A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   R   S   T   V   W   Y   Z  

Strohman, C.

Paper Title Page
MIT01 Electron Cloud Mitigation Investigations at CesrTA 41
 
  • J. Calvey, J. Makita, M. Palmer, R. Schwartz, C. Strohman
    Cornell University - CLASSE
  • S. Calatroni, G. Rumolo
    CERN
  • K. Kanazawa, Y. Suetsugu
    KEK
  • M. Pivi, L. Wang
    SLAC National Accelerator Laboratory
 
  Over the course of the CesrTA program at Cornell, over 30 Retarding Field Analyzers (RFAs) have been installed in the CESR storage ring. These devices, which measure the local electron cloud density and energy distribution, have been deployed in drift, dipole, quadrupole, and wiggler field regions. They can be used to evaluate the efficacy of cloud mitigation techniques in each magnetic field element. Techniques investigated so far include different beam pipe coatings, grooves, and clearing electrodes. This talk will provide an overview of the electron cloud mitigation program at CESR, give a preliminary evaluation of the effectiveness of various mitigation techniques, and discuss methods used to obtain quantitative information about vacuum chamber properties via simulation.  
slides icon Slides  
PST12 In Situ SEY Measurements at CesrTA 140
 
  • J. Kim, J. Conway, S. Greenwald, Y. Li, T. Moore, M. Palmer, V. Medjidzade, D. Asner, C. Strohman
    Cornell University - CLASSE
 
  Measuring secondary electron yields (SEYs) on technical surfaces in accelerator vacuum systems provides essential information for many accelerator R&D projects, such as the ILC Damping Rings, regarding to electron cloud growth and suppression. As a part of CesrTA research program, we developed and deployed SEY in-situ measurement systems. Two such SEY systems were installed to expose samples with direct and scattered synchrotron radiation (SR), and the SEYs of the samples were measured as a function of SR dosages. In this poster, we describe the in-situ SEY measurement systems and the initial results on bare aluminum and TiN-coated aluminum samples.  
PST02 Bunch-By-Bunch Instrumentation Upgrades For CESR, Based On Requirements For The CESR Test Accelerator Research Program 88
 
  • N. Rider, J. Alexander, M. Billing, C. Conolly, N. Eggert, E. Fontes, W. Hopkins, B. Kreis, A. Lyndaker, R. Meller, M. Palmer, D. Peterson, M. Rendina, P. Revesz, D. Rubin, J. Savino, R. Seeley, J. Shanks, C. Strohman
    Cornell University - CLASSE
  • R. Holtzapple
    California Polytechnic State University
  • J. Flanagan
    KEK
 
  The research focus of the CESR Test Accelerator program requires new instrumentation hardware, software and techniques in order to accurately investigate beam dynamics in the presence of electron cloud effects. These new instruments are also required to develop low emittance beam conditions which are key to the success of the damping ring design for the International Linear Collider. This poster will detail some of the architecture and tools which have been developed to support these efforts. Emphasis will be placed on the 4 nS bunch by bunch Beam Position Monitoring system as well as the 4 nS capable X-ray Beam Size Monitor.