

Accelerator Physics Requirements for Magnets

J. Scott Berg Brookhaven National Laboratory CBETA Magnet Buildability Review December 14, 2016

- FFAG: single beamline accepting a wide range of energies (42–150 MeV in our case) without magnet fields changing
- Beams in different passes go through
 - At different positions
 - With different energies
- Magnets are short relative to their aperture, and close together

- Variation of field profile from magnet to magnet
- Leads to orbit deviations from design orbit
 - Deviation increases down the line
- What matters is field and gradient near each design orbit
 - Orbits for different energies are in very different parts of the magnet
- Sources of random field variation
 - Permanent magnet magnetization
 - Geometric tolerances in magnet construction
 - Temperature dependence of permanent magnet magnetization
 - Overall magnet alignment errors
 - Vibrations

December 14, 2016

J. S. Berg — CBETA Magnet Buildability Review — Accelerator Physics Requirements

- Correction system designed to fix this
 - Must fix multiple energies simultaneously
 - Insufficient correctors to fix at the source
 - Algorithms allow us to to fix some level of errors
 - Algorithms don't always work as well on the real machine as they do in simulation, at least not initially
 - Correctors imperfectly modeled
 - Need headroom for the unexpected
 - Correction system may not be able to address higher frequency effects (vibrations, current ripple)
- Magnet-to-magnet variation created problems in a previous machine of this type (EMMA)

BROOKHAVEN

- Nonlinearities not a real issue
 - Have a 1% 12-pole in the iron design, effect difficult to see compared to linear hard edge model
 - Comparable/large nonlinearities already exist due to
 - Significant angles beams make through magnets
 - End fields forced by Maxwell's equations, significant due to short magnets
 - Small number of passes through magnets
- Can address multi-mm orbit excursion errors with small horiozontal offsets
- If gradients come in a bit low/high, a small linac energy change can fix

- Main concern is minimizing magnet-to-magnet variation
- Avoid using correctors to solve problems we can fix in the magnet design
 - Correction may not be as easy in the real machine as in our simulations
 - The correctors will be busy enough
- Systematic effects are manageable

- At the design stage
 - Iron magnets, need to consider neighbors to get correct results
 - Halbach magnets, no iron: can basically superimpose magnets
- Halbach magnets, no iron
 - Error studies, transition, etc. easy: just lay out magnets
- Iron magnets
 - Create field maps with magnets placed properly
 - However, we've developed a process for accurately estimating crosstalk effects to reduce the number of times field maps must be reconstructed

BROOKHAVEN

- Lattice behavior is nearly identical to linear hard-edge lattice
- Gradients and horizontal displacements are adjusted, correction factors easily modeled
- Small displacements and gradient corrections accurately modeled by displacing field maps with individual magnets powered, all iron in place
- Any modeling errors (in magnet design code) lead to a small systematic effect, manageable
- Random errors: amplification through coupling?
 Coupling between magnets is at the 10% level
 - Tested shift, no amplification seen

- Using a field map for iron magnets that fully includes crosstalk, have cross-checked results in two independent beam dynamics codes, and they agree
- Have studied realistic systematic effects with iron magnets, effects have been tiny
 - Same should hold true with systematics in Halbach designs

- 200 μ m misalignments, plus
- Multipole random errors (relative, at 25 mm):

Order	Norm.	Skew	Order	Norm.	Skew
	(10^{-4})	(10^{-4})		(10^{-4})	(10^{-4})
3	18	45	4	12	30
5	7.5	21	6	5.7	15
7	3.3	10.5	8	3	7.8
9	1.8	6	10	1.5	4.5

- Corrected with 500 G cm dipole correctors
 Normal and skew on alternating magnets
- Multipoles are only a way of expressing field variations on orbits far off-axis

December 14, 2016

BROOKHAVEN Summary: Magnet Requirements

- From the lattice perspective
 - Primary design requirement is to control magnet-to-magnet variation of field profile
 - Systematic effects are manageable
- Some level of random errors handled by correctors
 - Avoid overburdening correctors (strength and algorithm)
 - Correction may be challening on real machine
- Crosstalk between magnets
 - Requires iteration between lattice design and field map construction (by magnet design codes) in the design/simulation stage
 - We have demonstrated we can manage this
 - No problem from a beam dynamics perspective: just needs to be modeled

December 14, 2016

J. S. Berg — CBETA Magnet Buildability Review — Accelerator Physics Requirements