The Ecloud Measurement Setup in the Main Injector

C.Y. Tan, M. Backfish, R. Zwaska 11 Oct 2010 Ecloud Workshop 2010

FILE: ecloud.odp / Oct 10, 2010 / Page 1 cytan@fnal.gov

Overview

The FNAL complex and Setup at MI-52 The detectors RFA design and performance **Magnetic probes BPMs used for Microwave measurements Experimental results** Comparing TiN, aC and Steel **Energy spectrum Conditioning characteristics** Possible problems with aC

FILE: ecloud.odp / Oct 10, 2010 / Page 2 cytan@fnal.gov

The Complex

E OI

Fermilab,

P.O. Box 500

Batavia, IL 60510

Milis ~ 2 mile ring. Injection energy: 8GeV Extraction energy: 120GeV for experiments and pbar production. 150GeV for Tevatron injection.

Highest intensity beam is for NuMI experiment ~40e12 per spill (11 batch slip stacking)

Ecloud experimental setup is at MI-52.

FILE: ecloud.odp / Oct 10, 2010 / Page 3 cytan@fnal.gov

Measurement Setup

Fermilab, P.O. Box 500 Batavia, IL 60510

FILE: ecloud.odp / Oct 10, 2010 / Page 4 cytan@fnal.gov

The Detectors

3 FNAL style 1 ANL style 2 magnetic probes Designed to be non directional 3 sets of BPMs for RF measurements Traveling and resonant method Absorbers to attenuate RF outside the measurement setup. Removed when aC beampipe was installed.

FILE: ecloud.odp / Oct 10, 2010 / Page 5 cytan@fnal.gov

FNAL RFA

Engineering design: K. Duel

Designed using SIMION
Surface area larger than ANL RFA by 1.8x
Better focusing

Captures +/- 10° cone w.r.t. axis of symmetry.
1 grid compared to 2 grids

Every grid reduces capture by about 20%. (25 lines/inch).

•Cup rather than flat capture surface.

•Empirical evidence shows that FNAL RFA is 3x more sensitive than ANL RFA.

For optimum performance, RFA is coupled to dedicated high gain amplifier.

FILE: ecloud.odp / Oct 10, 2010 / Page 6 cytan@fnal.gov

RFA Electronics

P.O. Box 500

Batavia, IL 60510

High gain electronics connected directly to the RFA to reduce noise.

Designed so that amplifier can be bypassed if necessary.

RAD hard opamp (HS-5104ARH)

Electronic ground is isolated from beam pipe ground to reduce beam noise.

FILE: ecloud.odp / Oct 10, 2010 / Page 7 cytan@fnal.gov

Frequency Response

FILE: ecloud.odp / Oct 10, 2010 / Page 8 cytan@fnal.gov

Time Domain Response

FILE: ecloud.odp / Oct 10, 2010 / Page 9 cytan@fnal.gov

Electron Beam Test

FILE: ecloud.odp / Oct 10, 2010 / Page 10 cytan@fnal.gov

Typical Signals (with amps on)

FILE: ecloud.odp / Oct 10, 2010 / Page 11 cytan@fnal.gov

Magnetic Probes

Fermilab,

P.O. Box 500

Batavia, IL 60510

Probes axis independent
 Magnetic probe is based on MFS3A
 Differential outputs to reduce noise from ramp.
 Calibrated on bench with Helmholtz coil and
 Lakeshore Hall probe.

Magnetic Field Affects Ecloud Collection

Depending on the direction of the B-field, collection efficiency is affected. (Simulation by L. McCuller)

FILE: ecloud.odp / Oct 10, 2010 / Page 13 cytan@fnal.gov

Mu Metal shield

FILE: ecloud.odp / Oct 10, 2010 / Page 14 cytan@fnal.gov

Small change at the end of the ramp

P.O. Box 500

Batavia, IL 60510

FILE: ecloud.odp / Oct 10, 2010 / Page 15 cytan@fnal.gov

Microwave Setup

FILE: ecloud.odp / Oct 10, 2010 / Page 16 cytan@fnal.gov

Experimental Results (M. Backfish)

FILE: ecloud.odp / Oct 10, 2010 / Page 17 cytan@fnal.gov

Comparing TiN, aC and Steel

Batavia, IL 60510

cytan@fnal.gov

Zoomed in view on Steel (old data)

P.O. Box 500

Batavia, IL 60510

FILE: ecloud.odp / Oct 10, 2010 / Page 19 cytan@fnal.gov

Time Evolution

P.O. Box 500

Batavia, IL 60510

FILE: ecloud.odp / Oct 10, 2010 / Page 20 cytan@fnal.gov

How Evolution is tracked

Fermilab, P.O. Box 500 Batavia, IL 60510

FILE: ecloud.odp / Oct 10, 2010 / Page 21 cytan@fnal.gov

Conditioning of TiN and Steel

Conditioning of TiN and Steel

Conditioning of aC and Steel

X0 vs Absorbed Electrons

8/23/2010 to 9/17/2010

Comparing TiN, aC and Steel

Vacuum Leak closest to CLOUD3

FILE: ecloud.odp / Oct 10, 2010 / Page 27 cytan@fnal.gov

Time Evolution of X0 Value

Energy Spectra

Conclusion

- FAs have performed very well for about 1.25 years RFAs have been very well characterised on the bench and in simulations. RAD hard parts may not have been necessary. Magnetic probes installed this shutdown. Still working after about 3 months. Microwave method needs more understanding. Data from TiN, aC and Steel still being analyzed Preliminary results show that TiN and aC are comparable in performance
 - aC may not be very robust.

FILE: ecloud.odp / Oct 10, 2010 / Page 30 cytan@fnal.gov