

Electron Cloud Issues for the Advanced Photon Source Superconducting Undulator

Katherine Harkay Electron Cloud Workshop, Cornell, Oct. 8-12, 2010

Acknowledgements:

Yury Ivanyushenkov, Robert Kustom, Elizabeth Moog, Richard Rosenberg, Emil Trakhtenberg (Argonne); Laura Boon, Art Garfinkel (Purdue U.); Sara Casalbuoni (Karlsruhe)

Introduction

- Advanced Photon Source (APS) a 7-GeV electron synchrotron light source
- APS Upgrade CD0 approved summer 2010
- Development of a superconducting undulator (SCU) part of the upgrade
- Possible electron cloud effects for electron beams
 - Studies at APS and CesrTA
 - ANKA experience with high heat loads in SC insertion device
 - Electron cloud models appear incomplete for electron beams
- Detailed heat load analysis undertaken, conservative assumptions for beam-induced heat load
- Preliminary thoughts on electron cloud mitigation strategies for APS SCU

Outline

- APS superconducting undulator
- Case for improved photoelectron model
- Strategies for EC mitigation
- Summary

Superconducting undulators in the APS upgrade program

SCU Road Map

2010			2011				20	2012		2013			2014			2015				2016				2017							
1	Ш	Ш	IV	1	I	Ш	IV	1	Ш	Ш	IV	1	Ш	Ш	IV	1	Ш	Ш	IV	1	Ш	Ш	IV	1	Ш	Ш	IV	1	Ш	Ш	IV
	R&D o	on SCU	0 (1.6-	cm, 42-p	ole, 2	2-m cr	ryosta	t)																							
				Critica	issu	ies Rá	&D: *																								
	beam chamber development 1.6-cm period long-length magnetic structuu cooling scheme and cryostat for long undul short-period magnetic structure with NbTi * provided additional staff is available					re lator	SC	.U1 (1.	6-cm, 1	1m-long	g, 2m-	-cryos	tat)		I																
												EC)		SC	:U2 (1.	6-cm, 3	2m-lon	ig, 3m	-cryos	tat)										
																				E	D			SC	:U3 (?	?-cm, 2	m-lon	g, 3m-o	ryost	at)	

First two superconducting undulators for the APS

• APS superconducting undulator specifications

	SCU0	SCU1
Photon energy at 1 st harmonic	20-25 keV	20-25 keV
Undulator period	16 mm	16 mm
Magnetic length	0.33 m	1.15 m
Cryostat length	≈ 2.0 m	≈ 2.0 m
Beam stay-clear dimensions	7.0 mm vertical × 36 mm horizontal	7.0 mm vertical × 36 mm horizontal
Magnetic gap	9.5 mm	9.5 mm

Expected performance of SCU0 and SCU1

- Tuning curves for odd harmonics for two planar 1.6-cm-period NbTi superconducting undulators (42 poles, 0.34 m long and 144 poles, 1.2 m long) versus the planar NdFeB permanent magnet hybrid undulator A (144 poles, 3.3 cm period and 2.4 m long). Reductions due to magnetic field error were applied the same to all undulators (estimated from one measured undulator A at the APS). The tuning curve ranges were conservatively estimated for the SCUs.
- The minimum energies are 3.2 keV for the UA and 18.6 keV for the SCUs.
- The short 42-pole 1.6-cm-period SCU surpasses undulator A at ~ 60 keV and ~ 95 keV. The 144-pole SCU brilliance exceeds that of undulator A by factors of 1.8 at 20 keV, 7.0 at 60 keV, and 8.2 at 95 keV.

Y. Ivanyushenkov, Workshop on superconducting undulators, APS, September 20-21, 2010

SCU0 project status and schedule

Task	Status and schedule
Initial R&D phase	Complete
Conceptual design	Complete
Conceptual design review	Passed in February, 2010
Detail design	In progress
Cryostat pressure safety review	Passed in July, 2010
Cryostat production review	September 2010
Cryostat manufacture	November 2010 – Spring 2011
Undulator assembly	Summer 2011
Measurement system design and manufacture	Summer 2010- Summer 2011
Undulator tests	Fall 2011
SCU installation into the ring	Winter 2011-12
SCU beam test	Spring 2012

Y. Ivanyus

Y. Ivanyushenkov, Workshop on superconducting undulators, APS, September 20-21, 2010

SCU cooling scheme

Experience at ANKA: SCU14 demonstrator

Beam heat load studies

Performance limited by too high beam heat load: beam heat load observed cannot be explained by synchrotron radiation from upstream bending and resistive wall heating. S. C. et al., PRSTAB2007

Heat loads and cooling system concept

Heat source	Heat load @ 4K, W	Heat load @ 20K, W	Heat Load @ 60 K, W					
Beam		6.6 (nominal) 45 (injection accident)		 Conceptual points: Thermally insulate beam chamber from 				
Radiation	0.0116	1.21	4.2	the rest of the				
Conduction through:				system.				
beam chamber bellows			1.4	 Cool the beam 				
beam chamber supports	0.08			chamber separately				
He vent bellows	0.006	0.07	0.9	from the				
He fill pipe	0.012			superconducting				
cold mass support	0.005			coils.				
radiation shields supports		1.2	5.6					
Current leads at:								
I = 0 A	0		44	In this approach beam				
I = 100 A	0.12		22	heats the beam				
I = 500 A	0.45		52	chamber but not				
Total at I = 500 A:	0.685	up to 45	86.1					

Y. Ivanyushenkov, Workshop on superconducting undulators, APS, September 20-21, 2010

Cooling system - SCU dynamic heat load

- Task for cooling system is to keep the temperature of superconductor in the range 4.2-6K by intercepting both static and dynamic heat loads in the undulator system.
- Dynamic heat load

Heat source	Heat load on 2-m long beam chamber
Image current	2.44 W @ 100 mA [1]
	(4.88 W @ 200 mA) [1]
Synchrotron radiation from upstream	\approx 0.1 W (for wide chamber) [1]
magnets	(40 W for narrow chamber)
Electron cloud	2 W [1] [3]
Wakefield heating in the beam chamber transition	0.093 W [1]
Injection losses	40 W (accident) [2]
	2 W (non top up mode) [2]
	0.1 W (normal top up mode) [2]
Max heat load:	≈ 45 W (injection accident)
	≈ 6.6 W (non top up mode)

[1] Maria Petra and Bob Kustom, APS Internal Note, 2004.

- [2] Vadim Sajaev, private communication.
- [3] Prelim calcs by K. Harkay

Slide courtesy Y. Ivanyushenkov

Preliminary calculations: electron cloud heat load vs. bunch spacing

posinst simulation for 8-mm ID, electron beam

Assumptions (posinst):

- 8 mm vacuum chamber, field-free
- 20 bunches, 5 mA/bunch
- Al: $\delta_{max} = 3.0$; TiN: $\delta_{max} = 1.1$
- Simple photon reflectivity model

Uncertainty for electron beam:

- APS positron modeling results agreed well with RFA data
- APS electron beam modeling did not agree well
- Data also from CesrTA suggest that photoemission model needs improvement.

Posinst physics: M.A. Furman and M.T. Pivi, Phys Rev ST Accel Beams 5, 124404 (2002).

Outline

- APS superconducting undulator
- Case for improved photoelectron model
- Strategies for EC mitigation
- Summary

Multpacting resonance, e+ and e- beams at APS

Comparison of APS RFA data with *posinst* simulated electron cloud wall current as a function of bunch spacing (20 mA, 10 bunches).

not improve comparison

Negative beams can have a weaker BIM effect: APS electron beam, 2 mA/bunch

- Assume standard chamber, 11-bucket spacing, field-free
- Reflected photons absorbed between bunches (+ photoelectron)
- Amplification can still occur, but effect is weaker
- Product of electron cloud impact energy and flux on wall results in a power load

Electron beam: weak cloud buildup, highest near EA

Electron beam:

- The signal near EA (RFA 1) is always higher than RFA 6. Suggests that photoelectrons contribute most here.
- Pressure rise and beam lifetime degradation was observed for certain 100-mA fill patterns, but quickly conditioned away

- A lorentzian primary energy distribution has been added to POSINST
- To fit data at high beam energy (especially electron beam data), a high value for the "scale parameter" (HWHM) of the distribution is needed
- Next few slides show several examples of this
 - Left hand plots show RFA data at +50V, compared to simulation with and without secondaries
 - Right hand plots show data/simulation comparison from -20 to -240V, for central, intermediate, and outer collectors
 - Upper plots have HWHM 5eV
 - Lower plots have HWHM 150eV
 - All plots are of the recently installed Al drift chamber at 15W
 - All data was taken on the same day
 - Beam conditions: 5.3 GeV, 14ns spacing

Slide courtesy J. Calvey

Effects for electron beams: summary

- Weaker multipacting effect in drifts compared with positron beams.
- Electron-stimulated gas desorption can cause pressure bump, lifetime effect
 - Observed in APS when studying multiplet fill patterns
 - Certain bunch patterns had half the beam lifetime, correlated with larger RFA signals. Effect no longer observed months later due to surface conditioning.
- Electron-beam data at APS and CesrTA suggest that photoelectron distribution should have a longer energy tail. Preliminary simulations show improved agreement:
 - Photoelectron energy modeled as narrow low-energy Gaussian distribution reasonably matched 2 GeV data, but broader energy width of 150 eV matched 5 GeV data better in POSINST (J. Calvey)
 - Studies with shielded buttons and photoelectron model in ECLOUD (J. Crittendon – see poster)
- RFA data in wigglers at CesrTA relevant, but dynamics will be different since chamber is room temperature.

Outline

- APS superconducting undulator
- Case for improved photoelectron model
- Strategies for EC mitigation
- Summary

Clearing electrodes most effective EC mitigation in CesrTA wigglers

J.R. Calvey et al., Proc. 2010 IPAC, 1973 (2010).

J.R. Calvey et al., Proc. ECLOUD10.

Figure 8: Wiggler comparison, 1x45 e+, 2.1 GeV, 14ns

- TiN coating most effective in drifts
- Grooves most effective in dipoles
- Biased electrodes most effective in wiggler RT chamber) TiN coating *does not* significantly reduce cloud.
- All comparisons for positron beam

Shield SCU chamber

- SCU chamber tapers down in two steps from standard arc chamber (85 x 42) mm to SCU chamber (53 x 7.2) mm (full width x height)
- Usual ray-tracing has been done for shielding high-energy x-rays from outer chamber wall
- Lower-energy photons (> 4 eV) intercept SCU chamber top and bottom
- Preliminary thoughts on taper designs to
 - shield photons and minimize photelectron generation in SCU field
 - minimize photon reflections *a la* LHC beam shield
- Modeling of APS SCU chamber with synrad3d to be done
 - Also study diffuse scattering, fluorescence
- Need data for photoelectron model (RFA, XPS, dedicated measurements)

Schematic photoemission spectra vs photon energy

Figure credit: B. Feuerbacher and B. Fitton in "Electron Spectroscopy for Surface Analysis," p. 155 (Springer-Verlag, Berlin, 1977). With kind permission of Springer Science+Business Media.

See also: R. Cimino et al., "VUV photoemission studies of candidate LHC vacuum chamber materials," PRST-AB 2, 063201 (1999).

Argonn

APS-U Technical Meeting

K. Harkay

Fig. 5.3 Energy ranges and specialized spectroscopies in photoemission. XPS, excited by soft X-rays, shows spectra of considerable complexity including core level spikes, Auger peaks, valence-band emission and inelastic electrons. UPS has an intrinsically higher resolution and cross section for the valence band. The bandstructure regime, $\hbar\omega \approx 10$ eV, shows sharp structure arising from bulk selection rules. Threshold emission is generally observed without energy analysis. Subthreshold spectroscopy requires additional means to emit photoexcited electrons over the work function barrier ϕ , such as, e.g., a high electric field

Comments on CesrTA Exp

References

- V.V. Anashin et al., "Reflection of photons and azimuthal distribution of photoelectrons in a cylindrical beam pipe," Nucl. Instrum. Meth. A 448, 76 (2000).
- R. Cimino et al., "VUV Photoemission Studies of Candidate LHC Vacuum Chamber Materials," LHC Project Report 256.
- C. Foerster et al., "Photon Stimulated Desorption Measurement of an Extruded Aluminum Beam Chamber for the Advanced Photon Source," J. Vac. Sci. Technol. A 14(3) (1996).
- R.A. Rosenberg et al., "X-ray photoelectron spectroscopy analysis of aluminum and copper cleaning procedures for the Advanced Photon Source," J. Vac. Sci. Technol. A 12, 1755 (1994).
- LBNL Mirror reflectivity database
- LHC "crash program" (2000-2004)
 - Articles in ICFA Beam Dynamics Newsletter No. 33 (April 2004) by F. Zimmermann, p. 150; and J.M. Jimenez, p. 137.
 - R. Cimino et al., "Vacuum chamber surface electronic properties influencing electron cloud phenomena," LHC Project Report 669 (2003).
 - V. Baglin et al., "Performance of a cryogenic vacuum system (Coldex) with a LHC type proton beam," LHC Project Report 667 (2003).
 - J.M. Jiminez, Proc. ECLOUD04, Napa, CA (2004).

Summary

- Possible risk of an electron-cloud-induced heat load and vacuum effects for SCU (e.g. ANKA)
- Electron cloud generation and buildup widely-studied for positron and proton rings; far less data for electron rings
- Photoemission can be important for positron beams, but most attention has been paid to mitigating secondary electron emission
- Secondary emission parameters cannot explain observations in electron rings; photoemission model incomplete
- EC mitigation strategies focused on shielding SCU chamber from photons > 4 eV and minimizing photon reflections
- Longer-term strategy may include clearing electrodes
- Photon reflection study with synrad3d to be applied to APS SCU
- Need data for photoelectron model (RFA, XPS, dedicated measurements)
- See Laura's talk

