

TE Wave Measurements at Cesr-TA

S. De Santis, J. Sikora

- TE wave transmission method.
- Quantitative evaluation of ECD from TE Wave, SPU data.
- Clearing solenoid NEG chamber (TE wave and SPU).
- TE wave resonance in a dipole magnet.
- Reflections and standing waves in the beampipe.
- TE wave resonant method.

Conceptually a simple method: Changes in the wave propagation caused by the electron cloud appear as a phase modulation (requires gap). Modulation depth proportional to ECD. The devil is in the details...

For example: Reference sidebands for dynamic correction of dispersion

From Sidebands Amplitude to ECD

We carefully measure the relative amplitude of the modulation sidebands and estimate the modulation depth:

From SPU Voltage to ECD

We have shielded pickups in the machine and there are formulas for estimating the ECD from those devices too:

geometric factor "how much SPU area per beampipe unit length"

Notable approximation: at passage of each bunch <u>all electrons collide with the</u> <u>pipe</u>. Also, it assumes infinitely thin RF shield (i.e. <u>does not depend on the</u> <u>electrons angle of incidence</u>)

TE wave and SPU Measurements in L3 m BERKELEY **SPU** NEG 49 48E 20 -60 -L3 SPU (e+, 5.3 GeV, 14 ns spacing) SPU UPPER SIDEBAND (e+, 5.3 GeV, 14 ns spacing) TE 10 -70 20 bunch train 2 mA/b 3 mA/b Ω 4 mA/b

The estimate based on SPU data is about ten times lower

A Possible Reason for SPU/TE Difference

We know that electrons remain in the pipe after the bunch passage (SPU data). This effect should become smaller with longer trains.

Electrons released from beampipe centre after train ends

"Uncaptured" electrons still there after >140 ns, and plenty of them!

...Another One

Which portion of the beampipe are we really measuring with the TE wave ?

- The BPMs used to transmit and receive the wave are non-directional.

- The beampipe is not a circular waveguide: Lots of junk, multiple riflections.

More about this later

No effect on either TE wave and SPU signal ! Is NEG coating working so well that secondary electrons are virtually eliminated ?

- Betatron resonance is a resonance between the beam's EM field and the magnetic field by means of the electron cloud. This is not it !

- The TE wave resonance is between the TE wave EM field and the magnetic field by means of the electron cloud. <u>Does not depend on the beam parameters</u>

The many Faces of the TE Resonance

BERKELEY LAB

Dependence from frequency, polarization, direction of propagation (?)

TE Resonance (cont.) cccc -33.0 - -60 What we are observing is -33.2 not phase, but amplitude - -70 Lower Sideband (dBm) modulation ! Carrier (dBm) -33.4 -80 -33.6 -90 -33.8 **CARRIER** -34.0 -100 -37.0 -600 620 640 660 680 700 720 740 760 CARRIER ATTENUATION (e+, 5.3 GeV, 45 bunch train, 1 mA/b, 14 ns) Chicane Field (G) -37.2 Carrier Power (dBm) -37.4 -...which depends on the carrier power and direction 0 dBm -37.6 --6 dBm (+1.3 dB) -12 dBm (+6.9 dB) everse (+0.5 dB of propagation of the wave -37.8 -**1 G/STEP** -38.0 -600 800 1000 200 400 0 Time (s) AWRENCE BERKELEY NATIONAL ABORA

S. De Santis

ecloud '10

TE Resonance As Seen By Joe's RFA

(Data courtesy of J. Calvey)

wide resonance

Only the AI chamber RFA shows this effect: the TE resonance is localized in that element.

The narrow resonance, but not the wide one, can change the EC distribution with 1 W of power.

narrow resonance

Chicane dipole me

More TE Resonance Properties

- Why is the narrow resonance so narrow ? There are plenty of magnetic field values.

- Propagating the wave from 49 to CHIC, or to 48W does not make any difference.

- We can still see the resonance when propagating the way to 48E, even if nominally the wave is not going through the chicane anymore ! Chicane dipole measurements (M. Pivi)

AWRENCE BERKELEY NATIONAL LABORATORY

Carrier (dBm)

But we are measuring this

The complex EM environment of the Cesr-TA vacuum chamber has created a stationary wave at certain frequencies, with its maximum inside the Al-chambered dipole.

In general, these complicated wave patterns can affect TE wave propagation measurements. What can we do about that ?

The K. Hammond's Report

BERKELEY LAB

This Summer, K. Hammond, J. Sikora, K. Sonnad and S. Veitzer have studied the problem: Knowledge of the actual EM field inside the beampipe would allow to correct the measurements (posters, this workshop).

Directional Coupling of the TE Wave

Mini phased array can provide directionality in transmission and reception of the TE wave. At typical cuoff frequencies $1.5 \div 2$ GHz even multiple antennas would require a foot, or less.

Do Not Transmit the Wave: the TE Resonant Method

The wave is excited slightly below cutoff so that there is no propagation, but only exponential attenuation, effectively obtaining a resonator. Selecting the frequency changes the resonator dimensions. Distant and unwanted parts of the accelerator do not affect the measurement.

Example: Wiggler Ramp

Resonant detectors can shed light on where the electron cloud is with higher precision

- Although having a simple formulation, the practical application of the TE Wave method is not straightforward.
- Comparisons with other quantitative methods can help in validating assumptions and "fudge factors".
- Reflections and standing waves can greatly affect measurements in a number of cases.
- Several strategies are possible for improving the method robustness in such cases.