

CESRTA Preliminary Recommendations for the ILC Damping Rings

Mark Palmer

 This talk represents what is essentially the first pass (of several which are anticipated) at taking the results from a wide range of experiments that have been conducted at CESRTA and incorporating them into design recommendations for the ILC damping rings

- But...

- The CESRTA data is still under active analysis
- Many of the analyses are still being developed
- There is still cross-checking to do with both observations and analyses developed at other machines
- There is still a great deal of cross-checking to do for internal consistency and validity of our results
- Nevertheless...
 - A number of preliminary conclusions can be readily drawn
- So, this is a project director's summary of a work still in progress...

Outline

49th ICFA Advanced Beam Dynamics Workshop

- The CESRTA Electron Cloud Program
 - Goals & Capabilities
 - Brief Program Review
 - Status
- Inputs for ILC Damping Ring Design Choices
 - Mitigation Studies
 - Overview
 - Drift
 - Quadrupole
 - Bend
 - Wiggler
 - Photons and PEY
 - Beam Dynamics Studies

Conclusion

R&D Goals

- Studies of Electron Cloud Growth and Mitigation
 - Study EC growth and methods to mitigate it (particularly wigglers and dipoles).
 - Benchmark and expand existing simulation codes
 ⇒ validate projections to the ILC DR.
- Low Emittance Operations
 - EC beam dynamics studies at ultra low emittance (CesrTA vertical emittance target: ε_v <20 pm-rad).
 - Beam instrumentation for ultra low emittance beams
 - x-Ray Beam Size Monitor targeting bunch-by-bunch (single pass) readout
 - Beam Position Monitor upgrade
 - Develop LET tuning tools
- Studies of EC Induced Instability Thresholds and Emittance Dilution
 - Measure instability thresholds and emittance growth at ultra low emittance
 - Validate EC simulations in the low emittance parameter regime.
 - Confirm the projected impact of the EC on ILC DR performance.
- Inputs for the ILC DR Technical Design

Ultra low emittance baseline lattice									
Energy [GeV]	2.085	5.0							
No. Wigglers	12	0	6						
Wiggler Field [T]	1.9	1.9							
Q _x		14.57							
Q _y	9.62								
Q _z	0.075	0.043							
V _{RF} [MV]	8.1	8	8						
ϵ_x [nm-rad]	2.5	60	40						
τ _{x,y} [ms]	57 30 2								
α_{p}	6.76 10 ⁻³	6.23 10 ⁻³	6.23 10 ⁻³						
σ _I [mm]	9	9.4	15.6						
σ _E /Ε [%]	0.81	0.58	0.93						
t _b [ns]	≥4, steps of 2								

Lattice Parameters

Range of optics implemented

Beam dynamics studies

Control photon flux in EC experimental regions

E[GeV]	Wigglers (1.9T/PM)	$\epsilon_x[nm]$	
1.8*	12/0	2.3	
2.085	12/0	2.5	IBS Studies
2.3	12/0	3.3	
3.0	6/0	10	
4.0	6 /0	23	
4.0	0 /0	42	
5.0	6/0	40	
5.0	0/0	60	
5.0	0/2	90	

* Orbit/phase/coupling correction and injection but no ramp and recovery. In all other optics there has been at least one ramp and iteration on injection tuning and phase/coupling correction

CESRTA Phase I

• 2.5 year program

				2	2008									2009				
	Apr	May	Jun	Jul	Aug Sep	Oct	Nov	Dec	Jan	Feb 1	Mar	Apr N	∕lay Jι	un Jul	Aug	Sep	Oct	Nov Dec
Preparation for Ring Reconfiguration																		
Downs with Upgrades/Modifications	Down	i *	1		2					3				4				5
CesrTA Runs		<mark>R</mark> un	n 1				2a		2b				3		4			5
CHESS Runs	1						2					3					4	
Low Emittance Program																		
BPM System Upgrade																		
Positron Beam Size Monitor																		
Electron Beam Size Monitor																		
Survey and Alignment Upgrade																		
Beam Studies		-																
Electron Cloud Studies																		
Instrumented Vacuum Chambers w/EC Mitigation																		
Feedback System Upgrade			_															
Photon Stop for 5 GeV Wiggler Operation								1										
EC Growth Studies	1					_												
Beam Dynamics Studies at Low Emittance	1																	
Legend:		Des	sian/Fab	prication						Comr	nissior	nina						_
		Do	wn Peric	bd						CHES	SS Ope	erations			·	\land /		
		Inst	tallation							CesrT	A Exp	eriment	al Runs		$I \setminus I$			
		Ma	chine Re	ecoverv						Mach	ine Sti	idies/Tu	ne-un			V		
	┦				20.10									A				7
	lan	Feb	Mar	Anr	May Jur		Διια	Sen										
Preparation for Ring Reconfiguration		1.00	man	Λ.p.	indy our	Joan	nug	oop						- Goa	II: COI	mpie	te all	-/
Downs with Upgrades/Modifications			6				7	-				_		maio	rund	arado	he hy	
CesrTA Runs	-		0	63		6h		7						maju	n uhć	Jiaue	55 DY	
CHESS Runs		5		Jua	6	00									mid-	2009		\sim
Low Emittance Program												<						
BPM System Ungrade								_					>	5	> Ena	able a	an	<
Positron Beam Size Monitor												4		ovno	arimo	ntalt	focus	
Electron Beam Size Monitor	+												7	evhe		mai	locus	
Survey and Alignment Ungrade	+													1	thru	2010)	$ \rightarrow $
Beam Studies	+												- /					
Electron Cloud Studies														1			. Г	
Instrumented Vacuum Chambers w/EC Mitigation													\wedge	ノノ	1_1	Λ	\mathbf{N}	
Feedback System Lingrade	+							_	-						7/1	\mathcal{I}	N	
Photon Stop for 5 GeV Wiggler Operation	-												~					
EC Growth Studies	+									<u> </u>	'nas	se I	Con	nple	te –	4		
Beam Dynamics Studies at Low Emittance	+					_				0	40		la tra l			$\boldsymbol{<}$		
										2	.40	mac	cnine	e day	/S	$\boldsymbol{<}$		
												dali	VOKO			-		CESR M
CONTRACTOR CONTRACTOR								_		7	_	uell	vere	e Cl				
									-							7		
October 12, 2010				ECI	LOUD`1() - Coi	rnell Ur	iversi	itv				\checkmark	\checkmark	-		6	j.

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Status

49th ICFA Advanced Beam Dynamics Workshop

• CESR is now configured with

- Damping ring layout
- 4 dedicated EC experimental regions
- Upgraded vacuum/EC instrumentation
- Energy flexibility from 1.8 to 5.3 GeV
- Beam Instrumentation
 - xBSM for positrons and electrons
 - High resolution digital BPM system
 - Feedback system upgrade for 4ns bunch spacing is operational
- EC Diagnostics and Mitigation
 - ~30 RFAs presently deployed
 - TE wave measurement capability in each experimental region
 - Time-resolved shielded pickup detectors in 3 experimental locations (2 with transverse information)
 - 20 individual mitigation studies conducted in Phase I
 - 18 chambers
 - 2 sets of in situ SEY measurements
 - Additional studies in preparation for Phase II extension of program
- Low Emittance Tuning and Beam Dynamics Studies
 - Operating at our target vertical emittance of 20pm
 - Continuing effort to take advantage of new instrumentation
 - − A range of beam dynamics studies carried out ⇒ numerous additional tests envisioned

- The next steps
 - Through mid-2011, we expect to focus heavily on analysis and detailed documentation of the studies that we've completed so far
 - Provide inputs for the ILC Technical Design
 - Identify key areas for follow-up
 - Expect that we will want to conduct a number of additional experiments for further clarification
 - 2 week run planned for late December
 - Waiting on funding for Phase II program

Outline

49th ICFA Advanced Beam Dynamics Workshop

- The CESRTA Electron Cloud Program
 - Goals & Capabilities
 - Brief Program Review
 - Status
- Inputs for ILC Damping Ring Design Choices
 - Mitigation Studies
 - Overview
 - Drift
 - Bend
 - Wiggler
 - Quadrupole
 - Photons and PEY
 - Beam Dynamics Studies

Conclusion

	Drift	Quad	Dipole	Wiggler	VC Fab				
AI	\checkmark	\checkmark	\checkmark		CU, SLAC				
Cu	~			~	CU, KEK, LBNL, SLAC				
TiN on Al	✓	\checkmark	\checkmark		CU, SLAC				
TiN on Cu	~			~	CU, KEK, LBNL, SLAC				
Amorphous C on Al	\checkmark				CERN, CU				
NEG on SS	~				CU				
Solenoid Windings	~				CU				
Fins w/TiN on Al	~				SLAC				
Triangular Grooves on Cu				~	CU, KEK, LBNL, SLAC				
Triangular Grooves w/TiN on Al			\checkmark		CU, SLAC				
Triangular Grooves w/TiN on Cu				\checkmark	CU, KEK, LBNL, SLAC				
Clearing Electrode				\checkmark	CU, KEK, LBNL, SLAC				
♦ (a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c									

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Drift Observations

In Situ SEY Station

"Fresh" Sample

Sample in

49th ICFA Advanced Beam Dynamics Workshop

2.0

1.8

- Bare Al vs TiN coating vs amorphous C coating comparisons have been carried out using the Q15E/W test regions
 - Allows for detailed relative comparison as well as comparison with simulation to determine key surface parameters (talk and poster by J. Calvey)
 - EC performance of TiN and a-C found to be quite similar in regimes with significant SEY contributions as well as regimes which should be most sensitive to PEY
- NEG tests carried out in L3 region •
 - Makes detailed comparison with Q15E/W tests more challenging
- Preliminary analysis of surface parameters indicates good • SEY performance by each of these 3 coatings
- Tests with other chamber types around the ring

Drift Region Evaluation

• Efficacy

49th ICFA Advanced Beam Dynamics Workshop

- At our present level of evaluation, TiN, a-C and NEG show performance consistent with peak SEY values near 1.
- Cost
 - TiN coating is simplest and cheapest, however, coating costs are not a major contribution to the overall DR cost
 - The use of NEG for vacuum does require that the ring design accommodate space for heating elements for activation
- Risks
 - Further monitoring of aging performance is desirable
 - The use of solenoid coils in addition to any of the coatings would likely assure acceptable EC performance in the drifts
- Impact on Machine Performance
 - NEG would benefit overall machine vacuum performance
 - a-C and TiN show somewhat higher beam-induced vacuum rise than bare Al
- Caveats:
 - Possible Si contamination?
 - CERN tests of 2 samples sent back after acceptance tests ⇒ presence of Si contamination in a-C chamber
 - Follow-on test of 1st a-C chamber (entire chamber sent to CERN) did not detect Si after beam exposure
 - Surface parameter analysis is still not mature. Some caution should be exercised.

CESR I

Overview of Mitigation Tests

	Drift	Quad	Dipole	Wiggler	VC Fab				
AI	✓	✓	✓		CU, SLAC				
Cu	~			~	CU, KEK, LBNL, SLAC				
TiN on Al	✓	✓	 ✓ 		CU, SLAC				
TiN on Cu	~			~	CU, KEK, LBNL, SLAC				
Amorphous C on Al	\checkmark				CERN, CU				
NEG on SS	✓				CU				
Solenoid Windings	~				CU				
Fins w/TiN on Al	✓				SLAC				
Triangular Grooves on Cu				\checkmark	CU, KEK, LBNL, SLAC				
Triangular Grooves w/TiN on Al			\checkmark		CU, SLAC				
Triangular Grooves w/TiN on Cu				\checkmark	CU, KEK, LBNL, SLAC				
Clearing Electrode				\checkmark	CU, KEK, LBNL, SLAC				
🔮 🋞 🗸 = chamber(s) deployed 🗸 = planned 👘 💿									

•

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Quadrupole Observations

Clear improvement with TiN

49th ICFA Advanced Beam Dynamics Workshop

- Left: 20 bunch train e+
- Right: 45 bunch train e+

Currents higher than expected from "single turn" simulations

- Turn-to-turn cloud buildup
- Issue also being studied in wigglers

- Efficacy
 - Strong multipacting on Al surface significantly suppressed with TiN coating
- Cost
- Risk
 - Appears to be minimal with coating
 - Final evaluation of acceptable surface parameters in quadrupoles needed to decide whether coating (as opposed, say, to coating+grooves) is acceptable
- Impact on Machine Performance

	Drift	Quad	Dipole	Wiggler	VC Fab				
AI	\checkmark	\checkmark	✓		CU, SLAC				
Cu	~			~	CU, KEK, LBNL, SLAC				
TiN on Al	\checkmark	\checkmark	✓		CU, SLAC				
TiN on Cu	~			~	CU, KEK, LBNL, SLAC				
Amorphous C on Al	\checkmark				CERN, CU				
NEG on SS	~				CU				
Solenoid Windings	~				CU				
Fins w/TiN on Al	~				SLAC				
Triangular Grooves on Cu				~	CU, KEK, LBNL, SLAC				
Triangular Grooves w/TiN on Al			\checkmark		CU, SLAC				
Triangular Grooves w/TiN on Cu				\checkmark	CU, KEK, LBNL, SLAC				
Clearing Electrode				\checkmark	CU, KEK, LBNL, SLAC				

Dipole Observations

49th ICFA Advanced Beam Dynamics Workshop

- 1x20 e+, 5.3 GeV, 14ns
 - 810 Gauss dipole field
 - Signals summed over all collectors
 - Al signals ÷40

Longitudinally grooved surfaces offer significant promise for EC mitigation in the dipole regions of the damping rings

1x20 e- Current Scan, 14ns, 5.3 GeV, 810 G Chicane, Un-normalized

• Efficacy

- Of the methods tested, a grooved surface with TiN coating has significantly better performance than any other. Expect that other coatings would also be acceptable.
- NOTE: Electrodes not tested (challenging deployment of active hardware for entire arc regions of the ILC DR)
- Cost
 - If grooves can be extruded, cost impact will not be high
- Risk
 - Principal concern is the ability to make acceptable grooved surfaces via extrusion
 - "Geometric suppression" limited by how sharp the tips and valleys of the grooves can be made
 - Coating helps ameliorate this risk
 - Machined surfaces of the requisite precision are both expensive and challenging
- Impact on Machine Performance
 - Simulations (Suetsugu, Wang, others) indicate that impedance performance will likely be acceptable

	Drift	Quad	Dipole	Wiggler	VC Fab
AI	\checkmark	\checkmark	\checkmark		CU, SLAC
Cu	~			~	CU, KEK, LBNL, SLAC
TiN on Al	~	\checkmark	~		CU, SLAC
TiN on Cu	~			✓	CU, KEK, LBNL, SLAC
Amorphous C on Al	\checkmark				CERN, CU
NEG on SS	✓				сυ
Solenoid Windings	~				CU
Fins w/TiN on Al	~				SLAC
Triangular Grooves on Cu				✓	CU, KEK, LBNL, SLAC
Triangular Grooves w/TiN on Al			\checkmark		CU, SLAC
Triangular Grooves w/TiN on Cu				~	CU, KEK, LBNL, SLAC
Clearing Electrode				✓	CU, KEK, LBNL, SLAC
	✓ = char	nber(s) dep	oloyed 🗸 =	planned	CESR M

RGA Spectra

- Efficacy
 - Best performance obtained with clearing electrode
- Cost
 - Requirement for electrode application (addition E-beam welds) and HV vacuum feedthroughs will increase chamber cost
 - Also need power supplies and hardware to absorb HOM power
- Risk
 - Always concerns about electrode reliability
 - Thermal spray method offers excellent thermal contact
 - Ability to create "boat-tail" shape with no structural concerns helps to minimize HOM power
 - Feedthrough and HV connection performance probably single largest concern
- Impact on Machine Performance
 - Impedance should be acceptable for the limited length of the wiggler section (see, eg., evaluation by Y. Suetsugu)

- Our simulations and data indicate that we need to have a better photon and reflection transport model (QE fits in J. Calvey's talk, APS absorber-region data in K. Harkay's talk)
- Time-resolved measurements indicate that we also need to have a better PE spectrum (fitting of RFA data also requires this)
- Synrad3D offers a better reflection model, but there is still significant work to do
- Items still needing to be addressed
 - Diffuse scattering
 - As confirmed by our recent L0 wiggler measurements (talks by J. Calvey, S. De Santis)
 - Surface roughness issues
 - As discussed yesterday
- Requirements for control of PE in the ILC DR (also the CLIC

DR) make this a high priority for the upcoming months

- Plots show TE Wave and RFA response as a function of wiggler field strength
 - Beam conditions:
 - 1x45x~.75mA e+,
 - Normalized to beam current
 - 2.1 GeV, 14ns

Outline

- 49th ICFA Advanced Beam Dynamics Workshop
- The CESRTA Electron Cloud Program
 - Goals & Capabilities
 - Brief Program Review
 - Status

• Inputs for ILC Damping Ring Design Choices

- Mitigation Studies
 - Overview
 - Drift
 - Bend
 - Wiggler
 - Quadrupole
 - Photons and PEY

Beam Dynamics Studies

Conclusion

- The implemented spectral methods offer a powerful tool for selfconsistent analysis of the onset of instabilities
 - Tune shifts along train ➡ ring-wide integrated cloud density near beam with minimal bias
 - Onset of synchrobetatron sidebands allows one evaluations of the relevant thresholds
- Have explored a range of conditions during most recent run
 - Much more to study
 - Need to further explore regime where can correlate with beam size measurements
 - Higher currents, longer trains, different bunch spacings, energy,
- Most importantly, more detailed
 data-simulation comparisons

Cornell Laboratory for Accelerator-based Sciences and Education (CLASSE)

Beam Size

200

150

100

50

Microns

1 Train, 45 Bunches, 0.5 mA/bunch

size –

Average of 4K single-turn fits

motion amplitude

0.8×10¹⁰ e+/bunch.

Each point:

Measure Bunch-by-Bunch Beam Size

- Beam size enhanced at head and tail of train Source of blow-up at head appears to be due to a long lifetime component of the cloud (Dugan talk) Bunch lifetime of smallest bunches consistent with observed single bunch lifetimes during LET (Touschek-limited) consistent with relative bunch sizes.
- Beam size measured around bunch 5 is consistent with $\varepsilon_v \simeq 20$ pm-rad ($\sigma_v = 11.0 \pm 0.2 \ \mu m$, $\beta_{source} = 5.8$ m)

Outline

⁴⁹th ICFA Advanced Beam Dynamics Workshop

- The CESRTA Electron Cloud Program
 - Goals & Capabilities
 - Brief Program Review
 - Status
- Inputs for ILC Damping Ring Design Choices
 - Mitigation Studies
 - Overview
 - Drift
 - Bend
 - Wiggler
 - Quadrupole
 - Photons and PEY
 - Beam Dynamics Studies

Conclusion

- Mitigation performance:
 - Grooves are effective in dipole/wiggler fields, but challenging to make when depth is small
 - Amorphous C, TiN and NEG show similar levels of EC suppression so both coatings can be considered for DR use
 - TiN and a-C have worse dP/dI than AI chambers at our present level of processing
 - In regions where TiN-coated chambers are struck by wiggler radiation (high intensity and high E_c), we observe significant concentrations of N in the vacuum system
 - EC suppression with the clearing electrode in the wiggler is very good
 - No heating issues have been observed with the wiggler design in either CESRTA or CHESS operating conditions
 - Further work remains to take RFA measurements in chambers with mitigations and convert these to the effective SEY of the chamber surfaces
 - Agreement between data and simulation continues to improve
 - Magnetic field region model requires full inclusion of RFA in simulation
 - In situ SEY measurements raise the question of how the SEY varies around the chamber azimuth

Conclusion II

- Trapping and build-up of the EC over multiple turns in quadrupole and wiggler chambers
 - Experimental signature and seen in simulation
 - Further evaluation of impact on the beam is required
- Time-resolved studies (shielded pickups)
 - Being applied to understand SEY at ~0 energy, $\delta(0)$, which determines EC decay rates
 - Have already shown discrepancies in the PEY spectra being used (e- beam data)
- Photon transport models
 - Detailed 3D simulation show significant differences from models typically used
 - Significant implications for modeling assumptions in regions with high photon rates (arc and wiggler regions)
 - Likely still need to add some features (diffuse scattering, surface roughness) to the modelling
- Instabilities and sub-threshold emittance growth
 - Measurement tools are rapidly maturing
 - Coordinated simulation effort with a focus on testing predictions
 - Systematic studies, so far, are showing many features that we can understand with our models, but also some surprises
 - This area needs continued effort including more detailed data-simulation comparisons

