Electron cloud instability in low emittance rings

H. Jin (Postech), K. Ohmi (KEK) ECLOUD'10@Cornell Oct. 8-12, 2010

Introduction

- Fast head-tail instability in CesrTA and SuperKEKB.
- Multibunch instability

Coherent strong head-tail instability

- Coherent motion between inner bunch and electron cloud.
- Electrons oscillate electric force inner bunch along z, $\omega_e = \sqrt{\frac{\lambda_p r_e c^2}{\sigma_v (\sigma_r + \sigma_v)}}$
- The instability is characterized by $\omega_e \sigma_z/c$, number of electron oscillation along the bunch.

Threshold of the strong head-tail instability (Balance of growth and Landau damping)

• Stability condition for $\int_{e} \int_{z} c > 1$ $\omega_{e} = \sqrt{\frac{\lambda_{p} r_{e} c^{2}}{\sigma (\sigma + \sigma)}}$

$$U = \frac{\sqrt{3}\lambda_{p}r_{0}\beta}{v_{s}\gamma \omega_{e}\sigma_{z}/c} \frac{\left|Z_{\perp}(\omega_{e})\right|}{Z_{0}} = \frac{\sqrt{3}\lambda_{p}r_{0}\beta}{v_{s}\gamma \omega_{e}\sigma_{z}/c} \frac{KQ}{4\pi} \frac{\lambda_{e}}{\lambda_{p}} \frac{L}{\sigma_{y}(\sigma_{x}+\sigma_{y})} = 1$$

• Since $\lambda_{e} = L_{e}/2 \Box \int_{x} \int_{yy}$

$$\rho_{e,th} = \frac{2\gamma v_s \,\omega_e \sigma_z / c}{\sqrt{3} K Q r_0 \beta L}$$

Origin of Landau damping is momentum compaction

$$v_s \sigma_z = \alpha \sigma_\delta L$$

- Q=min(Q_{nl}, $\int_{e} \int_{z}/c$)
- Q_{nl}=5-10?, depending on the nonlinear interaction.
- K characterizes cloud size effect and pinching.
- $\int_{e} \int_{z} /c^{2}$ for damping rings.
- We use $K = \int_{e} \int_{z} /c$ and $Q_{nl} = 7$ for analytical estimation.

Parameters

Table 1: Basic parameters of existing positron rings and ILC damping ring

		KEKB	PEP-II	Cesr-TA/5	Cesr-TA/2	ILC-DR	SuperKEKB
Circumference	<i>L</i> (m)	3,016	2,200	768	768	6,414	3016
Energy	E	3.5	3.1	5.0	2.1	5.0	4.0
Bunch population	$N_{+}(10^{10})$	8	8	2	2	2	9
Beam current	<i>I</i> ₊ (A)	1.7	3.0	-	-	0.4	3.6
Emittance	$\varepsilon_x(nm)$	18	48	40	2.6	0.5	2
Momentum compaction	$\alpha(10^{-4})$	3.4		62.0	67.6	4.2	3.5
Bunch length	$\sigma_z(\text{mm})$	6	12	15.7	12.2	6	6
RMS energy spread	$\sigma_E / E(10^{-3})$	0.73		0.94	0.80	1.28	0.8
Synchrotron tune	ν_s	0.025	0.025	0.0454	0.055	0.067	0.0256
Damping time	$ au_x$	40	40		56.4	26	43

Table 2: Threshold of the ILC damping ring and other rings

		KEKB ¹	KEKB ²	PEP-II	CesrTA-5	CesrTA-2	ILC-DR	SuperKEKB
Bunch population	$N_{+}(10^{10})$	3	8	8	2	2	2	9
Beam current	$I_{+}(A)$	0.5	1.7	3.0	-	-	0.4	3.6
Bunch spacing	$\ell_{sp}(ns)$	8	7	4	4	4	6	4
Electron frequency	$\omega_e/2\pi$ (GHz)	28	40	15	9.6	43	100	189
Phase angle	$\omega_e \sigma_z/c$	3.6	5.9	3.7	3.2	11.0	12.6	23.8
Threshold	$\rho_e \ (10^{12} \mathrm{m}^{-3})$	0.63	0.38	0.77	7.40	1.70	0.19	0.27
Tune shift at $ ho_e$	$\Delta \nu_{x+y}$	0.0078	0.0047	0.0078	0.0164	0.009	0.011	0.003

High $\omega_e \sigma_z / c$ characterizes low emittance ring.

Particle in Cell simulation (PEHTS) Electron clouds are located several or many s position in a ring.

Potential solver based on 2D FFT.

Simulation for CestTA I=1.3mA, N=2x10¹⁰

- Simulation $\rho_{th}=1\times10^{12}$ m⁻³.
- Analytic $\rho_{th}=1.7 \times 10^{12} \text{ m}^{-3}$.

CesrTA 2 and 5 GeV

$\rho_{th}=0.8x10^{12} \text{ cm}^{-3}$

• High(2GeV) and low(5GeV) $\omega_e \sigma_z/c$.

 $\rho_{th}=4x10^{12} \text{ cm}^{-3}$

Coherent motion in the simulation

• High(2GeV) and low(5GeV) $\omega_e \sigma_z/c$.

Simulated Unstable spectra

• Lower sideband is dominant for high $\omega_e \sigma_z/c$ (low emittance).

2 GeV

 Upper sideband is dominant for 5GeV 5 GeV

Simulated beam spectra

- Lower sideband is seen for high $\omega_e \sigma_z/c$, 2GeV.
- Upper sideband is seen for low $\omega_e \sigma_z/c$, 5 GeV.

Bunch by bunch feed back

Model, feedback with one turn delay

$$\left(\begin{array}{c} y \\ y' \end{array} \right)_{n,+} = \left(\begin{array}{c} y \\ y' \end{array} \right)_{n,-} - \alpha M \left(\begin{array}{c} \langle y \rangle \\ \langle y' \rangle \end{array} \right)_{n,-+}$$

- M: revolution matrix
- α: feedback damping rate
- n: n-th turn
- ±: after or before feedback kick
- >: average over beam particles

FB suppresses the instability a little (2GeV) 10 High $\omega_e \sigma_z / c$, 2GeV.

 Dipole motion is suppressed a little, threshold increase a little.

No effect for FB (5GeV)

- Low $\omega_e \sigma_z/c$, 5GeV.
- Dipole motion is suppressed but headtail motion remains.

SuperKEKB

Y. Susaki, K. Ohmi, IPAC10

This simulation is for old parameter vs=0.12. Present vs=0.26. The threshold should be twice higher.

- Simulation $\vec{p}_{th}=2.1 \times 10^{11} \text{ m}^{-3}$.
- Analytic $\rho_{th}=1.1 \times 10^{11} \text{ m}^{-3}$.
- Target $\rho_e < 1 \times 10^{11} \text{ m}^{-3}$
- Update parameters (both for CesrTA and SuperKEKB).
- Take care of high β section. Effects are enhanced.

Incoherent effect in CesrTA
 Emittance growth due to nonlinear interaction with electron cloud

- Nonlinearity of beam-cloud interaction
- Integrated the nonlinear terms with multiplying β function and cos (sin) of phase difference

$$M = e^{-i\phi_1^{\perp}} e^{-iF_{12}^{\perp}} e^{-i\phi_2^{\perp}} e^{-i\phi_3^{\perp}} e^{-i\phi_3^{\perp}} e^{-i\phi_4^{\perp}} e^{-i\phi_4^{\perp}} e^{-i\phi_5^{\perp}} \dots e^{-iF_{n_1}}$$

$$\approx \mathrm{e}^{-:F_{11}:} \exp\left(-:\sum_{i=1}^{n} \phi_i(e^{-:F_{1i}:\mathbf{x}}):\right)$$

 $kx^m \Rightarrow k\beta_i^{m/2}J^{m/2}\cos(m\Delta\psi_{1i})$

F: (non)linear lattice transformation6: cloud interaction

Slow growth lower than the 2GeV threshold

Study of multibunch instability

- Self consistent solution of the cloud buildup and bunch motion.
- Wake field calculation
- Self consistent simulation
- Multi-bunch instability induces a fast beam loss, though fast head-tail instability does not.

Multi-bunch instability

Beam dancing with electron cloud

- Drift space
- Electrons move one way

Multi-bunch instability

- In Beenberggwith electron cloud
- Electrons move along the chamber surface.
- Long life time electron, high Q wake. 60 Simulation Experiment Horizontal Solenoid-10 G 20 50 Horizontal 40 15 0 30 600 800 1000 1200 1400 200 400 200 400 600 800 1000 1200 1400 Mode Mode 10 1500 Solenoid-10 G Vertical 20 1000 Vertical 50 10 500 Ø А 200 400 1200 1400 0 600 800 1000 200 400 800 1000 1200 1400 600 Ø 10 20 30 40 50 60 Mode

Mode

Multi-bunch instability

- Electron dancing with electron cloud
- Does beam dance with electron cloud pillar?

Characteristic time of pillar formation • DAFNE parameter, ~200ns

- Formed pillar and then shift beam position
- Pillar position shifts to beam position in ~200ns.

Ø Й

"DFB1dx5.f11" index 300 matrix

Wake force for the pillar formation

 Bunch by bunch correlation of slowest mode, m=-1, will be induced.

DAFNE type of multi-bunch instability

- Characteristics of the fast head tail instability is determined by $\omega_e \sigma_z/c$.
- Appearance of upper or lower sideband, and feedback response depend on $\omega_e \sigma_z/c$.
- The threshold (2GeV) is $\rho_{th}=1x10^{12}$ cm⁻³ for simulation and 1.7x10¹² cm⁻³ for analytic.
- The threshold (5GeV) is $\rho_{th}=5x10^{12}$ cm⁻³ for simulation and $7x10^{12}$ cm⁻³ for analytic.
- Incoherent emittance growth is week in positron machines.
- Movies for coupled bunch instability. Slowest mode is induced by electrons in bending magnets.