Higher order mode damping considerations for the SPL cavities at CERN

W. Weingarten

1 Int. Workshop on HOM Damping in SRF Cavities Cornell University 11 - 13 October 2010

Outline

- The SPL study at CERN
- HOM damping requirements for SPL study
- Optimisation of cavity geometry related to HOM damping
- Conclusion on
 - geometry
 - damping HOMs
- Outlook
- Spare slides

On longitudinal HOM excitation for pulsed beams

The SPL study at CERN

- International cross relations of interest with ESS, Project X, SNS, Myrrha, JPARC
- An international collaboration was established for the SPL study <u>http://indico.cern.ch/categoryDisplay.py?categId=1893</u>
- Goal: develop multi-megawatt sc proton linac cryomodule as a driver for non-LHC physics programs such as neutrino and Radioactive Ion Beam (RIB) physics.
- Deliverable: developing, in collaboration with external labs, bulk niobium 5-cell 704 MHz elliptical cavities, to be tested at 2 K, around the beginning of 2013, in a ½ length cryo-module with 4 cavities.

 The Superconducting Proton Linac (SPL) study is now part of CERN's Mid Term Plan.

HOM damping requirements for SPL study ¹

Beam	bunch length	1.2	mm
	bunch charge Q _b	114	pC
	average pulse current	40	mA (0.4 ms pulse length with 50 Hz repetition rate)
	energy	5	GeV
	beam power	4	MW
	no. of cavities	200	
Cavity	frequency	704.4	MHz
	number of cells	5	
	long. loss factor k @ design bunch length	4.8 @ σ =2 mm	V/pC

HOM damping requirements for SPL study ²

HOM	single bunch HOM power spectrum		
	av. HOM power per cavity (k·Q _b ·I)	22	W
	worst case HOM power per cavity (resonant excitation of mode for $Q_{ext} = 10^4$)	~ 100	W
	required damping Q _{ext} , monopole modes	10 ⁵	
	ditto , dipole modes	10 ⁷	
5	Int. Workshop on HOM Damping in S 5.0 $\lfloor 10^8$ 1.0 $\lfloor 10^9$ 1.5 $\lfloor f_{\rm H}$	10 ⁹ 2.0	L 10 ⁹ 2.5 L

HOM damping requirements for SPL study ³ Required Q wrt beam break up for whole linac

Q_{ex} limits based on beam dynamic simulations Simulated cases: nominal, RF errors, chopped beams, fundamental pass-band modes

Overall conclusion:

To be on the save side and keep all operation options open a $Q_{ex} = 10^5$ is recommended!

Courtesy: Marcel Schuh / CERN-BE-RF

6

HOM damping requirements for SPL study ⁴ Required Q wrt power deposition per cavity

I = 40 mA; pulse length 1 ms, R/Q = 100 Ω; Rep. rate 50 Hz; f_{HOM} = 2.1 GHz; Q_0 = 10¹⁰

Power built-up/decay during pulse of 1 ms

Maximum power vs. frequency showing principal Fourier components of beam

Int. Workshop on HOM Damping in SRF Cavities Cornell University

HOM damping requirements for SPL study ⁵ Required Q wrt power deposition per cavity

I = 40 mA; pulse length 1 ms, R/Q = 100 Ω; Rep. rate 50 Hz; f_{HOM} = 2.1 GHz; Q_0 = 10¹⁰

f (HOM) precisely on beam spectral line

8

HOM damping requirements for SPL study ⁶ **Required Q wrt power deposition per cavity**

Int. Workshop on HOM Damping in SRF Cavities Cornell University

11 - 13 October 2010

HOM damping requirements for SPL study ⁷ Required Q wrt power deposition per cavity

Validation of recursive analytical calculations

Int. Workshop on HOM Damping in SRF Cavities Cornell University

11 - 13 October 2010

HOM damping requirements for SPL study ⁸ Conclusion

I = 40 mA; pulse length 1 ms, R/Q = 100 Ω; Rep. rate 50 Hz; f_{HOM} = 2.1 GHz; Q_0 = 10¹⁰

- The main beam Fourier components (n·352 MHz) contribute significantly to the HOM power, the 50 Hz Fourier component, however, only marginally; to reduce the HOM power below 100 W, the Q-value of the HOM must be < 10⁴
- Avoiding the main beam Fourier components by the HOM frequencies within 10 kHz reduces the HOM power significantly, with a tendency to become even smaller for larger Q-values (P < 1 W @ Q > 10⁷)
- → The HOM power could possibly be reduced by inelastic detuning or an appropriate design of the cavity (though without changing the fundamental mode frequency) with the aim to keep sufficiently off ALL HOM frequencies from the main Fourier components

Optimisation of cavity geometry related to HOM damping ¹

Different beam tube diameters investigated

12

11 - 13 October 2010

Optimisation of cavity geometry related to HOM damping² Longitudinal Loss Factors

Int. Workshop on HOM Damping in SRF Cavities Cornell University 11 - 13 October 2010

Optimisation of cavity geometry related to HOM damping ³

 $\mathsf{Q}_{\mathsf{L}}\mathsf{vs.}\mathsf{f}$ damping via normal conducting beam tube (plus normal conducting taper)

frequency [MHz]

Int. Workshop on HOM Damping in SRF Cavities Cornell University

11 - 13 October 2010

14

Optimisation of cavity geometry related to HOM damping ⁴ $Q_{HOM}/Q_{fundamental mode}$ vs. f damping via beam tube made of stainless steel

Int. Workshop on HOM Damping in SRF Cavities Cornell University 11 - 13 October 2010

Optimisation of cavity geometry related to HOM damping ⁵

 Q_1 VS. f damping via two 50 Ω antennas in beam tube \emptyset = 3.6 cm

Optimisation of cavity geometry related to HOM damping ⁶ Q₁ vs. f damping via coaxial antenna

Pick-ups without fundamental mode filters will not be able both to preserve fundamental mode Q and damp all HOMs sufficiently. Confirmed by Wolfgang Weingarten's 2D computations using beam pipe dampers.

17

Int. Workshop on HOM Damping in SRF Cavities Cornell University 11 - 13 October 2010

Optimisation of cavity geometry related to HOM damping ⁷

 Q_L vs. f damping with fundamental power coupler

These numbers are only estimations !

Optimisation of cavity geometry related to HOM damping ⁸

Q_L vs. f damping with fundamental power coupler (FPC)

- HFSS: 180° model with lump circuit element at FPC window
- MicroWave Studio: full cavity (360°) with port at FPC window
- ► Calculate loaded Q value of system (damping)

$Q_L - 50\Omega$ lump element at FPC window (β =1.0)

Int. Workshop on HOM Damping in SRF Cavities Cornell University 11 - 13 October 2010

Optimisation of cavity geometry related to HOM damping ⁹ Heat is dissipated in ss bellows

$$P_{rad}(t) = \frac{P_{HOM}(t)}{1 + \frac{Q_{ext}}{Q_0}} \qquad P_c(t) = \frac{P_{HOM}(t)}{1 + \frac{Q_0}{Q_{ext}}}$$

- Fundamental mode: Heat dissipation in cavity @ 704 MHz, 25 MV/m, $Q_0 = 10^{10}$: P_c = 123 W CW => 5 ... 16 W pulsed
- Heat dissipation in SS bellows @ 704 MHz, 25 MV/m, equivalent Q₀ = 3.10¹¹:

P_c = 4 W CW => 0.04 ... 0.13 W pulsed

- HOM: Heat dissipation in SS bellows @ 2112 MHz, Q₀=2.5·10⁷; construct HOM damper with Q_{ext} < 10⁵ or/and count on damping by power coupler: Q_{ext} < 10⁴ (to be checked!)
 Under these assumptions the heat dissipated in the SS bellows for
 - the HOM at 2.112 GHz is less than 3 W (worst case).

Conclusion on geometry ¹

Present cavity/tuner/coupler/He tank/beam tube layout

Conclusion on geometry²

Present cavity/tuner/coupler/He tank/beam tube layout

Includes specific features for cryo-module integration (inter-cavity supports, cryogenic feeds, magnetic shielding ...)

Courtesy: Th. Renaglia of or Ratima in Giller Nr F Cavities Cornell University 11 - 13 October 2010

Conclusion on damping HOMs

- In the frequency range f = 1300 1500 MHz, damping of HOMs is not sufficient, neither by
 - dissipation in beam tube (largely irrespective of absorber material) or
 - 50 Ω antenna placed in beam tube

23

- For f > 1800 MHz, damping of HOMs is stronger, in particular for larger beam tube diameter than our reference design, but still insufficient for our needs (Q < 10⁴)
- Antenna HOM absorbers are needed that are trimmed for 1300 and 1500 MHz and reject the fundamental mode
- Corollary: There may be a chance to damp the HOMs via the fundamental power coupler (to be confirmed by simulations and measurements of the impedance of the power coupler as "seen" by the cavity)]

Outlook

There is a first design developed at Rostock University, based on the HOM couplers for LEP and LHC

The next steps are the

- Electrical validation and the
- Mechanical/cryogenic validation of model

Tuning to 704 MHz OK but cooling and construction to be checked

Prototype manufacture of HOM coupler and warm RF tests on Cu cavity model

Thank you for your attention !

Acknowledgements to my colleagues in CERN/BE-RF as well as the members of the SPL-cavity working group

http://indico.cern.ch/categoryDisplay.py?categId=2722

Spare slides

Insertion (on recursive analytical calculations)

On longitudinal HOM excitation for pulsed beams ¹

CW beam:
$$V = V_q \sum_{n=0}^{\infty} e^{-n'pT_b} = \frac{V_q}{1 - e^{-pT_b}}$$

Insertion (on recursive analytical calculations) On longitudinal HOM excitation for pulsed beams ²

$$m(t) = \frac{t}{T_i} + 1 \text{ (truncated)} \qquad t^* = t - [m(t) - 1] \cdot T_i$$

$$p = 2 \cdot \pi \cdot f \cdot i + \frac{1}{T_d}$$

$$n(t) = \frac{t}{T_b} + 1 \text{ (truncated) if } t^* \leq (N-1) \cdot T_b \text{ or } = N \text{ otherwise}$$

$$T_d = \frac{Q_L}{\pi \cdot f} \qquad T_g = T_i - T_{ib} = T_i - (N-1) \cdot T_b$$

$$Q_L = \frac{1}{\frac{1}{Q_0} + \frac{1}{Q_{ex}}} \qquad V_q = \pi \cdot f \cdot \frac{R}{Q} \cdot q$$

Insertion (on recursive analytical calculations) On longitudinal HOM excitation for pulsed beams ³

$$\begin{split} V_{mn} &= V_{m-1,N} \cdot e^{-pT_g} \cdot e^{-(n-1)pT_b} + V_q \cdot e^{-(n-1)pT_b} + V_q \cdot e^{-(n-2)pT_b} + \dots + V_q = \\ &= V_{m-1,N} \cdot e^{-pT_i} \cdot e^{+(N-n)pT_b} + V_q \cdot e^{-(n-1)pT_b} + V_q \cdot e^{-(n-2)pT_b} + \dots + V_q \Longrightarrow \\ V_{mn} &= V_q \cdot \left[\frac{1 - e^{-(m-1)pT_i}}{1 - e^{-pT_i}} \cdot \frac{1 - e^{-NpT_b}}{1 - e^{-pT_b}} \cdot e^{-p[T_i - (N-n)T_b]} + \frac{1 - e^{-npT_b}}{1 - e^{-pT_b}} \right] \\ V_{mn}(t) &= V_{mn} \cdot e^{-p(t-t_{mn})}; \quad t_{mn} = [m(t)-1] \cdot T_i + [n(t)-1] \cdot T_b \\ P_{HOM}(t) &= \frac{V_{mn}(t) \cdot V_{mn}^*(t)}{\frac{R}{Q} \cdot Q_L} \qquad P_{rad}(t) &= \frac{P_{HOM}(t)}{1 + \frac{Q_{ext}}{Q_0}} \qquad P_c(t) = \frac{P_{HOM}(t)}{1 + \frac{Q_{ot}}{Q_{ext}}} \end{split}$$

		#freq	r/Q	beta_opt	Qo	Rs_nOhm
	Source: I Plauin at al. 2rd SPI Collaboration	692.459406	15.495341	0.55	5.87048e+10	4.58
	Source. J. Flouin et al., Stu SFL Collaboration	695.691165	40.295848	0.63	5.85048e+10	4.60
	Meeting11-13 November, CERN	699.762722	86.977902	0.71	5.82537e+10	4.62
		703.121236	173.038043	0.81	5.80475e+10	4.64
		704.420268	565.499512	1.00	5.8134e+10	4.65
		1293.187800	3.150182	0.66	4.06538e+10	9.75
		1303.568690	7.969888	0.72	4.01921e+10	9.86
	Operating frequency mode	1317.445320	17.344152	0.79	3.95608e+10	10.02
	Operating nequency mode	1329.742220	59.154893	1.00	3.9004e+10	10.16
	(-), f $ 704$ A MU	1335.734260	107.744313	0.98	3.85250+10	10.23
	(π) : $\Gamma_0 = 704.4$ IVITZ	1450 724780	0 831396	0.92	5 068980+10	11.62
		1460.366080	1,999197	0.89	5.03429e+10	11.02
		1474.206000	2.839266	0.85	5.03023e+10	11.92
	Nomonolo	1488.535980	2.701775	0.80	5.09436e+10	12.10
	Νοιποποροιε	1499.066360	2.342662	0.73	5.20134e+10	12.24
		1843.272060	0.209069	0.95	3.35164e+10	17.22
	noivi al Zi _o	1858.324840	0.596186	0.91	3.26306e+10	17.47
		1881.326440	1.603429	0.98	3.28434e+10	17.84
		1911.484360	1.329645	0.94	3.31308e+10	18.33
		1948.248770	1.819111	1.00	3.35394e+10	18.95
		2000.236410	2.451434	0.98	3.13642e+10	19.84
		2039.865120	1.3//1/9	0.78	3.701430+10	20.53
		2072.798590	5.019705	0.85	3.0490+10	21.12
		2080.243350	19 164504	1.00	2 90251e+10	21.50
	Mode at 2111 61 MHz	2111 640680	10 636820	1.00	2.902510110 2.94648e+10	21.42
		2119.767790	8.476595	1.00	2.65214e+10	21.97
	very near 3f	2138.944200	1.075819	0.95	2.94674e+10	22.33
	very hear Si ₀	2175.157760	1.744804	0.91	3.24669e+10	23.00
		2219.889020	4.482180	0.97	3.46431e+10	23.86
		2262.192880	7.529522	1.00	3.6688e+10	24.68
Cut-off	frequencies for the mode TM010	2290.061390	0.330347	0.85	4.00758e+10	25.23
		2464.607050	0.764947	0.95	2.5928e+10	28.82
Ø 80 mm : 2865 MHz		2485.980300	1.514541	1.00	2.63647e+10	29.28
		2512.576190	1.303253	0.96	2.84428e+10	29.86
Ø 130 r	nm : 1763 MHz	2538.1/1130	8.505168	1.00	3.134/2e+10	30.42
		2559.022710	0.700250	0.99	3.403740+10	30.88
Ø 140 r	nm : 1637 MHz	2303.011240	2.855008	0.95	5.455920+10	51.01
-		2639.339900	0.070686	0.90	2.41594e+10	32.69
		2645.191100	0.071469	1.00	2.48068e+10	32.82
		2650.937090	0.150348	1.00	2.47399e+10	32.96
		2657.099030	0.275372	1.00	2.44513e+10	33.10
L	ist of monopole HOM calculated with	2721.471070	1.230228	0.96	2.23449e+10	34.60
ς	unerfish hetween 0 and 3000 kHz	2765.009700	0.249521	0.83	2.99369e+10	35.63
5		2781.989510	0.411/52	0.87	2.61634e+10	36.04
A	visymetric calculations	2/99.4604/0	0.229298	0.90	2.30615e+10	36.46
30	Int Workshop on HOM Damping in	1 SRF Cavities (ornell 11	- 13 Octobe	r 2010	50.71
50	int. Workshop on How Bamping in			10 000000	- 2010	

University