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CesrTA Objectives   
•  Characterize the growth and decay of the electron cloud 
•  Measure the effect of the electron cloud on low emittance 

beams 
–  Tune shift 
–  Emittance growth 
–  Instability 

•  Test electron cloud mitigations 
•  Develop instrumentation and techniques for measuring electron 

cloud and its effects 
•  Develop instrumentation and techniques for low emittance 

tuning and operation 
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CesrTA 
 Instrumented Damping Ring 

•  Configured as test accelerator 
–  Superconducting Damping Wigglers and low emittance optics 

•  Instrumentation for characterizing electron cloud and 
consequences 
–  RFA – time averaged cloud density 
–  Gated spectrum analyzer – spectrum of individual bunches in a train 
–  Shielded pickup – cloud decay, electron energy,  
–  Xray beam size monitor – measurement of the εv of bunches in a train 
–  TE wave phase shift – non invasive measure of local electron density 

•  Characterization of mitigations in all guide fields 
•  Characterization of SEY of vacuum materials 
•  Beam based techniques for low emittance tuning  
•  Modeling and Simulations to interpret the measurements 
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CesrTA Parameters 

Energy [GeV] 2.085 2.085 5.0 5.0 
No. Wigglers 12 12 0 6 
Wiggler Field [ T ] 1.9 1.9 ― 1.9 
Qx  14.57 
Qy  9.6 
Qz  0.055 0.075 0.043 0.043 
VRF [MV] 4.5 8.1 8 8 
εx [nm-rad] 2.6 2.6 60 35 
τx,y [ms] 57 57 30 20 
αp  6.76×10-3 6.76×10-3 6.23×10-3 6.23×10-3 

σl [mm] 12.2 9 9.4 15.6 
σE/E [%] 0.81 0.81 0.58 0.93 
tb [ns] ≥4, steps of 2 
•  Operating energies between ~1.5 and ~5.5 GeV  

–  Intermediate energy optics available for beam dynamics studies 
–  Allows significant control of primary photon flux in EC experimental regions 
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Upgrade Program: 
xBSM Optics Line & Detector 

Detector 
Array 

New all-vacuum optics 
line for e+ beam in collaboration 

with CHESS 
2nd line for e- beam in progress 

UHV 
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Low emittance tuning procedure typically yields sub 
20pm in one or two iterations 

σ =17µm 
εv = 18pm 

D-line xbsm - positrons 



32 Channel Detector Output For 20 
Bunches, 1 mA Per Bunch 
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C-line – electron beam size 
20 bunches,14 ns spacing, 32 channels, pinhole optics 
  Capability to measure bunches spaced by as few as 4ns 



Retarding field analyzers 

ecloud 2010 

•  These devices measure the energy 
spectrum of the time-average cloud 
current density which impacts the 
chamber wall. Most devices are 
segmented, so that some position 
information is also available. 

•  These devices can be placed in 
drifts, dipoles, quadrupoles, and 
wigglers.  

•  RFA’s placed in chambers to which 
mitigation techniques have been 
applied will be used to measure the 
effectiveness of these techniques. 
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Instrumented Wigglers 

•  Installed Oct 23-24, `08 
–  1 Cu VC; 1 TiN-coated VC 



•  We have three wigglers instrumented with RFAs 
–  Bare Cu 
–  TiN coated 
–  Grooved, clearing electrode 

•  Each wiggler has three RFAs 
–  Plots shown will be for an RFA in the center of a wiggler pole 
–  There are also RFAs in a longitudinal and intermediate field  
–  RFAs have 12 collectors and are built into the beam pipe 

Wiggler Mitigation 
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Groove tips/valley 
radius < 0.002” !! 
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Drift Mitigation 
•  We are investigating mitigation techniques in drift chambers made of 

different materials 
–  Aluminum 

•  RFA has 9 collectors and is integrated into beam pipe 
•  To be compared with amorphous carbon coated aluminum chamber 

–  At a symmetric location to the bare Al chamber  
–  Photon flux for Al chamber with e+ beam = photon flux for αC chamber with e- beam 

–  Copper  
•  RFA has 5 collectors and sits on top of beam pipe 
•  To be compared with TiN coated copper chamber 

–  Next to the bare Cu chamber 
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Cu Chamber 

Al 
Cha
mber 
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RFA 
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Solenoid Mitigation 
•  RFA response as an adjacent solenoid magnet was ramped up 

(0 – 70G) 
–  Beam conditions: 1x45x1.85 mA e+, 5GeV, 14ns 
–  A significant cloud suppression is observed in most  
collectors 
–  However, collectors near the  
inside of the chamber actually see  
an increased response 

•  This is probably due to electrons  
streaming from a nearby distributed  
ion pump 
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Wiggler Voltage Scans II 
•  Plots show collector response as a function of retarding voltage 

and collector number 
•  Beam conditions: 1x45x.9 mA e+, 14ns, 2 GeV 
•  Data is from two different runs 

–  The wigglers were shuffled around between runs, so these 
two plots are actually from the same longitudinal position 

–  Multipacting is stronger in Cu chamber 
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Cu, 1x45x.9 TiN, 1x45x.9 
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Mitigation 
•  Beam conditions: 1x45x.9 mA e+, 14ns, 2 GeV 

–  The wigglers are in the same longitudinal position 
–  Grooves seem more effective than TiN 
–  Grooved structure very obvious 
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TiN, 1x45x.9 Grooved,1x45x.9 

October 9, 2010 15 



Wiggler Clearing 
Electrode 

•  20 bunch train, 2.8 mA/bunch 
–  14ns bunch spacing 
–  Ebeam = 4 GeV with wigglers ON 

•  Effective cloud suppression 
–  Less effective for collector 1 which 

is not fully covered by electrode 
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Electrode 
Scan  
0 to 400V 

RFA Voltage Scan, 
Electrode @ 0V RFA Voltage Scan, 

Electrode @ 400V 

Electrode 

RFA 

October 9, 2010 



Mitigation Performance in Dipoles 

•  1x20 e+, 5.3 GeV, 14ns 
– 810 Gauss dipole field 
– Signals summed over all  

collectors 
– All signals ÷40 
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e+ 
e- 

Longitudinally grooved 
surfaces offer significant 
promise for EC mitigation 
in the dipole regions of the 
damping rings 



Drift Mitigation 
•  Plots show average of all collectors for all drift RFAs 
•  In general, the most cloud is seen in the bare Al chambers (blue) 

–  Much less in copper chambers (black) 
–  Less still in coated chambers 

•  TiN: green 
•  Carbon: red 
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e
+ 

e- 
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Quadrupole RFA 

•  Quadrupole chamber RFA 
•  One collector sees a huge amount of current 

–  This is where the electrons are guided by the quad field lines 
•  12 azimuthal collectors 
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Quadrupole Measurements 
•  Left: 20 bunch train e+ 
•  Right: 45 bunch train e+ Clear improvement with TiN 
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Chicane Mitigation 
•  We have installed the PEP-II chicane in our L3 straight region 

–  Each magnet is instrumented with a 17 collector RFA 
–  This allows us to investigate the behavior of the cloud as a function of magnetic 

field 
•  Range: ~25 - 1100 Gauss 

•  Two different mitigation techniques are employed 
–  TiN coating (2 magnets) 
–  Grooves + TiN coating (1 magnet) 
–  The last magnet is bare Aluminum 

•  We are looking for  
•  “cyclotron resonances” 

–  These occur when the bunch  
spacing is an integral multiple of the  
cyclotron period of an electron  
-- Data shown is plotted against  
“resonance number”  
(= bunch spacing / cyclotron period) 
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Surface Characterization & Mitigation 
Tests 

Drift Quad Dipole Wiggler VC Fab 
Al    CU, SLAC 

Cu   CU, KEK, 
LBNL, SLAC 

TiN on Al    CU, SLAC 

TiN on Cu   CU, KEK, 
LBNL, SLAC 

Amorphous C on Al  CERN, CU 

NEG on SS  CU 

Solenoid Windings  CU 

Fins w/TiN on Al  SLAC 

Triangular Grooves on Cu  CU, KEK, 
LBNL, SLAC 

Triangular Grooves w/TiN on Al  CU, SLAC 

Triangular Grooves w/TiN on Cu  CU, KEK, 
LBNL, SLAC 

Clearing Electrode  CU, KEK, 
LBNL, SLAC 
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 = planned  = chamber(s) deployed 



Shielded pickup 
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Shielded pickup 
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Shield 
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Shielded Pickup 
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With no magnetic field, electrons come from the floor of the chamber 



Shielded pickup 
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Direct beam signal 

positrons 
Single bunch  

electrons 



Solenoid field 
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Shielded pickup 
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Single bunch – SPU vs solenoid field 

2gev 5gev 



Shielded pickup 
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Witness bunch method 

Electrons from the floor 

Electrons from the ceiling 

First bunch 

witness 



Cloud Evolution:  Witness Bunch 
Studies 

TiN Chamber 
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Consistency with simulation has a strong dependence on the elastic yield parameter. 



Beam dynamics experiments 

•  Electron cloud focuses the beam and shifts the tune 
–  Measurement of tune shift of bunches along the train yields electron 

density 
•  Electron cloud also couples the head and tail of the bunch 

–  Measurement of the spectral content of each bunch indicates 
instabilities. 

•  Tune shift measurements 
–  Kick the entire train and use turn by turn position to extract tune of 

each bunch.  
–  Gated spectrum analyzer gives a measure of the self excited tune in 

each bunch 

•  Gated spectrum analyzer also reveals bunch dependence 
of synchrobetatron sideband 
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Example:	  Positron	  Witness	  Bunch	  Study	  at	  2GeV	  
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Peak SEY Scan 
Coherent Tune Shifts (1 kHz ~ 0.0025), vs. Bunch Number 
 - 21 bunch train, followed by 12 witness bunches 
 - 0.8×1010 particles/bunch 
 - 2 GeV.  
 - Data (black) compared to POSINST simulations. 

SEY=2.0 

SEY=1.8 

SEY=2.2 
Train 

Witnesses 



Electrons, 10 bunch train + 
witnesses 
133 nm horizontal 
emittance, 1.89 GeV 
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Coherent tune shifts (2) 
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POSINST 

Black: data; red: simulation 
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Positrons, 45 bunch train 
2.6 nm horizontal emittance, 
2.09 GeV 
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Coherent tune shifts (4) 

October 9, 2010 

POSINST 

Long train data was taken in January, 2009, using low emittance lattice.  

Black: data; red: simulation 
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Beam Instabilities & Emittance 
Growth 
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50 dB 

Head-Tail Mode 
@ Fv+Fs 

Fv 

263 KHz 

* 

Bunch #1 Bunch #25 Bunch #40 

40 kHz 

•  Bunch-by-bunch measurements - xBSM 
•  Single-bunch (head-tail) – spectral methods and growth rates 
•  Multi-bunch modes via feedback and BPM system 
•  Modeling:  KEK-Postech (analytical estimates and simulation) 

 SLAC-Cornell (CMAD) 
 Frascati (multi-bunch instability) 

•  Current scan in 45 bunch positron train  Look for onset of head-tail instability 
•  2 GeV Low Emittance Lattice, 14ns bunch spacing 

–  Fv & Head-Tail Mode spectra (expected at Fv + Fs) 
–  Synchrotron Tune ~26 kHz 

1.3 mA/bunch 
2.1×1010e+/bunch 



Bunch-by-bunch power spectrum-00126 

V Chromaticity = 2.67749 
H Chromaticity = 1.1775 
Positron feedback (H,V,L) =  
-400  0  0 
Nominal current/bunch (mA) =  
0.7233457365496874 
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Horizontal and vertical betatron lines 

Note 
bifurcation of 
lines for 
bunches ~23-30 
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Emittance Growth 
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Greater depth in structure  smaller beam size 
Head of train likely experiencing blow-up from nearby resonance"

Turn-by-turn analysis in progress! 

Fast Coded Aperture: 0.5 mA/bunch - 4096 turns averages  

Fast Coded Aperture: 1.0 mA/bunch - 4096 turns averages  

B1                                B11                                B21                               B31                              B41 

B1                                B11                                B21                               B31                              B41 



Vertical synchrobetatron lines 

Instability threshold: 

Cloud density at threshold: ~7x1011/m3 
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TE Wave Measurements 

Low-energy electrons 

Beampipe 
EM wave 

Phase velocity changes in the ec region 

plasma frequency 
2c(πρere)1/2 

The electron cloud density modifies the wavenumber associated with the propagation of 
EM waves through the beampipe.  

Signal 
Generator 

Δ

Receiver 

Amplifier 

Isolator 

Bandpass 
Filter 

180º Hybrid 

Beam 

Electron Cloud 

Experimental apparatus 

Positron current 

E-Cloud Density 

Relative phase shift 

frev/Ntrain 
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Gaps in the fill pattern result in a modulation of the 
phase shift. In the frequency domain, this results in 
sidebands of the fundamental frequency.  The amplitude 
of the sidebands is related to the cloud density. 
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CESR Reconfiguration:  L0 
Modifications 
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Heliax cables 
for TE Wave 

Measurements 

Installed Diagnostic 
Wigglers 

e+ 

Diagnostic Wigglers 

Grooved Insert for 
CESRTA Wiggler 

‘Resonant BPM’ and 
Transmission Setup 

TE 
Wave 

CESRTA Wiggler Electrode 
CU, LBNL 
KEK, SLAC 



In situ – SEY measurement 
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Measure secondary emission yield 
And the effect of beam processing 

Positron beam 

Electron gun 



In Situ Sey 
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Sey 
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• Data shows a steady 
logarithmic decrease in SEY 
peak with increased beam 
dosage 
• 45 deg system has a 
consistently higher SEY than 
the horizontal system for Al 
TiN sample 
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Summary 
•  CesrTA is instrumented for characterization of electron cloud effects 

in low emittance damping ring 
–  RFA  - cloud growth and its dependence on  

•  Magnetic environment 
•  Mitigation 
•  Beam current and bunch configuration and beam energy 

–  Bunch by bunch tune shift 
•  Global electron density and cloud decay  
•  In connection with simulation gives us information about modeling parameters 

–  Bunch by bunch synchrotron sideband intensity 
•  Instability threshold 

–  Bunch by bunch beam size measurement 
•  Cloud induced emittance growth 

–  Shielded pickup 
•  Energy of cloud electrons 
•  Decay of the cloud 
•  And in connection with simulation – more constraints on model parameters 

–  TE Wave propagation 
•  Local cloud density 

–  In situ SEY measurement 
•  Effect of beam processing on secondary emission yield 

–  High bandwidth precision beam position monitors 
•  Beam based measurements essential to low emittance tuning procedure 
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