Ferrite HOM Load Surrounding a Ceramic Break

Lee Hammons / Harald Hahn Brookhaven National Laboratory Collider-Accelerator Department State University of New York at Stony Brook 11 October 2010

International Workshop on Higher-Order-Mode Damping in Superconducting RF Cavities

a passion for discovery

Effective HOM Absorber Development is Crucial to ERL and eRHIC

 ERL R & D facility with superconducting 5-cell cavity and ½-cell electron gun

eRHIC

Ferrite Absorbers in the BNL ERL

- Beampipe absorbers for both superconducting structures used in the ERL
 - ¹/₂-cell electron gun
 - 703.75 MHz
 - 2.5 MeV injection energy
 - 1 MW power from klystron
 - Dual coupler ports

Gun Ferrite Damper

Gun

Development of a Gun Absorber

- High current along with high bunch charge beams dissipate large power in HOMs
 - Approximately 0.5 KW for 500 mA beam current and 1.4 nC bunch charge
 - Must be extracted outside cryogenic environment
- Beampipe ferrite absorbers placed in warm section to absorb HOM power
 - Only effective for modes beyond cutoff of beampipe
 - Cutoff: ~2.2 GHz
- Concerns:
 - Protection of superconducting cavity from damage to ferrites

Gun Cavity and Ferrite Absorber

HOM Absorber Surrounding Ceramic Break

- Ferrite tiles surrounding a ceramic break
 - Beampipe inner radius: 5.08 cm
 - Ceramic parameters
 - Alumina
 - Thickness: 1.9 cm
 - $\epsilon = 9$
 - tan $\delta = 10^{-4}$

Gun and Damper Simulation

Brookhaven Science Associates

Simulation Results

Varying Ceramic Thickness

Measurement of HOM Damping

Comparison of Ceramic Damper to Baseline Cavity

Ceramic Coating

Coating required to prevent electron accumulation

- Coating required to be in good contact with beam tube
- Damping effectiveness depends critically on coating thickness
- Currently planning on use of Titanium Stabilized High-Gradient Steel (TSHGS) coating
 - Thickness: ~10 20 Å
 - Conductivity: $2.08 \times 10^{6} \Omega^{-1} m^{-1}$

Calculation of Surface Impedance

PHYSICAL REVIEW SPECIAL TOPICS - ACCELERATORS AND BEAMS 13, 012002 (2010)

Matrix solution for the wall impedance of infinitely long multilayer circular beam tubes

H. Hahn

Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA (Received 16 September 2008; revised manuscript received 9 August 2009; published 21 January 2010)

$$M(b, r_0) = M^I(b, r_1) \cdot M^{II}(r_1, r_2) \cdots M^{III}(r_{0-1}, r_o)$$

$$\begin{pmatrix} E_z(r) \\ H_{\varphi}(r) \end{pmatrix} = M(r, r_0) \begin{pmatrix} E_z(r) \\ H_{\varphi}(r) \end{pmatrix} = \begin{bmatrix} m_{ee}(r, r_0) & m_{eh}(r, r_0) \\ m_{he}(r, r_0) & m_{hh}(r, r_0) \end{bmatrix} \begin{pmatrix} E_z(r_0) \\ H_{\varphi}(r_0) \end{pmatrix}$$

$$m_{ee}(r,r_0) = \kappa r_0 [K_0(\kappa r)I_1(\kappa r_0) + I_0(\kappa r)K_1(\kappa r_0)$$

$$m_{eh}(r,r_0) = j \frac{\kappa^2 r_0}{\varepsilon_S k} [K_0(\kappa r) I_0(\kappa r_0) - I_0(\kappa r_0) - I_0(\kappa r) K_0(\kappa r_0)]$$

$$m_{he}(r,r_0) = -j\varepsilon_S kr_0 [K_1(\kappa r)I_1(\kappa r_0) - I_1(\kappa r)K_1(\kappa r_0)$$

$$m_{hh}(r, r_0) = \kappa r_0 [K_1(\kappa r) I_0(\kappa r_0) + I_1(\kappa r) K_0(\kappa r_0)]$$

Surface Impedance

Power dissipation in wall is characterized by the surface resistance:

Reconfiguring Damper Parameters

- Frequency response depends on of ceramic thickness as well as ferrite thickness and material
- Choosing thickness allows frequency response to be adjusted to the cavity

Conclusions

- HOM load surrounding ceramic damper can effectively damp higher order modes
- Ceramic break offers important advantages:
 - Superconducting cavity is protected from damage to ferrite tiles
 - Arrangement of ferrites and ceramic allows for exploration of damping materials
 - Ceramic break concept allows for simple reconfiguration of design to meet various bandwidth and damping requirements

