International Workshop on Higher-Order-Mode Damping in Superconducting RF Cavities

701 Clark Hall, Cornell University, October 11 -13, 2010

<u>Agenda</u>

Monday, October 11, 2010

9:00 – 9:15: Welcome (M. Liepe)

9:15 – 11:00: <u>HOM damping requirements for various projects</u> Session chair: I. Ben-Zvi

Task: Collect key HOM specs for different projects.

- HOM damping requirements for SRF deflecting cavities (A. Nassiri, 15 min)
- Higher order mode damping considerations for the SPL cavities at CERN (W. Weingarten, 15 min)
- HOMs in the Project X linac (V. Yakovlev, 15 min)
 - HOM damping requirements for various projects (all, 30 min total)
 - \circ $\;$ Bunch length, bunch charge, beam current, number of cavities $\;$
 - Cavity frequency, number of cells, longitudinal loss factor at design bunch length
 - Single bunch HOM power spectrum
 - $\circ \quad \text{Average HOM power per cavity } (k^*Q_b{}^*I)$
 - Worst case peak HOM power per cavity in case of resonant excitation of modes
 - Required damping (typical Q-values only!) of monopole, dipole, and quadrupole modes
- Discussion: HOM damping requirements (all, 30 min total)
- 11:00 11:30: <u>Introduction to HOM damping</u>

Session chair: I. Ben-Zvi

• A comparison of the HOM damping efficiency for various SRF coupler schemes (F. Marhauser, 30 min)

11:30 – 1:00 PM: *Working lunch*

1:00 – 5:00 PM: <u>Antenna/ loop HOM couplers</u>

Session chair: J. Knobloch

- HOM Damper and Filter Design for 56MHz SRF Cavity for RHIC (Qiong Wu, 20 min)
- HOM Damping Properties of Fundamental Power Couplers in the Superconducting Electron Gun of the Energy Recovery LINAC at Brookhaven National Laboratory (L. Hammons, 20 min)
- Capacitive-Antennae HOM Damper (H. Hahn, 20 min)
- New HOM coupler design for High Current Superconducting cavity (W. Xu, 20 min)
- Experience with 3.9 GHz loop couplers (T. Khabiboulline, 20 min)
- Heating in DESY style HOM couplers in cw operation (J. Sekutowicz, 20 min)
- Heating of HOM loop couplers in CW mode (W.Anders/A.Neumann, 20 min)
- HOM damping variations in SRF cavities (F. Marhauser, 20 min)
- Optimization of HOM Couplers using Different Time Domain Schemes (C. Potratz, 20 min)
- Computation of Coupler Damping Properties in Concatenated Arrangements (H.-W. Glock, 20 min)
- Discussion: antenna based HOM damping (all, 40 min)
 - Effective HOM damping frequency range
 - Coupling to high frequency modes?
 - Measured and/or simulated HOM Q-values for given cavity design vs. frequency (no BBU simulation results!)
 - Coupling to monopole, dipole, and quadrupole modes
 - How many antenna/loop couplers are required per cavity to guarantee effective damping for all polarization angles?
 - Design and results from DESY, TJNAF, BNL
 - Maximum HOM power handling and extraction
 - Estimate of the heat load to ~2K and all other intercept temperatures at full HOM power
 - Coupling to the fundamental mode and suppression
 - Thermal limitations, e.g. long pulse vertical test (DESY), cwversion for the CEBAF upgrade cavities
 - High thermal conduction feedthroughs
 - Niobium or Cu antenna? Impact on cost?
 - Filter design and tuning, especially with large number of couplers per cavity. Reliability/ success rate?
 - Filter always needed?
 - Cleanness challenges and solutions
 - Field emission
 - Trap sulfur during EP?
 - Extra beamline length required per cavity (compared to linac without HOM damping)
 - o Mechanical / fabrication challenges and solutions
 - FNAL experience at 3.9 GHz and SNS experience
 - Multipacting

0

- Mechanical failure
- Cost vs. design and material choices
 - Niobium vs. normal conducting
 - Filter design and complexity
 - Cabling; load inside our outside of vacuum vessel?
- Other challenges, limitations and solutions

Tuesday, October 12, 2010

0

9:00 – 10:00 AM: Waveguide HOM damping

Session chair: S. Belomestnykh

- Waveguide HOM damping studies at JLAB (R. Rimmer, 30 min)
- Discussion: waveguide HOM damping (all, 30 min)
 - Effective HOM damping frequency range
 - Coupling to high frequency modes?
 - Measured and/or simulated HOM Q-values for given cavity design vs. frequency (no BBU simulation results!)
 - TJNAF designs and results
 - Maximum HOM power handling and extraction
 - Estimate of the heat load to ~2K and all other intercept temperatures at full HOM power
 - Coupling to the fundamental mode and suppression
 - Cleanness challenges and solutions
 - Cleaning of waveguide sections
 - Extra beamline length required per cavity (compared to linac without HOM damping)
 - Mechanical / fabrication challenges and solutions
 - Cost vs. design and material choices
 - Superconducting or normal conducting waveguide sections?
 - Number of waveguides per cavity required
 - Length of waveguide section
 - Absorber inside or outside of vacuum vessel?
 - Water cooling vs. cryogens; risks involved
 - Temperature of loads at end of waveguides
 - Shielding of IR radiation from warm load
 - Water cooling and mechanical cavity vibrations
 - Other challenges, limitations and solutions

10:00 – 12:00 PM: <u>RF absorbing materials</u>

Session chair: M. Liepe

- RF absorber studies at Cornell, part 1 (V. Shemelin, 20 min)
- **RF absorber studies at Cornell, including DC conductivity, part 2** (E. Chojnacki, 20 min)
- **RF absorber studies at KEK** (M. Sawamura, 20 min)
- Measurements of absorber materials from room temperature to 2K (F. Marhauser, 20 min)
- Discussion: HOM absorbing materials (all, 40 min)
 - Room temperature and cryogenic material complex mu & eps (temperature dependence of absorption) of various dissipative materials vs. frequency (ferrites, ceramic with carbon, CNT...)
 - DC conductivity of dissipative materials and its temperature dependence
 - Mechanical and thermal properties of dissipative materials
 - Vacuum properties of dissipative materials
 - Coatings and other methods to avid electrostatic charging of dissipative materials
 - Fabrication of dissipative materials and reliability of achieving specs
 - Fabrication cost of different dissipative materials

12:00 – 1:30 PM: Working lunch

1:30 – 5:30 PM: Beamline HOM loads

Session chair: M. Liepe

- Ferrite HOM Load Surrounding a Ceramic Break (L. Hammons, 20 min)
- Absorbing materials for beamline absorbers: How good is good enough? (Nick Valles, 20 min)
- Experience with the Cornell ERL beamline absorber prototype and future plans (E. Chojnacki, 30 min)
- Resonant HOM load made of a resistive material (V. Shemelin, 20 min)
- Test of the Beam Line Absorber at FLASH (J. Sekutowicz, 20 min)
- Cooling test of HOM absorber model for cERL in Japan (M. Sawamura, 30 min)
- Operation Experience of HOM absorbers at KEKB (T. Furuya, 20 min)
- Beamline absorber work at Muon Inc (R. Johnson, 20 min)
- **Design and Application of the High-Efficiency HOM Absorbers at** PEP-II (A. Novokhatski, 20 min)
 - Discussion: beamline absorbers (all, 40 min)
 - Effective HOM damping frequency range
 - Measured and/or simulated HOM Q-values for given cavity 0 design vs. frequency (no BBU simulation results!)
 - Cornell, DESY, BNL, KEK designs
 - Maximum HOM power handling and extraction 0
 - What is the optimal operating temperature? .
 - Heat transfer and thermal connections
 - . Estimate of the heat load to ~2K and all other intercept temperatures at full HOM power
 - Coupling to the fundamental mode and suppression 0
 - Cleanness challenges and solutions 0
 - Cleaning of absorber materials
 - **Risk of particle generation?**
 - How to quantify the absence or presence of RF absorber material particulate generation that could spoil the Q of nearby SRF cavities?
 - Coatings?
 - Extra beamline length required per cavity (compared to linac 0 without HOM damping)
 - Mechanical / fabrication challenges and solutions 0
 - Are bellow sections between cavities needed / desirable?
 - Heat intercept and static heat loads to cavities
 - Brazing, soldering, metallization of ceramics/ferrites to heat sinks.
 - Absorber tiles vs. rings
 - Accurate mechanical modeling that includes plastic deformation of material.
 - Cost vs. design and material choices 0
 - Thermal matching of heat sinks to ceramic/ferrites
 - Copper coating of beam pipe sections or stainless steel?
 - Other challenges, limitations and solutions 0

Wednesday, October 13, 2010

9:00 – 10:15 AM: RF simulation tools (2D, 3D)

- Session chair: E. Chojnacki
 - ACE3P and HOM power flow in the Cornell ERL (Liling Xiao, 20 min)
 - HOM simulations with ANSYS (S. Posen, 20 min)
 - Higher Order Mode Heating Analysis for the ILC Superconducting Linacs (C.r Nantista, 20 min)
 - Discussion: HOM simulations (all, 15 min)
 - Which problems need 3D models?
 - Which problems require only 2D?
 - Which 3D software allows complex mu & eps?
 - Which 3D software is up to the job?
 - Which 2D software allows complex mu & eps?
 - Which 2D software is up to the job?
 - FEM vs. FD codes
 - How high in frequency can/should one go?
 - How much can one trust the simulations? What safety factor should be included? Comparison of simulations and measurements.
 - Time domain vs. frequency domain
 - Choice of boundary conditions at cavity beam tube ends (open, electric, magnetic). What is realistic for a large linac installation?

10:15 – 11:30 AM: Measurement Methods (HOMs, material properties)

Session chair: E. Chojnacki

- **RF absorber studies using waveguides in transmission** (V. Shemelin, 20 min)
- HOM-BPMs at the 3.9 GHz Superconducting Cavities for FLASH and the European XFEL (R.M. Jones, 20 min)
- Experiments on HOM Spectrum Manipulation in a ILC 1.3 GHz Cavity (T. Khabiboulline, 20 min)
- Discussion: HOM measurements (all, 15 min)
 - Measurement *methods* of RF absorbing materials (complex mu & eps, mechanical properties...)
 - Cornell waveguide method, terminated waveguide (TJNAF), resonator methods, ...which method gives reliable data at operating temperatures?
 - DC conductivity, mechanical and thermal methods
 - Measurements in cavities and cavity prototypes (copper)
 - How much can one trust HOM measurements on individual cavities?
 - Boundary conditions at beam tubes?
 - Are cold measurements needed?
 - Are beam measurements needed?
 - Are copper modes needed?

11:30 - 1:00 PM: Closeout

 \cap

- Summary of HOM damping schemes currently available and *fully* developed, including parameter specs (frequency range, power handling capabilities...)
- Summary of future, potential performance of improved versions, including outstanding challenges/problems, potential solutions, and R&D
- Volunteers to perform the R&D, the time frame, and report the results