

COLDDIAG: a cold vacuum chamber for diagnostics

Stefan Gerstl

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsluhe Intitute of Technology

KIT – University of the State of Baden-Wuerttemberg and National Research Center of the Helmholtz Association

www.kit.edu

In collaboration with...

T. Baumbach, S. Casalbuoni, A. W. Grau, M. Hagelstein, D. Saez de Jauregui, *Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany,*

- C. Boffo, G. Sikler, BNG, Würzburg, Germany,
- V. Baglin, CERN, Geneva, Switzerland,
- M. P. Cox, J. C. Schouten, Diamond, Oxfordshire, England,
- R. Cimino, M. Commisso, B. Spataro, INFN/LNF, Frascati, Italy,
- A. Mostacci, Rome University 'La Sapienza', Rome, Italy,
- E. J. Wallén, MAX-lab, Lund, Sweden,
- R. Weigel, Max-Planck Institute for Metal Research, Stuttgart, Germany,
- J. Clarke, D. Scott, STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, England,
- T. W. Bradshaw, STFC/RAL, Chilton, Didcot, Oxon, England
- R. M. Jones, I. R. R. Shinton, University Manchester, Manchester, England

Outline:

- Motivation
- Possible Beam Heat Load Sources
- Cryogenics and Vacuum Design
- Instrumentation
- Planned Measurements
- Summary

Motivation

- Since 2005 superconducting Undulator SCU14 installed at ANKA
- → Higher beam heat load then expected
- \rightarrow Reduced max. current/field
- Known heat intake of the beam
- → Crucial for cryogenic design of superconducting insertion devices

Cold vacuum chamber to measure the beam heat load is needed!

The diagnostics will include measurements of the heat load, the pressure, the gas composition, and the electron flux of the electrons bombarding the wall.

Possible Beam Heat Load Sources

Synchrotron	From upstream bending magnet:	I = stored average
Radiation	$P_{\text{Synchrotron}} \propto I \cdot f(geometry, energy)$	beam current

Image currents on the cold surface: **Resistive Wall** $P_{\text{Resistive wall}} \propto I^2 \cdot f(\text{geometry}, \text{filling pattern}, \text{bunch length})$

 $P_{\text{RE}} \propto I^2 \cdot f(\text{geometry}, \text{filling pattern}, \text{bunch length})$ **RF-effects**

e⁻ and/or ion bombardement

Heating

 ΔW = energy increase of one electron due to the kick by a bunch N = electrons hitting the wall per sec

E. Wallèn, G. LeBlanc, Cryogenics 44, 879 (2004)

S. Casalbuoni. et al., Phys. Rev. ST Accel. Beams 10, 093202 (2007)

Calculated Beam Heat Load due to RF effects

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Photo and CAD models courtesy of

Babcock Noell GmbH

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

UHV vacuum:

- Beam pipe, Liner
- Pressure gauges
- Temperature sensors
- Mass Spectrometer
- Calibration heaters

Isolation vacuum:

- Multilayer Insulation
- Solenoid
- Heater at the Cryocooler cold stage

- 300 Connection to 300 K 50 I Cryocooler Section Cold Section Solenoid Varm Section Beam Vacuum (UHV) HABCOCK NUEL
- Cold liner section
 between two warm sections
- \rightarrow to compare beam heat load
- High purity copper liner
- → homogeneous temperature profile
- 30µm copper plating
- \rightarrow to simulate liner of SCUs at ANKA
- Gaps and steps <10µm in the cold section
- → to minimize contribution of the RF effects to the beam heat load

11 Ecloud'10 Stefan Gerstl

Cryogenics and Vacuum Design – Thermal Budget

	Cold Mass (worst case	Cold Mass (with thermal contact conduction	Thermal Shield n)
Radiation [W] 0.2	0.2	12
Conductance	e [W] 5.6	1.2	36
Sum [W] 5.8	1.4	48
Cooling Pov	wer 6W@~7I	K 1.5 W @4.2 K	50W @ 60 K
12 Ecloud'10 Stel	an Gerstl	Institute for Sync Karsruhe Institut	chrotron Radiation, ISS, Campus Nord, te of Technology

Instrumentation:

Cryocooler Cold Stage:

• Main Heater

Liner:

- Temperature sensors
- Heaters for calibration

All Pumping Ports:

- Residual Gas Analyzer
- Penning Pressure Gauge
- Retarding Field Analyzer

Cold Pumping Port:

- Additional Extractor Gauge
- Valve for Gas injection

13 Ecloud'10 Stefan Gerstl

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Instrumentation - Temperature Sensors mounting Positions:

Instrumentation – Pressure Gauges and Residual gas analysers

- MKS Penning Gauge: lowest pressure reading ~ 1 x 10⁻¹⁰ mbar
- Leybold Extractorgauge: lowest pressure reading ~ 1 x 10⁻¹² mbar

- MKS Satellite LM61
- Farady cup
- 300 amu triple filter

Parts are provided by STFC

Instrumentation - Calibration of Diagnostics from STFC:

Calibration Setup at CERN

Many thanks to: Vincent Baglin, Giuseppe Bregliozzi, Julien Finelle, ...

16 Ecloud'10 Stefan Gerstl

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Instrumentation - Calibration of Diagnostics from STFC:

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

0.01 9.0E-03 Solenoid 8.0E-03 7.0E-03 6.0E-03 5.0E-03 4.0E-03 Thermal insulation n___ 3.0E-03 2.0E-03 1.0E-03 X coord -300.0 -180.0 -60,0 60.0 180.0 300.0 V coord 0.0 0.0 0.0 Z coord 0.0 0.0 0.0 Z coord 0.0 0.0 0.0 Component: BMOD, from buffer: Line, Integral = 2.02294106335682 Y coord 0.0 Z coord 0.0 0.0 0.0 Maximum magnetic field is limited by the heat intake of the solonoid: -> 5 mT - 10mT

18 Ecloud'10 Stefan Gerstl

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Instrumentation - Solenoid

Instrumentation - Warm Diagnostic Port

19 Ecloud¹⁰ Stefan Gerstl Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Instrumentation - Retarding Field Analyzer

Macor isolation plate

Grid

20 Ecloud'10 Stefan Gerstl

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Retarding Field Analyser – Measurements at ANKA

21

Karsruhe Institute of Technology

Retarding Field Analyser

Spectrum of a 0.2mm diameter tungsten filament

Instrumentation - Gas Injection procedure:

- Warm up of the cold liner to 150 K
- \rightarrow to "clean"
- Start gas injection (H_2, CO, CO_2, CH_4)
- Adjust leak rate to needed partial pressure for deposition of ~ 1 Monolayer
- Start cool down
- Stop gas injection, when liner starts to cryopump (fast pressure decrease)
- Cool down to 4 K

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Planned Measurements:

Monitoring of the temperature, electron flux, gas composition and pressure in parasitic mode and in machine physics time with different:

- Average beam current from 0 to 300mA
- \rightarrow Influence of resistive wall heating and synchrotron radiation
- Bunch length at fixed average beam current
- \rightarrow Influence of resistive wall heating
- Filling pattern
- \rightarrow Relevance of the electron cloud as heating mechanism
- Beam Position
- \rightarrow Simulation of different gaps and influence of synchrotron radiation
- Injected Gases
- \rightarrow Influence of the cryosorbed gas layer

Summary:

- A cold vacuum chamber for diagnostics to measure the beam heat load in an accelerator is currently under construction
- The instrumentation will allow to monitor the
 - Pressure
 - Gas composition
 - Electron flux onto the beam tube
 - Temperature / Beam Heat Load
- A first installation at the Diamond Light Source is planned for June 2011

Thank you for your attention!

Instrumentation - Main Heater:

Instrumentation - Heater:

Sapphire plate:	stainless steel wire diameter [mm]	0.2	0.1
• 1mm x 12mm x 122mm	Length [mm]	3 x 120	3 x 120
	Resistance [Ω] @ 4K	5.4	21.3
Macor plate: • 3mm x 10mm x 120mm	Operating current max. [A]	1.0	0.75
	Voltage [V]	5.4	21.3
	Dissipated Power [W]	5.4	12

- Cold section:
 - 4 Heater
 - Total Power ~ 21 W 48 W
- Warm section:
 - 1 Heater
 - Power 5.4 W 12 W

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Karsruhe Institute of Technology

Precision of Beam Heat Load Measurement

From SCU14 minimum beam heat load measurable ~0.05W, with COLDDIAG can be determined after factory acceptance test

Gas injection:

Gas dosing valve

VSE vacuum high precision all metal leakvalve

LEAKDIAGRAM:

In the range of turn 0 - 3 the diaphragm 10^{-0} does not touch the valve seat. Due to physical reasons, control between 10 E-9 10^{-3} und 10 E-10 is not possible, if used at room temperature (red range in the diagram). In this case the valve is tight 10^{-6} approx at turn 9 to 10. Control in this range is possible if the valve is heated. 10^{-9}

Maximum throughput: 60 mbar.l/s

Subject to change

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

mbar.Vs

Gas injection:

Stefan Gerstl Ecloud¹⁰ 34

1. 2.

3.

4.

5.

6.

7.

8.

9.

Institute for Synchrotron Radiation, ISS, Campus Nord, Karsruhe Institute of Technology

Gas injection:

Flush injection line

(need to be checked if necessary)

- 1. Starting condition: V1, V2, V3, V4 closed, V5 open, pumps off
- 2. Open V2, check V1
- 3. Access to tunnel needed till step 9 (max. 1 hour)
- 4. Close V5, change bottle
- 5. Switch on pumps
- 6. Open V3 to evacuate injection line
- 7. Close V3 / open V5
- 8. Repeat steps 6 and 7 to clean injection line
- 9. Close V3, switch off pumps
- 10. Close V2 remotely

Inject gas:

- 1. Starting condition: V1, V2, V3, V4 closed, V5 open, pumps off
- 2. Open V2
- 3. Inject gas with remote leak valve V1