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I. INTRODUCTION

The main goal of this study is to find the tolerance
of the CBETA FFAG lattice subjected to various er-
rors. Common error sources include non-ideal mag-
net positioning and alignment, undesired multipole field
strengths, and BPM offsets. In order to fix the beam
trajectories (orbits) affected by the errors, dipole kickers
have been allocated throughout the FFAG beamline to
serve as correctors. Since there are four coexisting orbits
in the FFAG, the correction scheme must aim to correct
all four of them simultaneously. The simulation is per-
formed using Bmad, developed by Cornell University to
model relativistic beam dynamics in customized acceler-
ator lattices [1]. The core of orbit correction is the sin-
gular value decomposition (SVD) optimization. As the
error magnitudes increase, the beam size and emittance
after correction could undesirably increase, and our goal
is to find the “individual limit” of each error type beyond
which the increases become unacceptable. Typically this
limit is reached before the orbits become un-correctable.
Similarly we can also find the “combined limit” of var-
ious errors. Both limits will be properly defined in the
later section.

II. CBETA FFAG LATTICE

The CBETA FFAG beamline consists of 107 full cells
and 2 half-cells (see Fig. 1). Each full cell consists of two
quadrupole magnets, one BPM (orbit monitor), one hor-
izontal and one vertical kicker. The two half-cells locate
at the beginning and the end of the beamline, and are
neglected in this study for simplicity. An important as-
sumption in this study is that all the splitters are able to
perfectly correct the orbit of each energy into the FFAG
lattice. In other words the errors do not propagate from
orbit to orbit over recirculation. However, all four or-
bits are still simultaneously affected by the errors and
correctors.

∗ This work was performed with the support of NYSERDA (New
York State Energy Research and Development Agency).
† wl528@cornell.edu

FIG. 1. Layout of CBETA. The sections labeled (IN) and
(LA) are the injector and MLC cavities respectively. Sec-
tions (FA), (TA), (ZA), (ZB), (TB), and (FB) form the FFAG
beamline which can accommodate four recirculating orbits
with energy ranging from 42 MeV to 150 MeV. Sections (SX)
and (RX) are splitters which control the path-length of each
recirculation pass.

III. EXAMPLE SIMULATION

This section describes how Bmad corrects the FFAG
orbits with a set of random b1 gradient error introduced
to all the FFAG magnets. The details on how SVD op-
timization works will not be covered here. Fig. 2 shows
the four design orbits in half of the FFAG beamline (FA,
TA, and ZA). Note that the orbits are periodic in FA,
and zero in ZA.

FIG. 2. The four design orbits in the first half of the FFAG
beamline. The orbits in the other half is very close to the
mirror image.

The top half of Fig. 3 shows the distorted orbits when
all the FFAG quadrupole magnets incur a 0.5% Gaussian
random error in their b1 gradient. Clearly the orbits be-
come non-periodic in FA and non-zero in ZA. The bottom
half of Fig.3 shows the recovered orbits after SVD orbit
correction using all the horizontal kickers. Note that the
orbit correction aims to recover the orbits only at the



2

location of BPMs, the only places we can measure them
in reality. For each cell we have 4 horizontal orbits to
correct at the BPM, yet only one horizontal corrector
to use (same for the vertical plane). Since the system
is already over-constrained, requiring extra locations for
corrected orbits could barely improve overall correction.
However, it’s possible to improve the correction by prop-
erly assigning weights to the correctors. This method
involves further study in the SVD optimization, and is
not invoked here.

FIG. 3. The top half shows the orbit distortion with all FFAG
quad magnets subjected to a 0.5% Gaussian random error in
their b1 gradient. The bottom half shows the recovered orbits
after SVD orbit correction.

IV. RESULT STATISTICS

For clarification, we call the correction process to a
particular assignment of errors “one simulation”. To de-
termine the tolerance of the lattice subjected to certain
error, we must run many simulations to obtain statistics.
Fig. 4 illustrates the general procedure to determine the
tolerance of an error, and Fig. 5 describes the procedure
in details, including our definition of “individual limit”.

For a chosen error type and error magnitude we run
N=100 simulations to obtain a statistically representa-
tive “µ + 1σ” (See Fig. 5). We call this quantity the
“1σ increase” in X (or Y) emittance (or beam size). Fig.
6 shows that the 1σ increase in X emittance grows with
error magnitude in b1 gradients. At 0.66% error in b1
gradients, the 1σ increase in X emittance reaches 10%.
However, we also need to check the growth in the Y emit-
tance and transverse beam sizes. Table 1 summarizes the
required error magnitude for each 1σ increase to hit 10%.
It turns out that the 1σ increase in Y beam size reaches
10% at 0.27% error in b1 gradient, earlier than the other
three quantities. So the individual limit of b1 gradient
error, by our definition, is 0.27%.

FIG. 4. A schematic diagram showing how the individual
limit of a certain error is obtained using Bmad. The detailed
description is in Fig.5.

FIG. 5. The detailed procedures to determine the individual
limit of a certain error.

FIG. 6. The growth of 1σ increase in X emittance as the er-
ror magnitude in b1 gradient increases. The green rectangle
shows that 10% increase is reached when b1 gradient magni-
tude hits 0.66%.

Error magnitude in b1 gradient
Quantity to hit 10% 1σ increase

X emittance 0.66%
Y emittance 0.90%
X beam size 0.37%
Y beam size 0.27%

TABLE I. The tolerance of FFAG beamline subjected to b1
gradient error.
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V. INDIVIDUAL LIMITS OF VARIOUS ERROR
TYPES

Similar to the b1 gradient error, 100 simulations were
run to find out the individual limit of other error types.
Table 2 shows the individual limits of a few common error
sources. All these limits are above the design specifica-
tion of CBETA, implying great tolerance of the design
lattice.

TABLE II. The individual limit of common error types.

It’s also important to find out the tolerance for higher
order multipole fields, defined as:

Bx + iBy =
bn + ian

L
(x+ iy)n (1)

,in which bn and an are the strength for normal and skew
multipole fields for n ≥ 2. (b1 is the normal quadrupole
gradient, and b2 is the normal sextuple moment.) L is
the length of the magnet, and x and y are measured from
the pipe center. For physically meaningful comparison,
we normalize the multipole strengths in dimensionless
unit u0:

bn =

[
10−4

GL

rn−10

]
u0 (2)

, in which G is the quadrupole gradient, and r0 is chosen
to be 25 mm (about the extent of the highest and lowest
energy orbit from the pipe center). Table 3 shows the
individual limit of all the normal and skew multipoles,
reported in u0.

TABLE III. The individual limit of normal and multipole up
to 20-pole, reported in the normalized unit u0 .

VI. COMBINED LIMIT OF MULTIPOLE FIELD
ERRORS

In reality all multiple sources of errors coexist, and the
individual limits are insufficient to capture the whole pic-
ture. Instead, we need a statistically meaningful “com-
bined limit”. For now we consider just the 16 multipole
field errors in table III. In the simulation we assign each
FFAG magnet a 16-vector:

v =

(
bn

lim bn
,

an
lim an

)
, n = 2, 3...9 (3)

in which lim bn and lim an are the individual limits for
proper weighting between the different multipoles. The
value of each element in v is chosen randomly from the
normal Gaussian distribution (µ = 0, σ = 1). Since there
are 16 errors present, the overall combined error must
be first scaled down properly. A number u is chosen
randomly from (0, 1], and the 2-norm of the v (square
root of sum of the squares) is scaled down to be u(1/16).
This allows the v to point at a uniformly random point
in the 16-D hyper-sphere of radius 1. We now further
introduce a quantity “error scale” which scales all the
elements in v by the same factor. By definition, the 2-
norm also scales by the same factor, so we can use the
2-norm as a measure of the combined error.

Fig.7 shows the 1σ increase in X beam size grows with
the error scale ranges from 0 to 1 at a step of 0.1. For each
error scale 1000 simulations were run for representative
statistics. At an error scale of 0.75, 1σ increase in X beam
size reaches 10%, earlier than the other three quantities
of interest. So the combined error for FFAG multipole
field error is reported as:√

Σn(
bn

lim bn
)2 + (

an
lim an

)2 < 0.75 (4)

VII. FUTURE STUDIES

There are still many tolerance studies to be performed
for the CBETA lattice. Perhaps the most important con-
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FIG. 7. The growth of 1σ increase in X beam size as the er-
ror magnitude in b1 gradient increases. The green rectangle
shows that 10% increase is reached when b1 gradient magni-
tude hits 0.66%.

sideration is to use the entire 4-pass lattice with one de-
sign orbit, instead of only the FFAG beamline with 4 in-
dependent orbits. Although this would make optimiza-
tion computationally more intense, it better simulates
the reality. Similar to the having multipole field errors,
we can also include different error sources together to
investigate the overall combined tolerance.

[1] D. Sagan, Bmad Simulation Software,
https://www.classe.cornell.edu/bmad/


