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Abstract

The effect of resistive wall instabilities on beam break-up is investigated for beam pipes with finite and infinite
thickness walls. Analytic solutions for the electric field along the beam axis are determined for both finite and
infinite thickness walls using complex analysis. The longitudinal and transverse impedances are also determined;
variations from the infinite wall case are observed when the wall thickness is of the order of the skin depth of the
beam pipe material.

1 Introduction

Resistive wall instabilities occur when charged particles
travel through a beam pipe made out of a metal with a
finite conductivity, and can lead to beam break-up in lin-
ear accelerators if not accounted for due to its long-range
nature [1].

Consider a beam of evenly spaced bunches of charged
particles (called macroparticles) that are slightly offset
from the central axis of the beam pipe. The beam prop-
agates through an infinitely long linear accelerator at ap-
proximately the speed of light. As it does so, the elec-
tromagnetic field of the first macroparticle propagates to
the beam pipe walls.

If the walls were perfectly conducting, the electromag-
netic field would terminate at the surface of the beam
pipe wall and there would be no instability.

However, since the walls have some large but fi-
nite conductivity, the electromagnetic field from the
macroparticle penetrates slightly into the beam pipe wall
itself. This leads to a residual electromagnetic field being
present within the walls themselves in order to satisfy the
necessary boundary conditions.

As a result, the next macroparticle in the beam has its
trajectory affected by the residual electromagnetic field,
whilst also contributing to the total residual electromag-
netic field, resulting in larger and larger deviations in
macroparticle trajectories and, eventually, beam break-
up.

This instability can be demonstrated using a simple
model [2]. A beam of nm ≈ 106 macroparticles sepa-
rated by z ≈ 1 mm, each containing nb ≈ 109 electrons,
initially propagates near the centre of a perfectly con-
ducting, infinitely long pipe with infinitely thick walls.
The beam has an initial offset xj ≈ 1 µm from the cen-

tral axis of the beam pipe. The beam then encounters
a section of length L ≈ 1000 m with finite conductivity
σ ≈ 2× 106 Ω−1m−1. The resulting net angular kick to
macroparticle i after passing through the resistive section
in SI units is thus given by

∆x′i =
nbe

2

mec2γ

1

nm

nm∑
j=1

W1(zj − zi)xj , (1)

where γ ≈ 100 is the gamma factor of the 50 MeV elec-
trons, e is the electronic charge, me is the rest mass of
the electron, and c is the speed of light. W1(zj − zi),
the transverse wake field, describes how the beam pipe
responds to the dipole moment of the particle beam. At
long distances behind the bunch, the transverse wake
field in SI units is given by

W1(z) ≈ 2L

πb3

√
c

4πε0σ

1

|z| 12
, (2)

where ε0 is the permittivity of free space, and b ≈ 5 cm
is the radius of the beam pipe.

Figure 1: Net transverse angular kick received by each
bunch
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Figure 2: Beam pipe layout [1]

Because the macroparticles are moving at approxi-
mately the speed of light, causality requires that the wake
field generated by a given macroparticle is zero in front
of that particle. As a result, a given macroparticle i can
only be affected by the wake generated by the macropar-
ticles in front of it.

Using this form of the long-range wake field, it is
relatively straightforward to simulate the above model
and determine how the net angular kick received by
each macroparticle varies with macroparticle number, as
shown in Figure 1.

From the plot, it is clear that, at large bunch num-
bers, the net angular kick received by each macroparticle
is proportional to the square root of the macroparticle
number, and hence proportional to the square root of dis-
tance from the first macroparticle. As a result, such in-
stabilities continue to grow as more macroparticles pass,
until beam break-up occurs.

However, when deriving the form ofW1 in Equation 2,
it was assumed that the pipe walls were infinitely thick.
Whilst this is usually a good approximation for short-
range wake effects, it is not necessarily good for long-
range effects, especially if the pipe walls have a thickness
on the order of the skin depth of the metal at frequencies
of interest.

Assuming that the pipe walls have some finite thick-
ness t, different boundary conditions apply. This leads
to different expressions for the wake field and its Fourier
transform, known as the impedance.

This note investigates the effects that wall thick-
ness has on the long-range wake fields and on the low-
frequency impedances, potentially leading to a feasible
system with reduced resistive wall instabilities and hence
a more stable beam.

2 Resistive Wall Wake Fields

2.1 Solving Maxwell’s Equations

The first step towards finding the electromagnetic fields
and wake fields is to solve Maxwell’s equations in cylin-
drical coordinates. Given that the initial distribution of
the charge creating the wake field is unknown, we can
write charge density ρ and current density ~j in terms of
their multipole moments,

ρ =

∞∑
m=0

ρm ,

~j =

∞∑
m=0

~jm ,

ρm =
Imδ(s− ct)δ(r − a) cos (mθ)

πam+1(1 + δm0)
,

~jm = cρmŝ ,

(3)

where m is the multipole moment present, Im is the mth
moment of the beam, and δm0 = 1 if m = 0, 0 otherwise.

Figure 2 gives the layout of the beam pipe; an in-
finitesimally thin ring charge with charge density ρ, cur-
rent density~j, radius a, and angular dependence cos (mθ)
propagates along the s-axis of the pipe at the speed of
light. The beam pipe has conductivity σ ≈ 1017 s−1,
radius b ≈ 5 cm, and thickness t ≈ 1 mm. The electro-
magnetic field experienced by a test charge at a distance
z behind the ring charge in CGS units is thus given by
the equations

1

r

∂(rEr)

∂r
+

1

r

∂Eθ
∂θ

+
∂Es
∂s

= 4πρ ,

1

r

∂Bs
∂θ
− ∂Bθ

∂s
− 1

c

∂Er
∂t

=
4π

c
jr ,
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∂Br
∂s
− ∂Bs

∂r
− 1

c

∂Eθ
∂t

=
4π

c
jθ ,

1

r

∂(rBθ)

∂r
− 1

r

∂Br
∂θ
− 1

c

∂Es
∂t

=
4π

c
js ,

1

r

∂(rBr)

∂r
+

1

r

∂Bθ
∂θ

+
∂Bs
∂s

= 0 ,

1

r

∂Es
∂θ
− ∂Eθ

∂s
+

1

c

∂Br
∂t

= 0 ,

∂Er
∂s
− ∂Es

∂r
+

1

c

∂Bθ
∂t

= 0 ,

1

r

∂(rEθ)

∂r
− 1

r

∂Er
∂θ

+
1

c

∂Bs
∂t

= 0 .

(4)

In order to make the equations easier to solve, we
write the electromagnetic field components in terms of
their Fourier transforms,

(Es, Er, Bθ) = cos (mθ)

∫ ∞
−∞

dk

2π
eikz(Ẽs, Ẽr, B̃θ),

(Eθ, Bs, Br) = sin (mθ)

∫ ∞
−∞

dk

2π
eikz(Ẽθ, B̃s, B̃r),

(5)

where the Fourier transformed components are functions
of k and r and are complex quantities.

Solving for the case of the monopole moment m = 0,
the field components (Eθ, Bs, Br) = 0. The Fourier
transformed components can then be solved for the re-
gion inside the pipe r < b,

Ẽs = A(k),

Ẽr = B̃θ =

{
−ikA r

2 , r < a,

−ikA r
2 + 2q

r , a < r < b.

(6)

In order to determine the form of A(k), we need to
solve for the region inside the pipe walls r > b. Inside
the metal walls,

ρ = 0,

~j = σ ~E,
(7)

where the conductivity σ is assumed to be independent
of k.

We now consider the cases where the pipe walls are
infinitely thick, and where the pipe walls have some finite
thickness t.

2.2 Infinite Pipe Wall Thickness

If the pipe walls are infinitely thick, we can solve for the
fields inside the pipe walls using equations (4) and (7),
as well as the conditions that (Ẽs, B̃θ) are continuous at
r = b, and that (Ẽs, B̃θ) → 0 as r → ∞. This gives the
solution

A(k) =
2q

b

(
ikb

2
− λ

k

)−1
,

λ(k) = i

√
−i4πσk

c
,

(8)

where a term − k
λ has been dropped since k

λ is much

smaller than λ
k or ikb

2 .
The field component Es can now be determined by

performing the inverse Fourier transform on A(k),

Es =

∫ ∞
−∞

dk

2π
eikzA(k) . (9)

In order to calculate this integral, we need to find the
location of the poles and branch cuts of A(k) [3]. It can
be shown that the poles of A(k) are located at

kp = α
2
3 (±
√

3− i) , (10)

where α is a constant given by

α =
1

b

√
2πσ

c
≈ 106 m−

3
2 , (11)

and that A(k) has a branch cut along the negative imag-
inary axis from the origin to infinity.

Figure 3: Plot of the integration contour and of the poles
and branch cuts of A(k)

This allows us to calculate Es in the infinite wall case,

Es = −16q

b2

(
1

3
eu cos

(√
3u
)
−
√

2

π

∫ ∞
0

x2eux
2

x6 + 8
dx

)
,

u = zα
2
3 ≈ 104z ,

(12)
using values of σ ≈ 1017 s−1 and b ≈ 5 cm. The full
derivation of the location of the poles and branch cuts of
A(k) and of Es can be found in Appendix A.
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From Figure 4, we can see that Es is proportional to
z

3
2 at long ranges in the infinite wall case. We shall now

investigate the long-range behaviour of Es in the finite
wall case.

Figure 4: Long-range Es for infinite pipe walls

2.3 Finite Pipe Wall Thickness

If the pipe walls have finite thickness t instead, the
boundary conditions are similar to those in Section 2.2,

except that (Ẽs, B̃θ) = 0 at r = b + t, instead of at
r →∞. This leads to a different expression for A(k),

A(k) =
2q

b

(
ikb

2
− λ

k

1 + e2iλt

1− e2iλt

)−1
,

=
2q

b2α
2
3

(
ik

k0
+
k0
ik

√
− ik
k0

coth

(√
− ik
k1

))−1
,

(13)

where k0 and k1 are constants given by

k0 = 2α
2
3 = 2

(
2πσ

cb2

) 1
3

≈ 2× 104 m−1 ,

k1 =
1

2(bαt)2
=

1

2t2
c

2πσ
≈ 2× 10−4 m−1 ,

(14)

using a wall thickness of t ≈ 1 mm and the same values
of σ and b as in the infinite wall case.

(a) k1 → 0 (b) k1 = 0.001

(c) k1 = 0.025
(d) k1 = 0.1

Figure 5: 3D contour plots of poles of A(k) for different values of k1
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3D contour plots of A(k) for different values of k1 (af-
ter setting k0 = 1m−1) are included in Figures 5(a) to
(d).

Figure 5(a) shows that the infinite wall case (k1 → 0)
has only 2 poles in the negative imaginary half-plane as
well as a branch cut along the negative imaginary axis.

As k1 increases to 0.001 in Figure 5(b), poles start
to form along the negative imaginary axis. These poles
spread further apart as k1 increases further, in Figures
5(c) and (d).

From Equation 14, k1 ≈ 10−8 k0, which implies that
a very large number of poles along the negative imagi-
nary axis are very closely spaced together, similar to the
k1 = 0.001 case.

In order to determine an analytic form of Es for the
finite wall case, we need to find the poles and branch cuts
of A(k). To determine if branch cuts are present, we can
expand the coth term in Equation 13 about zero,

ik

k0
+
k0
ik

√
− ik
k0

coth

(√
− ik
k1

)

≈ ik

k0
+
k0
ik

√
− ik
k0

((√
−k1
ik

)
+

1

3

(√
− ik
k1

)
− ...

)
.

(15)
Since there are no fractional powers of k present in the
denominator, A(k) does not have a branch cut in the fi-
nite wall case. This is fundamentally different from the
infinite wall case, where a branch cut extends along the
negative imaginary axis. As a result, we expect to see a
different analytic form for Es in the finite thickness wall
case.

The locations of the poles along the negative imagi-
nary axis are determined by making the substitution

k = −ix2k0 (16)

into A(k), where x is a real number, so that A(x) is given
by

A(x) =
2q

b2α
2
3

(
x2 +

1

x
cot (px)

)−1
, (17)

where p is a constant given by

p =

√
k0
k1

. (18)

Using the values of k0 and k1 from Equation 14,
p ≈ 104 >> 1. Poles of A(x) occur when the denom-
inator is equal to 0, corresponding to solutions of the
equation

x3 + cot (px) = 0 ,

=⇒ x3 = − cot (px) ,

=⇒ x−3 = − tan (px) .

(19)

0 1 2 3 4
x

0

0.5

1

1.5

2

y

Figure 6: Plot of y = x3 + cot (px) for p = 10

In the limit where x→ 0,

cot (px) ≈ 0 , =⇒ x ≈
(n− 1

2 )π

p
(n integer) , (20)

while in the opposite limit x→∞,

tan (px) ≈ 0 , =⇒ x ≈ nπ

p
(n integer) . (21)

Using these limits, we can say that the poles of A(x) are
located at

xpn =
(n+ f(n))π

p
, (22)

where f(n) varies from f(n) = − 1
2 at n = 1 to f(n) = 0

as n→∞.

In terms of k = −ix2k0,

kpn = −i
(

(n+ f(n))π

p

)2

k0 . (23)

This makes finding the analytic form of Es much sim-
pler; instead of needing to integrate along a branch cut
as in the infinite wall case, we can use Cauchy’s Residue
theorem at each pole of A(k) to determine the complex
integral.

We can write A(x) as

A(x) =
2qx

b2α
2
3 (x3 + cot (px))

=
g(x)

h(x)
, (24)

where g(x) and h(x) are

g(x) =
2qx

b2α
2
3

,

h(x) = x3 + cot (px) .

(25)

Thus, the residue of A(k) at k = kpn is

5
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Res(A(k), kpn) =
g(kpn)
dh
dk |k=kpn

,

=
g(kpn)

dh
dx |x=xpn

dx
dk |x=xpn

,

=
g(xpn)

h′(xpn)

dk

dx

∣∣∣
x=xpn

.

(26)

Evaluating the expressions for g(x) and h(x) at x =
xpn gives

Res(A(k), kpn) =
2qxpn(−2ik0xpn)

b2α
2
3 (3x2pn − p csc2 (pxpn))

,

=
−4ik0qx

2
pn

b2α
2
3 (3x2pn − p(1 + cot2 (pxpn)))

,

=
−4i(2α

2
3 )qx2pn

b2α
2
3 (3x2pn − p(1 + x6pn))

,

=
−8iqx2pn

b2(3x2pn − p(1 + x6pn))
.

(27)

Using Cauchy’s Residue theorem the contribution to Es
from the poles along the negative imaginary axis is

Es = −2πi

∞∑
n=1

Res(A(k), kpn) ,

=
8q

b2

∞∑
n=1

x2pne
zk0x

2
pn

p(1 + x6pn)− 3x2pn
.

(28)

Thus, including the contribution from the other two poles
in the negative imaginary half-plane, the total electric
field along the s-axis is given by

Es ≈−
16q

b2

(
1

3
eu cos

(√
3u
)
− ...

− 1

2

8q

b2

∞∑
n=1

x2pne
zk0x

2
pn

p(1 + x6pn)− 3x2pn

)
.

(29)

Whilst the first term is the same as in the infinite wall
case due to the poles at kp = α

2
3 (±
√

3 − i) not moving,
the branch cut integral has now been replaced by an in-
finite sum of the residues of A(k) at every pole along the
imaginary axis.

This makes it difficult to determine the long-range
behaviour of Es in the finite wall case, since we need
to include every term in the sum to obtain an accurate
analytic form of Es.

For the case of p = 1×104 (typical of most real-world
examples), finding an approximate form of the sum is

difficult since the poles are not evenly spaced. As a re-
sult, it is not possible to approximate the entire sum as
an integral using the Midpoint Rule.

However, we can consider the case where p is a much
smaller value, such as p = 10. Figure 6 shows that the
poles of A(x) become approximately evenly spaced after
the first p poles, so we can approximate the sum by writ-
ing out the explicit form of the residue of the first few
poles, then approximating the rest of the sum with the
Midpoint Rule.

The first 10 solutions of x3 + cot (px) = 0 for p = 10
are located at

xp ≈ 0.1575, 0.4824, 0.8387, 1.2047, 1.5443,

1.8698, 2.1896, 2.5069, 2.8230, 3.1384...
(30)

Then, the 11th pole and onwards are located at

xp11 ≈
11π

p
,

xp12 ≈
12π

p
,

xp13 ≈
13π

p
,

(31)

with a spacing

∆x ≈ π

p
. (32)

Suppose we had intervals of width ∆x = π
p starting from

x = 21π
2p ,

23π
2p , ..., which give midpoints of x = 11π

p , 12πp , ...
and so forth. We can write the sum as

∞∑
n=1

x2pne
zk0x

2
pn

p(1 + x6pn)− 3x2pn
≈

10∑
n=1

x2pne
zk0x

2
pn

p(1 + x6pn)− 3x2pn

+

∫ ∞
21π
2p

px2pe
zk0x

2
p

π(p(1 + x6p)− 3x2p)
dxp .

(33)

The electric field is then given by

Es ≈−
16q

b2

(
1

3
eu cos

(√
3u
)
− ...

− 1

2

10∑
n=1

x2pne
zk0x

2
pn

p(1 + x6pn)− 3x2pn
− ...

− 1

2

∫ ∞
21π
2p

px2pe
2ux2

p

π(p(1 + x6p)− 3x2p)
dxp

)
.

(34)
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Figure 7: Long-range electric field in both the infinite
and finite wall case for p = 10

Figure 8: Long-range electric field in both the infinite
and finite wall case for p = 30

Figure 7 shows that, in the finite thickness wall case,
Es transitions from obeying a z

3
2 power law relation to

exponentially decaying as z becomes more negative. This
is different from the infinite wall case, where it obeys a
z

3
2 power law relation for all zα

2
3 < −1, which suggests

that finite thickness walls reduce long-range wake effects
experienced by charged particles, leading to greater beam
stability.

Following the same procedure for p = 30, Figure 8
shows that the point where Es transitions from obeying
a power law to exponential decay occurs at a more nega-
tive z value than for p = 10. This suggests that Es would
begin to exponentially decay at large values of z for the
case where p = 104, meaning that the long-range wake
effects are significantly reduced compared to that of the
infinite wall thickness case.

However, more work is required to determine the
point where this transition occurs for large values of p,
and to determine the accuracy of the integral approxi-
mation to the sum.

3 Impedance

Given that it is difficult to determine the long-range be-
haviour of the wake fields in terms of position, we can
instead examine the Fourier transform of the wake fields,
also known as the impedance, in order to determine their
frequency response.

The longitudinal impedance Z
‖
m(ω) and the trans-

verse impedance Z⊥m(ω) are related to A(k) by

Z
‖
m(ω)

L
=
ω

c

Z⊥m(ω)

L
= − 1

Imc
Am(k) , (35)

where ω = ck, Am(k) is the k-dependent coefficient of Ẽs
caused by the mth moment of the charge, and L is the
length of the beam pipe section that contains the wake
field.

A0(k) is given by Equations 8 and 13,

A0(k) =


2q
b

(
ikb
2 −

λ
k

)−1
, infinite wall,

2q
b

(
ikb
2 −

λ
k

1+e2iλt

1−e2iλt

)−1
, finite wall .

(36)

Solving Maxwell’s equations for the m ≥ 1 moments sim-
ilarly gives expressions for Am(k) when m ≥ 1,

Am(k) =


4Im
b2m+1

(
ikb
m+1 −

λ
k −

im
kb

)−1
,

4Im
b2m+1

(
ikb
m+1 −

λ
k

1+e2iλt

1−e2iλt −
im
kb

)−1
,

(37)

where the upper expression is for the infinite wall case
and the lower expression is for the finite wall case.

In this example, we focus on the m = 0 longitudinal
impedance and the m = 1 transverse impedance since
they are the dominant terms for resistive wall effects.
Solving for the relevant impedances gives

Z
‖
0 (ω)

L
=


2
bc

(
λc
ω −

iωb
2c

)−1
,

2
bc

(
λc
ω

1+e2iλt

1−e2iλt −
iωb
2c

)−1
,

(38)

Z⊥1 (ω)

L
=


4
ωb3

(
λc
ω + ic

ωb −
iωb
2c

)−1
,

4
ωb3

(
λc
ω

1+e2iλt

1−e2iλt + ic
ωb −

iωb
2c

)−1
,

(39)

where the upper expressions are for the infinite wall case,
and the lower expressions are for the finite wall case.

3.1 Skin Depth

In order to get an idea of the frequency range at which
long-range wake effects start to dominate, consider the
frequency and skin depth to which the first pole of A(k)
corresponds.

The skin depth δs of a material is a measure of how
far electromagnetic waves penetrate into the material be-
fore they are attenuated. δs is related to the quantity λ
from Equation 8 by

δs =
1

Im(λ)
=

c√
2πσ|ω|

, (40)

which shows that materials have a larger skin depth for
lower frequency waves.

7
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For δs << t, only a very small difference between
the infinite and finite wall wake field is expected as the
electromagnetic waves will be almost entirely attenuated
by the time they have travelled a distance t through the
wall.

However, when δs ≈ t, a large proportion of the ini-
tial electromagnetic wave will permeate through the fi-
nite pipe wall, potentially leading to decreased long-range
wake effects.

Given a wall thickness of t ≈ 1 mm, conductivity
σ ≈ 1017s−1, and pipe radius b ≈ 5 cm as in Section 2,
the frequency at which δs ≈ t is given by

ω ≈ 1.4× 105 rad s−1 . (41)

Thus, if the first pole of A(k) corresponds to a frequency
of order 105 Hz, we expect the finite thickness of the pipe
walls to have an effect on the long-range wake field.

From Equation 20, the first pole of A(k) occurs at

x ≈ π

2p
, (42)

where p = 1×104 as is the case in most real-world situa-
tions. Using k = −ix2k0 from Equation 16 and |ω| = c|k|
gives

ω ≈ 1.5× 105 rad s−1 . (43)

This corresponds almost perfectly to the frequency
at which skin depth effects become important, suggesting
that wall thickness could have an effect on the long-range
behaviour of the wake fields.

3.2 Longitudinal Impedance

Now that the frequency at which long-range wake effects
start to dominate has been calculated, we can examine
how wall thickness affects the longitudinal and transverse
impedances.

Equation 38 shows that the low frequency behaviour

of Z
‖
0 for a pipe with infinitely thick walls is proportional

to |ω| 12 ,

Z
‖
0 (ω)

L
≈ 1

bc

√
|ω|
2πσ

(1− i) . (44)

Figures 9(a) to (d) shows that the low-frequency
impedance obeys different power laws for the finite and
infinite wall cases.

Figures 9(c) and 9(d) show that, at low frequencies,
the finite wall impedance has a real and imaginary part
proportional to |ω|2 and −|ω| respectively, in comparison

to the infinite wall behaviour of |ω| 12 and −|ω| 12 .
As the frequency increases beyond 105 Hz, the fi-

nite wall impedance tends towards the infinite wall
impedance.

(a) Frequency response of the real part of the
longitudinal impedance

(b) Frequency response of the imaginary part of the
longitudinal impedance

(c) Plot of the real part of the longitudinal impedance (d) Plot of the imaginary part of the longitudinal impedance

Figure 9: Plots of the real and imaginary parts of Z
‖
0
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(a) Frequency response of the real part of the
transverse impedance

(b) Frequency response of the imaginary part of the
transverse impedance

(c) Plot of the real part of the transverse impedance (d) Plot of the imaginary part of the transverse impedance

Figure 10: Plots of the real and imaginary parts of Z⊥1

This corresponds to the skin depth becoming much
smaller than the wall thickness, so that the finite thick-
ness pipe wall is essentially infinitely thick to electromag-
netic radiation.

It can also be seen that, for frequencies ω . 104 Hz,
the total impedance is smaller in the finite wall case, lead-
ing to smaller long-range wake effects than in infinite pipe
walls.

3.3 Transverse Impedance

In the case of the transverse impedance, Equation 39 can
be used to show that the low frequency behaviour of Z⊥1
for a pipe with infinitely thick walls is proportional to
|ω|− 1

2 ,

Z⊥1 (ω)

L
≈ 1

b3

√
2

πσ|ω|
(1− i) . (45)

Figures 10(a) to (d) show that the finite wall case
obeys different power laws to the infinite wall case at low
frequencies, and that the finite wall case tends towards
the infinite wall case as frequency increases, similar to
the longitudinal impedance.

However, in this case, Figures 10(c) and 10(d) show
that the finite wall impedance has a real part propor-
tional to |ω| and a constant imaginary part, in compar-

ison to the infinite wall behaviour of |ω|− 1
2 and −|ω|− 1

2

for the real and imaginary parts respectively.

Once again, the total impedance is smaller in the fi-
nite wall case for frequencies ω . 104 Hz. Though further
work is needed to obtain the relevant wake fields through
inverse Fourier transforming the impedance expressions,
we can see that the long-range, low-frequency wake is re-
duced when a beam pipe with a finite thickness of about
1 mm is used.

4 Conclusion

Using a beam pipe with finite thickness walls results
in the long-range wake fields created by the monopole
charge distribution decaying exponentially, as opposed
to following a |z| 32 power law as in the infinite wall case.
A similar procedure to that used in Section 2.1 could be
used to determine the other field components for higher
charge multipole moments.

For the m = 0 component of Es, the Fourier trans-
form of Es in the finite wall case has no branch cut along
the negative imaginary axis like in the infinite wall case,
but instead has multiple poles along the negative imag-
inary axis. This allows Cauchy’s Residue theorem to be
used to obtain an analytic expression for Es. Whilst
this expression can be approximated for small values of
p, further work is needed to determine a suitable way
of approximating the infinite sum term for the large p
values that typically occur in most linear accelerators.

The low-frequency longitudinal and transverse
impedances of a beam pipe with finite thickness walls

9
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also obey different power laws than for a beam pipe with
infinitely thick walls. For frequencies less than about
104 Hz, both impedances for the finite wall case are
smaller than for the infinite wall case, suggesting that
the long-range wake field from the impedances is also re-
duced. This could be further investigated by examining
the long-range behaviour of the wake field expressions
that are obtained through Inverse Fourier transforming
the impedance.
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A Solving Es in the Infinite Wall
Thickness Case

A.1 Finding Poles and Branch Cuts of
A(k)

Inside the pipe region (r < b, where b is the radius of the
inner region of the pipe),

Ẽs = A , (46)

where

A =
2q

b

(
ikb

2
− λ

k

)−1
,

λ = i

√
−i4πσk

c
.

(47)

The function A has poles when its denominator is
zero,

ikb

2
− λ

k
= 0 ,

or
ikb

2
− i

k

√
−i4πσk

c
= 0 ,

=⇒ ik = − 1

ik

2

b

√
−i4πσk

c
,

=⇒ (−ik)
3
2 = −2

b

√
4πσ

c
,

= −2
√

2α ,

(48)

where α = 1
b

√
2πσ
c . Solving for (−ik),

(−ik)3 = 8α2 ,

= 8α2(e0, e−i2π, ei2π) .

=⇒ (−ik) = 2α
2
3 (e0, e−i

2π
3 , ei

2π
3 ) .

(49)

However, for (−ik) = 2α
2
3 ,

(−ik)
3
2 + 2

√
2α = 2

√
2α+ 2

√
2α 6= 0 . (50)

For (−ik) = 2α
2
3 e±i

2π
3 ,

(−ik)
3
2 + 2

√
2α = 2

√
2αe±iπ + 2

√
2α = 0 . (51)

Thus, the two poles of A are located at

(−ik) = 2α
2
3 ei

2π
3 ,

=⇒ k = 2α
2
3 e−i

5π
6 ,

= α
2
3 (−
√

3− i) ,

(52)

and

(−ik) = 2α
2
3 e−i

2π
3 .

=⇒ k = 2α
2
3 e−i

13π
6 ,

= α
2
3 (
√

3− i) ,

(53)

About the origin, replacing (−ik) with reiθ

ikb

2
+

1

ik

√
−i4πσk

c
=
−breiθ

2
− 1

r
e−iθ

√
4πσ

c
reiθ ,

=
−breiθ

2
− 1√

r
e−i

θ
2

√
4πσ

c
,

=

{
br
2 + b

√
2αi√
r
, θ = π ,

br
2 −

b
√
2αi√
r
, θ = −π .

(54)

This implies that the values of A at θ = ±π are different,
which means that the origin is a branch point and the
branch cut is along the negative imaginary axis.

A.2 Solving the Integral

The electric field Es(z) is obtained by performing the
inverse Fourier transform of A(k),

Es =

∫ ∞
−∞

dk

2π
eikz

2q

b
(
ikb
2 + 1

ik

√
4πσ
c (−ik)

) . (55)

Let (−ik) = s. The Laurent expansion of
(
ikb
2 −

i
k

√
−i 4πσkc

)−1
about s = 2α

2
3 ei

2π
3 = s+,

1

ikb
2 + 1

ik

√
−i 4πσkc

=
−1

sb
2 + 1

s

√
4πσs
c

,

=
−1

s−
1
2

(
b
2s

3
2 +
√

2bα
) ,

=
−s 1

2

b
2 (s+ + (s− s+))

3
2 +
√

2bα
,

≈ s
1
2

√
2bα
(

1 + 3(s−s+)
2s+

+ ...− 1
) ,

≈ 2s
1
2 s+

3
√

2bα(−ik − s+)
,

=
2s

1
2 s+i

3
√

2bα(k − s+i)
.

(56)

Thus, the residue at k = α
2
3 (−
√

3− i) (i.e. at the point

s = s+ = 2α
2
3 ei

2π
3 ) is given by

11



The Effects of a Finite Beam Pipe on Resistive Wall Instabilities CBETA Tech Note 046

Res

(
k = α

2
3 (−
√

3− i)
)

=
2is

3
2
+

3
√

2bα
,

=
2i(−2

√
2α)

3
√

2bα
,

=
−4i

3b
.

(57)

Similarly, the Laurent expansion about the point s =

2α
2
3 ei

−2π
3 = s− is

1

ikb
2 + 1

ik

√
−i 4πσkc

=
2s

1
2 s−i

3
√

2bα(k − s−i)
.

=⇒ Res

(
k = α

2
3 (
√

3− i)
)

=
2is

3
2
−

3
√

2bα
,

=
−4i

3b
.

(58)

Using Cauchy’s residue theorem (since the integration
contour is clockwise, the integral around one of the poles
is (−2πi) times the residue of that pole),

Es = −2πi

(
q

bπ

(−4i

3b
(ezα

2
3 (1−

√
3) + ezα

2
3 (1+

√
3))
))

+ [Branch cut integral] ,

= −16q

3b2
eu cos

(√
3u
)

+ [Branch cut integral] ,

(59)

where u = zα
2
3 .

Transforming coordinates from k to r using (−ik) =
re±iπ,

k = ire±iπ

=⇒ dk = ie±iπdr .
(60)

Performing the branch cut integral and substituting k,

I =

∫ 0

−∞

ieiπ

2π
e−zre

iπ 2q

b
(
b
2

(
r + 2

√
2√
r
αi
))dr

+

∫ ∞
0

ie−iπdr

2π
e−zre

−iπ 2q

b
(
b
2

(
r − 2

√
2√
r
αi
))dr ,

= − 2q

b2π

(
−
∫ ∞
0

iezr
r − 2

√
2√
r
αi

r2 + 8α2

r

dr

+

∫ ∞
0

iezr
r + 2

√
2√
r
αi

r2 + 8α2

r

dr

)
,

= −8
√

2q

b2π

(∫ ∞
0

ezr
αi2

r
5
2 + 8α2√

r

dr

)
.

(61)

Using the substitution r = x2α
2
3 =⇒ dr = 2xα

2
3 dx,

I =
8
√

2q

b2π

(∫ ∞
0

ex
2zα

2
3 α

x5α
5
3 + 8α2

xα
1
3

2xα
2
3 dx

)
,

=
16
√

2q

b2π

(∫ ∞
0

x2eux
2

x6 + 8
dx

)
,

(62)

where u = zα
2
3 as before. Thus, Es is given by

Es = −16q

b2

(
1

3
eu cos

(√
3u
)
−
√

2

π

∫ ∞
0

x2eux
2

x6 + 8
dx

)
.

(63)

Equation 63 gives the behaviour of Es at both small and
large |z|.
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