A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   V   W   Y   Z  

Shanks, J.

Paper Title Page
PST11 CesrTA Low Emittance Tuning 134
 
  • D. Sagan, J. Shanks, Y. Yanay, D. Rubin
    Cornell University - CLASSE
 
  Low emittance tuning and characterization of electron cloud phenomena are central to the CesrTA R&D program. A small vertical emittance is required in order to be sensitive to the emittance diluting effects of the electron cloud. We have developed techniques to systematically and efficiently eliminate optical and alignment errors that are the sources of vertical emittance. Beam based measurements are used to center the beam position monitors with respect to the adjacent quadrupoles, determine the relative gains of the BPM button electrodes, and measure the BPM tilts, thus allowing precision measurement of transverse coupling and vertical dispersion. Low emittance also requires that the tune plane be relatively clear of nonlinear coupling resonances associated with sextupoles. We report on tests of a sextupole distribution designed to minimize resonance driving terms. We also report on efforts to measure sextupole strengths. Our standard low emittance tuning procedure typically yields sub 20pm emittance in one or two iterations. With tuning, we achieve a vertical emittance of ?v ~15 pm at 2.1 GeV.  
PST02 Bunch-By-Bunch Instrumentation Upgrades For CESR, Based On Requirements For The CESR Test Accelerator Research Program 88
 
  • N. Rider, J. Alexander, M. Billing, C. Conolly, N. Eggert, E. Fontes, W. Hopkins, B. Kreis, A. Lyndaker, R. Meller, M. Palmer, D. Peterson, M. Rendina, P. Revesz, D. Rubin, J. Savino, R. Seeley, J. Shanks, C. Strohman
    Cornell University - CLASSE
  • R. Holtzapple
    California Polytechnic State University
  • J. Flanagan
    KEK
 
  The research focus of the CESR Test Accelerator program requires new instrumentation hardware, software and techniques in order to accurately investigate beam dynamics in the presence of electron cloud effects. These new instruments are also required to develop low emittance beam conditions which are key to the success of the damping ring design for the International Linear Collider. This poster will detail some of the architecture and tools which have been developed to support these efforts. Emphasis will be placed on the 4 nS bunch by bunch Beam Position Monitoring system as well as the 4 nS capable X-ray Beam Size Monitor.