Emittance Growth and Tune Spectra at PETRA III

Presentation at the ECLOUD 2010 workshop

Rainer Wanzenberg

ECLOUD 2010 October 8-12, 2010 Statler Hotel, Cornell University Ithaca, New York USA

PETRA III - Overview

Parameter	PETRA III
Energy / GeV	6
Circumference /m	2304
Total current / mA	100
Emittance (horz. / vert.) /nm	1 / 0.01

PETRA III - Parameters

Parameter	PETRA	III		
Energy / GeV	6			
Circumference /m	2304			
RF Frequency / MHz	50	0		
RF harmonic number	384	40		
RF Voltage / MV	20)		
Momentum compaction	1.22 10 ⁻³			
Synchrotron tune	0.049			
Total current / mA	100			
Number of bunches	960 40			
Bunch population / 10 ¹⁰	0.5 12			
Bunch separation / ns	8 192			
Emittance (horz. / vert.) /nm	1 / 0.01			
Bunch length / mm	12			
Damping time H/V/L / ms	16 / 16 / 8			

Harmonic number: h = 3840 Revolution time: 7.68 micro sec

Bunch positions: 960 (8 ns bunch to bunch spacing)

PETRA III is running with positrons !

- **Damping wigglers** Number 20
- $L_{wiggler} = 4 m$

•
$$B = 1.5 T$$

• $\lambda = 0.2 \text{ m}$

 $\varepsilon_x: 4.5 \rightarrow 1 \text{ nm rad}$

Machine can be operated w/o wigglers

80 m

PETRA III – Commissioning / First user runs

2009

- April 10 May 03, 2009
 - First stored beam (April 13)
 - First light from a undulator (April 30)
 - commissioning BPM electronics
 - First optics checks
- > May 20 June 25, 2009
 - Operation <u>without</u> wigglers
 - work on optics, orbit, beam based alignment
- > July 6, 2009 ...
 - Operation <u>with</u> wigglers
 - with <u>all</u> (2 x 10) wigglers from Aug 12

2010

- > Feb 18, 2010 ... (with wigglers)
 - Commissioning 3 days / week
 - First user runs (friendly user) 4 days / week
- > Aug 2 Aug 7, 2010
 - Machine studies <u>without</u> wigglers
 - Investigation of vertical emittance growth
- > Aug 9, 2010 ...
 - Operation <u>with</u> wigglers
 - First regular users (Sep. 2010)
 - Beam line commissioning

Current Limitations

Coupled bunch instabilities:

PETRA II	Long.	Horiz.	Vert.
I _{thres} (mA)	7	6	6
1/τ (Hz)	35	50	60
Z _{eff}	3.6 M Ω	45 MΩ/m	54 MΩ/m

PETRA III: 12 seven cell cavities which large par. shunt impedance

→ powerful broadband (BW≥ 60MHz) feedback neccessary

Single Bunch (TMCI):

Single bunch intensities of up to 2.9 mA could be stored; Deliberately limited at this current in ordner not to damage BPM electronics

Measured coherent tune shift vs, current

PETRA III Vacuum chamber

Arc: AI, 80 mm x 40 mm

Wiggler: AI, 96 mm x 17.9 mm NEG coated

Undulator: AI, 57 mm x 7 mm

Vertical emittance blow up

50 mA in 70 bunches

63 mA in 70 bunches

Threshold ~ 50 mA

Synchrotron radiation from a bending magnet is used to image the beam spot onto a high resolution CCD camera system.

(G. Kube et al., Overview of the Diagnostics Systems of Petra III,

Proceedings of EPAC08, Genoa, Italy)

Vertical emittance growth (70 bunches)

Vertical emittance blow up (640 bunches)

PETRA III und SPS Tune spectra

PRTRA III is running e+

e cloud ???

At PETRA III tune spectra have been observed with some characteristics which have been observed at the SPS in connection with electron cloud effects.

(K. Cornelis, The Electron-Cloud Instability in the SPS http://conf-ecloud02.web.cern.ch/conf-ecloud02/talks/cornelis.pdf)

Studies with different filling patterns (May / June 2010)

Studies without wigglers – Aug. 2 – 7, 2010

All wigglers have been moved into the parking position

Emittance ~ 4.5 nm rad

(measured vert. emittance 39 pm rad)

The vertical emittance growth and the sidebands are seen again !

Studies with wigglers – Aug 17 and Sep 15, 2010

60 x 4 bunches

No emittance blow-up

80 x 4 bunches

Emittance growth 50 mA ... 75 mA and "upper sidebands"

$\frac{1}{2}$ 80 x 4 bunches

Emittance growth and build-up of "upper sidebands"

Filling pattern N x 4, 16 ns bunch spacing

200 bunches + witness bunch, upper sidesbands have been observed:

May/June with wigglers, for a witness bunch about 72 ns behind the bunch train bunch pos #409 (2nd fill) #411 (1st fill) (96 ns behind the bunch train)

Aug 5, (w/o wigglers) 56 ns behind the bunch train (bunch pos #407) Aug 17 with wigglers 56 ns behind the bunch train (bunch pos #407)

Instability threshold – coasting beam model

Broad band resonator model + coasting beam model *)

$$Z(\omega) = \frac{cR_S}{\omega} \frac{1}{1 + iQ\left(\frac{\omega_e}{\omega} - \frac{\omega}{\omega_e}\right)}$$
(10)
$$= K \frac{\lambda_e}{\lambda_+} \frac{L}{\sigma_y(\sigma_x + \sigma_y)} \frac{\omega_e}{\omega} \frac{Z_0}{4\pi} \frac{Q}{1 + iQ\left(\frac{\omega_e}{\omega} - \frac{\omega}{\omega_e}\right)},$$

where K is an enhancement factor due to cloud size, pinching etc. [11], and Z_0 is the impedance of vacuum (377 Ω). The figure 4 shows K = 1.5. In the case of KEKB, the enhancement factor was $K = 2 \sim 4$ for the vertical wake field.

$$U \equiv \frac{\sqrt{3}\lambda_{+}r_{e}\beta\omega_{0}}{\gamma\omega_{e}\eta\sigma_{\delta}}\frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} = \frac{\sqrt{3}\lambda_{+}r_{e}\beta}{\gamma\nu_{s}\omega_{e}\sigma_{z}/c}\frac{|Z_{\perp}(\omega_{e})|}{Z_{0}} \quad < \mathbf{1}$$

threshold density:

$$\rho_{e,th} = \frac{2\gamma\nu_s\omega_e\sigma_z/c}{KQ\sqrt{3}r_e\beta L} \qquad \qquad K \sim \omega_e\sigma_z/c$$

(L = circumference of the ring)

Q ~ 5 < K

$\omega_{e,y} = \sqrt{\frac{\lambda_+ r_e c^2}{\sigma_y (\sigma_x + \sigma_y)}}$		K = 1	$K\sim\omega_e\sigma_z/c$	K =
	PETRA III:	8.9 x 10 ¹² m ⁻³	1.4 x 10 ¹² m ⁻³	6.4
λ_{+} = beam line density in the e+ bunch	KEK – B:	0.5 x 10 ¹² m ⁻³	0.1 x 10 ¹² m ⁻³	5

(PETRA III, 960 bunches, 100 mA, KEK-B, 1200 bunches, 600 mA)

*) K. Ohmi: Electron Cloud Effect in Damping Rings of Linear Colliders 31st ICFA Advanced Beam Dynamics Workshop on Electron-Cloud Effects "ECLOUD'04"

Simulations 2003 (DESY M 03-02, Dec 2003)

Simulation with ECLOUD 2.3: PETRA III, N = 0.5 10¹⁰, bunch spacing 4 ns

	96 ns	10 ns	А	В
Energy /GeV	7	7	6	6
Bunch Population $N_0/10^{10}$	5.0	4.1	0.5	24.0
Bending radius ρ/m	191.729	191.729	191.729	191.729
dN_{γ}/dz / m	0.753	0.753	0.645	0.645
Y_{eff}	0.1	0.1	0.1	0.1
dN_{e^-}/dz / m	0.075	0.075	0.065	0.065
$N_0 dN_{e^-}/dz /(10^{10} \text{ m})$	0.376	0.309	0.032	1.549

Table 4: Photoelectron emission rates for PETRA II and PETRA III.

	PET	RA II	PETRA III				
	$96 \mathrm{~ns}$	10 ns	Α	В			
chamber area $/\mathrm{cm}^2$	55	5.8	25.1				
Bunch Population $N_0 / 10^{10}$	5.0	4.1	0.5	24.0			
Bunch separation /ns	96	10	4	192			
average bunch charge densities:							
volume $\langle \rho_b \rangle / (10^{12} \text{ m}^{-3})$	0.31	2.47	1.66	1.66			
Results from the simulations							
Cloud Population $/10^{10}$ / m	0.46	1.4	0.32	2.2			
Average density $/(10^{12} \text{ m}^{-3})$	0.83	2.5	1.3	8.7			
Center density / (10^{12} m^{-3})	0.7	2.1	1.0	1.5			

Table 6: Beam and cloud charge densities for PETRA II and PETRA III.

Simulations 2010 – ECLOUD 4.0

Simulation with ECLOUD 4.0: PETRA III, N = 0.5 10¹⁰, bunch spacing 4 ns

Simulations

Electron cloud volume density / m-3

Average beam charge volume density:

$$\left\langle \rho_b \right\rangle = \frac{N}{c \ \Delta t \ A} = 0.83 \ \mathrm{x} \ 10^{12} \ \mathrm{m}^{-3}$$

A = area of the vacuum chamber = π x 20 mm x 40 mm Simulated cloud density

$$\left\langle \rho_{c} \right\rangle = 1.8 \left\langle \rho_{b} \right\rangle$$

Neutrality charge density

$$\left< \rho_c \right> \approx \left< \rho_b \right>$$

Average charge density and tune shift

	Design	Studies							
# Bunches	960	640	10 x 29	200	16 x 10	40 x 4	40 x 8	60 x 4	80 x 4
Current / mA	100	62	48	54	78	85	82	90	75
N / 10 ¹⁰	0.5	0.47	0.8	1.3	2.3	2.5	1.2	1.8	1.1
bunch spacing / ns	8	8	8	16	16	16 / 144	8 / 136	16 / 80	16 / 48
Average density		From neutrality condition							
Arc / 10 ¹² / m ³	0.83	0.77	1.3	1.1	1.9	2.1	2	1.5	0.9
Wigg / 10 ¹² / m ³	1.6	1.5	2.6	2.1	3.8	4.1	4	2.9	1.8
	Predicted tune shift								
Vert. tune shift / kHz (arc density)	0.44	0.41	0.71	0.58	1	1.1	1.1	0.8	0.5

Tune shift calculated from the average charge density (neutrality condition):

$$\Delta Q_{y} = \frac{1}{2} \frac{C}{\gamma} r_{e} \left\langle \beta_{y} \right\rangle \left\langle \rho_{c} \right\rangle \qquad \begin{array}{l} \mathsf{PETRA III} \\ \mathsf{f}_{0} = \mathsf{130 \ kHz} \end{array} \quad \Delta f_{y} = 0.54 \ \mathsf{kHz} \ \mathsf{10}^{-12} \ \mathsf{m}^{3} \ \left\langle \rho_{c} \right\rangle$$

The measurements indicate much larger tune shifts / side bands (about a factor 10) ! ?

0.54 kHz / 130 kHz = 0.004

Simulations: 60 x 4 and 80 x 4 bunches

Simulation with ECLOUD 4.0: PETRA III, I = 50 mA N = 1.0 10^{10} and 0.75 10^{10} , bunch spacing 16 ns

2e+013 2.5e+009 P3 60x4 60 x 4 P3 80x4 80 x 4 2e+009 1.5e+012 **SEY 2.5** 1.5e+009 center density 1e+012 -lectron ~ 1.0 10¹² m⁻³ 1e+009 5e+011 5e+008 center density is similar in both 1e-007 2e-007 3e-007 4e-007 5e-007 6e-007 7e-007 8e-007 9e-007 1e-006 1e-007 2e-007 3e-007 4e-007 5e-007 6e-007 7e-007 8e-007 9e-007 1e-006 0 Time / sec Time / sec cases 1e+012 60 x 4 P3 60x4 1.4e+009 80 x 4 P3 80x4 1.2e+009 8e+011 **SEY 2.0** 1e+009 6e+011 ron cloud center density 8e+008 ~ 0.5 10¹² m⁻³ 4e+011 6e+008 4e+008 2e+011 2e+008 0 1e-007 2e-007 3e-007 4e-007 6e-007 7e-007 8e-007 9e-007 1e-007 2e-007 3e-007 4e-007 5e-007 5e-007 1e-006 0 6e-007 7e-007 8e-007 9e-007 1e-006 Time / sec Time / sec

Red 60 x 4 bunches Blue 80 x 4 bunches,

Summary: Vertical Emittance Growth

- > A vert. Emittance growth (factor 2 ...4) has been observed at PETRA III for long bunch trains with 8 ns and 16 ns bunch to bunch spacing at a total current of about 50 mA
- There a "upper-sidebands" in the tune spectra with a clear build-up along the bunch train
- The measured tune spectra show some characteristics which have been observed at other storage rings in connection with electron cloud effects.
- The tune shift is much larger than expected from estimates based on the average charge density (neutrality condition)
- For user runs a filling pattern has been found (40 x 4 bunches and 60 x 4 bunches) without a significant emittance growth
- Simulations indicate the same center density for both filling patterns

I would like to thank J. Crittenden for discussions (via e-mail) and his ecloud simulations for PETRA III.

I would like to thank my colleagues from DESY

Klaus Balewski,

Michael Bieler,

Joachim Keil,

Alexander Kling,

Gajendar Kumar Sahoo,

who provided valuable data and facts for my talk.

Thank you for your attention !

