HOM Damping of the Fundamental Power Couplers of the BNL ERL Electron Gun

L. Hammons / H. Hahn Brookhaven National Laboratory Collider-Accelerator Department State University of New York at Stony Brook 11 October 2010

International Workshop on Higher-Order-Mode Damping in Superconducting RF Cavities

a passion for discovery

Effective HOM Absorber Development is Crucial to ERL and eRHIC

 ERL R & D facility with superconducting 5-cell cavity and ½-cell electron gun

eRHIC

Electron Gun for the Energy Recovery LINAC

½-cell superconducting gun

- 703.75 MHz
- 2.5 MeV injection energy
- 1 MW power from klystron
- 500 mA average current
- Dual coupler ports

Cathode —

Fundamental Power Couplers

Gun requires strong coupling of FPCs

- $Q_{ext} \sim 4 5 \times 10^4$
- Coaxial coupler with curved tip was found to be effective choice
 - Radius of curvature conformal with beam pipe radius
 - Dual coupler design minimizes destabilizing effect of non-zero fields on axis at relatively low energy
 - Also halves average power through each coupler

HOM Considerations

- High current beams dissipate large power in HOMs
 - Approximately 0.5 KW for 500 mA beam current and 1.4 nC bunch charge
 - Must be extracted outside cryogenic environment
- Beampipe ferrite absorber placed in warm section to absorb HOM power
 - Only effective for modes beyond cutoff of beampipe
 - Cutoff: ~2.2 GHz

Can FPCs Play Effective Role in Damping?

HOM Modes in Gun

Simulation Studies Using Microwave Studio Indicated Strong Coupling of FPCs to HOMs

Measurement of HOMs

Measure FPC Coupling Baseline Measurement (No FPCs) Measurement with FPCs **Other Measurements** Network Analyzer 50-Ohm **Termination**

Measurement of FPC Coupling

Q-external Calculation

Disposal of Energy

HOM Mode Frequencies Compared to Circulator Response

Conclusions

- HOMs are strongly coupled to the FPCs
 - Potential for HOM damping exists
- Potential damping is significant
- However, full damping may not be achieved due to reflections at circulator
- Mock FPCs do not fully characterize FPC response
 - Require study of real FPCs with transition from coaxial to waveguide to fully characterize the HOM damping.

