Electron Cloud Studies in the Fermilab Main Injector using Microwave Transmission

J. Charles Thangaraj

on behalf of

E-cloud team @ Fermilab (B. Zwaska, C. Tan, N. Eddy,..)

Microwave measurement principle

The wind and the waves are "always" on the side of the ablest navigators

- The phase shift depends on the plasma frequency, which depends on the density.
- The phase shift per unit length is given by

$$\frac{\Delta\phi}{\Delta L} \approx \frac{\omega_p^2}{2c\sqrt{(\omega^2 - \omega_c^2)}}$$

Measurement setup and method

- Three different methods
 - Direct phase shift
 - Sideband spectrum
 - Zero span

Measurement Techniques

- Sideband spectrum
 - Send a carrier wave (1.5 GHz)
 - Any phase modulation, then would show up as a sideband.
 - Sideband $dbc = 20 \log (A/2)$, where A is the amplitude of phase modulation

Zero span

- Set the spectrum analyzer to the expected sideband frequency
- Collect data over the full injector cycle.
- The signal amplitude would show a increase in case of phase modulation

- Direct phase shift
 - "Microwave interferometry"
 - Convert the signal to baseband and record and average out the beam signals over a single machine turn.

Measurement Pickups

- Pickups are optimized to couple to TE₁₁ mode
- Cutoff for the beam pipe just below 1.5 GHz

Measurement Location

- Standard elliptical beam pipe
- At MI40 no magnetic field
- Heliax cable
- We get reflections...

Sideband spectrum measurements

Zero span sideband MI 52 BEND

Zero span sideband MI-40 STRAIGHT

Direct Phase Shift Measurement

Down convert the transmitted microwave to baseband

- Phase shift by 90^o using delay to cancel input.
- Turn-by-turn carrier frequency & phase should remain constant
- Beam harmonics average out after many turns
- Though the direct beam harmonics are large, the are not correlated with the microwave carrier and so average in time domain

Direct Phase Shift Results

New e-cloud test lattice

- Round beam pipe
- Short distance (1 m) for propagation
- Comparison with other diagnostics (RFAs)
- Cutoff frequency 1.2 GHz
- The ends of the beam pipe are elliptical and so reflection. a CAVITY!

Resonant BPM

- Immune to reflections
- Carrier frequency just below the cutoff for the trapped mode

Resonant BPM response

Resonant BPM measurements MI 521

 No phase modulation observed

FNAL reflection method

(C. Tan Tech Note FERMILAB)

Transmission with and without absorbers

Sideband spectrum measurements MI 521

Zero span sideband MI 521

Laser detection of e-cloud: My two cents

- · Can we use a laser to measure e-cloud?
 - Challenge: very small phase shift Solution : Cavity type interferometry

- Could be sent through a dipole for measuring polarization changes?
- Could also be used to construct spatial profile

Summary

- Evidence of e-cloud at different locations established by three different methods
- Challenges remain: Non-homogenous e-cloud, magnetic fields, reflections
- We plan to redo the resonant BPM technique and start on a small scale testing new detection of e-clouds

Thank you

•

Status of Microwave Measurements in the Main Injector

Nathan Eddy EC Meeting Oct 22, 2009

Microwave Transmission Theory

May 6, 2009

Measurement Setup

- Made three different measurements of the phase shift
 - Measure sideband spectrum of 1.5GHz carrier with SA
 - For phase modulation of amplitude β , sideband dbc = $20\log(\beta/2)$
 - Measure 1st sideband over a full MI ramp (800ms) in zero span mode with SA
 - Mix down to baseband and record IF with deep memory scope (10MHz BW)
- Pickup connections to optimize coupling to TE₁₁ mode
 - Measure -20db transmission for two pickups and 15m of beam pipe
 - Cutoff for beam pipe is just below 1.5GHz

Previous Measurement Locations

- At MI60 Bend Region able to use spare Heliax cable
- At MI40 Straight Region have to use RG8 bpm cable
 - See an addition 20db of attenuation on transmitted signal
 - Appear to get coupling between the cables
 - Put the 40db drive amplifier in the tunnel at this location

New Dedicated Pickups

- Dedicated BPMs installed at MI52 Bend and MI40 Straight
 - Standard elliptical beam pipe and pickups
 - Completely field free at MI40 straight
- Good quality heliax cable pulled for each BPM
 - Expect improved sensitivity for MI40 Straight

Nathan Eddy

Zero Span Sideband in Dipole

MI60 was measured from 532 to 601, MI52 from 518 to 519 Drastically different response is not understood

> Beam Conditions or Location Dependency (Lattice) Propose remeasuring MI60 if possible

Zero Span Sideband in Straight

MI40 Now

MI40 Before

Difference due to improved signal from better cables See roughly same behavior

Direct Phase Shift Measurement

- Mix the transmitted microwave signal to baseband
 - Use the delay to effect 90° phase shift (zero DC offset)
 - Theoritically, should only see PM modulation as AM cancels
- Scope aquires from 2ms to 20ms sampling at either 500MS/s or 100MS/s respectively
 - Expect eCloud induced phase shift to be the same each turn
 - The beam harmonics behave as noise which averages away
 - Use 100 turn average at MI60 and 1700 turns at MI40
 - Size of the beam harmonics impacts the dynamic range

Direct Phase Shift Results

Need to calibrate response for current measurements mV/mRad good to ~3

Again see reasonable agreement

Coated Pipe/RFA Comparison

- Three Large Aperture BPMs have been installed around 1m long test pipes at MI-521
 - Cutoff for the 6" round pipe is just below 1.2GHz
 - As measured phase shift is proportional to length > -23db sensitivity
- Will provide direct comparison with RFA
 - Expect to be very useful in understanding $\Delta \phi \implies e$ density

May 6, 2009

Initial Response at 521

Initially saw response during first beam (~20e10) Have not seen any signal since > 30e10 Resonant measurement?

Summary

- Demodulate transmitted signal to separate PM & AM
 - Verified we are observing Phase Modulation
 - Verified expectation of no Amplitude Modulation
- Current response in MI52 dipole is not understood
 Would be nice to remeasure at MI60
- Results from MI40 straight are as expected
- Calibrate phase shift to electron density
 - Comparison with RFA measurements
 - Comparison with simulation results

Sideband Spectrum Measurement

Direct Phase Shift Results

10/22/09

Nathan Eddy

Simple Model for Transmission

From plasma physics, expect a microwave travelling down a waveguide to experience a phase shift due to a homogeneous plasma From the microwave dispersion relation

$$k^{2} = \frac{\omega^{2} - \omega_{c}^{2} - \omega_{p}^{2}}{c^{2}} \longrightarrow \frac{\Delta \phi}{l} = \frac{\omega_{p}^{2}}{2c\sqrt{\omega^{2} - \omega_{c}^{2}}}$$

For an electron clou $\phi_p^2 = 4\pi \rho_e r_e c^2$

is proportional to e density

Phase Modulation Measurement

=> Dbc - db wrt carrier is proportional to pm amplitude

MI40 S21 Measurements

Beam measurements on 9/24/09 show opposite change!

see +3db change on carrier transmission at 1.547871GHz Found N-connector upstairs misthreaded - fixing did not change response perhaps was effecting earlier measurements? Any changes to beamline in this region? Perhaps beam valve was closed in August? -> remeasure with valve closed Do not see any change at MI52...

Are Reflections an Issue?

- Attempted to look at step/pulse response but very difficult to interpret without very fast/short pulse
- Structure of S21 measurement suggests complicated system
 - Do not expect observed structure from simple waveguide and bpm response
- Idea to look at PM measurements at different frequencies

PM Measurements

Change of 13db or about a factor of 4 in phase shift Concrete evidence we do not have simple transmission

Oversimplified Examples

No Interference

Constructive

Destructive

Measurement of ecloud Development in the Fermilab MI using Microwave Transmission

Nathan Eddy, Jim Crisp, Ioanis Kourbanis, Kiyomi Seiya, Bob Zwaska, FNAL Stefano De Santis, LBNL

Fermilab Main Injector

May 6, 2009

Microwave Transmission

From plasma physics, expect a microwave travelling down a waveguide to experience a phase shift due to a homogeneous plasma From the microwave dispersion relation

$$k^{2} = \frac{\omega^{2} - \omega_{c}^{2} - \omega_{p}^{2}}{c^{2}} \longrightarrow \frac{\Delta \phi}{l} = \frac{\omega_{p}^{2}}{2c\sqrt{\omega^{2} - \omega_{c}^{2}}}$$

For an electron cloud $\omega_p^2 = 4\pi\rho_e r_e c^2$ is proportional to *e* density

May 6, 2009

Measurement Setup

- Made three different measurements of the phase shift
 - Measure sideband spectrum of 1.5GHz carrier with SA, for Phase Modulation

$$e(t) \approx A \left| \cos \omega_c t + \frac{\beta}{2} \cos((\omega_c + \omega_m)t + \phi_m) - \frac{\beta}{2} \cos((\omega_c - \omega_m)t - \phi_m) \right|$$

- Where β is the phase modulation amplitude, sideband dbc = $20\log(\beta/2)$
- Measure 1st sideband over a full MI ramp (800ms) in zero span mode with SA
- Mix down to baseband and record IF with deep memory scope (10MHz BW)
- Pickup connections to optimize coupling to TE₁₁ mode
 - Measure -20db transmission for two pickups and 15m of beam pipe
 - Cutoff for beam pipe is just below 1.5GHz

May 6, 2009

Measurement Locations

- Necessary to access MI Tunnel to reconfigure bpms
 - Bpms no longer available for operation
 - Can be months between MI access opportunities
 - Severely limits which bpms are available
- At MI60 Bend Region able to use spare Heliax cable
- At MI40 Straight Region have to use RG8 bpm cable
 - See an addition 20db of attenuation on transmitted signal
 - Appear to get coupling between the cables
 - Put the 40db drive amplifier in the tunnel at this location

Sideband Spectrum

Zero Span Sideband

MI60 Bend -40 10 Turns 8 Turns 6 Turns -50 Transition 4 Turns Beam Only -60 -70 Bunch Rotation -80 Signal (dbm) -90 -100 -110 Ramp Start -120 -130 -140 L 0 100 200 800 300 400 500 600 700 Time (ms) - Trigger 750ms after \$2E

May 6, 2009

Nathan Eddy

Zero Span Sideband

51

Direct Phase Shift Technique

- Mix the transmitted microwave signal to baseband
 - Use the delay to effect 90° phase shift (zero DC offset)
 - Theoritically, should only see PM modulation as AM cancels
- Scope aquires from 2ms to 20ms sampling at either 500MS/s or 100MS/s respectively
 - Expect eCloud induced phase shift to be the same each turn
 - The beam harmonics behave as noise which averages away
 - Use 100 turn average at MI60 and 1700 turns at MI40
 - Size of the beam harmonics impacts the dynamic range

Direct Phase Shift Results

May 6, 2009

Summary and Plans

- To calculate the eCloud density is difficult
 - Non-homogeneous plasma, magnetic fields, possible reflections
 - Efforts underway to simulate the microwave transmission
 - See TH5PFP019 and FR5PFP089
- Right now, have very interesting measurements of microwave phase shifts under a variety of beam intensities
 - Strong evidence that these are eCloud induced
 - Use demodulation to uniquely identify PM and AM
- The end goal is to see good agreement between measurements and simulation for current MI intensities
 - Must rely upon simulation to predict what measures are needed to mitigate the eCloud for Project \boldsymbol{X}
 - The direct phase shift in the time domain can be directly compared with the simulation of a single machine turn
 - See TH5PFP032
- During the upcoming summer shutdown, a dedicated system will be installed
 - 2 pickups in dipole bend, 3 pickups in ~2m straight where two 1m coated beam pipes are being installed along with absorbers
 - Facilitate ease of measurements
 - Implement dedicated digital receiver measure only PM, improve S/N

Backup Slides

$$\begin{split} e(t) &= A\cos(\omega_{c}t + \beta\sin(\omega_{m}t + \phi_{m})) \\ e(t) &\approx A \bigg[\cos\omega_{c}t + \frac{\beta}{2}\cos((\omega_{c} + \omega_{m})t + \phi_{m}) - \frac{\beta}{2}\cos((\omega_{c} - \omega_{m})t - \phi_{m}) \bigg] \\ RF &= e(t) \quad LO = \cos(\omega_{c}t + \phi_{L}) \\ neglect \ 2\omega_{c} \ terms \\ IF &= RF \ x \ LO = \frac{A}{2} \bigg[\cos(\phi_{L}) + \frac{\beta}{2}\cos(\omega_{m}t + \phi_{m} - \phi_{L}) - \frac{\beta}{2}\cos(\omega_{m}t + \phi_{m} + \phi_{L}) \bigg] \\ &= \frac{A}{2} [\cos(\phi_{L}) + \beta\sin(\phi_{L})\sin(\omega_{m}t + \phi_{m})] \end{split}$$

May 6, 2009

Full Transmission Response

