

Damping Requirements in SRF Deflecting Cavities for Generation of Short X-ray Pulses in Storage Rings

A. Nassiri

Materials contributions:

G. Waldschmidt, L. Emery, B. Brajuskovic, J. Liu

ANL

International Workshop on Higher-Order-Mode Damping in Superconducting RF Cavities

Cornell University October 11-13, 2010

Outline

- Scheme
- Cavities performance requirements
- Summary

2

Scheme*

SRF Deflecting Cavities LOM/HOM Damping Requirements LEPP-HOM10 Cornell University

Bunch Patterns

Symmetric 202 mA in 24 bunches

Hybrid, i.e. Single bunch plus a bunch train 202 mA in Hybrid: 1+ 8x7 Hybrid usually has higher growth rates

4

Beam Parameters

Operating total current	202 mA
Energy	7 Gev
Revolution frequency	271.55 kHz
Synchrotron frequency	2.1 kHz
Momentum compaction	2.8x10 ⁻⁴
Cavity 🔤	22 m
Cavity 🗅	7.5 m
RMS bunch length for 2 mA	37 ps
Chromaticity	> 6

Damping rates

Planes	Synchrotron radiation	Coherent
Longitudinal	208 s ⁻¹	208 s ⁻¹
Horizontal	104 s ⁻¹	> 600 s ⁻¹
Vertical	104 s ⁻¹	> 600 s ⁻¹

5

SPX Fundamental Parameters

Beam current Beam energy Revolution frequency RF deflecting voltage Two cryomodules 4 cavities/cryomodule RF deflecting voltage Two cryomodules 8 cavities/cryomodule RF frequency 202 mA (24singlets) 7 GeV 271.55 kHz 2 MV (Initial implementation)

4 MV (Final implementation)

2815.4856 MHz (8th harm of SR frequency. 351.9357 MHz)

Example V-plane HOMs from One SC cavity with dampers

Frequency Hz	Q Ohm/	RoverQ m (ShuntImpedance Dhm/m	
2.82e+09	100000	1062	1.06e+08	Deflecting mode
2.98e+09	43	66	2.84e+03	
3.01e+09	588	13	7.64e+03	
3.02e+09	68	878	5.97e+04	
3.06e+09	797	240	1.91e+05	Dominant HOM
3.32e+09	16	0	1.60e-01	
3.38e+09	187	0	2.24e+01	
3.43e+09	144	448	6.45e+04	
3.70e+09	580	27	1.58e+04	
3.83e+09	1116	4	4.07e+03	
4.20e+09	67	20	1.34e+03	

Data supplied by G. Waldschmidt

SRF Deflecting Cavities LOM/HOM Damping Requirements LEPP-HOM10 Cornell University 7

Monte Carlo Results for Hybrid Bunch Pattern, Single Worst HOM in V-plane

Results for all planes, all HOMs and two bunch patterns

Stability Result

- Q's of longitudinal and transverse planes are very low (20-800)
- Transverse plane is stable with only synchrotron radiation

Plane	Growth Rate	Damp	ing Rate	
		Synchrotron Radiation	Coherent	Comment
Longitudinal	30 s ⁻¹	208 s ⁻¹	Not applicable	Stable
Horizontal	180 s ⁻¹	104 s ⁻¹	> 600 s ⁻¹	Probably stable
Vertical	125 s ⁻¹	104 s ⁻¹	> 600 s ⁻¹	Probably stable

Single-Cell Storage Ring Cavity Options

Frequency	2815	MHz
I _{beam}	200	mA
Q _{bunch}	30.7	nC
f _{rev olution}	271	kHz
# of bunches per revolution	24	
Bunch length	40 (12)	ps (mm)
# of cavities	16	
# of Cryomodules	2	
k (baseline)	0.523	V/pC
k (alternate)	0.305	V/pC
Beam pipe radius	25	mm

Cavity and bunch parameters

A. Nassiri

Longitudinal and Transverse Impedance

Power Loss Parameters for Alternate Design

Power Loading Estimates in Alternate Cavity

- Total power loss into alternate cavity using loss factor is 1.87kW.
- Total power loss by performing a rough integration of the instantaneous power at each of the damper ports is 1.97kW.
- Actual power load into dampers is heavily dependent on final choice of cavity option and loss factor

Damper Design Concept (JLAB design)

- JLAB has demonstrated good results for prototype, low-power SiC dampers.
- SiC electrical properties have been measured at room temperature and at low temperature.

F. Marhauser. "Investigations on Absorber Materials at Cryogenic Temperatures"G. Chang: High-Power Damper Concept

Damper Structural Preliminary Analysis

2 kW RF power

Thermal Conductivity	150	W / (m ℃)
Young's Modulus	410	Gpa
Poison's Ratio	0.21	
CTE @ 22 °C	3.0E-6	1 / °C

- The dampers are approximately 150mm long by 15mm by 15mm at its base.
- Ultimate strength of SiC exceeded in simulations.
- Stress relief copper posts and segmented SiC were not yet included.

SRF Deflecting Cavities LOM/HOM Damping Requirements LEPP-HOM10 Cornell University 17

Design and Analysis Issues

A. Nassiri

- Is it useful to perform a transient thermal analysis of the brazing operation?
- We modeled a 0.004" braze layer to possibly analyze the brazing operation from the solidus temperature.
 - Determine pre-stresses in a room temperature, brazed damper.
 - Determine the number of pieces to divide damper.
 - Determine number and size of stress-relieving posts.
 - Are useful mechanical parameters available for brazing material.
- Is SiC preferred to AIN although the CTE of AIN is closer to copper?
- Is soldering with Sn based material, such as S-Bond, compatible with ultrahigh vacuum?
- If brazing is required, what process is preferred? What vendors are recommended for material and brazing?
- What is the knowledge base for material properties of damping material at 80K / 293K?
- What is the failure criteria for damping material, such as tensile yield strength?

SiC Material Properties

	Trade name	SC-DS(SC-30)	Ceralloy 146-IS		CRYSTAR CVD SiC
	Company name	CoorsTek, Inc	Ceradyne, Inc	Morgan	Saint Gobain
	Process used	Direct Sintered	Hot Press	CVD	CVD
Property	Units				
Purity			99.30%	99.9995%	
Density	gm/cc	3.15	3.15		3.21
Crystal Size, Average	MICRONS	5			
Color		Black			
Flexural Strength (MOR) at (T ^o)	MPa (psi X 103)	480 (70)	380		590
Elastic Modulus, at (T ^o)	GPa (psi X 106)	410 (59)	400		450
Poisson's Ratio, at (T ^o)		0.21	0.17		
Compressive Strength, at (T ^o)	MPa (psi X 103)	3500 (507)			
Hardness	GPa (kg/mm2)	26 (2500)	(2300)		26
Tensile Strength, at (T ^o)	MPa (psi X 103)	*			
Fracture Toughness,	MPa m1/2	4	2.5		
Thermal Conductivity, at (T ^o)	W/m K	150	115 @ 25°C		250
CTE, (T ^o range)	1X 10-6/ °C	4.4	4.8 (RT-1000 °C)		
Specific Heat, at (T ^o)	J/kg*K	800			
Thermal Shock Resistance, (ΔTc)	°C	300	164 *(caculated)		
Maximum Use Temp.	°C	1600			
Resistivity	log (ohm-cm)	< 10 ⁵	< 10 ⁶		4.0 x 10 ⁻⁶
Dielectric constant k					
Relative Permeability					
Loss tangent					
Compatibility with UHV					

A. Nassiri