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-£ Measured SEYs Conditioned with e Beam at KEK Lab.
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{:Iﬁf kEg Models of Electron Beam Induced Surface-graphitization (2004)
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;:';: KEK Other Cases of No Graphitization

Cleaned Metals, Ti alloys and TiO,
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;},EK CONCLUSIONS  From Slide of CERN Seminar in 2004

®New Findings of SEY Were Done in Conjunction with In-situ Suface State.

&Figst Observation and Proof of Electron Beam Induced Graphitization Causing Small SEY were
ade.

® As-received TiN showed Highest 8 max because of Heavy Oxidation of Ti (PEP-II?).

®Dose Effects of Electron and lon Irradiation on SEYs of TiN and SS are Similar. However
Surfaces are Completely Different.

®As-received Copper Surface is Not Oxidized.

®Carbon Supplyer during Graphitization for As-received Materials is Residual Carbonatious
Contamination on Suface But Not Diffused Carbon from Bulk.

®For Sputtered Clean OFHC Copper, Graphitization Still Occurs due to Heating or Electron
Beam Irradiation even in UHV, w/o Residual Carbonatious Adsobates. The Source was Proved
Carbon Atoms from Bulk.

®Electron Beam Induced Graphitizaion is Inevitable at Least on Copper in Practical Application
Because of the No Passive Layer.

®No Need of Conditioning for Graphite was Found Even for Need of SEY{1.

aCarbonatious Contamination and Free Carbon are Evil but Graphite Would be Helper. )
®Beam Conditioning in Lepton Accelerator Seems Graphization Process.
® Activie Graphitization to reduce SEY Does Not Seem Bad Idea (Graphite Thin Film Also Gives

Low Outgassing and is Stable against Air Exposue) . It can be Used to Keep Property In
\ Enviroment with No Sputtering Phenomenon. Y

®No Special Chemical Treatment for Some Metals Might be Required after Proper Mechanical
Surface Treatment Because of Electron Beam Induced Graphitization in Anycase.

Cal"bor\, C eSt bon !? Shigeki KATO, KEK, eCloud10, Oct. 9, 2010/
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f]lijEK Advantages of Carbon Materials for Mitigating EC

Low & max and low SEY at higher incident energy and
at oblique incident angle of e- due to mainly the low
mass density of carbon materials.

Low outgassing is achievable, depending on the
method to make the films.

Carbon materials show less adsorption (low sticking
coefficient) and quick desorption (low activation
energy of desorption).

Hard coating with good adhesion is possible.

Carbon materials are inexpensive, except real diamond.
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Advantages of Carbon Materials -SEY-

Cleaned Metals, Ti alloys and TiO,,

© Carbon materials show lower 6
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hormalized SEY

Comparison of Normalized SEY Slope

o

1000

Primary Energy [eV]

72000 3000 4000 5000

DLC and Aquadag (as
well as graphite) show
steeper decay of SEYs,
mainly due to their mass
density.

At high intensity
operation machine,
SEYs at higher primary
energy would influence
much more to e-cloud.
Furthermore, difference
between the two groups
becomes more at
oblique incident angle of
e-.
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"JKEK Dependence of SEYs on Incident e- Beam Angle ( lab )

@® Larger SEYs : Oblique Incident Angle of e- Beam.

® This dependence is important for both dipoles, quads etc because of spiral
motion of electrons

SEY Results for e- Beam Irradiated Surfaces : Close to Real Surface State
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® Sallower Incident Angle of e Beam : Larger SEYs

SEYs Results for As-received Surface

Secondary Electron Yield
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k Coating on Cu or Al Chamber at Arc Section

'

® TiN Coating ( 200nm ) on Cu Chamber (1.3m)

Done by Shibata san
& Hisamatsu san, KEK

Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 15



Why DLC Coating?

_‘*']BKEK

Many Techniques for Carbon Coating

QOUAWN=

PCVD-based DLC (KEK)

PCVD-based a-Carbon

Electron Beam Induced Surface Graphitization (KEK)
Sputter-deposited Carbon (CERN)

Brazing of Isotropic Graphite Liner

Paint or Spray of Graphite Microparticles ( Aquadag)
Plasma Spray of Graphite Microparticles

Why DLC?

SJooak WN=-

Inexpensive : ~US$800.- /m for coating of 100m.

Deposition rate is large ( a couple of um/h ) and uniform(*5%).
Coating is possible for any type of beam chamber ( even bent
one ) and on any material.

No sputtering target inside of chamber is necessary.

No magnetic field is necessary.

High hardness + quite good adhesion + high heat-resistivity
Less dust particle generation

Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 16



-r(_ SEM Image of DLC Film Layers

DLC : 0.6um

Doped DLC : 1.2um
Gradient Layer : 0.9um
Interlayer : 0.9um

= ~ — e

Al Substrate

KEK SEI 10.0kV X16,000 14um WD 9.9mm

©® The coated film has a layered structure to fix on the
substrate.

® Total thickness of the film is ~3.6um ( process time : ~90 min)
© The thickness of DLC is ~0.6um.

® The coating process and its characteristics will be introduced
in the poster.

Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 17



"!PfKEK Cost-effective Surface Roughing of Beam Chamber

PLal e R,=1.3um

: extrusion
Mask y or EL machining

N
\

Out side of ring

Rough DLC/AI
Smooth DLC/AI

R=21um
: grinding with a large
grain of abrasive,
before DLC coating

Grinding Speed :10 min/m | @



Surface Roughness Measured

with Mechanical Surface Profile Meter
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.£ Four Types of Surfaces Compared at LER Arc Section

Test Chamber History

© 2008-0208 ~ 2009-0630:
Cu (without RGA)

© 2009-1014 ~1116:
DLC/AI (smooth surface)

© 2009-1117 ~1224:
TiN/Cu

© 2010-0513 ~0630:
DLC/AI (rough surface)

N\

Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 21



j;ﬁyﬂl( Total Pressure Trend during KEKB LER Operation
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DLC (rough) showed 10 times higher pressure compared with copper
chamber, that is not surprising after IP was on.

In any case, it took roughly 1000Ah to get reasonable conditioning.
Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 22
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RGA & CCG Trends for Two Types of DLC Coating

RGA lon Current [A], CCG pressure [Pa]
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é:KEK RGA Spectra at ~620Ah for TiN and DLC (smooth)

10°F TiN on Cu Chamber
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TiN : High nitrogen peak was found, indicating decomposition of TiN and it did not
change with increase of EC dose.

@® DLC : Hydrogen desorption was remarkably high. However it would give little
influence on the beam aquality because of the low mass.

@ DLC : No hydrocarbon gas component was observed up to m/e&®®.«cx ccouaro, oct. 9, 2010 24



RGA Spectra at ~620Ah for DLC (smooth and rough)

107 ﬂ DLC on Al Chamber
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@ Two spectra are similar except CH, and CO probably due to IP off.
@ No hydrocarbon gas component from rough DLC surface was observed up to m/e

100 either. Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 23



;:Ija: kgk Trends of Electron Monitor Current for Different Surfaces
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EC mitigation with the roughed DLC surface seem to be outstanding.
Gradual increase of EC activity might be due to partial exfoliation?

Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 26



4"}2 KEK Visual Inspection of DLC Coated Chambers Afterward

DLC/AI (rough) .~
Mask ‘

No change was found for smooth DLC surface.

However partial exfoliation at the rough DLC surface was found at the boundary
between the smooth and the rough surfaces. ( the boundary was made since no
surface roughing was done for the photon stop. Some cure should have been done
before the roughing.)

Trace of SR could be seen on the photon stop surface. However there was no

exfoliation there. Shigeki KATO, KEK, eCloud10, Oct. 9, 2010 27
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_?’]BKEK Summary

1. Advantages of carbon materials for mitigating EC were
mentioned.

2. DLC was chosen for many reasons.

3. Inexpensive roughed DLC surface was prepared.

4. Four types of beam chamber were installed to measure
total and partial pressure, EC activity at LER arc
section.

5. TiN : high nitrogen peak was found, indicating
decomposition of TiN.

6. Smooth and rough DLC : hydrogen desorption was
remarkably high. However it would give little influence on
the beam quality because of the low mass.

7. Smooth and rough DLC : no hydrocarbon gas component
was observed up to m/e 100.

8. EC mitigation with the roughed DLC surface seem to be
outstanding.
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