?

2. The CP asymmetry vanishes as M2 → ∞. This seems to contradict two examples that we

study where loop effects grow with the mass of the internal fermion, EWPM [see Eq. (12.10)]

and the GIM mechanism for FCNC [see section 13.2]. Explain the difference between the

three cases, that is, explain why for leptogenesis the effect decreases with the mass of the

internal fermion, while in the EWPM and the GIM mechanism cases it increases.
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What’s Next?

By the time you read this chapter, you should have gained a basic understanding of the Standard

Model and, in particular, the underlying principles that are used to construct it, and the many

ways in which it has been tested. All the SM particles have been directly observed, and all the SM

parameters have been measured (albeit with various degrees of precision). Given the SM numerous

successes, one must ask: What is next in our experimental and theoretical endeavors to understand

the basic laws of Nature?

The search for a more fundamental theory is motivated by the few problems that experiments

and observations pose, and by the curiosity-driven quest to explore new territories (that is, short

distances and high energies). Inspired by these motives, the research in high energy physics has

to proceed in a coordinated way in both the theoretical and the experimental fronts.

On the experimental side, we can roughly divide the efforts into three complementary “fron-

tiers”.

1. The energy frontier: By having colliders with higher energy, we are hoping to find new

particles with masses that are beyond the reach of current colliders, but within the reach of

future ones. At the time of writing of this book, the highest center of mass energy achieved

at colliders, 13 TeV, is at the LHC. There are plans to build a more powerful accelerator,

with up to 100 TeV in energy. Clearly, discovering new elementary particles will be a clean

indication of BSM physics and will provide direct information about the new particles and

their couplings. This information can be then used to find the BSM theory.

2. The luminosity frontier: By having higher luminosity and collecting more data, we can

improve the precision on the rates of various processes, as well as measure for the first time

processes that are more rare. If theoretical precision matches the experimental one, we can

probe in these ways small deviations from the SM predictions. Discovering such derivations

will signal BSM physics. While such information will not be directly related to particles and

their couplings, the reach — in terms of high energy and small distance — is much higher

than that of direct searches.

3. The astroparticle frontier: By looking into cosmology and astronomy, we hope to find answers

to questions like the nature of the DM and the mechanism of baryogenesis. Experiments are
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looking for detection of the DM, as well as other cosmological parameters, with the goal of

improving our understanding of astrophysical events and of cosmology, and at the same time

searching for BSM physics.

On the theory side, the effort can also be divided into three main directions of research:

1. Model Building: There is an effort to come with new models that address the open questions

of the SM. By doing so, one can make testable predictions. In particular, it can lead to new

experiments as well as new analyses within the working experiments.

2. Higher precision calculations: In many cases, in order to benefit from more precise measure-

ments, we need higher precision calculations. In other words, the precision of the theoretical

calculations should match the experimental precision. Some of these calculations are done

perturbatively, that is by going to higher loops, or non-perturbatively, by using EFTs or on

the lattice.

3. New experimental probes: One can suggest new ways to test the SM in regions of parameter

space that have not yet been explored, without a framework of a specific BSM theory. Thus,

one can hope to find anomalies in the data that will provide hints for BSM physics even

without the guidance of a specific theory.

We do not know what will lead us to the next stage. Based on the history of physics, we hope,

however, that sooner or later a deeper theory that extends the SM will emerge. While the SM

itself is a very beautiful theory, based on symmetry principles, we await with much curiosity to

the wonders of the next level of understanding the basic laws of Nature.
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Appendix A

Lie Groups

Symmetries play a crucial role in model building. You are already familiar with symmetries and

with some of their consequences. For example, Nature is symmetric under the Poincaré group,

which implies conservation of energy, momentum and angular momentum. In order to understand

the interplay between symmetries and interactions, we need a mathematical tool called Lie groups.

These are the groups that describe all continuous symmetries. In the following, we give definitions

and quote various statements without proving them. There are many texts about Lie groups where

these statements are proven and more details are given.

A.1 Groups

Definition: A group G is a set {xi} (finite or infinite), with a multiplication law ·, subject to the

following four requirements:

• Closure:

xi · xj ∈ G ∀ xi, xj. (A.1)

• Associativity:

xi · (xj · xk) = (xi · xj) · xk ∀ xi, xj, xk. (A.2)

• There is an identity element I (or e) such that

I · xi = xi · I = xi ∀ xi. (A.3)

• Each element has an inverse element x−1
i :

xi · x−1
i = x−1

i · xi = I ∀ xi. (A.4)

A group is specified by its multiplication table.
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Definition: A group is Abelian if all its elements commute:

xi · xj = xj · xi ∀ xi, xj. (A.5)

A non-Abelian group is a group that is not Abelian, that is, at least one pair of elements does not

commute.

Let us give a few examples:

• Z2, also known as parity, is a group with two elements, I and P , such that I is the identity

and P−1 = P . This completely specifies the multiplication table. This group is finite and

Abelian. The multiplication table is

Z2 I P

I I P

P P I

(A.6)

• ZN , with N a positive integer, is a generalization of Z2. It contains N elements labeled from

zero through N − 1. The multiplication law is the same as addition modulo N : xi · xj =

x(i+j)mod N . The identity element is x0, and the inverse element is given by x−1
i = x(N−i)mod N .

This group is also finite and Abelian.

• Multiplication of positive numbers. It is an infinite Abelian group. The identity is the

number one, the multiplication law is just a standard multiplication and the inverse of x is

1/x.

• S3, the group that describes the permutations of three elements. It contains 6 elements.

This group is non-Abelian. In Question A.1 you are asked to find the 6 elements and their

multiplication table.

A.2 Representations

Definitions:

• A representation is a realization of the multiplication law among matrices.

• Two representations are equivalent if they are related by a similarity transformation (that is

by a unitary rotation).

• A representation is reducible if it is equivalent to a representation that is block diagonal.

• An irreducible representation (irrep) is a representation that is not reducible.

• An irrep that contains matrices of size n× n is said to be of dimension n.
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Statements:

• Any reducible representation can be written as a direct sum of irreps.

• The dimension of all irreps of an Abelian group is one. For non-Abelian groups, there is at

least one irrep that has dimension larger than one.

• Any finite group has a finite number of irreps Ri. If N is the number of elements in the

group, the irreps satisfy ∑
i

[dim(Ri)]
2 = N. (A.7)

• Infinite groups have an infinite number of irreps.

• For any group, there exists a trivial representation such that all the matrices are just the

number 1. This representation is also called the singlet representation. It is of particular

importance for us.

Let us give a few examples for the statements that we made here.

• Z2: Its trivial irrep is I = 1, P = 1. The other irrep is I = 1, P = −1. Clearly these two

irreps satisfy Eq. (A.7).

• ZN : An example of a non-trivial irrep is xk = exp(i2πk/N) with k = 0, 1, ..., N − 1.

• S3: In Question A.1 you are asked to work out its properties.

The groups that we are interested in are transformation groups of physical systems. Such

transformations are associated with unitary operators in the Hilbert space. We often describe the

elements of the group by the way that they transform physical states. When we refer to represen-

tations of the group, we mean either the appropriate set of unitary operators or, equivalently, the

matrices that operate on the vector states of the Hilbert space.

A.3 Lie groups and Lie Algebras

While finite groups are very important, the ones that are most relevant to particle physics and, in

particular, to the Standard Model, are infinite groups. More specifically, the most relevant ones

are the Lie groups. They provide a formal way to discuss rotations is any real or abstract space.

The various groups correspond to rotations in different spaces.

Definition: A Lie group is an infinite group whose elements are labeled by a finite set of N

continuous real parameters α`, and whose multiplication law depends smoothly on the α`’s. The

number N is called the dimension of the group.
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Different groups have different N . Yet, the dimension of the group does not uniquely define it.

We discuss below the classifications of groups.

Statement: An Abelian Lie group has N = 1. A non-Abelian Lie group has N > 1.

The first example of an Abelian Lie group is U(1). It represents the addition of real numbers

modulo 2π, that is, rotation on a circle. Such a group has an infinite number of elements that are

labeled by a single continuous parameter α. We can write the group elements as M = exp(iα) and

the multiplication law as

exp(iα) · exp(iβ) = exp[i(α + β)]. (A.8)

We can also represent the same group by M = exp(2iα) or, more generally, as

M = exp(iαX), (A.9)

with X real. Each X generates an irrep of the group. For U(1) we usually call X “the charge”

and often denote it by q.

We are mainly interested in compact Lie groups. We do not define this term formally here,

but we can use the U(1) example to give an intuitive explanation of what it means. A group of

adding with a modulo is compact, while just adding, without the modulo, would be non-compact.

In the former, if you repeat the same addition a number of times, you may return to your starting

point, while in the latter this would never happen. In other words, in a compact Lie group, the

parameters have a finite range, while in a non-compact group, their range is infinite. (Do not

confuse that with the number of elements, which is infinite in either case.) Another example is

rotations and boosts: Rotations represent a compact group while boosts do not.

Statement: The elements of any compact Lie group can be written as

M = exp(iα`X`) (A.10)

such that α` are real numbers and X` are specific Hermitian matrices. This is the generalization of

the Abelian case, Eq. (A.9), where X is a real number. We use the standard summation convention,

that is α`X` ≡
∑
` α`X`, and ` runs from 1 to N , that is the dimension of the group.

Statement: The inverse element of M of Eq. (A.10) is

M−1 = exp(−iα`X`). (A.11)

Definition: The X`’s are called the generators of the group.

Let us perform some algebra before we turn to our next definition. Consider two elements of a

group, A and B, such that in A only αa 6= 0, and in B only αb 6= 0 and, furthermore, αa = αb = λ:

A ≡ exp(iλXa), B ≡ exp(iλXb). (A.12)

Since A and B are in the group, each of them has an inverse. Thus also

C = BAB−1A−1 ≡ exp(iβcXc) (A.13)
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is in the group. Let us take λ to be a small parameter and expand around the identity. Clearly, if

λ is small, also all the βc are small. Keeping the leading order terms, we get

C = exp(iβcXc) ≈ I + iβcXc, C = BAB−1A−1 ≈ I + λ2[Xa, Xb]. (A.14)

In the λ→ 0 limit, we have

[Xa, Xb] = ifabcXc, fabc ≡
βc
λ2
. (A.15)

Note that fabc is independent of λ (see Question A.2) and, furthermore, while λ and βc are in-

finitesimal, the fabc-constants do not diverge. This brings us to a new set of definitions.

Definition: fabc are called the structure constants of the group.

Definition: The commutation relations of Eq. (A.15)], [Xa, Xb] = ifabcXc, constitute the algebra

of the Lie group.

Definition: An algebra is trivial if fabc = 0 for all the elements. A non-trivial algebra is an

algebra that is not trivial.

Statements:

• The algebra defines the local properties of the group but not its global properties. Usually,

the local properties is all we care about.

• The algebra is closed under commutation.

• Similar to our discussion of groups, one can define representations of the algebra, that is,

matrix representations of X`. In particular, each representation has its own dimension. (Do

not confuse the dimension of the representation with the dimension of the group.)

• The generators satisfy the Jacobi identity

[Xa, [Xb, Xc]] + [Xb, [Xc, Xa]] + [Xc, [Xa, Xb]] = 0. (A.16)

• Each algebra has a trivial (singlet) representation: X` = 0 for all `. The trivial representation

of the algebra generates the trivial representation of the group.

• Since an Abelian Lie group has only one generator, its algebra is always trivial. Thus, the

algebra of U(1) is the only Abelian Lie algebra.

• Non-Abelian Lie groups have non-trivial algebras.

• The generators of non-Abelian Lie groups are traceless.

The example of SU(2) algebra is well-known from Quantum Mechanics (QM):

[Xa, Xb] = iεabcXc. (A.17)
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Here εabc are the structure constants of the SU(2) group. Usually in QM, X is called L, S, or J .

The three matrices Sx, Sy, and Sz for a given spin S correspond to a given irrep of SU(2). The

SU(2) group represents non-trivial rotations in a two-dimensional complex space. Its algebra is

the same as the algebra of the SO(3) group, which represents rotations in the three-dimensional

real space. (We discuss these names below.)

We should explain what we mean when we say that “the group represents rotations in a

space.” The QM example makes it clear. Consider a finite Hilbert space of, say, a particle with

spin S. The matrices that rotate the direction of the spin are written in terms of exponentials

of the Si operators. For a spin-half particle, the Si operators are written in terms of the Pauli

matrices. For particles with spin different from 1/2, the Si operators will be written in terms of

different matrices. We learn that the group represents rotations in some space, while the various

representations correspond to different objects that can “live” in that space.

There are three important irreps that have special names. The first one is the trivial — or

singlet — representation that we already mentioned. Its importance stems from the fact that it

corresponds to an object that is invariant under rotations. Rotation of a vector in a real space,

which is not a singlet, does change its direction. The magnitude of the vector, which is a singlet,

does not change under rotation.

The second important irrep is the fundamental representation. This is the smallest non-trivial

irrep. For SU(2), this is the spinor, or spin half, representation. An important property of the

fundamental representation is that it can be used to get all other representations. We return to

this point later. Here we just remind you that this statement is well familiar from QM. One can get

spin-1 by combining two spin-1/2’s, and spin-3/2 by combining three spin-1/2’s. Any non-Abelian

Lie group has a fundamental irrep.

The third important irrep is the adjoint representation. It is made out of the structure constants

themselves. Think of a matrix representation of the generators. Each entry, T cij is labeled by three

indices. One is the c index of the generator itself, that runs from 1 to N , such that N depends

on the group. The other two indices, i and j, are the matrix indices that run from 1 to the

dimension of the representation. One can show that each Lie group has one representation where

the dimension of the representation is the same as the dimension of the group. This representation

is obtained by defining

(Xc)ab ≡ −ifabc. (A.18)

In other words, the structure constants themselves satisfy the algebra of their own group. (See

Question A.3 for more details.) In SU(2), the adjoint representation is that of spin-1. In Ques-

tion A.3 you are asked to check that the εijk is a set of three 3×3 matrices that is a representation

of spin 1.

Before closing this section we make several remarks about subalgebras and simple groups.

Definition: A subalgebra M is a set of generators that are closed under commutation.
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Definition: Consider an algebra L with two subalgebras L1 and L2 such that for any X ∈ L1

and Y ∈ L2, [X, Y ] = 0. The algebra L is not simple and it can be written as a direct product:

L = L1 × L2.

Definition: A simple Lie algebra is an algebra that cannot be written as a direct product.

Since any algebra can be written as a direct product of simple Lie algebras, we can think

about each of the simple algebras separately. A useful example is that of the U(2) group. A U(2)

transformation corresponds to a rotation in two-dimensional complex space. This group is not

simple:

U(2) = SU(2)× U(1). (A.19)

Think, for example, about the rotation of a spinor. It can be separated into two: The U(1)

transformation is a phase multiplication of the spinor. The SU(2) transformation is an internal

rotation that affects the two spin components differently.

A.4 Roots and Weights

In this section we discuss properties of the algebra and of the representations. From this point on,

we only consider irreps, and thus we do not distinguish anymore between a representation and an

irrep.

Definition: The Cartan subalgebra is the maximal commuting subalgebra.

In practice, we find it by first finding a basis where the number of the diagonal generators

is maximal. In this basis, the Cartan subalgebra is defined to be the subset of all the diagonal

generators. Obviously, these generators all commute with each other and thus they constitute a

subalgebra.

Definition: The number of generators in the Cartan subalgebra is called the rank of the algebra.

At times we also refer to it as the rank of the group.

Let us consider a few examples. Since the U(1) algebra has only a single generator, it is of

rank one. SU(2) is also rank one. You can make one of its three generators, say S3, diagonal, but

not two of them simultaneously. SU(3) is rank two. We later elaborate on SU(3) in much more

detail.

Our next step is to introduce the terms roots and weights. We do that via an example. Consider

the SU(2) algebra. It has three generators. We usually choose S3 to be in the Cartan subalgebra,

and we can combine the two other generators, S1 and S2, to a raising and a lowering operator,

S± = S1 ± iS2. Any representation can be defined by the eigenvalues under the operation of the

generators in the Cartan subalgebra, in this case S3. For example, for the spin-1/2 representation,

the eigenvalues are −1/2 and +1/2; For the spin-1 representation, the eigenvalues are −1, 0, and

+1. Under the operation of the raising (S+) and lowering (S−) generators, we “move” from one

eigenstate of S3 to another. For example, for a spin-1 representation, we have S−|1〉 ∝ |0〉.
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Let us now consider a general Lie group of rank n.

Statement: Any representation is characterized by the possible eigenvalues of its eigenstates

under the operation of the Cartan subalgebra: |e1, e2, ..., en〉.
Statement: We can assemble all the operators that are not in the Cartan subalgebra into

“lowering” and “raising” operators. That is, when they act on an eigenstate they either move it

to another eigenstate or annihilate it.

Definition: The weight vectors (or simply weights) of a representation are the possible eigen-

values of the generators in the Cartan subalgebra.

Definition: The roots of the algebra are the various ways in which the generators move a state

between the possible weights.

Statement: The weights completely describe the representation.

Statement: The roots completely describe the algebra.

Statement: The weights of the adjoint representation are the roots of the Lie algebra.

Note that both roots and weights live in an n-dimensional vector space, where n is the rank

of the group. The number of roots is the dimension of the group. The number of weights is the

dimension of the representation.

A.5 SU(2)

In this section, we review SU(2). The fundamental irrep can be explicitly written in terms of the

Pauli matrices, Xa = σa/2, with

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (A.20)

The Pauli matrices are traceless, and only one of them is diagonal, as is expected given that SU(2)

has rank one. Given that, we can get the weight diagram of the fundamental representation. We

take the two eigenvectors, (
1

0

)
,

(
0

1

)
, (A.21)

and apply to them the generator in the Cartan subalgebra, X3. We find the two weights, ±1/2,

which can be drawn as

w w
−1/2 +1/2 (A.22)

The non-zero roots are the combination of generators that move us between the weights. Here

they are the known raising and lowering generators,

X± = σ±/2, σ± =
1

2
(σ1 ± iσ2). (A.23)
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They change the weight by ±1, so the root diagram has one zero root (correspond to σ3) and ±1,

and we can draw it as

w w w
−1 0 +1 (A.24)

This root diagram is also the weight diagram of the adjoint representation, also known as spin one.

A.6 SU(3)

In this section, we review SU(3). It is more complicated than SU(2) and it allows us to demonstrate

a few aspects of Lie groups that cannot be demonstrated with SU(2). Moreover, it is relevant to

particle physics.

The case of SU(3) is a generalization of the case of SU(2). We can gain some intuition by

thinking about it as rotations in three-dimensional complex space. Similar to SU(2), the full

symmetry of these rotations is called U(3), and it can be written as a direct product of simple

groups, U(3) = SU(3)×U(1). The SU(3) algebra has eight generators. You can see it by recalling

that rotation in a complex space is done by unitary matrices, and any unitary matrix can be

written with an Hermitian matrix in the exponent. There are nine independent Hermitian 3 × 3

matrices. They can be separated to a unit matrix, which corresponds to the U(1) part, and eight

traceless matrices, which correspond to the SU(3) part.

Similar to the use of the Pauli matrices for the fundamental representation of SU(2), the

fundamental representation of SU(3) is usually written in terms of the Gell-Mann matrices,

Xa = λa/2, (A.25)

with

λ1 =


0 1 0

1 0 0

0 0 0

 , λ2 =


0 −i 0

i 0 0

0 0 0

 ,

λ3 =


1 0 0

0 −1 0

0 0 0

 , λ4 =


0 0 1

0 0 0

1 0 0

 ,

λ5 =


0 0 −i
0 0 0

i 0 0

 , λ6 =


0 0 0

0 0 1

0 1 0

 ,

λ7 =


0 0 0

0 0 −i
0 i 0

 , λ8 =
1√
3


1 0 0

0 1 0

0 0 −2

 . (A.26)

We emphasize the following points:
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1. The Gell-Mann matrices are traceless, as they should be.

2. There are several SU(2) subalgebras. One of them is manifest: λ1, λ2 and λ3.

3. SU(3) is of rank two: λ3 and λ8 constitute the Cartan subalgebra.

Having an explicit expression for the fundamental representation in our disposal, we can draw

the weight diagram. In order to do so, we follow the steps that we applied for SU(2). We take the

three eigenvectors, 
1

0

0

 ,


0

1

0

 ,


0

0

1

 , (A.27)

and apply on them the two generators in the Cartan subalgebra, X3 and X8. We find the three

weights (
+

1

2
,+

1

2
√

3

)
,

(
−1

2
,+

1

2
√

3

)
,

(
0,− 1√

3

)
. (A.28)

We can plot this in a weight diagram in the X3 −X8 plane, see Question A.5.

Once we have the weights we can obtain the roots. They are the combinations of generators

that move us between the weights. The two roots that are in the Cartan are at the origin. The

other six are those that move us between the three weights:(
±1

2
,±
√

3

2

)
, (±1, 0) . (A.29)

You are asked to plot them in Question A.5. This root diagram is also the weight diagram of

the adjoint representation. In terms of the Gell-Mann matrices, we can see that the raising and

lowering generators are proportional to

I± =
1

2
(λ1 ± iλ2) V± =

1

2
(λ4 ± iλ5) U± =

1

2
(λ6 ± iλ7). (A.30)

The names I, U , and V are, at this point, just names, but they are useful in some physics cases

that you may encounter later in your study.

A.7 Classification and Dynkin diagrams

The SU(3) example allows us to obtain more formal results. In the case of SU(2), it is clear

what the raising and lowering operators are. The generalization to groups with a higher rank is as

follows.

Definition: A positive (negative) root is a root whose first non-zero component is positive

(negative). A raising (lowering) operator corresponds to a positive (negative) root.

Definition: A simple root is a positive root that is not the sum of other positive roots.
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Statement: Every rank-k algebra has k simple roots. Which ones they are is a matter of

convention, but their relative lengths and angles are fixed.

In fact, it can be shown that the simple roots fully describe the algebra. It can be further

shown that there are only four possible angles and corresponding relative lengths between simple

roots:
angle 90◦ 120◦ 135◦ 150◦

relative length N.D. 1 : 1 1 :
√

2 1 :
√

3.
(A.31)

(N.D. stands for “not determined”.) The above rules can be visualized using Dynkin diagrams.

Each simple root is described by a circle. The angle between two roots is described by the number

of lines connecting the circles:

i i90◦ i i120◦ i y135◦ i y150◦

(A.32)

where the solid circle in a link represents the larger root between the two.

There are seven classes of Lie groups. Four classes are include an infinite number of Lie groups,

and three classes, called the exceptional groups, each have only a finite number of Lie groups.

Below you can find all the sets. The number of circles is the rank of the group. Note that different

names for the infinite groups are used in the physics and mathematics communities. Below we

give both names, but we use only the physics names from now on. In the diagrams below k is the

rank of the group.

i i . . . i ii
SO(2k) [Dk]

y y . . . y iSO(2k + 1) [Ck]

i i . . . i ySp(2k) [Bk]

i i . . . i iSU(k + 1) [Ak]

(A.33)

i i i i ii
E6

i i i i i ii
E7

i i i i i i ii
E8
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i i y yF4

i yG2 (A.34)

Consider, for example, SU(3). The two simple roots are equal in length and have an angle of

120◦ between them. Thus, the Dynkin diagram is just h h.

Dynkin diagrams provide a very good tool to tell us also about the subalgebras of a given

algebra. We do not describe the procedure in detail here, but only make the following simple

point: Removing a simple root always corresponds to a subalgebra. For example, removing simple

roots, one obtains the following breaking pattern [of relevance to Grand Unified Theories (GUTs)]:

E6 → SO(10)→ SU(5)→ SU(3)× SU(2). (A.35)

Finally, we mention that the algebras of some small groups are identical:

SU(2) ' SO(3) ' Sp(2), SU(4) ' SO(6), SO(4) ' SU(2)× SU(2), SO(5) ' Sp(4).

(A.36)

A.8 Naming representations

We are now back to discussing representations. How do we name an irrep? In the context of

SU(2), which is rank one, there are three different ways to do so.

(i) We denote an irrep by its highest weight. For example, spin-0 denotes the singlet repre-

sentation, spin-1/2 refers to the fundamental representation, where the highest weight is 1/2, and

spin-1 refers to the adjoint representation, where the highest weight is 1.

(ii) We can define the irrep according to the dimension of the representation-matrices, which

is also the number of weights. Then the singlet representation is denoted by 1, the fundamental

by 2, and the adjoint by 3.

(iii) We can name the representation by the number of times we can apply S− to the highest

weight without annihilating it. In this notation, the singlet is denoted as (0), the fundamental as

(1), and the adjoint as (2).

Before we proceed, let us explain in more detail what we mean by “annihilating the state”. Let

us examine the weight diagram. In SU(2), which is rank-one, this is a one-dimensional diagram.

For example, for the fundamental representation, it has two entries, at +1/2 and −1/2. We now

take the highest weight (in our example, +1/2), and move away from it by applying the root that

corresponds to the lowering operator, −1. When we apply it once, we move to the lowest weight,

−1/2. When we apply it once more, we move out of the weight diagram, and thus “annihilate the
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state”. Thus, for the spin-1/2 representation, we can apply the root corresponding to S− once to

the highest weight before moving out of the weight diagram, and — in the naming scheme (iii) —

we call the representation (1).

We are now ready to generalize this to general Lie algebras. Either of the methods (ii) and

(iii) are used. Method (ii) is straightforward but somewhat problematic as there could be several

different representations with the same dimension. We give an example of such a situation later.

In scheme (iii), the notation used for a specific state is unambiguous. To use it, we must order

the simple roots in a well-defined (even if arbitrary) order. Then we have a unique highest weight.

We denote a representation of a rank-k algebra as a k-tuple, such that the first entry is the maximal

number of times that we can apply the first simple root on the highest weight before the state is

annihilated, the second entry refers to the maximal number of times that we can apply the second

simple root on the highest weight before annihilation, and so on.

Take SU(3) as an example. We order the Cartan subalgebra as X3, X8 and the two simple

roots as

S1 =

(
+

1

2
,+

√
3

2

)
, S2 =

(
+

1

2
,−
√

3

2

)
. (A.37)

Consider the fundamental representation where we chose the highest weight to be
(
1/2, 1/(2

√
3)
)
.

Subtracting S1 twice or subtracting S2 once from the highest weight would annihilate it. Thus

the fundamental representation is denoted by (1, 0). You can work out the case of the adjoint

representation and find that it should be denoted as (1, 1). In fact, it can be shown that any pair

of non-negative integers forms a different irrep. (For SU(2) with the naming scheme (iii), any

non-negative integer defines a different irrep.)

From now on we limit our discussion mostly to SU(N).

Statement: For any group the singlet irrep is (0, 0, ..., 0).

Statement: For any SU(N) algebra, the fundamental representation is (1, 0, 0, ..., 0).

Statement: For any SU(N) algebra with N ≥ 3, the adjoint representation is (1, 0, 0, ..., 1).

Definition: For any irrep of an SU(N), the conjugate representation is the one where the order

of the k-tuple is reversed.

For example, (0, 1) is the conjugate of the fundamental representation, which is usually called

the anti-fundamental representation. An irrep and its conjugate have the same dimension. In the

naming scheme (ii), they are called m and m.

Definition: If m = m then m is called a real irrep.

Definition: If m 6= m then m and m are called complex irrep.

For example, the singlet and the adjoint representation are real. Also note that all irreps of

SU(2) are real.

We now return to the notion that the groups that we are dealing with are transformation groups

of physical states. These physical states are often just fields or particles. For example, when we

talk about the SU(2) group that is related to the spin transformations, the physical system that
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is being transformed is often that of a single particle with well-defined spin. With some abuse of

language, we often say that a particle is, for example, in the spin-1/2 representation of SU(2).

What we mean is that, as a state in the Hilbert space, it transforms by the spin operator in the

1/2 representation of SU(2). Similarly, when we say that the proton and the neutron form a

doublet of isospin-SU(2) (we talk about isospin in Section 10.4.1), we mean that we represent p

by the vector-state (1, 0)T and n by the vector-state (0, 1)T , so that the appropriate representation

of the isospin generators is that of the 2 × 2 Pauli matrices. In other words, we loosely speak of

“particles in a representation” when we mean “the representation of the group generators acting

on the vector states that describe these particles.”

Asking how many particles there are in a given irrep is equivalent of asking how many DoF

it has, or what is the dimension of the irrep. Here, we consider only SU(N), and use naming

convention (iii). We only state the results.

• Consider an (α) representation of SU(2). Its dimension is

N = α + 1. (A.38)

The singlet (0), fundamental (1) and adjoint (2) representations have, respectively, 1, 2, and

3 DoF.

• Consider an (α, β) representation of SU(3). Its dimension is

N = (α + 1)(β + 1)
α + β + 2

2
. (A.39)

The singlet (0, 0), fundamental (1, 0) and adjoint (1, 1) representations have, respectively, 1,

3, and 8 DoF.

• Consider an (α, β, γ) representation of SU(4). Its dimension is

N = (α + 1)(β + 1)(γ + 1)
α + β + 2

2

β + γ + 2

2

α + β + γ + 3

3
. (A.40)

The singlet (0, 0, 0), fundamental (1, 0, 0) and adjoint (1, 0, 1) representations have, respec-

tively, 1, 4, and 15 DoF. Note that there is no α+ γ+ 2 factor. Only a consecutive sequence

of the label integers appears in any factor.

• The generalization to any SU(N) is straightforward. It is easy to see that the fundamental

of SU(N) has N DoF and the adjoint has N2 − 1 DoF.

In SU(2), the number of DoF in a representation is unique. In a general Lie group, however,

the case may be different. Yet, it is often used to identify irreps. For example, in SU(3) we usually

call the fundamental 3, and the adjoint 8. For the anti-fundamental, we use 3̄. In cases where
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there are several irreps with the same dimension, we often use a prime to distinguish them. For

example, the dimension of both (4, 0) and (2, 1) is 15. We denote them by 15 and 15′ respectively.

We next remark on how the count goes in terms of subgroup irreps. For example, any SU(3)

irreps can be written in terms of their SU(2) subgroup irreps. Two useful decompositions are

3 = 2 + 1 and 8 = 3 + 2 + 2 + 1, where the irreps on the left are those of SU(3) and on the right

of SU(2). You can deduce them from the weight diagrams of the SU(3) irreps simply by moving

only in one of the SU(2) subgroup directions on the diagrams, for example, only moving in the X3

direction. More generally, there is a way to decompose any irrep of a group as a sum of irreps of

its subgroups. We do not elaborate on this any further.

Last we mention that for U(1) we use the charge to define the irrep. The singlet is the q = 0

state, but there is no notion of the fundamental or the adjoint. Conjugate states have opposite

charges. All the irreps of U(1) have one DoF and only the singlet is real.

A.9 Combining representations

When we study spin, we learn how to combine SU(2) representations. The canonical example

is that of combining two spin-1/2 to generate a singlet (spin-0) and a triplet (spin-1). We often

write it as 1/2 × 1/2 = 0 + 1. There is a similar method to combine representations for any Lie

group. The basic idea is, just like in SU(2), that we need to find all the possible ways to combine

the indices and then assign them to the various irreps. That way we know what irreps are in the

product representation and the corresponding Clebsch-Gordan (CG) coefficients.

Here, however, we do not explain how to construct the product representation. The reason is

that often all we want to know is what irreps appear in the product representation, without the

need to get all the CG coefficients. (In particular, we often only care about generating the singlet.)

There is a simple way to do just this for a general SU(N). This method is called Young Tableaux

or Young Diagrams. The details of the method are well explained in several places, for example,

in the PDG. In Question A.8 you are asked to learn how to use it.

Here we give a few examples of combining irreps in some simple cases. For U(1), when com-

bining several irreps, the result is one irrep with a charge that is the sum of all the chargers. For

example, combining two states, one with charge a and one with charge b, the result is a state with

charge a+ b.

For SU(2), combining two irreps, (a) and (b) with a ≥ b, written in naming scheme (ii), we get

a× b =
b∑

k=1

a− b− 1 + 2k (A.41)

The following results are generic to any non-Abelian group:

• When combining two non-singlets irreps, the result is a direct sum of irreps. For SU(2),

combining (a) and (b) with a ≥ b, there are b such irreps.
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• Combining a singlet to any irrep does not change it, that is, (a)× (0) = (a).

• The product of the dimensions of the irreps on the LHS of Eq. (A.41) is equal to the sum of

the dimensions on the RHS.

Fot SU(3), using naming scheme (ii), we have

3× 3̄ = 1 + 8, 3× 3 = 3̄ + 6, 3× 6 = 10 + 8. (A.42)

From this we can conclude that

3× 3× 3 = 10 + 8 + 8 + 1. (A.43)

Note that the number of DoF on both sides are equal, as they should. Of particular interest to us

is that 3× 3̄ and 3× 3× 3 contain the singlet irrep.

When we combine irreps, the results have well-defined symmetry properties under exchange of

two of them, that is, they are even or odd under an exchange. For example, when combining two

spin doublets, the singlet is odd while the triplet is even under the exchange. For SU(2) the rule

is simple: The highest irrep is symmetric and then going down it alternates. For other groups, it

is more complicated and we do not discuss it here. When it is of relevance, a subscript is usually

added in order to denote the symmetry property, s for symmetric and a for antisymmetric. For

example, in SU(2) we have

2× 2 = 1a + 3s, 3× 3 = 5s + 3a + 1s, (A.44)

and in SU(3) we have

3× 3 = 3̄a + 6s, 3× 3× 3 = 10s + 8m + 8m + 1a, (A.45)

where 8m refer to a mixed symmetry. (A mixed symmetry state is one where some of the exchanges

are symmetric and some are antisymmetric. Such states can appear when we combine three or

more irreps.)

The symmetry properties are important when the two irreps that we combine are identical.

For example, the antisymmetric combination of two vectors in real three-dimensional space is the

cross product. Being antisymmetric, it vanishes identically for two identical vectors, ~a × ~a = 0.

This result is a general one and applies to all fully antisymmetric combinations in any group.

Combining representations plays a very important role in physics. In particular, we would

like to find representations that can be combined into the singlet one, as such a combination is

invariant under rotation in the relevant space. For that, we mention the following properties:

Statement: The combination of an irrep with its conjugate contains the singlet, 1 ∈ R×R.

Statement: The combination of two irreps that are not the conjugate of each other, that is,

R1 6= R2 does not contains the singlet, 1 6∈ R1 ×R2.
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Last we discuss the case of combining irreps of non-simple Lie groups. In such a case we combine

the irreps for each simple group separately and then have all the combinations. An SU(3)×SU(2)

example should make the above statement clear:

(3, 2)× (3̄, 2) = (8, 3) + (8, 1) + (1, 3) + (1, 1). (A.46)

Our notation is such that (3, 2) refers to a triplet under SU(3) and a doublet under SU(2). Note

that the number of DoF is the same on both sides: 6 × 6 = 24 + 8 + 3 + 1. (More examples are

given in Question A.9.)

For further reading

For reviews of Lie groups that are very useful for particle physics purposes, see Refs. [58, 59, 60,

61, 62, 63] and Chapter 4 of [11].
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Problems

Question A.1: S3

In this question we study the group S3. It is the smallest finite non-Abelian group. One can

think about it as all possible permutations of three elements. The group has 6 elements. In the

language of permutations, we get the following representation of the group:

() =


1 0 0

0 1 0

0 0 1

 (12) =


0 1 0

1 0 0

0 0 1



(13) =


0 0 1

0 1 0

1 0 0

 (23) =


1 0 0

0 0 1

0 1 0



(123) =


0 1 0

0 0 1

1 0 0

 (321) =


0 0 1

1 0 0

0 1 0

 (A.47)

The names are informative. For example, (12) represents exchanging the first and second elements.

(123) and (321) are cyclic permutations to the right or left.

1. Write explicitly the 6× 6 multiplication table for the group.

2. Show that the group is non-Abelian. Note that it is enough to find one example.

3. Z3 is a subgroup of S3. Find three generators that correspond to a Z3.

4. Eq. (A.7) states the following theorem for finite groups:

∑
i

[dim(Ri)]
2 = N, (A.48)

where N is the number of elements in the group and Ri runs over all the irreps. Based on

this, prove that the representation in Eq. (A.47) is reducible. Then, write it explicitly in a

(1 + 2) block diagonal representation. (Hint: find a vector which is an eigenvector of all the

above matrices.)
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5. In the previous item, you found a two dimensional and a one dimensional irrep of S3. Based

on Eq. (A.48), there exists only one more irrep, and it is one dimensional. Find it.

Question A.2: Lie algebras

Consider two general elements of a Lie group,

A ≡ exp(iλXa), B ≡ exp(iλXb), (A.49)

where Xi is a generator and we take λ to be a small parameter. Then, consider a third element in

the group

C = BAB−1A−1 ≡ exp(iβcXc). (A.50)

Expand C in powers of λ and show that at lowest order you get the Lie algebra [see Eq. (A.15)],

[Xa, Xb] = ifabcXc, fabc ≡
βc
λ2
. (A.51)

Question A.3: The adjoint irrep

The structure constants constitute an irrep of their group. In this question you are asked to

show it explicitly.

1. All Lie algebras satisfy the Jacobi identity, Eq. (A.16). Using Eq. (A.15), [Xa, Xb] = ifabcXc,

show that the Jacobi identity leads to the following identity in terms of the structure con-

stants:

fadefbcd + fbdefcad + fcdefabd = 0. (A.52)

2. We define the generators of the adjoint group as

(Xc)ab ≡ −ifabc. (A.53)

Show that

[Xa, Xb]ed = ifabc(Xc)ed. (A.54)

that is, that the generators satisfy the algebra of the group.

3. There are two equivalent sets of the generators of the adjoint of SU(2) that are commonly

used: One that is usually used in QM,

L1 =
1√
2


0 1 0

1 0 1

0 1 0

 L2 =
1√
2


0 −i 0

i 0 −i
0 i 0

 L3 =


1 0 0

0 0 0

0 0 −1

 , (A.55)
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and one that corresponds to the structure constants,

(Lk)ij = −iεijk. (A.56)

Show that the two sets are equivalent by finding the matrix U that rotates between the bases.

Question A.4: More on the adjoint of SU(2)

We consider a vector in real space, ~a. It transforms as a vector under SU(2):

a→ a′ = (eα·X)a, (A.57)

where X is a generator of the adjoint representation. Instead of the three-vector a, we can equiv-

alently use a 2 × 2 traceless matrix A. (Note that both the vector and the traceless matrix have

three DoF.) To prove it, we define

A ≡ σ · a (A.58)

where σ are the Pauli matrices. Explicitly we write

Aij ≡ (σk)ijak. (A.59)

1. Using a = (ax, ay, az), write A explicitly as a 2× 2 matrix and check that it is traceless.

2. Find the inverse operation, that is, show how to get the vector a given the matrix A.

3. A transforms as

A→ A′ = U †AU, U = eiα·σ/2. (A.60)

Check that this is the case for rotation around the z axis by an angle θ. In other words,

show that for this specific transformation, a′ of Eq. (A.57) and A′ of Eq. (A.60) fulfill the

relation of Eq. (A.58) for the specific case of rotation around the z axis.

Question A.5: SU(3)

1. Draw the weight diagram of the fundamental irrep of SU(3).

2. Draw the root diagram of SU(3).

3. The three matrices, aλ1, aλ2 and aλ3, where λi are the Gell–Mann matrices and a is a

constant, satisfy an SU(2) algebra, also known as Isospin. What is a?

4. Explain why this fact does not imply that SU(3) is not a simple Lie group.

327



5. There are other independent combinations of Gell–Mann matrices that satisfy SU(2) alge-

bras. Here we discuss two of them, called U -spin and V -spin. Their raising operators are

given by

V+ =
1

2
(λ4 + iλ5) , U+ =

1

2
(λ6 + iλ7). (A.61)

Find these algebras. Hint: Look at the root diagram.

Question A.6: Dynkin diagrams

1. Argue that SO(N) has N(N − 1)/2 generators. This can be seen by the fact that SO(N)

corresponds to rotations in real N -dimensional spaces.

2. Draw the Dynkin diagram of SO(10). Note you do not need to derive it, just use the general

results of (A.33).

3. What is the rank of SO(10)?

4. Based on the Dynkin diagram, show that SO(10) has the following subalgebras:

SO(8), SU(5), SU(4)× SU(2), SU(3)× SU(2)× SU(2). (A.62)

In each case show which simple root you can remove from the SO(10) Dynkin diagram.

Question A.7: Representations

Here we practice in finding the number of degrees of freedom in a given irrep.

1. Find the dimension of the (1, 1, 0, 0) irrep of SU(5).

2. Find the number of DoF in the following SU(3) irreps:

(3, 0), (2, 2). (A.63)

3. Consider the (3, 0) irrep of SU(3). Draw its weight diagram and use to diagram to decompose

the irrep into its SU(2) irreps.

Question A.8: Combining irreps

Here we practice the use of Young Tableaux. The details of the method can be found in the

PDG. Study the algorithm and do the following calculations. Make sure you check that the number

of DoF on both sides is the same. Write your answer in terms of both naming schemes (ii) and

(iii). For example, in SU(3) you should write

(1, 0)× (0, 1) = (0, 0) + (1, 1), 3× 3̄ = 1 + 8. (A.64)

328



1. In SU(3), calculate 3× 3, 3× 8, and 10× 8.

2. In SU(5), calculate 5̄× 10 and 10× 10.

Question A.9: Combining irreps in non-simple groups

Consider SU(3)×SU(2)×U(1). We denote a representation as (R3, R2)Q such that RN is the

representation under SU(N) in naming scheme (ii), and Q is the charge under the U(1).

1. Calculate

(3, 2)+1 × (3, 2)+1, (3, 2)+1 × (3̄, 2)−1, (3, 2)+1 × (3̄, 1)+2 × (1, 2)−3 . (A.65)

Which cases contain the singlet?

2. In each case, verify that the number of DoF is the same on both sides, that is, write the

number of Dof for each term.

Question A.10: Looking for singlets

Consider an irrep, R, where we use the naming scheme (ii).

1. Using the statements that were made in the text before Eq. (A.46), show that 1 ∈ R× R if

and only if R is a real irrep.

2. All the irreps of SU(2) are real. Show the above result explicitly in SU(2).

3. Consider R to be an adjoint of SU(N). Is 1 ∈ R×R?

Question A.11: Singlets in SU(3)

As discussed in Chapter 5, the strong interaction is described by an SU(3) gauge group. The

particles observed in Nature are bound states that are singlets under that SU(3). We assign

the quark (q), anti-quark (q̄), and gluon (g) fields to the triplet, anti-triplet and octet irreps,

respectively:

q(3), q̄(3̄), g(8). (A.66)

Which of the following could be an observable bound state?

qq̄, qq, qg, gg, qq̄g, qqq. (A.67)

Note that you do not need to calculate much, all you need is to use the properties you proved in

Question A.10 and the results of Eq. (A.42).
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