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|. Introduction

The Lambda-CDM cosmology, with inflation as a
precursor, is supported by an increasingly intimidating
amount of data.

In terms of conceptual issues in cosmology, a period of
inflation can explain not only the solution of the horizon
and flatness problems, but also the density perturbations

which generated all of the structure in the Universe we see
today.

It is increasingly obvious that inflation + Lambda-CDM is
the correct model of cosmology for our Universe.
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This talk will not be about that kind of Universe. | will
instead focus on two conceptual questions.

i) We all know that the “singularity theorems” of Penrose
and Hawking, guarantee that the Universe began with a
singularity.

This is not quite true.
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Consider, for simplicity, the FLRW cosmologies:

dr?
1 — kr?

ds® = —dt* +a(t)*( +72(df* +sin”(0)de?)) .
To prove the singularity theorems, one is required to
assume an energy condition. That is, one is required to
assume that:

1, vH*v” >0

for some class of vectors v. Now, for the Universes with
negative or vanishing curvature, k=-1 or 0, one can get by
with the “Null energy condition™ -- v is just required to
be a future-pointing null vector field. This condition is in
agreement with everything we know about macroscopic
sources our Universe. But cf. Creminell, Lury

Nicolis, Senatore;...
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In terms of equations of state for perfect fluids, for
instance, this boils down to the condition:

No problem.

For k=+1, things are a bit more confusing. The singularity
theorems require one to assume the so-called “strong-
energy condition.” In terms of w, this is basically requiring

that w should satisfy w > —1 .

We know, essentially for sure, that the strong energy
condition is violated in our Universe, and by many
reasonable toy physical models as well.

Thursday, July 28, 2011



S0, let us ask a theoretical question: Can we make
singularity-free, eternal Universes?

The urgency of this kind of question is exacerbated by the

following vexing fact. One might have thought that in the

string theory landscape, with eternal inflation preceeding

our exit into the current (likely metastable) vacuum, there
would be no need for an initial singularity:

T Y
X . e
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Theorems of Borde, Guth and Vilenkin guarantee
(with reasonable assumptions) that this ain’t so.

Inflationary spacetimes are not past-complete

Arvind Borde,»? Alan H. Guth,!3 and Alexander Vilenkin!

50, what are we to do about the initial singularity?

In this talk, | will make an effort to design reasonable (but
not realistic, yet), eternal cosmologies with no singularities.
| will fail, but the most unavoidable failure mode is more
subtle than that which destroys k=0,-1 cosmologies.

One can then view one goal of this talk, as being a desire to
either use k=+1 to evade the singularities, or to motivate a
physically useful extension of the theorems to this case.

Thursday, July 28, 2011



ii) There has been much interest in the question of whether
the Universe can undergo one (or more) instances of a big
crunch, without ending the cosmological evolution.

This started, as far as | know, with the work on the
“Phoenix universe” (1931) by Lemaitre (see also
very interesting papers by Tolman).

Of his earlier work, on the correct FLRW cosmologies
which describe our expanding Universe to good
approximation, Einstein said:
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“Your math is correct, but your physics is abominable.”

My hope is that at least the mathematics in this talk will be
correct.

One important criterion | will have for what | mean by a
bouncing cosmology: there must not be any place in the
cosmological evolution where the equations break down
and one is forced to assume some boundary conditions

c.f. Ellis,

which parametrize unknown high-energy physics. . >

Such breakdown occurs in many ambitious scenarios.
| will instead make the following working definition: any
solution where the Universe contracts from a maximal size
>> the minimal size (say, megaparsecs across compared to
GUT scale size), then re-expands, can be said to “bounce.”
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This is reasonable because it would appear to “bounce”

to any macroscopic observer;and yet since the minimal

size can be GUT length >> Planck length, we can remain
in the regime of validity of general relativity.

ll. General analysis of FLRW equations

S0, let’s start at the beginning. The Einstein equations
applied to an FLRWV cosmology yield:

d 2
ds® = —dt2—|—a(t)2(1 Tk 5 +72(d6” +-sin*(0)de*))
— kr
a’ 8w k
239 2
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Let us assume, for simplicity, that we have a Universe with
just cosmological constant and some stress-energy source
obeying the equation:

It will be important

p S— wIO . <€ later that we NOT use

perfect fluid sources....

Then if the parameter w is a constant during cosmological
evolution, we’ll find (with some ¢>0):

o Ca—?)(l—l—w)

just from the equations of energy-momentum
conservation.
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S0 our system of equations becomes:

g = —%TGNU—I—SW)p—I-%
a\® _ 8r. K A
(a) - 3N T g T3

o C

P = 3+3w

Question: do these equations admit solutions that oscillate
between a maximal and minimal scale factor? If so, one
must solve:

a__K+333w+1 3

at the maximal and minimal value of a(t).
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. 1
Solution: K=+4+1, A<O0O |, —1<W<—§.

Thus it seems we can evade the inflationary singularity theorems
using ordinary and well-understood sources!

» a_ produced by K and p, while a, produced by A and p
> We require

A S 2/(3|w|—1)
3 < (?GN c) < M3 = M,;,1 La Ka:

Under these conditions, it is automatic that the second
derivative of a(t) has the right behavior at the maximum
and minimum to produce the desired oscillations.

Thursday, July 28, 2011



lll. A Simple Harmonic Universe

While the qualitative features of the solutions are not dis-
similar for all w in the allowed range for bouncing
cosmologies, for w=-2/3 (c.f. networks of domain walls) the
solutions are particularly simple.

A 4
a+‘3—‘a——7TG C

= a(t) =

\; (1 + 41—~ cos wt))

Y [ B
o 3 N 47TG/\/C
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Here, the parameter 7Y plays an important role:

In the limit where this parameter is of order unity, we will
find one class of behaviors; while for dramatic bounces,
we’ll find another.

Finally, as conditions on our parameters, we should impose:

47TGN
C
A

:CLQ>>]..

GnlA| < 1.

Under these conditions, semi-classical general relativity is a
good approximation. Very naively, these Universes cycle
through “crunches” and “bangs” forever.
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For more general values -1 < w < -1/3,it is harder to give a
useful closed-form solution of the equations. The second
order FLRWV equation of motion becomes:

a4+ — \A| q2+3w

|A‘( 47TGN61—|—31U>
5 a - = 0.

with implicit solution:

/a(t) du ‘ ‘
= x|t + Co
1 1 — —’g‘fcﬂ 4+ —8§(¥Nc u—sw—1

Simple numerics shows that there are qualitatively similar
oscillating solutions over the whole range up to w=-1/3,
where they become necessarily singular.
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What should we worry about next?
IV. Stability

Two obvious classes of potential instabilities to discuss:

1) Homogeneous perturbations

Recall instability of Einstein’s static universe:

- The dust energy density and size of the universe have to be
tuned to match the c.c.

- Any deviation causes a large instabillity.

Our situation will be better than this, but is more
nuanced. Clearly, generic small perturbations of c.c., w,
or the amount of matter present, do not destabilize us.
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The most general homogeneous perturbation of the scale
factor takes the form:

3
ds® = —dt* + Z az(t) o;
i=1

where these are the “Maurer-Cartan’ forms on the
three-sphere:
o1 = —siny df + cos sin b do

o9 = cos Y df + sin sin 0 d¢ 0<¢<4m, 0<0<m,0<¢<2m.
o3 = dip + cosOdg.

We find that the wave equation governing the anisotropic
modes is the same as that for a scalar with momentum |=2
on the sphere. We discuss that in detail shortly.
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2) Inhomogeneous perturbations

We might also expect possible inhomogeneous instabilities.
These are not always disastrous (c.f. collapse of dark
matter into halos in our Universe, leaving large-scale

homogeneous and isotropic). And free-streaming and/or
chaotic mixing can help with them. But they must be
analyzed.

One should worry about scalar, vector and tensor
perturbations of the metric and background:

ds’ = — (1 + 20 t,x dt® + a*(t) (1 — 20 t,x @;dmidxj,
J
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For the case of e.g. perfect fluids, we would find:
&=V

SR, = —81GdS,,
S = T — T+ 6 = 6T — ~Gund T — 3G, TA
pv — Luv 2g,uu A nr j% 29,LW A 2 gpu/ P

with the energy-momentum perturbations given explicitly
by:

0Ty = —(p + p)ou,
0T = —2a°(1)Gi; ¥ + a*(t)gi; Op -
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The end result is:

3 . ) .o .2 K
b +4 L9+ (29+a———)xp:47r(;5p

GRS P

For e.g. a perfect fluid, one would have:

_Op

2 2 P
0p = C50p , Cy = 5p =0

Then one can simplify the system of equations to:

3 o ) .e .2 K 2~
b+ 24+ 320 + <2a+(1+3c§) (“-)) A vk
a

a a? a?
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An important point is the following: If we really had a
perfect fluid with < <-1/3 there would be catastrophic
short distance instabilities.

Intuitively, this is because there would be negative
pressure, leading to instabilities which are worse and worse
on shorter and shorter distance scales. This is visible from

the sign of the Laplacian term in the final differential
equation.

Now, we certainly need a stress-energy source which
enters in the Friedmann equations and has w < -1/3 to
support our simple harmonic Universe. Are we in trouble!?
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We are rescued by a simple, physical observation, discussed
at length in this paper:

ITP-SB-97-22

Is the Dark Matter a Solid?

Martin Bucher
DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, UKT
Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11794, USA

David Spergel
Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544, USA'

Their simple observation, visible in their abstract, is that:

For a perfect fluid negative presure leads to instabilities that are most severe on the
shortest scales. However, if instead the dark matter is a solid, with an elastic resis-
tance to pure shear deformations, an equation of state with negative presure can avoid
these short wavelength instabilities. Such a solid may arise as the result of different
kinds of microphysics. Two possible candidates for a solid dark matter component are
a frustrated network of non-Abelian cosmic strings or a frustrated network of domain
walls. If these networks settle down to an equilibrium configuration that gets carried
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So for instance, a frustrated network of domain walls
contributes in the Friedmann equations with w=-2/3, but
has a large positive sound speed and no dangerous
instabilities to inhomogeneous perturbations.

domain walls

For detailed investigations, see:
Battye, Moss;
Battye, Pearson;
Battye, Pearson, Moss

This is precisely the case where our simplest (sinusoidal)
oscillatory solution obtains.

So it seems we have dodged part of bullet |),and any
dangers arising in the high momentum regime of 2).
However, now we need to be more careful.
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V. Stability in models of O(I) vs tiny 7

Let’s consider for simplicity a scalar field (or the simplest
graviton modes) in the periodic solution in conformal
time.This is relevant to the mixmaster modes we discussed
earlier, for instance.

ds® = a(n)?(—dt* + g;;(z)dx"dx’)

_ 1 Al
a(n) = w1l —+/1T—n~cos(n)

The action and EOM are given by:

S = / d*z a(n)® ((0y0)° — (0:9)°)

¢" —|—2%l¢’ +1(1+2)p = 0
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Amusingly, by a change of variables, given the periodicity of
the scale factor, this problem can be mapped to the
quantum Schrodinger problem of an electron moving in 1d
in a periodic potential, analyzed by Bloch many years ago.

V)
|

o3
L Jan

Z+
L

o
+

The actual potential that arises in the case with sinusoidal
scale factor is not quite of the “Dirac comb” form familiar
from simple treatments of Bloch waves and conduction
bands. Instead one finds:
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N -

There are then three relevant parameter ranges in which
to analyze the differential equation

¢" +2%,¢’ +1(l4+2)¢p = 0

depending on the size of | relative to 7 :
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v/ Instead of periodic b.c., we want to give initial conditions for y
v/ Set of decoupled harmonic oscillators in each cycle
v/ Patch sols across ‘barriers’ and 'wells’ of the potential

» The homogeneous mode exhibits linear growth,

» For intermediate momenta kK < 1/, /7,

i o
P(n) ~ exp \/1—pn , ki~ 1)y
C

» At high momenta, modulated Minkowski modes,

é(n) ~ (sinn)
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Instantiating plots:

Linear growth of
homogeneous mode

o J{\v I(o\vﬂvﬂ\f“ﬁvnv“vﬂ 3‘/\ “i f \/M\/Avﬂvﬂv(\v | bl \/Av“v AR

Oscillatory high- : M
mOSn:Ie:thl)l;ymf des 8 VAVAVA\M\)/\UA\)[\U\J T U{S\Uﬂuﬂvﬂvﬂvf\w
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As a check on the numerics, we can exactly solve some of
the cases/limits. E.g. the exact homogeneous mode is:

¢(n) = ¢(0) + ¢'(0)

y (3 —~)n — 41—~ sin(n) + %(1 — ~y)sin(2n)

2(1—/T—)?

which exhibits the linear growth with conformal time, and
matches the numerical solution very well.

Some physics points:

*The linear growing homogeneous mode is not an
instability. It reflects the way that two sinusoidal functions
of slightly different frequencies move away from one
another, in perturbation theory.
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*For v~ 1 there are no instabilities, then. The single case
with meaningfully growing modes in the plots does not
occur. (Don’t worry, I'm a pessimist. | will come back to
worry about this case.)

* For 7 < 1 we have some exponentially growing modes!
What is the ensuing physics?

VI. The end of time

For the oscillating Universes with large ratio of maximal to
minimal scale factor, we believe the growing modes
implement the fate envisioned in the ancient texts:

“Death 1s as sure for that which is born, as birth is for that which is dead. Therefore grieve

not for what is inevitable.” - Bhagavad-Gita
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A. Classical death

The rate of exponential growth for the growing modes:

2
¢1(IN) ~ ¢ exp (\/152><N)

after N oscillation cycles, will cause fatal difficulties for our
Universe (or at least, for our approximations).

The pertinent physical question is: at what point does the
energy in these modes compete at O(|) with the
background we started with!?

The ratio of the energy carried by the scalar field to e.g.
the energy in the cosmological term, is given by:
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211 + 2)¢? ke
Z a (2+4 )¢ N LZ/ dl l2¢2
~  Mpa A Mz,

One can evaluate the integral by a saddle point
approximation, yielding a dominant momentum regime:

1
lsaddle — Nlc%

50, the energy ratio turns out to be:

2

€ 2 90
’/G fylcm exp (N — logN) .
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Hence, backreaction becomes important after a number of
cycles given by:

M
N, ~210g<¢P>
0

Classical tuning can yield many cycles, but at the expense of
tuning the initial magnitude of the scalar field.

B. Quantum death

There are various ways one could incorporate quantum
mechanics here. The quickest & dirtiest, fitting to an
informal talk, is the following.
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*The scalar field is just a collection of harmonic oscillators.

*Then in quantum theory, we should impose the canonical
commutation relations on the canonically normalized
cousin of the scalar:

X = a(m)o, [x(0),9,x(0'] = 60— 6

*We are free to choose whichever quantum state we want.
Let us suppose we choose the oscillator ground state

characteristic of the system at a scale factor a(t). Then a

simple computation shows:

a’pg ~ 1 .
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This is not a surprise. Quantum mechanics imparts an RMS
expectation value to the position of a harmonic oscillator.

We can give a state-choice dependent quantum bound by
plugging now into:

M
N, ~210g(¢P>
0

The most extreme bounds (least/most stringent) are
obtained by choosing the ground state at maximal/minimal
scale factor. Result at maximum:

M
NCN210g<\/7P> .
1%
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(The result at the opposite extreme differs in a very simple
way).

Crucial point: By tuning the cosmological term in Planck
units (to be negative but of very small magnitude), one can
obtain an arbitrarily large number of cycles.

Interpretation of eventual quantum death: “particle
production.”
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Any cosmology contains, among other things, gravity and
gravitons. If nothing else, graviton production can occur as
the Universe expands and contracts. This gas of gravitons
has w=1/3; when present in sufficiently appreciable number

density, these gravitons will cause a crunch when one
reaches minimal scale factor, instead of acquiescing to a
“bounce.”

Note that the way we estimated both classical and
quantum death is applicable only to the Universes with
“large” ratio of maximal to minimal scale factor. |
personally suspect that by combining the covariant entropy
bound with more traditional considerations, one can prove
a quantum singularity theorem in general for closed
Universes.
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VIl. Conclusion/Questions

|. Can we prove a quantum singularity theorem for closed
Universes!?

2. In the cases with large ratio of maximal to minimal scale
factor, can we embed a realistic cosmology into one cycle!?

3. At the level we've worked so far, we do have some
apparently stable, eternal solutions. Can we envision one
of these in the deep past, tunneling to a realistic inflationary
Universe!

4. We ignored entropy production due to our classical
source with w < -1/3. Would this always dominate the
effects we discussed, and lead to earlier problems?
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Finally:

5. The relation of the quantum mechanics of particle
production in these geometries strongly suggests that one
consider special periodic quantum states as preferred.
(Note that for us it was natural to impose initial boundary
conditions on the field, not periodic BC; but special
choices...).

Could there by periodic wavefunctions of the Universe in
such geometries that provide natural choices of boundary
conditions, and give eternal cosmologies?

c.f. Hartle/Hawking, which is ad hoc but “natural’...
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