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I.  Introduction

The Lambda-CDM cosmology, with inflation as a 
precursor, is supported by an increasingly intimidating 

amount of data.  

In terms of conceptual issues in cosmology, a period of 
inflation can explain not only the solution of the horizon 
and flatness problems, but also the density perturbations 

which generated all of the structure in the Universe we see 
today.

It is increasingly obvious that inflation + Lambda-CDM is 
the correct model of cosmology for our Universe.
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This talk will not be about that kind of Universe.  I will 
instead focus on two conceptual questions.

i) We all know that the  “singularity theorems”  of Penrose 
and Hawking, guarantee that the Universe began with a 

singularity.

This is not quite true.
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Consider, for simplicity, the FLRW cosmologies:

To prove the singularity theorems, one is required to 
assume an energy condition.  That is, one is required to 

assume that:

for some class of vectors v.  Now, for the Universes with 
negative or vanishing curvature, k=-1 or 0, one can get by 
with the “Null energy condition” -- v is just required to 
be a future-pointing null vector field.  This condition is in 
agreement with everything we know about macroscopic 

sources our Universe.

Tµνvµvν ≥ 0
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Two questions which have recurred again and again
in theoretical cosmology, starting with [1, 2], are: 1) is
the Universe eternal, or did it have a beginning at some
definite time in the past?, and 2) is it possible to make
Universes which enjoy one or more “bounces” where the
scale factor first crunches, and then bangs?[15]

The answers to these two questions are deeply inter-
twined with the subject matter of the singularity theo-
rems of Penrose and Hawking (discussed comprehensively
in [5]). These theorems show that, given an energy con-
dition of the form

Tµνvµvν ≥ 0 (1)

for a suitable class of vectors vµ, where Tµν is the stress-
energy tensor of the sources supporting the Universe, one
can prove that the Universe must be geodesically incom-
plete (“singular”).

It is instructive to discuss which energy conditions need
to be assumed to prove existence of a cosmological sin-
gularity for the FLRW cosmologies

ds2 = −dt2+a(t)2(
dr2

1− kr2
+r2(dθ2+sin2(θ)dφ2)) . (2)

For k = −1, 0 the only condition that must be assumed
is the null energy condition (NEC), i.e. eqn. (1) where vµ

is a future-pointing null vector field. The NEC is reason-
able; it is in agreement with everything we know about
macroscopic matter and energy sources in our Universe.
(Interesting cosmological scenarios which attain a smooth
bounce by violating the NEC can be found in [6]).

For k = +1, however, one must instead assume the
strong energy condition (SEC). We know, essentially for
certain, that this condition is violated by macroscopic
sources in our world, as well as in many completely con-
sistent theoretical toy models. The goal of this paper
is to explore the two questions above for k = +1 Uni-
verses with sources satisfying the NEC but violating the
SEC. We will find that one can make classical cosmolo-
gies that live eternally, undergoing an infinite sequence

of non-singular bounces, and remain within the regime
of validity of general relativity. These cosmologies are
stable to small perturbations. In these cases, the ra-
tio between maximal and minimal scale factors is not
too large. In the opposite regime where the maximal
and minimal sizes differ by orders of magnitude, we’ll in-
stead find clear indications of both classical and quantum
pathologies; classically there are growing modes (which
can be tuned away), and quantum mechanically, particle
production backreacts significantly after some number of
cycles, likely causing a singular crunch. [16]

One further comment about motivations seems appro-
priate here. A conservative view, supported by current
data and the very successful theory of inflation [10], is
that our current ΛCDM cosmology was preceeded by a
phase of slow-roll inflation, with eternal inflation likely
occurring on even larger cosmic scales. One motivation
for our exploration of the possibility of eternal cosmolo-
gies is the striking result of [11], that eternal inflation
cannot be past eternal. Even in scenarios involving eter-
nal inflation, eventually, we need to come to terms with
the problem of the initial singularity.

Solutions.– The FRW equations for the metric eqn. (2)
are

ȧ2

a2
=

8π

3
Gρ− k

a2
(3)

ä

a
= −4π

3
G (ρ + 3p) (4)

where ρ is the energy density and p is the pressure. We
want oscillatory solutions, namely those with two ex-
trema (ȧ = 0) such that at the smaller (where we’ll call
the value of the scale factor a−) ä > 0, and at the larger
(which we’ll denote by a+) ä < 0. It is easy to see that
these requirements, along with the NEC, only allow so-
lutions for a when there is positive curvature, k = +1.
The minimal model which oscillates has three compo-

But c.f. Creminelli, Luty,
Nicolis, Senatore;...
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In terms of equations of state for perfect fluids, for 
instance, this boils down to the condition:

p = wρ

w ≥ −1

No problem.

For k=+1, things are a bit more confusing.  The singularity 
theorems require one to assume the so-called  “strong-

energy condition.”  In terms of w, this is basically requiring 
that w should satisfy              .                      

We know, essentially for sure, that the strong energy 
condition is violated in our Universe, and by many 

reasonable toy physical models as well.

w ≥ −1
3
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So, let us ask a theoretical question:  Can we make 
singularity-free, eternal Universes?

The urgency of this kind of question is exacerbated by the 
following vexing fact.  One might have thought that in the 
string theory landscape, with eternal inflation preceeding 

our exit into the current (likely metastable) vacuum, there 
would be no need for an initial singularity:
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Theorems of Borde, Guth and Vilenkin guarantee 
(with reasonable assumptions) that this ain’t so.  

So, what are we to do about the initial singularity?
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Many inflating spacetimes are likely to violate the weak energy condition, a key assumption of
singularity theorems. Here we offer a simple kinematical argument, requiring no energy condition,
that a cosmological model which is inflating – or just expanding sufficiently fast – must be incomplete
in null and timelike past directions. Specifically, we obtain a bound on the integral of the Hubble
parameter over a past-directed timelike or null geodesic. Thus inflationary models require physics
other than inflation to describe the past boundary of the inflating region of spacetime.
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I. Introduction. Inflationary cosmological models [1, 2, 3]
are generically eternal to the future [4, 5]. In these mod-
els, the Universe consists of post-inflationary, thermal-
ized regions coexisting with still-inflating ones. In co-
moving coordinates the thermalized regions grow in time
and are joined by new thermalized regions, so the comov-
ing volume of the inflating regions vanishes as t → ∞.
Nonetheless, the inflating regions expand so fast that
their physical volume grows exponentially with time. As
a result, there is never a time when the Universe is com-
pletely thermalized. In such spacetimes, it is natural
to ask if the Universe could also be past-eternal. If it
could, eternal inflation would provide a viable model of
the Universe with no initial singularity. The Universe
would never come into existence. It would simply exist.

This possibility was discussed in the early days of in-
flation, but it was soon realized [6, 7] that the idea could
not be implemented in the simplest model in which the
inflating universe is described by an exact de Sitter space.
More general theorems showing that inflationary space-
times are geodesically incomplete to the past were then
proved [8]. One of the key assumptions made in these
theorems is that the energy-momentum tensor obeys the
weak energy condition. Although this condition is satis-
fied by all known forms of classical matter, subsequent
work has shown that it is likely to be violated by quan-
tum effects in inflationary models [9, 10]. Such viola-
tions must occur whenever quantum fluctuations result
in an increase of the Hubble parameter H — i.e., when
dH/dt > 0 — provided that the spacetime and the fluc-
tuation can be approximated as locally flat. Such upward
fluctuations in H are essential for the future-eternal na-
ture of chaotic inflation. Thus, the weak energy condi-
tion is generally violated in an eternally inflating uni-
verse. These violations appear to open the door again to
the possibility that inflation, by itself, can eliminate the
need for an initial singularity. Here we argue that this is
not the case. In fact, we show that the general situation

is very similar to that in de Sitter space.
The intuitive reason why de Sitter inflation cannot be

past-eternal is that, in the full de Sitter space, expo-
nential expansion is preceded by exponential contraction.
Such a contracting phase is not part of standard inflation-
ary models, and does not appear to be consistent with
the physics of inflation. If thermalized regions were able
to form all the way to past infinity in the contracting
spacetime, the whole universe would have been thermal-
ized before inflationary expansion could begin. In our
analysis we will exclude the possibility of such a con-
tracting phase by considering spacetimes for which the
past region obeys an averaged expansion condition, by
which we mean that the average expansion rate in the
past is greater than zero:

Hav > 0. (1)

With a suitable definition of H and the region over which
the average is to be taken, we will show that the averaged
expansion condition implies past-incompleteness.

It is important to realize that the terms expansion and
contraction refer to the behavior of congruences of time-
like geodesics (the potential trajectories of test particles).
It is meaningless to say that a spacetime is expanding at
a single point, since in the vicinity of any point one can
always construct congruences that expand or contract at
any desired rate. We will see, however, that nontrivial
consequences can result if we assume the existence of a
single congruence with a positive average expansion rate
throughout some specified region.

While the past of an inflationary model is a matter of
speculation, the attractor nature of the inflationary equa-
tions implies that many properties of the future can be
deduced unambiguously. According to the standard pic-
ture of inflation, all physical quantities are slowly vary-
ing on the scale of H−1. In the vicinity of any point P
in the inflating region, we can choose an approximately
homogenous, isotropic and flat spacelike surface which

In this talk, I will make an effort to design reasonable (but 
not realistic, yet), eternal cosmologies with no singularities.  
I will fail, but the most unavoidable failure mode is more 

subtle than that which destroys k=0,-1 cosmologies.

One can then view one goal of this talk, as being a desire to 
either use k=+1 to evade the singularities, or to motivate a 

physically useful extension of the theorems to this case.

Thursday, July 28, 2011



ii) There has been much interest in the question of whether 
the Universe can undergo one (or more) instances of a big 

crunch, without ending the cosmological evolution.

This started, as far as I know, with the work on the 
“Phoenix universe” (1931) by Lemaitre (see also 

very interesting papers by Tolman).  

Of his earlier work, on the correct FLRW cosmologies 
which describe our expanding Universe to good 

approximation, Einstein said:
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“Your math is correct, but your physics is abominable.”

My hope is that at least the mathematics in this talk will be 
correct.

One important criterion I will have for what I mean by a 
bouncing cosmology: there must not be any place in the 
cosmological evolution where the equations break down 
and one is forced to assume some boundary conditions 

which parametrize unknown high-energy physics.

Such breakdown occurs in many ambitious scenarios.  
I will instead make the following working definition: any 

solution where the Universe contracts from a maximal size 
>> the minimal size (say, megaparsecs across compared to 
GUT scale size), then re-expands, can be said to “bounce.” 

c.f. Ellis, 
Maartens
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II.  General analysis of FLRW equations

So, let’s start at the beginning.  The Einstein equations 
applied to an FLRW cosmology yield:

This is reasonable because it would appear to “bounce” 
to any macroscopic observer; and yet since the minimal 
size can be GUT length >> Planck length, we can remain 

in the regime of validity of general relativity.
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Two questions which have recurred again and again
in theoretical cosmology, starting with [1, 2], are: 1) is
the Universe eternal, or did it have a beginning at some
definite time in the past?, and 2) is it possible to make
Universes which enjoy one or more “bounces” where the
scale factor first crunches, and then bangs?[15]

The answers to these two questions are deeply inter-
twined with the subject matter of the singularity theo-
rems of Penrose and Hawking (discussed comprehensively
in [5]). These theorems show that, given an energy con-
dition of the form

Tµνvµvν ≥ 0 (1)

for a suitable class of vectors vµ, where Tµν is the stress-
energy tensor of the sources supporting the Universe, one
can prove that the Universe must be geodesically incom-
plete (“singular”).

It is instructive to discuss which energy conditions need
to be assumed to prove existence of a cosmological sin-
gularity for the FLRW cosmologies

ds2 = −dt2+a(t)2(
dr2

1− kr2
+r2(dθ2+sin2(θ)dφ2)) . (2)

For k = −1, 0 the only condition that must be assumed
is the null energy condition (NEC), i.e. eqn. (1) where vµ

is a future-pointing null vector field. The NEC is reason-
able; it is in agreement with everything we know about
macroscopic matter and energy sources in our Universe.
(Interesting cosmological scenarios which attain a smooth
bounce by violating the NEC can be found in [6]).

For k = +1, however, one must instead assume the
strong energy condition (SEC). We know, essentially for
certain, that this condition is violated by macroscopic
sources in our world, as well as in many completely con-
sistent theoretical toy models. The goal of this paper
is to explore the two questions above for k = +1 Uni-
verses with sources satisfying the NEC but violating the
SEC. We will find that one can make classical cosmolo-
gies that live eternally, undergoing an infinite sequence

of non-singular bounces, and remain within the regime
of validity of general relativity. These cosmologies are
stable to small perturbations. In these cases, the ra-
tio between maximal and minimal scale factors is not
too large. In the opposite regime where the maximal
and minimal sizes differ by orders of magnitude, we’ll in-
stead find clear indications of both classical and quantum
pathologies; classically there are growing modes (which
can be tuned away), and quantum mechanically, particle
production backreacts significantly after some number of
cycles, likely causing a singular crunch. [16]

One further comment about motivations seems appro-
priate here. A conservative view, supported by current
data and the very successful theory of inflation [10], is
that our current ΛCDM cosmology was preceeded by a
phase of slow-roll inflation, with eternal inflation likely
occurring on even larger cosmic scales. One motivation
for our exploration of the possibility of eternal cosmolo-
gies is the striking result of [11], that eternal inflation
cannot be past eternal. Even in scenarios involving eter-
nal inflation, eventually, we need to come to terms with
the problem of the initial singularity.

Solutions.– The FRW equations for the metric eqn. (2)
are

ȧ2

a2
=

8π

3
Gρ− k

a2
(3)

ä

a
= −4π

3
G (ρ + 3p) (4)

where ρ is the energy density and p is the pressure. We
want oscillatory solutions, namely those with two ex-
trema (ȧ = 0) such that at the smaller (where we’ll call
the value of the scale factor a−) ä > 0, and at the larger
(which we’ll denote by a+) ä < 0. It is easy to see that
these requirements, along with the NEC, only allow so-
lutions for a when there is positive curvature, k = +1.
The minimal model which oscillates has three compo-
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Let us assume, for simplicity, that we have a Universe with 
just cosmological constant and some stress-energy source 

obeying the equation:

state is determined by a single parameter w, which captures the relationship between the

pressure and the energy density:

p = wρ . (2.5)

In the simple case w =const, energy-momentum conservation gives

ρm = c a−3(1+w) , (2.6)

where c is some positive constant.

2.1 Cosmological solutions with two critical points

A basic question is: is it possible, with only reasonable matter and energy sources, to have

classical solutions which oscillate between minimal and maximal sizes a∓? In fact, with

K = +1, but not in other cases, it is possible to achieve this without fine-tuning.

From the second Friedman equation, we fix the matter density at the critical points,

4π

3
GN ρ±m =

1

2

(
1

a2
±
− Λ

3

)
. (2.7)

Substituting in the first equation, we find

2
ä±
a±

= −1 + 3w

a2
±

+ (1 + w)Λ . (2.8)

Hence, the existence of the two extrema, with a− < a+, requires

Λ < 0 , −1 < w ≤ −1

3
. (2.9)

This is fully within the range of values of w consistent with the Null Energy Condition, so

no truly exotic matter is required.

Now, one must insure that the Universe begins to contract after reaching a+, and begins

to expand after reaching a−. This boils down to satisfying ä− ≥ 0 and ä− ≤ 0, which can

be satisfied if

a2
+ ≥

|1 + 3w|
1 + w

|Λ−1| , a2
− ≤

|1 + 3w|
1 + w

|Λ−1| . (2.10)

Then,

(ȧ)2 = −1 +
8π

3
GN c a3|w|−1 − |Λ|

3
a2 (2.11)

In the above range −1 < w ≤ −1/3, the second term has a positive power of a, and

3|w|− 1 < 2. Therefore, at sufficiently small a, the second term dominates over the third.

6

Then if the parameter w is a constant during cosmological 
evolution, we’ll find (with some c>0):

state is determined by a single parameter w, which captures the relationship between the

pressure and the energy density:

p = wρ . (2.5)

In the simple case w =const, energy-momentum conservation gives

ρm = c a−3(1+w) , (2.6)
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3

)
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ä±
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a2
±
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3
. (2.9)

This is fully within the range of values of w consistent with the Null Energy Condition, so

no truly exotic matter is required.

Now, one must insure that the Universe begins to contract after reaching a+, and begins

to expand after reaching a−. This boils down to satisfying ä− ≥ 0 and ä− ≤ 0, which can

be satisfied if

a2
+ ≥

|1 + 3w|
1 + w

|Λ−1| , a2
− ≤

|1 + 3w|
1 + w

|Λ−1| . (2.10)

Then,

(ȧ)2 = −1 +
8π

3
GN c a3|w|−1 − |Λ|

3
a2 (2.11)

In the above range −1 < w ≤ −1/3, the second term has a positive power of a, and

3|w|− 1 < 2. Therefore, at sufficiently small a, the second term dominates over the third.

6

just from the equations of energy-momentum 
conservation.

It will be important
later that we NOT use
perfect fluid sources....
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So our system of equations becomes:
...and a fluid p = w ρ plus cosmological constant

ä
a

= −4π
3

GN(1 + 3w)ρ+
Λ

3
(

ȧ
a

)2

=
8π
3

GNρ−
K
a2 +

Λ

3

ρ =
c

a3+3w

[We will need a more precise description of the fluid at shorter scales]

We want to find min & max values a± from 3-term structure

ȧ2 = −K +
8π
3

GNc
a3w+1 +

Λ

3
a2 = 0

Question: do these equations admit solutions that oscillate 
between a maximal and minimal scale factor?  If so, one 

must solve:

...and a fluid p = w ρ plus cosmological constant

ä
a

= −4π
3

GN(1 + 3w)ρ+
Λ

3
(

ȧ
a

)2

=
8π
3

GNρ−
K
a2 +

Λ

3

ρ =
c

a3+3w

[We will need a more precise description of the fluid at shorter scales]

We want to find min & max values a± from 3-term structure

ȧ2 = −K +
8π
3

GNc
a3w+1 +

Λ

3
a2 = 0

at the maximal and minimal value of a(t).
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Solution: K = +1 , Λ < 0 , −1 < w < −1
3
.

Thus it seems we can evade the inflationary singularity theorems
using ordinary and well-understood sources!

! a− produced by K and ρ, while a+ produced by Λ and ρ

! we require

|Λ|
3

"
(

8π
3

GN c
)2/(3|w|−1)

" M2
Pl ⇒ M−1

Pl " a− " a+

! sols w/oscillatory behavior and nonsingular bounces and
“crunches”

Let’s study this in more detail for the simplest solution w = −2/3.
Under these conditions, it is automatic that the second 
derivative of a(t) has the right behavior at the maximum 

and minimum to produce the desired oscillations.
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III.  A Simple Harmonic Universe

While the qualitative features of the solutions are not dis-
similar for all w in the allowed range for bouncing 

cosmologies, for w=-2/3 (c.f. networks of domain walls) the 
solutions are particularly simple.

II. A simple harmonic universe (SHU)

When w = −2/3 the FRW eqs. describe a harmonic oscillator:

ä +
|Λ|
3

a =
4π
3

GNc

⇒ a(t) =
1

√
γω

(
1 +

√
1 − γ cos(ωt)

)

ω ≡
√

|Λ|
3

, γ ≡ 3|Λ|
(4πGNc)2

Focus on the interesting limit

γ % 1 ⇒ a−
a+

≈ γ
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Here, the parameter        plays an important role: γ

γ ∼ a−
a+

In the limit where this parameter is of order unity, we will 
find one class of behaviors; while for dramatic bounces, 

we’ll find another.

A minimum is obtained by balancing the first two terms (as long as the third term is

subdominant), while at large enough a the third term becomes relevant and produces a

maximum.

So we learn that a sufficient condition for having both a minimum and a maximum is that

the third term is subdominant at the minimum, namely,

|Λ|
3
!

(
8π

3
GN c

)2/(3|w|−1)

. (2.12)

In summary, Eqs. (2.9) and (2.12) give sufficient conditions for having two critical points

ȧ = 0.

2.2 The simplest solutions: w = −2/3

When w = −2/3 it is possible to find an explicit analytic solution, because the first FRW

equation in (2.3) becomes

ä +
|Λ|
3

a =
4πGN

3
c . (2.13)

This is the harmonic oscillator equation, with solution

a(t) =
4πGN

|Λ| c + a0 cos

(√
|Λ|
3

t + φ0

)
. (2.14)

Requiring a > 0 implies that a0 is bounded by

|a0| <
4πGN

|Λ| c . (2.15)

Substituting into the second FRW equation, the value of a0 is related to the spatial curva-

ture K,

K =
|Λ|
3

[
(4πGN)2

|Λ|2 c2 − a2
0

]
. (2.16)

Eq. (2.15) implies that K > 0 is needed in order to avoid a = 0.

We would like to have small curvatures at all times, a # 1, so that the classical approxi-

mation can be trusted. This is satisfied for

4πGN

|Λ| c ± a0 # 1 . (2.17)

Furthermore, the frequency of oscillations should be much smaller than the Planck scale

GN |Λ|! 1 . (2.18)

7

A minimum is obtained by balancing the first two terms (as long as the third term is

subdominant), while at large enough a the third term becomes relevant and produces a

maximum.

So we learn that a sufficient condition for having both a minimum and a maximum is that

the third term is subdominant at the minimum, namely,

|Λ|
3
!

(
8π

3
GN c

)2/(3|w|−1)

. (2.12)

In summary, Eqs. (2.9) and (2.12) give sufficient conditions for having two critical points
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Finally, as conditions on our parameters, we should impose:

Under these conditions, semi-classical general relativity is a 
good approximation.  Very naively, these Universes cycle 

through “crunches” and “bangs” forever.
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For more general values -1 < w < -1/3, it is harder to give a 
useful closed-form solution of the equations.  The second 

order FLRW equation of motion becomes:

We note that the conditions (2.17) and (2.18) are introduced for theoretical control only,

and so one does not require very large or small parameters (just numbers of O(10)) to

trust these solutions around the bounce. On the other hand, the physically most interesting

solutions are those where the minimal size of the Universe is a microphysical scale (perhaps

∼ M−1
GUT ), while the maximal size is macroscopic (perhaps of order Hubble today). Such

solutions will be fine-tuned, but it is important to note that this fine tune is distinct from

one which is required to control the bounce, and is more akin to the tune of the cosmological

constant accepted in the concordance cosmology today.

2.3 Solutions in the range to −1 < w < −1/3

Of course, such solutions would be a mere peculiarity if they only existed at some precise

value of the parameter w determining the equation of state. Happily, as indicated by our

analysis in §2.1, that is not the case. One can find such solutions for a range of paramters

around w = −2/3.

For general w, the second order equation of motion becomes

ä +
|Λ|
3

(
a +

4πGNc

|Λ|
1 + 3w

a2+3w

)
= 0 . (2.19)

The solution can be written implicitly as

∫ a(t)

1

du

c1 − |Λ|
3 u2 + 8π

3 GNc u−3w−1
= ±|t + c2| (2.20)

for some constants c1, c2. While it is satisfying to write an implicit solution, it is not clear

how useful this is.

On the other hand, a straightforward numerical analysis shows that there are oscillatory

solutions over the whole range −1 < w < −1/3. The solutions becomes singular at

w = −1/3 since in this case we have simply

a(t) = a0 cos

(√
|Λ|
3

t + φ0

)
, (2.21)

which always takes negative values.

Approaching the other limit, w → −1, is also amusing. In this case, the solution looks like

an inflationary cosmology for a long time, but then a reaches a maximum, decreases, and

the cycle restarts.
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an inflationary cosmology for a long time, but then a reaches a maximum, decreases, and

the cycle restarts.

8

Simple numerics shows that there are qualitatively similar 
oscillating solutions over the whole range up to w=-1/3, 

where they become necessarily singular.
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What should we worry about next?

IV.  Stability

Two obvious classes of potential instabilities to discuss:
• Stability of the simple harmonic universe?
Two possible sources:

1) Homogeneous perturbations

Recall instability of Einstein’s static universe:
- The dust energy density and size of the universe have to be

tuned to match the c.c.
- Any deviation causes a large instability.

** However, we have a parameter space of solutions. Small
homogeneous fluctuations are expected to lead to qualitatively similar
oscillating universes.
Concretely, the most general homogeneous perturbation

ds2 = −dt2 +
3∑

i=1

ai(t)2 σ2
i , ai(t) = a(t) + δai(t)

leads to small oscillatory δai sols.

Our situation will be better than this, but is more 
nuanced.  Clearly, generic small perturbations of c.c., w, 
or the amount of matter present, do not destabilize us.
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The most general homogeneous perturbation of the scale 
factor takes the form:

1 Homogeneous perturbations

We study the effect of homogeneous perturbations in our background solution.

The most general homogeneous metric perturbation is of the form

ds2 = −dt2 +
3∑

i=1

a2i (t) σ
2
i (1.1)

where σi are the Maurer-Cartan one forms for S3,

σ1 = − sinψ dθ + cosψ sin θ dφ

σ2 = cosψ dθ + sinψ sin θ dφ

σ3 = dψ + cos θ dφ . (1.2)

and 0 ≤ ψ ≤ 4π, 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π. In terms of these, σ2
1 + σ2

2 + σ2
3 is proportional to

the round metric on S3.

Eq. (1.1) is the Bianchi type IX metric or Mixmaster universe; useful references are
[Landau, Lifshitz, volII] and [Misner, PRL vol22, n20, 1969]. Our background solution
corresponds to the limit ai(t) = a(t). The Einstein equations are

∂t(ȧ1a2a3)

a1a2a3
= 2K

(a22 − a23)
2 − a41

(a1a2a3)2
+ Λ+ 4πG(1− w)ρ , (1.3)

3∑

i=1

äi
ai

= Λ− 4πG(1 + 3w)ρ , (1.4)

and cyclic permutations of the ai. As a check, these equations reduce to the background
equations when ai = a. The conservation of energy now reads

ρ = c (a1a2a3)
−(1+w) . (1.5)

The equations simplify if we parametrize the three scale factors by an overall volume
fluctuation a(t) and two ‘shape’ fluctuations β±:

a1(t) = a(t) exp

[
β+(t) + β−(t)

2

]

a2(t) = a(t) exp

[
β+(t)− β−(t)

2

]

a3(t) = a(t) exp [−β+(t)] . (1.6)

Notice that β± do not change the volume; thus, ρ depends only on the overall a(t).

Let us now consider small perturbations β± # 1. The sum and difference of (1.3) for a1
and a2 yields

β̈± + 3
ȧ

a
β̇± +

8K

a2
β± = 0 . (1.7)

1
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∂t(ȧ1a2a3)

a1a2a3
= 2K

(a22 − a23)
2 − a41

(a1a2a3)2
+ Λ+ 4πG(1− w)ρ , (1.3)

3∑

i=1

äi
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1

We find that the wave equation governing the anisotropic 
modes is the same as that for a scalar with momentum l=2 

on the sphere.  We discuss that in detail shortly.
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(References:  Bruni, Dunsby, Ellis; Mukhanov et al.; ...)

1 Basic equations

We consider the usual FRW ansatz for the 4d metric, and action

S =
1

8πGN

∫ √
−g(R− 2Λ) + Sm . (1)

The Friedman equations are

ä

a
= −4π

3
GN(ρm + 3pm) +

Λ

3
(2)

(
ȧ

a

)2

=
8π

3
GN ρm − K

a2
+

Λ

3
, (3)

where K is the spatial curvature.

Define
p = w(ρ)ρ . (4)

In the simple case w =const, energy-momentum conservation gives

ρm = c a−3(1+w) , (5)

where c is some positive constant. We also define the speed of sound,

∂p

∂ρ
= c2s . (6)

For matter where w is constant, we have c2s = w.

2 Analysis of perturbations

Given some oscillatory background solution φ̄A, we now consider small perturbations φ̄A →
φ̄A + δφA. For simplicity, only one component of matter is included, so that the entropy
perturbations vanish.

It is simpler to study the scalar metric fluctuations in conformal gauge:

ds2 = − (1 + 2Φ(t, x)) dt2 + a2(t) (1− 2Ψ(t, x)) g̃ijdx
idxj , (7)

where in our case g̃ij is the S3 metric. We furthermore restrict to the case when the fluctu-
ation in the energy-momentum tensor δTij only includes δρ, δp and δui, with no anisotropic
inertia moments. Perfect fluids and scalar fields are included in this class. This simplifies
our analysis, because the Einstein’s equations require

Φ =Ψ , (8)

so there is only one scalar field in the metric perturbations. This is familiar from inflation.

1

One should worry about scalar, vector and tensor 
perturbations of the metric and background:

2)  Inhomogeneous perturbations

We might also expect possible inhomogeneous instabilities.  
These are not always disastrous (c.f. collapse of dark 
matter into halos in our Universe, leaving large-scale 

homogeneous and isotropic).  And free-streaming and/or 
chaotic mixing can help with them.  But they must be 

analyzed.
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For the case of e.g. perfect fluids, we would find:

1 Basic equations
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∫ √
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ȧ
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3
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a2
+

Λ

3
, (3)
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where in our case g̃ij is the S3 metric. We furthermore restrict to the case when the fluctu-
ation in the energy-momentum tensor δTij only includes δρ, δp and δui, with no anisotropic
inertia moments. Perfect fluids and scalar fields are included in this class. This simplifies
our analysis, because the Einstein’s equations require

Φ =Ψ , (8)

so there is only one scalar field in the metric perturbations. This is familiar from inflation.

1

In our solutions we also have a cosmological constant. It is useful to include it in the
matter sector, using

T (Λ)
µν =

Λ

8πG
gµν . (9)

The perturbations of Einstein equations are1

δRµν = −8πGδSµν (10)

where

Sµν = Tµν −
1

2
gµνT

λ
λ , δSµν = δTµν −

1

2
ḡµνδT

λ
λ −

1

2
δgµνT̄

λ
λ . (11)

There are three different equations, corresponding to δR00, δR0i and δRij. The energy-
momentum pertubations are, explicitly,

δT00 = 2 ρ̄Ψ+ δρ

δTi0 = −(ρ̄+ p̄)δui

δTij = −2a2(t)g̃ij p̄Ψ+ a2(t)g̃ij δp . (12)

Taking fluctuations in (9) and comparing with (12) we see that

δρ(Λ) = δp(Λ) = 0 (13)

and Λ only contributes through ρ̄Ψ and p̄Ψ terms in the fluctuation equations below.

The end result is

Ψ̈+4
ȧ

a
Ψ̇+

(
2
ä

a
+

ȧ2

a2
− K

a2

)
Ψ = 4πG δp

1

a2
∇̃2Ψ− 3

ȧ

a
Ψ̇− 3

(
ȧ2

a2
− K

a2

)
Ψ = 4πG δρ

∂i

(
Ψ̇+

ȧ

a
Ψ

)
= 4πG(ρ̄+ p̄)δui . (14)

Here ∇̃2 is the Laplacian with respect to g̃ij. The cosmological constant only appears im-
plicitly in a; also ρ̄(Λ) + p̄(Λ) = 0.

To derive an equation for scalar perturbations, we set

δp = c2sδρ , c2s =
∂p

∂ρ

∣∣
ρ=ρ̄

. (15)

Then eliminating δρ and δp between the first and second equations in (14) obtains

Ψ̈+
ȧ

a
(4 + 3c2s)Ψ̇+

(
2
ä

a
+ (1 + 3c2s)

(
ȧ2

a2
− K

a2

))
Ψ− c2s

a2
∇̃2Ψ =0 . (16)

This is the desired equation for scalar metric fluctuations. Here the speed of sound is
arbitrary, so this formula also applies to a scalar field.

1The following is based on Weinberg’s recent Cosmology book, and I added the effects of curvature and
cosmological constants. The results can also be checked with Mukhanov’s review.
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ȧ

a
Ψ̇+

(
2
ä
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ȧ

a
Ψ̇− 3

(
ȧ2
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ȧ2

a2
− K

a2

))
Ψ− c2s

a2
∇̃2Ψ =0 . (16)

This is the desired equation for scalar metric fluctuations. Here the speed of sound is
arbitrary, so this formula also applies to a scalar field.

1The following is based on Weinberg’s recent Cosmology book, and I added the effects of curvature and
cosmological constants. The results can also be checked with Mukhanov’s review.

2

Then one can simplify the system of equations to:

In our solutions we also have a cosmological constant. It is useful to include it in the
matter sector, using

T (Λ)
µν =

Λ

8πG
gµν . (9)

The perturbations of Einstein equations are1

δRµν = −8πGδSµν (10)

where

Sµν = Tµν −
1

2
gµνT

λ
λ , δSµν = δTµν −

1

2
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An important point is the following: If we really had a 
perfect fluid with             , there would be catastrophic 

short distance instabilities.

Intuitively, this is because there would be negative 
pressure, leading to instabilities which are worse and worse 
on shorter and shorter distance scales.  This is visible from 

the sign of the Laplacian term in the final differential 
equation.

Now, we certainly need a stress-energy source which 
enters in the Friedmann equations and has w < -1/3 to 

support our simple harmonic Universe.  Are we in trouble?

c2
s < −1/3
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We are rescued by a simple, physical observation, discussed 
at length in this paper:
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So for instance, a frustrated network of domain walls 
contributes in the Friedmann equations with w=-2/3, but 

has a large positive sound speed and no dangerous 
instabilities to inhomogeneous perturbations.

This is precisely the case where our simplest (sinusoidal) 
oscillatory solution obtains.

So it seems we have dodged part of bullet 1), and any 
dangers arising in the high momentum regime of 2).  

However, now we need to be more careful.

For detailed investigations, see:
Battye, Moss;

Battye, Pearson;
Battye, Pearson, Moss
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V.  Stability in models of O(1) vs tiny  γ

Let’s consider for simplicity a scalar field (or the simplest 
graviton modes) in the periodic solution in conformal 

time.This is relevant to the mixmaster modes we discussed 
earlier, for instance.

2

nents: positive curvature, a negative cosmological con-
stant (energy density = Λ < 0), and a “matter” source
with equation of state in the range −1 < w < − 1

3 (we
will see a bit later that it is important that this source
should not be a perfect fluid). For this content the en-
ergy density is ρ = Λ+ρ0 a−3(1+w) where ρ0 is a constant
parametrizing the density of the “matter.” Then the so-
lution to eqns. (3) and (4) is necessarily oscillatory.

In the special case that w = − 2
3 these equations just

describe a constrained simple harmonic oscillator and the
solution is

a =
ρ0

2|Λ| + a0 cos

(
t

√
8π

3
G|Λ| + ψ

)
(5)

where ψ is an arbitrary phase and

a0 =
1

2|Λ|

√
3Λ

2πG
+ ρ2

0. (6)

This requires ρ2
0 ≥ 3

2π
|Λ|
G for positivity of the radicand.

Note that the Universe is static when this condition is
saturated, though this requires a fine-tuning. In the op-
posite limit, ρ2

0
Λ → ∞, the ratio of the maximum to the

minimum sizes a+/a− of the Universe goes to infinity.
Stability.–
There are two simple stability issues we discuss here.

First of all, the single source we have added to our Uni-
verse, the “matter” source with

p = wρ, − 1 < w < −1/3 , (7)

may itself present dangers. In fact the canonical source
which behaves this way, a perfect fluid, would present a
serious problem. To see this, recall that in perturbation
theory, one considers a more general metric

ds2 = −(1 + 2Φ(t, x))dt2 + a2(t)(1− 2Ψ(x, t))g̃ijdxidxj .
(8)

For perfect fluids, one can take the resulting perturbation
to satisfy Φ = Ψ; then a bit of work shows that Ψ is
governed by the differential equation

Ψ̈+
ȧ

a
(4+3c2

s)Ψ̇+
(

2
ä

a
+ (1 + 3c2

s)(
ȧ2

a2
− k

a2
)
)

Ψ− c2
s

a2
∇̃2Ψ =0 .

(9)
The important point, clearly visible in (9) from the sign
of the ∇̃2 term, is that if c2

s is negative, there are disas-
trous short-distance (high-momentum) instabilities.

Now, a perfect fluid with w < −1/3 would have neg-
ative c2

s. However, an important point made in [12] is
the following. One can find matter sources supporting
equations of state of the form (7) but with c2

s > 0 (and
in fact comparable to the speed of light), if one considers
a “solid” with elastic resistance to shear deformations.
A canonical example which they discuss is a frustrated
network of domain walls, which in the leading approxi-
mations lands one precisely on the w = − 2

3 case with the

simplest behavior of a(t). For our purposes, the crucial
point is simply that once we have achieved c2

s sufficiently
positive, it is easy to check that the scalar perturbations
above are stable. Further discussion of this point, and
also tensor perturbations, will appear in [13].

A second potential source present in our Universe,
and indeed in any cosmological scenario, is gravity it-
self. That is, the Universe may respond to a produced
gas of gravitons. To study this, we will slightly alter the
problem and focus on the behavior of a probe massless
scalar field φ in the background geometry (10). This
is partly for simplicity, and partly because the simplest
gravity modes obey the same equation of motion as such
a scalar.

To study the dynamics of this probe, it is useful to
switch to conformal time η, where the metric takes the
form

ds2 = a(η)2(−dt2 + g̃ij(x)dxidxj) . (10)

Defining the physically interesting ratio

γ ≡ a−
a+

(11)

one can show that the solution for the scale factor (5)
becomes, in conformal time and in the convention where
we set k = +1,

a(η) =
1
ω

√
γ

1−
√

1− γcos(η)
. (12)

In this background, the probe scalar has an action

S =
∫

d4x a(η)2
(
(∂ηφ)2 − (∂iφ)2

)
(13)

with consequent equation of motion

φ′′ + 2
a′

a
φ′ + l(l + 2)φ = 0 (14)

where the derivatives are with respect to conformal time.
In deriving (14), we have done a separation of variables,
treating φ(x, t) as a spherical harmonic (with Laplacian
eigenvalue l(l +2)) on the S3; the remaining field in (14)
is hence simply φ(t), which we continue to call φ by abuse
of notation. We note as a curiosity that because of the
periodicity of a, the equation (14) can be recast as a par-
ticular example of the kind of Schrödinger problem char-
acterising motion of electrons in a 1d periodic potential
(where Bloch’s theorem applies).

Conventionally one would rescale φ to go to a canoni-
cally normalized field, but it turns out that the numerical
analysis of the behavior of solutions to (14) is better be-
haved than that for the canonical field, so we proceed
with a numerical analysis of (14) (simple analytical toy
models will be discussed in [13]). There are three regimes
of momenta where we expect (and shall find) different
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a “solid” with elastic resistance to shear deformations.
A canonical example which they discuss is a frustrated
network of domain walls, which in the leading approxi-
mations lands one precisely on the w = − 2

3 case with the

simplest behavior of a(t). For our purposes, the crucial
point is simply that once we have achieved c2

s sufficiently
positive, it is easy to check that the scalar perturbations
above are stable. Further discussion of this point, and
also tensor perturbations, will appear in [13].

A second potential source present in our Universe,
and indeed in any cosmological scenario, is gravity it-
self. That is, the Universe may respond to a produced
gas of gravitons. To study this, we will slightly alter the
problem and focus on the behavior of a probe massless
scalar field φ in the background geometry (10). This
is partly for simplicity, and partly because the simplest
gravity modes obey the same equation of motion as such
a scalar.

To study the dynamics of this probe, it is useful to
switch to conformal time η, where the metric takes the
form

ds2 = a(η)2(−dt2 + g̃ij(x)dxidxj) . (10)

Defining the physically interesting ratio

γ ≡ a−
a+

(11)

one can show that the solution for the scale factor (5)
becomes, in conformal time and in the convention where
we set k = +1,

a(η) =
1
ω

√
γ

1−
√

1− γcos(η)
. (12)

In this background, the probe scalar has an action

S =
∫

d4x a(η)2
(
(∂ηφ)2 − (∂iφ)2

)
(13)

with consequent equation of motion

φ′′ + 2
a′

a
φ′ + l(l + 2)φ = 0 (14)

where the derivatives are with respect to conformal time.
In deriving (14), we have done a separation of variables,
treating φ(x, t) as a spherical harmonic (with Laplacian
eigenvalue l(l +2)) on the S3; the remaining field in (14)
is hence simply φ(t), which we continue to call φ by abuse
of notation. We note as a curiosity that because of the
periodicity of a, the equation (14) can be recast as a par-
ticular example of the kind of Schrödinger problem char-
acterising motion of electrons in a 1d periodic potential
(where Bloch’s theorem applies).

Conventionally one would rescale φ to go to a canoni-
cally normalized field, but it turns out that the numerical
analysis of the behavior of solutions to (14) is better be-
haved than that for the canonical field, so we proceed
with a numerical analysis of (14) (simple analytical toy
models will be discussed in [13]). There are three regimes
of momenta where we expect (and shall find) different

2

nents: positive curvature, a negative cosmological con-
stant (energy density = Λ < 0), and a “matter” source
with equation of state in the range −1 < w < − 1

3 (we
will see a bit later that it is important that this source
should not be a perfect fluid). For this content the en-
ergy density is ρ = Λ+ρ0 a−3(1+w) where ρ0 is a constant
parametrizing the density of the “matter.” Then the so-
lution to eqns. (3) and (4) is necessarily oscillatory.

In the special case that w = − 2
3 these equations just

describe a constrained simple harmonic oscillator and the
solution is

a =
ρ0

2|Λ| + a0 cos

(
t

√
8π

3
G|Λ| + ψ

)
(5)

where ψ is an arbitrary phase and

a0 =
1

2|Λ|

√
3Λ

2πG
+ ρ2

0. (6)

This requires ρ2
0 ≥ 3

2π
|Λ|
G for positivity of the radicand.

Note that the Universe is static when this condition is
saturated, though this requires a fine-tuning. In the op-
posite limit, ρ2

0
Λ → ∞, the ratio of the maximum to the

minimum sizes a+/a− of the Universe goes to infinity.
Stability.–
There are two simple stability issues we discuss here.

First of all, the single source we have added to our Uni-
verse, the “matter” source with

p = wρ, − 1 < w < −1/3 , (7)

may itself present dangers. In fact the canonical source
which behaves this way, a perfect fluid, would present a
serious problem. To see this, recall that in perturbation
theory, one considers a more general metric

ds2 = −(1 + 2Φ(t, x))dt2 + a2(t)(1− 2Ψ(x, t))g̃ijdxidxj .
(8)

For perfect fluids, one can take the resulting perturbation
to satisfy Φ = Ψ; then a bit of work shows that Ψ is
governed by the differential equation

Ψ̈+
ȧ

a
(4+3c2

s)Ψ̇+
(

2
ä

a
+ (1 + 3c2

s)(
ȧ2

a2
− k

a2
)
)

Ψ− c2
s

a2
∇̃2Ψ =0 .

(9)
The important point, clearly visible in (9) from the sign
of the ∇̃2 term, is that if c2

s is negative, there are disas-
trous short-distance (high-momentum) instabilities.

Now, a perfect fluid with w < −1/3 would have neg-
ative c2

s. However, an important point made in [12] is
the following. One can find matter sources supporting
equations of state of the form (7) but with c2

s > 0 (and
in fact comparable to the speed of light), if one considers
a “solid” with elastic resistance to shear deformations.
A canonical example which they discuss is a frustrated
network of domain walls, which in the leading approxi-
mations lands one precisely on the w = − 2

3 case with the

simplest behavior of a(t). For our purposes, the crucial
point is simply that once we have achieved c2

s sufficiently
positive, it is easy to check that the scalar perturbations
above are stable. Further discussion of this point, and
also tensor perturbations, will appear in [13].

A second potential source present in our Universe,
and indeed in any cosmological scenario, is gravity it-
self. That is, the Universe may respond to a produced
gas of gravitons. To study this, we will slightly alter the
problem and focus on the behavior of a probe massless
scalar field φ in the background geometry (10). This
is partly for simplicity, and partly because the simplest
gravity modes obey the same equation of motion as such
a scalar.

To study the dynamics of this probe, it is useful to
switch to conformal time η, where the metric takes the
form

ds2 = a(η)2(−dt2 + g̃ij(x)dxidxj) . (10)

Defining the physically interesting ratio

γ ≡ a−
a+

(11)

one can show that the solution for the scale factor (5)
becomes, in conformal time and in the convention where
we set k = +1,

a(η) =
1
ω

√
γ

1−
√

1− γcos(η)
. (12)

In this background, the probe scalar has an action

S =
∫

d4x a(η)2
(
(∂ηφ)2 − (∂iφ)2

)
(13)

with consequent equation of motion

φ′′ + 2
a′

a
φ′ + l(l + 2)φ = 0 (14)

where the derivatives are with respect to conformal time.
In deriving (14), we have done a separation of variables,
treating φ(x, t) as a spherical harmonic (with Laplacian
eigenvalue l(l +2)) on the S3; the remaining field in (14)
is hence simply φ(t), which we continue to call φ by abuse
of notation. We note as a curiosity that because of the
periodicity of a, the equation (14) can be recast as a par-
ticular example of the kind of Schrödinger problem char-
acterising motion of electrons in a 1d periodic potential
(where Bloch’s theorem applies).

Conventionally one would rescale φ to go to a canoni-
cally normalized field, but it turns out that the numerical
analysis of the behavior of solutions to (14) is better be-
haved than that for the canonical field, so we proceed
with a numerical analysis of (14) (simple analytical toy
models will be discussed in [13]). There are three regimes
of momenta where we expect (and shall find) different
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Amusingly, by a change of variables, given the periodicity of 
the scale factor, this problem can be mapped to the 

quantum Schrodinger problem of an electron moving in 1d 
in a periodic potential, analyzed by Bloch many years ago.

The actual potential that arises in the case with sinusoidal 
scale factor is not quite of the “Dirac comb” form familiar 
from simple treatments of Bloch waves and conduction 

bands.  Instead one finds:
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V

Three regimes:
! k = 0, homogeneous mode
! intermediate momenta 0 < k < 1/√γ

! high momenta k " 1/√γ ! flat space modes

Dynamics of particles in the harmonic universe
⇔ electrons in a Bloch potential

There are then three relevant parameter ranges in which 
to analyze the differential equation

2

nents: positive curvature, a negative cosmological con-
stant (energy density = Λ < 0), and a “matter” source
with equation of state in the range −1 < w < − 1

3 (we
will see a bit later that it is important that this source
should not be a perfect fluid). For this content the en-
ergy density is ρ = Λ+ρ0 a−3(1+w) where ρ0 is a constant
parametrizing the density of the “matter.” Then the so-
lution to eqns. (3) and (4) is necessarily oscillatory.

In the special case that w = − 2
3 these equations just

describe a constrained simple harmonic oscillator and the
solution is

a =
ρ0

2|Λ| + a0 cos

(
t

√
8π

3
G|Λ| + ψ

)
(5)

where ψ is an arbitrary phase and

a0 =
1

2|Λ|

√
3Λ

2πG
+ ρ2

0. (6)

This requires ρ2
0 ≥ 3

2π
|Λ|
G for positivity of the radicand.

Note that the Universe is static when this condition is
saturated, though this requires a fine-tuning. In the op-
posite limit, ρ2

0
Λ → ∞, the ratio of the maximum to the

minimum sizes a+/a− of the Universe goes to infinity.
Stability.–
There are two simple stability issues we discuss here.

First of all, the single source we have added to our Uni-
verse, the “matter” source with

p = wρ, − 1 < w < −1/3 , (7)

may itself present dangers. In fact the canonical source
which behaves this way, a perfect fluid, would present a
serious problem. To see this, recall that in perturbation
theory, one considers a more general metric

ds2 = −(1 + 2Φ(t, x))dt2 + a2(t)(1− 2Ψ(x, t))g̃ijdxidxj .
(8)

For perfect fluids, one can take the resulting perturbation
to satisfy Φ = Ψ; then a bit of work shows that Ψ is
governed by the differential equation

Ψ̈+
ȧ

a
(4+3c2

s)Ψ̇+
(

2
ä

a
+ (1 + 3c2

s)(
ȧ2

a2
− k

a2
)
)

Ψ− c2
s

a2
∇̃2Ψ =0 .

(9)
The important point, clearly visible in (9) from the sign
of the ∇̃2 term, is that if c2

s is negative, there are disas-
trous short-distance (high-momentum) instabilities.

Now, a perfect fluid with w < −1/3 would have neg-
ative c2

s. However, an important point made in [12] is
the following. One can find matter sources supporting
equations of state of the form (7) but with c2

s > 0 (and
in fact comparable to the speed of light), if one considers
a “solid” with elastic resistance to shear deformations.
A canonical example which they discuss is a frustrated
network of domain walls, which in the leading approxi-
mations lands one precisely on the w = − 2

3 case with the

simplest behavior of a(t). For our purposes, the crucial
point is simply that once we have achieved c2

s sufficiently
positive, it is easy to check that the scalar perturbations
above are stable. Further discussion of this point, and
also tensor perturbations, will appear in [13].

A second potential source present in our Universe,
and indeed in any cosmological scenario, is gravity it-
self. That is, the Universe may respond to a produced
gas of gravitons. To study this, we will slightly alter the
problem and focus on the behavior of a probe massless
scalar field φ in the background geometry (10). This
is partly for simplicity, and partly because the simplest
gravity modes obey the same equation of motion as such
a scalar.

To study the dynamics of this probe, it is useful to
switch to conformal time η, where the metric takes the
form

ds2 = a(η)2(−dt2 + g̃ij(x)dxidxj) . (10)

Defining the physically interesting ratio

γ ≡ a−
a+

(11)

one can show that the solution for the scale factor (5)
becomes, in conformal time and in the convention where
we set k = +1,

a(η) =
1
ω

√
γ

1−
√

1− γcos(η)
. (12)

In this background, the probe scalar has an action

S =
∫

d4x a(η)2
(
(∂ηφ)2 − (∂iφ)2

)
(13)

with consequent equation of motion

φ′′ + 2
a′

a
φ′ + l(l + 2)φ = 0 (14)

where the derivatives are with respect to conformal time.
In deriving (14), we have done a separation of variables,
treating φ(x, t) as a spherical harmonic (with Laplacian
eigenvalue l(l +2)) on the S3; the remaining field in (14)
is hence simply φ(t), which we continue to call φ by abuse
of notation. We note as a curiosity that because of the
periodicity of a, the equation (14) can be recast as a par-
ticular example of the kind of Schrödinger problem char-
acterising motion of electrons in a 1d periodic potential
(where Bloch’s theorem applies).

Conventionally one would rescale φ to go to a canoni-
cally normalized field, but it turns out that the numerical
analysis of the behavior of solutions to (14) is better be-
haved than that for the canonical field, so we proceed
with a numerical analysis of (14) (simple analytical toy
models will be discussed in [13]). There are three regimes
of momenta where we expect (and shall find) different

depending on the size of l relative to     :γ
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√
Instead of periodic b.c., we want to give initial conditions for χ

√
Set of decoupled harmonic oscillators in each cycle

√
Patch sols across ‘barriers’ and ’wells’ of the potential

! The homogeneous mode exhibits linear growth,

φ(η) ∼ η

γ2

! For intermediate momenta k < 1/√γ,

φ(η) ∼ exp

[√

1 − k2

k2
c
η

]
, k2

c ∼ 1/γ

! At high momenta, modulated Minkowski modes,

φ(η) ∼ (sin η) eikη
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behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)
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behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−
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1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)

Linear growth of 
homogeneous mode

γ ∼ 1 γ ! 1

Oscillatory high-
momentum modes
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As a check on the numerics, we can exactly solve some of
the cases/limits.  E.g. the exact homogeneous mode is:

3

behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)

which exhibits the linear growth with conformal time, and 
matches the numerical solution very well.

Some physics points:

* The linear growing homogeneous mode is not an 
instability.  It reflects the way that two sinusoidal functions 

of slightly different frequencies move away from one 
another, in perturbation theory.
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* For           there are no instabilities, then.  The single case 
with meaningfully growing modes in the plots does not 

occur.  (Don’t worry, I’m a pessimist.  I will come back to 
worry about this case.)

γ ∼ 1

* For           we have some exponentially growing modes! 
What is the ensuing physics? 

γ ! 1

VI.  The end of time

For the oscillating Universes with large ratio of maximal to 
minimal scale factor, we believe the growing modes 
implement the fate envisioned in the ancient texts:

V.   The end of time  

3.2 Tensor fluctuations

The equation of motion for a gravitational wave perturbation is, for w = −2/3,

Σ̈k + 3
ȧ

a
Σ̇k +

(
k2

a2
+ 2

K

a2
+

8πGN

3

c

a
− 2

3
|Λ|

)
Σk = 0 . (3.13)

This will be relevant to study the production of gravitons in the oscillating universe...

4 Entropy production and the covariant entropy bound

“Death is as sure for that which is born, as birth is for that which is dead. Therefore grieve

not for what is inevitable.” - Bhagavad-Gita

In this section we consider the limits that quantum particle production places on Krishna’s

conjecture. Although the solution above is classically stable, with each bounce there is a

nonzero probability of producing particles - we will refer to these as gravitons since these

can be produced even if no other scalar fields are present. A gas of gravitons has equation

of state w = 1/3, and so eventually these will cause the oscillating solution to collapse.

Quantum tunneling will destroy the domain wall network on exponentially long timescales,

but particle production will bound the number of possible oscillations long before.

In calculating the particle production we will follow the notation and argument of [20],

particularly of Chapter 6. A scalar field φ of mass m, when canonically normalized χ =

a(η)φ in a metric ds2 = a2(η)(−dη2 + ds2
S3) will have an equation of motion given by

χ′′−∇2χ+m2
eff (η)χ = 0, where primes denote derivatives with respect to conformal time

η, and the effective mass given by m2(η) = m2a2 − a′′

a .

Numerically evaluating m2
eff (η) with m = 0 for the scale factor a(t) = a0 + c cos(ωt), it is

sharply peaked around the (conformal) time when a = amax = a0 + c, and so we can treat

it as a step function of duration η∗ ≈ ω
a0

. In fact, as explained in [23], interactions with

the domain wall network may give the graviton an effective mass of order m2 ∼
(

ȧ
a

)2
, but

this will not affect the order of magnitude estimate here. The mass then switches between

m2
eff ≈ ∓a0cω2, and number of particles in the mode with momentum k produced is then

given by the Bogoliubov coefficients

nk = |βk|2 =
1

2

(
ωmin

k

ωmax
k

− ωmax
k

ωmin
k

)2

sin2(ωmin
k η∗) ≈

a2
0c

2ω4

k4
(4.1)

12

Nevertheless, as one might suspect on general grounds, we 
think that these eternally cycling solutions are doomed to 

eventual destruction in an uncontrolled big crunch.

The basic point is the laws of thermodynamics.  As the 
cycles proceed, entropy will be produced.  Eventually, the 

entropy produced will exceed that which is allowed by the 
covariant entropy bound of Bousso:

Saturday, May 28, 2011
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The rate of exponential growth for the growing modes:

3

behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)

after N oscillation cycles, will cause fatal difficulties for our 
Universe (or at least, for our approximations).

The pertinent physical question is:  at what point does the 
energy in these modes compete at O(1) with the 

background we started with?

The ratio of the energy carried by the scalar field to e.g. 
the energy in the cosmological term, is given by:

A.  Classical death
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3

behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)

One can evaluate the integral by a saddle point 
approximation, yielding a dominant momentum regime:

3

behavior. It is important to distinguish Universes with
γ ∼ O(1) from this with γ " 1; we shall always describe
the behavior in both limits.
•There is the l = 0 homogeneous mode. Intuitively, we
expect that shifting such a mode may be analogous to
shifting the homogeneous mode of the scale factor, which
would simply move us in the space of periodic solutions
and lead to a linear growth of the perturbation in naive
perturbation theory (since e.g. two sinusoidal functions
with slightly different frequency will perturbatively grow
apart at a linear rate, as they get out of phase). This is
borne out by the numerics for both γ " 1 and γ ∼ 1.
•There are momentum modes with 0 < l << 1√

γ on the
S3. These modes have long enough wavelength to de-
tect the difference between our cosmology and Minkowski
space. For γ ∼ 1, i.e. a Universe which is “quivering”
around a mean size, we find that they have oscillatory
behavior and do not represent instabilities. In contrast,
for γ " 1, they can be dangerous; we shall discuss the
bounds we can derive from their behavior momentarily.
•There are momentum modes with l >> 1√

γ on the S3.
These modes have small enough wavelength that they
should barely detect the departures of our metric from
flat space; they are expected to behave more or less like
typical Minkowski space scalar field modes. This is borne
out for both γ " 1 and γ ∼ 1.

To summarize, the Universes with γ ∼ 1 are classically
stable and live forever. The Universes with γ " 1 suffer
from exponential growth of the finite momentum modes
with l << 1√

γ as a function of cycle number. We show
the numerical analysis of the modes in the Figure below,
for all three regimes of momenta, and various values of
γ. The exponential growth whose beginning is shown in
the middle picture would not be present for γ ∼ 1.

As a check we note that the homogeneous equation can
be solved exactly, with result

φ(η) = φ(0) + φ′(0)

×
(3− γ)η − 4

√
1− γ sin(η) + 1

2 (1− γ)sin(2η)
2(1−

√
1− γ)2

(15)

The linear growth and agreement with the numerics can
easily be checked. The other behaviors are similarly
as one expects, and the crossover between the linearly
growing, exponentially growing, and well-behaved short-
wavelength modes occurs smoothly, giving no indication
of numerical glitches.

Classical and quantum destruction of the Universe.–
For γ ∼ 1, the Universes we are studying are classically

stable. For γ " 1, the exponential growth of the modes
with 0 < k < 1√

γ clearly indicates that we should expect
our Universe to have a bounded lifetime (at least until
our approximations break down); can we tune this to
allow a large number of oscillations within our period of
computational control?
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FIG. 1: Massless scalar field evolution in conformal time, for
different values of momenta. The first plot shows the homo-
geneous (l = 0) solution with γ = 10−5. The second plot
corresponds to l = 2 and γ = 0.1; three cycles are included,
showing the exponential growth in the amplitude. The third
plot has l = 45 and γ = 0.01, and shows a single cycle. The
initial conditions are φ(0) = 0 and φ′(0) = 1.

The cross-over from exponential to oscillatory behav-
ior in the numerical solutions at l ∼ lc = 1√

γ , together
with basic attempts to fit the growing solutions, suggest
a rough form for the growing modes

φl(N) ∼ φ0 exp

(√

1− l2

l2c
×N

)
(16)

where φl(N) denotes the value of the lth momentum
mode after N oscillations, with starting vev φ0. The
important physical question is: when does the energy
density in these modes become large enough that they
compete with the dominant energy sources present in our
background geometry? The ratio of the energy density
in the scalar to the cosmological constant is given by

∑

l

a2l(l + 2)φ2

M2
P a4|Λ| ∼ γ

M2
P

∫ kc

dl l2φ2 . (17)

Using (16), and evaluating the resulting integral using
a saddle-point approximation, we find the dominant l is
given by

l2saddle =
1
N

l2c (18)

So, the energy ratio turns out to be:
4

and the energy ratio is thus

εφ

|Λ| ∼ γl2c
φ2

0

M2
P

exp (N − logN) . (19)

So, backreaction from the classical scalar field becomes
important after a number of cycles Nc given by

Nc ∼ 2 log
(

MP

φ0

)
. (20)

Classically, by tuning the initial state of the field to have
sufficiently small φ0 in Planck units, we can obtain an
arbitrarily large lifetime even for the systems with γ <<
1.

We might expect that quantum mechanics would in-
duce a RMS value of φ0, preventing a classical tune from
saving the Universe for γ << 1. Quantum mechanically,
we should impose canonical commutation relations on
the scalar χ, which is a rescaled canonically normalized
cousin of φ:

χ ≡ a(η)φ, [χ(θ), ∂ηχ(θ′] = iδ(3)(θ − θ′) (21)

where θ coordinatizes the three-sphere. It is easily seen
that this commutator implies that, in the instantaneous
ground state characterizing the scalar at a time when the
Universe has scale factor a,

a2φ2
0 ∼ 1 . (22)

Now a+ = 1√
γ

1
ω , while a− =

√
γ

ω . We are free to choose,
as our initial quantum state, the “natural” vacuum asso-
ciated to either the maximum or the minimum (or any
intermediate value of the scale factor). Choosing, for
instance, the natural quantum vacuum associated with
the oscillators when a = a+ (where the Universe is large
and smooth and we have a natural expectation for the
vacuum state), we’d find

φ0 ∼
√

γω . (23)

This results in a bound

Nc ∼ 2 log
(

MP√
γω

)
. (24)

This can be dialed to be parametrically large for small
values of Λ (or also, in this particular case, for sufficiently
small γ).

Even choosing the quantum state to be the one as-
sociated with an “empty” vacuum at some initial time
when a = a−, we would find a similar bound with the√

γ moved from the numerator to the denominator. For
suitably small Λ in Planck units, again, one can achieve
parametrically large numbers of bounces before quantum
effects cause large backreaction. However, for any such
choice of ground state, for any fixed, finite γ and ω, one

finds that quantum backreaction eventually does cause
breakdown of our approximations.

The physics of the backreaction is presumably that
particle production creates a gas of particles with the
equation of state of radiation; and these dominate the
Universe as a→ a−, causing a singular crunch after suf-
ficiently many particles are produced.

Questions.– This work raises many questions that we
intend to pursue in the future [13]. 1) Can we prove
a ‘quantum singularity theorem’ that applies to closed
Universes, extending the results of [5] to this physically
important case without assuming unphysical energy con-
ditions? 2) Can we embed realistic ΛCDM cosmologies,
with a preceding phase of inflation, into one of our cycles
in the γ & 1 case? This would require a transition to
a phase with radiation and then matter domination af-
ter each bounce, with those degrees of freedom becoming
unimportant (perhaps via being gapped) in the vicinity
of a−, to assure that the curvature dominates near the
bounce. 3) For the stable, eternal γ ∼ 1 cosmologies, can
we envision a Universe which begins in such a phase, per-
sists there for a long period, and then tunnels to a realis-
tic inflationary Universe? 4) We discussed the backreac-
tion of classical and quantum scalar perturbations. Our
background “solid” energy sources with −1 < w < −1/3
would, in most classical models, have microscopic dynam-
ics that could also lead to entropy production. Would
these sources cause backreaction even classically, or on
a shorter time-scale quantum mechanically, that leads to
overclosure? This is model dependent, so we focused on
more model-independent questions here, to give general
bounds. 5) The cyclic nature of our Universe strongly
suggests that one should try to find one or more “special”
exactly periodic quantum states in our geometry, perhaps
characterizing special choices of the wavefunction of the
Universe. Could some of these special quantum states be
eternal, and provide somehow “natural” boundary con-
ditions for certain closed cosmologies, in analogy with
[14]? 6) In our discussion of the growth of perturbations
for γ & 1, we were maximally pessimistic in ignoring the
possibility that free streaming or chaotic mixing could
help smooth out the growth of inhomogeneous perturba-
tions. Could this additional physics vitiate the effects of
the classical growing modes?

We thank R. Bousso, E. Flanagan, A. Linde, H. Mu-
rayama, P. Shellard, S. Shenker and L. Susskind for valu-
able discussions. SK also happily recalls helpful prelimi-
nary discussions about related issues with L. McAllister
in 2002.

[1] R. Tolman, Phys. Rev. 38 (1931) 1758.
[2] G. Lemaitre, Annales Soc. Sci. Brux. Ser. I A 53, 51

(1933).
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Hence, backreaction becomes important after a number of 
cycles given by:

4

and the energy ratio is thus

εφ

|Λ| ∼ γl2c
φ2

0

M2
P

exp (N − logN) . (19)

So, backreaction from the classical scalar field becomes
important after a number of cycles Nc given by

Nc ∼ 2 log
(

MP

φ0

)
. (20)

Classically, by tuning the initial state of the field to have
sufficiently small φ0 in Planck units, we can obtain an
arbitrarily large lifetime even for the systems with γ <<
1.

We might expect that quantum mechanics would in-
duce a RMS value of φ0, preventing a classical tune from
saving the Universe for γ << 1. Quantum mechanically,
we should impose canonical commutation relations on
the scalar χ, which is a rescaled canonically normalized
cousin of φ:

χ ≡ a(η)φ, [χ(θ), ∂ηχ(θ′] = iδ(3)(θ − θ′) (21)

where θ coordinatizes the three-sphere. It is easily seen
that this commutator implies that, in the instantaneous
ground state characterizing the scalar at a time when the
Universe has scale factor a,

a2φ2
0 ∼ 1 . (22)

Now a+ = 1√
γ

1
ω , while a− =

√
γ

ω . We are free to choose,
as our initial quantum state, the “natural” vacuum asso-
ciated to either the maximum or the minimum (or any
intermediate value of the scale factor). Choosing, for
instance, the natural quantum vacuum associated with
the oscillators when a = a+ (where the Universe is large
and smooth and we have a natural expectation for the
vacuum state), we’d find

φ0 ∼
√

γω . (23)

This results in a bound

Nc ∼ 2 log
(

MP√
γω

)
. (24)

This can be dialed to be parametrically large for small
values of Λ (or also, in this particular case, for sufficiently
small γ).

Even choosing the quantum state to be the one as-
sociated with an “empty” vacuum at some initial time
when a = a−, we would find a similar bound with the√

γ moved from the numerator to the denominator. For
suitably small Λ in Planck units, again, one can achieve
parametrically large numbers of bounces before quantum
effects cause large backreaction. However, for any such
choice of ground state, for any fixed, finite γ and ω, one

finds that quantum backreaction eventually does cause
breakdown of our approximations.

The physics of the backreaction is presumably that
particle production creates a gas of particles with the
equation of state of radiation; and these dominate the
Universe as a→ a−, causing a singular crunch after suf-
ficiently many particles are produced.

Questions.– This work raises many questions that we
intend to pursue in the future [13]. 1) Can we prove
a ‘quantum singularity theorem’ that applies to closed
Universes, extending the results of [5] to this physically
important case without assuming unphysical energy con-
ditions? 2) Can we embed realistic ΛCDM cosmologies,
with a preceding phase of inflation, into one of our cycles
in the γ & 1 case? This would require a transition to
a phase with radiation and then matter domination af-
ter each bounce, with those degrees of freedom becoming
unimportant (perhaps via being gapped) in the vicinity
of a−, to assure that the curvature dominates near the
bounce. 3) For the stable, eternal γ ∼ 1 cosmologies, can
we envision a Universe which begins in such a phase, per-
sists there for a long period, and then tunnels to a realis-
tic inflationary Universe? 4) We discussed the backreac-
tion of classical and quantum scalar perturbations. Our
background “solid” energy sources with −1 < w < −1/3
would, in most classical models, have microscopic dynam-
ics that could also lead to entropy production. Would
these sources cause backreaction even classically, or on
a shorter time-scale quantum mechanically, that leads to
overclosure? This is model dependent, so we focused on
more model-independent questions here, to give general
bounds. 5) The cyclic nature of our Universe strongly
suggests that one should try to find one or more “special”
exactly periodic quantum states in our geometry, perhaps
characterizing special choices of the wavefunction of the
Universe. Could some of these special quantum states be
eternal, and provide somehow “natural” boundary con-
ditions for certain closed cosmologies, in analogy with
[14]? 6) In our discussion of the growth of perturbations
for γ & 1, we were maximally pessimistic in ignoring the
possibility that free streaming or chaotic mixing could
help smooth out the growth of inhomogeneous perturba-
tions. Could this additional physics vitiate the effects of
the classical growing modes?

We thank R. Bousso, E. Flanagan, A. Linde, H. Mu-
rayama, P. Shellard, S. Shenker and L. Susskind for valu-
able discussions. SK also happily recalls helpful prelimi-
nary discussions about related issues with L. McAllister
in 2002.

[1] R. Tolman, Phys. Rev. 38 (1931) 1758.
[2] G. Lemaitre, Annales Soc. Sci. Brux. Ser. I A 53, 51

(1933).

Classical tuning can yield many cycles, but at the expense of 
tuning the initial magnitude of the scalar field.

B.  Quantum death

There are various ways one could incorporate quantum 
mechanics here.  The quickest & dirtiest, fitting to an 

informal talk, is the following.
Thursday, July 28, 2011



* The scalar field is just a collection of harmonic oscillators.

* Then in quantum theory, we should impose the canonical 
commutation relations on the canonically normalized 

cousin of the scalar:

4

and the energy ratio is thus

εφ

|Λ| ∼ γl2c
φ2
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M2
P

exp (N − logN) . (19)

So, backreaction from the classical scalar field becomes
important after a number of cycles Nc given by

Nc ∼ 2 log
(
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)
. (20)

Classically, by tuning the initial state of the field to have
sufficiently small φ0 in Planck units, we can obtain an
arbitrarily large lifetime even for the systems with γ <<
1.

We might expect that quantum mechanics would in-
duce a RMS value of φ0, preventing a classical tune from
saving the Universe for γ << 1. Quantum mechanically,
we should impose canonical commutation relations on
the scalar χ, which is a rescaled canonically normalized
cousin of φ:

χ ≡ a(η)φ, [χ(θ), ∂ηχ(θ′] = iδ(3)(θ − θ′) (21)

where θ coordinatizes the three-sphere. It is easily seen
that this commutator implies that, in the instantaneous
ground state characterizing the scalar at a time when the
Universe has scale factor a,

a2φ2
0 ∼ 1 . (22)

Now a+ = 1√
γ

1
ω , while a− =

√
γ

ω . We are free to choose,
as our initial quantum state, the “natural” vacuum asso-
ciated to either the maximum or the minimum (or any
intermediate value of the scale factor). Choosing, for
instance, the natural quantum vacuum associated with
the oscillators when a = a+ (where the Universe is large
and smooth and we have a natural expectation for the
vacuum state), we’d find

φ0 ∼
√

γω . (23)

This results in a bound

Nc ∼ 2 log
(

MP√
γω

)
. (24)

This can be dialed to be parametrically large for small
values of Λ (or also, in this particular case, for sufficiently
small γ).

Even choosing the quantum state to be the one as-
sociated with an “empty” vacuum at some initial time
when a = a−, we would find a similar bound with the√

γ moved from the numerator to the denominator. For
suitably small Λ in Planck units, again, one can achieve
parametrically large numbers of bounces before quantum
effects cause large backreaction. However, for any such
choice of ground state, for any fixed, finite γ and ω, one

finds that quantum backreaction eventually does cause
breakdown of our approximations.

The physics of the backreaction is presumably that
particle production creates a gas of particles with the
equation of state of radiation; and these dominate the
Universe as a→ a−, causing a singular crunch after suf-
ficiently many particles are produced.

Questions.– This work raises many questions that we
intend to pursue in the future [13]. 1) Can we prove
a ‘quantum singularity theorem’ that applies to closed
Universes, extending the results of [5] to this physically
important case without assuming unphysical energy con-
ditions? 2) Can we embed realistic ΛCDM cosmologies,
with a preceding phase of inflation, into one of our cycles
in the γ & 1 case? This would require a transition to
a phase with radiation and then matter domination af-
ter each bounce, with those degrees of freedom becoming
unimportant (perhaps via being gapped) in the vicinity
of a−, to assure that the curvature dominates near the
bounce. 3) For the stable, eternal γ ∼ 1 cosmologies, can
we envision a Universe which begins in such a phase, per-
sists there for a long period, and then tunnels to a realis-
tic inflationary Universe? 4) We discussed the backreac-
tion of classical and quantum scalar perturbations. Our
background “solid” energy sources with −1 < w < −1/3
would, in most classical models, have microscopic dynam-
ics that could also lead to entropy production. Would
these sources cause backreaction even classically, or on
a shorter time-scale quantum mechanically, that leads to
overclosure? This is model dependent, so we focused on
more model-independent questions here, to give general
bounds. 5) The cyclic nature of our Universe strongly
suggests that one should try to find one or more “special”
exactly periodic quantum states in our geometry, perhaps
characterizing special choices of the wavefunction of the
Universe. Could some of these special quantum states be
eternal, and provide somehow “natural” boundary con-
ditions for certain closed cosmologies, in analogy with
[14]? 6) In our discussion of the growth of perturbations
for γ & 1, we were maximally pessimistic in ignoring the
possibility that free streaming or chaotic mixing could
help smooth out the growth of inhomogeneous perturba-
tions. Could this additional physics vitiate the effects of
the classical growing modes?

We thank R. Bousso, E. Flanagan, A. Linde, H. Mu-
rayama, P. Shellard, S. Shenker and L. Susskind for valu-
able discussions. SK also happily recalls helpful prelimi-
nary discussions about related issues with L. McAllister
in 2002.
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* We are free to choose whichever quantum state we want.  
Let us suppose we choose the oscillator ground state 

characteristic of the system at a scale factor a(t).  Then a 
simple computation shows:

4

and the energy ratio is thus

εφ

|Λ| ∼ γl2c
φ2

0

M2
P

exp (N − logN) . (19)

So, backreaction from the classical scalar field becomes
important after a number of cycles Nc given by

Nc ∼ 2 log
(

MP

φ0

)
. (20)

Classically, by tuning the initial state of the field to have
sufficiently small φ0 in Planck units, we can obtain an
arbitrarily large lifetime even for the systems with γ <<
1.

We might expect that quantum mechanics would in-
duce a RMS value of φ0, preventing a classical tune from
saving the Universe for γ << 1. Quantum mechanically,
we should impose canonical commutation relations on
the scalar χ, which is a rescaled canonically normalized
cousin of φ:

χ ≡ a(η)φ, [χ(θ), ∂ηχ(θ′] = iδ(3)(θ − θ′) (21)

where θ coordinatizes the three-sphere. It is easily seen
that this commutator implies that, in the instantaneous
ground state characterizing the scalar at a time when the
Universe has scale factor a,

a2φ2
0 ∼ 1 . (22)

Now a+ = 1√
γ

1
ω , while a− =

√
γ

ω . We are free to choose,
as our initial quantum state, the “natural” vacuum asso-
ciated to either the maximum or the minimum (or any
intermediate value of the scale factor). Choosing, for
instance, the natural quantum vacuum associated with
the oscillators when a = a+ (where the Universe is large
and smooth and we have a natural expectation for the
vacuum state), we’d find

φ0 ∼
√

γω . (23)

This results in a bound

Nc ∼ 2 log
(

MP√
γω

)
. (24)

This can be dialed to be parametrically large for small
values of Λ (or also, in this particular case, for sufficiently
small γ).

Even choosing the quantum state to be the one as-
sociated with an “empty” vacuum at some initial time
when a = a−, we would find a similar bound with the√

γ moved from the numerator to the denominator. For
suitably small Λ in Planck units, again, one can achieve
parametrically large numbers of bounces before quantum
effects cause large backreaction. However, for any such
choice of ground state, for any fixed, finite γ and ω, one

finds that quantum backreaction eventually does cause
breakdown of our approximations.

The physics of the backreaction is presumably that
particle production creates a gas of particles with the
equation of state of radiation; and these dominate the
Universe as a→ a−, causing a singular crunch after suf-
ficiently many particles are produced.

Questions.– This work raises many questions that we
intend to pursue in the future [13]. 1) Can we prove
a ‘quantum singularity theorem’ that applies to closed
Universes, extending the results of [5] to this physically
important case without assuming unphysical energy con-
ditions? 2) Can we embed realistic ΛCDM cosmologies,
with a preceding phase of inflation, into one of our cycles
in the γ & 1 case? This would require a transition to
a phase with radiation and then matter domination af-
ter each bounce, with those degrees of freedom becoming
unimportant (perhaps via being gapped) in the vicinity
of a−, to assure that the curvature dominates near the
bounce. 3) For the stable, eternal γ ∼ 1 cosmologies, can
we envision a Universe which begins in such a phase, per-
sists there for a long period, and then tunnels to a realis-
tic inflationary Universe? 4) We discussed the backreac-
tion of classical and quantum scalar perturbations. Our
background “solid” energy sources with −1 < w < −1/3
would, in most classical models, have microscopic dynam-
ics that could also lead to entropy production. Would
these sources cause backreaction even classically, or on
a shorter time-scale quantum mechanically, that leads to
overclosure? This is model dependent, so we focused on
more model-independent questions here, to give general
bounds. 5) The cyclic nature of our Universe strongly
suggests that one should try to find one or more “special”
exactly periodic quantum states in our geometry, perhaps
characterizing special choices of the wavefunction of the
Universe. Could some of these special quantum states be
eternal, and provide somehow “natural” boundary con-
ditions for certain closed cosmologies, in analogy with
[14]? 6) In our discussion of the growth of perturbations
for γ & 1, we were maximally pessimistic in ignoring the
possibility that free streaming or chaotic mixing could
help smooth out the growth of inhomogeneous perturba-
tions. Could this additional physics vitiate the effects of
the classical growing modes?

We thank R. Bousso, E. Flanagan, A. Linde, H. Mu-
rayama, P. Shellard, S. Shenker and L. Susskind for valu-
able discussions. SK also happily recalls helpful prelimi-
nary discussions about related issues with L. McAllister
in 2002.
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This is not a surprise.  Quantum mechanics imparts an RMS 
expectation value to the position of a harmonic oscillator.

We can give a state-choice dependent quantum bound by 
plugging now into:

4

and the energy ratio is thus

εφ

|Λ| ∼ γl2c
φ2

0

M2
P

exp (N − logN) . (19)

So, backreaction from the classical scalar field becomes
important after a number of cycles Nc given by

Nc ∼ 2 log
(

MP

φ0

)
. (20)

Classically, by tuning the initial state of the field to have
sufficiently small φ0 in Planck units, we can obtain an
arbitrarily large lifetime even for the systems with γ <<
1.

We might expect that quantum mechanics would in-
duce a RMS value of φ0, preventing a classical tune from
saving the Universe for γ << 1. Quantum mechanically,
we should impose canonical commutation relations on
the scalar χ, which is a rescaled canonically normalized
cousin of φ:

χ ≡ a(η)φ, [χ(θ), ∂ηχ(θ′] = iδ(3)(θ − θ′) (21)

where θ coordinatizes the three-sphere. It is easily seen
that this commutator implies that, in the instantaneous
ground state characterizing the scalar at a time when the
Universe has scale factor a,

a2φ2
0 ∼ 1 . (22)

Now a+ = 1√
γ

1
ω , while a− =

√
γ

ω . We are free to choose,
as our initial quantum state, the “natural” vacuum asso-
ciated to either the maximum or the minimum (or any
intermediate value of the scale factor). Choosing, for
instance, the natural quantum vacuum associated with
the oscillators when a = a+ (where the Universe is large
and smooth and we have a natural expectation for the
vacuum state), we’d find

φ0 ∼
√

γω . (23)

This results in a bound

Nc ∼ 2 log
(

MP√
γω

)
. (24)

This can be dialed to be parametrically large for small
values of Λ (or also, in this particular case, for sufficiently
small γ).

Even choosing the quantum state to be the one as-
sociated with an “empty” vacuum at some initial time
when a = a−, we would find a similar bound with the√

γ moved from the numerator to the denominator. For
suitably small Λ in Planck units, again, one can achieve
parametrically large numbers of bounces before quantum
effects cause large backreaction. However, for any such
choice of ground state, for any fixed, finite γ and ω, one

finds that quantum backreaction eventually does cause
breakdown of our approximations.

The physics of the backreaction is presumably that
particle production creates a gas of particles with the
equation of state of radiation; and these dominate the
Universe as a→ a−, causing a singular crunch after suf-
ficiently many particles are produced.

Questions.– This work raises many questions that we
intend to pursue in the future [13]. 1) Can we prove
a ‘quantum singularity theorem’ that applies to closed
Universes, extending the results of [5] to this physically
important case without assuming unphysical energy con-
ditions? 2) Can we embed realistic ΛCDM cosmologies,
with a preceding phase of inflation, into one of our cycles
in the γ & 1 case? This would require a transition to
a phase with radiation and then matter domination af-
ter each bounce, with those degrees of freedom becoming
unimportant (perhaps via being gapped) in the vicinity
of a−, to assure that the curvature dominates near the
bounce. 3) For the stable, eternal γ ∼ 1 cosmologies, can
we envision a Universe which begins in such a phase, per-
sists there for a long period, and then tunnels to a realis-
tic inflationary Universe? 4) We discussed the backreac-
tion of classical and quantum scalar perturbations. Our
background “solid” energy sources with −1 < w < −1/3
would, in most classical models, have microscopic dynam-
ics that could also lead to entropy production. Would
these sources cause backreaction even classically, or on
a shorter time-scale quantum mechanically, that leads to
overclosure? This is model dependent, so we focused on
more model-independent questions here, to give general
bounds. 5) The cyclic nature of our Universe strongly
suggests that one should try to find one or more “special”
exactly periodic quantum states in our geometry, perhaps
characterizing special choices of the wavefunction of the
Universe. Could some of these special quantum states be
eternal, and provide somehow “natural” boundary con-
ditions for certain closed cosmologies, in analogy with
[14]? 6) In our discussion of the growth of perturbations
for γ & 1, we were maximally pessimistic in ignoring the
possibility that free streaming or chaotic mixing could
help smooth out the growth of inhomogeneous perturba-
tions. Could this additional physics vitiate the effects of
the classical growing modes?

We thank R. Bousso, E. Flanagan, A. Linde, H. Mu-
rayama, P. Shellard, S. Shenker and L. Susskind for valu-
able discussions. SK also happily recalls helpful prelimi-
nary discussions about related issues with L. McAllister
in 2002.
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The most extreme bounds (least/most stringent) are 
obtained by choosing the ground state at maximal/minimal 

scale factor.  Result at maximum:

4

and the energy ratio is thus

εφ

|Λ| ∼ γl2c
φ2

0

M2
P

exp (N − logN) . (19)

So, backreaction from the classical scalar field becomes
important after a number of cycles Nc given by

Nc ∼ 2 log
(

MP

φ0

)
. (20)

Classically, by tuning the initial state of the field to have
sufficiently small φ0 in Planck units, we can obtain an
arbitrarily large lifetime even for the systems with γ <<
1.

We might expect that quantum mechanics would in-
duce a RMS value of φ0, preventing a classical tune from
saving the Universe for γ << 1. Quantum mechanically,
we should impose canonical commutation relations on
the scalar χ, which is a rescaled canonically normalized
cousin of φ:

χ ≡ a(η)φ, [χ(θ), ∂ηχ(θ′] = iδ(3)(θ − θ′) (21)

where θ coordinatizes the three-sphere. It is easily seen
that this commutator implies that, in the instantaneous
ground state characterizing the scalar at a time when the
Universe has scale factor a,

a2φ2
0 ∼ 1 . (22)

Now a+ = 1√
γ

1
ω , while a− =

√
γ

ω . We are free to choose,
as our initial quantum state, the “natural” vacuum asso-
ciated to either the maximum or the minimum (or any
intermediate value of the scale factor). Choosing, for
instance, the natural quantum vacuum associated with
the oscillators when a = a+ (where the Universe is large
and smooth and we have a natural expectation for the
vacuum state), we’d find

φ0 ∼
√

γω . (23)

This results in a bound

Nc ∼ 2 log
(

MP√
γω

)
. (24)

This can be dialed to be parametrically large for small
values of Λ (or also, in this particular case, for sufficiently
small γ).

Even choosing the quantum state to be the one as-
sociated with an “empty” vacuum at some initial time
when a = a−, we would find a similar bound with the√

γ moved from the numerator to the denominator. For
suitably small Λ in Planck units, again, one can achieve
parametrically large numbers of bounces before quantum
effects cause large backreaction. However, for any such
choice of ground state, for any fixed, finite γ and ω, one

finds that quantum backreaction eventually does cause
breakdown of our approximations.

The physics of the backreaction is presumably that
particle production creates a gas of particles with the
equation of state of radiation; and these dominate the
Universe as a→ a−, causing a singular crunch after suf-
ficiently many particles are produced.

Questions.– This work raises many questions that we
intend to pursue in the future [13]. 1) Can we prove
a ‘quantum singularity theorem’ that applies to closed
Universes, extending the results of [5] to this physically
important case without assuming unphysical energy con-
ditions? 2) Can we embed realistic ΛCDM cosmologies,
with a preceding phase of inflation, into one of our cycles
in the γ & 1 case? This would require a transition to
a phase with radiation and then matter domination af-
ter each bounce, with those degrees of freedom becoming
unimportant (perhaps via being gapped) in the vicinity
of a−, to assure that the curvature dominates near the
bounce. 3) For the stable, eternal γ ∼ 1 cosmologies, can
we envision a Universe which begins in such a phase, per-
sists there for a long period, and then tunnels to a realis-
tic inflationary Universe? 4) We discussed the backreac-
tion of classical and quantum scalar perturbations. Our
background “solid” energy sources with −1 < w < −1/3
would, in most classical models, have microscopic dynam-
ics that could also lead to entropy production. Would
these sources cause backreaction even classically, or on
a shorter time-scale quantum mechanically, that leads to
overclosure? This is model dependent, so we focused on
more model-independent questions here, to give general
bounds. 5) The cyclic nature of our Universe strongly
suggests that one should try to find one or more “special”
exactly periodic quantum states in our geometry, perhaps
characterizing special choices of the wavefunction of the
Universe. Could some of these special quantum states be
eternal, and provide somehow “natural” boundary con-
ditions for certain closed cosmologies, in analogy with
[14]? 6) In our discussion of the growth of perturbations
for γ & 1, we were maximally pessimistic in ignoring the
possibility that free streaming or chaotic mixing could
help smooth out the growth of inhomogeneous perturba-
tions. Could this additional physics vitiate the effects of
the classical growing modes?

We thank R. Bousso, E. Flanagan, A. Linde, H. Mu-
rayama, P. Shellard, S. Shenker and L. Susskind for valu-
able discussions. SK also happily recalls helpful prelimi-
nary discussions about related issues with L. McAllister
in 2002.
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(The result at the opposite extreme differs in a very simple 
way).

Crucial point:  By tuning the cosmological term in Planck 
units (to be negative but of very small magnitude), one can 

obtain an arbitrarily large number of cycles.

Interpretation of eventual quantum death:  “particle 
production.”
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Any cosmology contains, among other things, gravity and 
gravitons.  If nothing else, graviton production can occur as 
the Universe expands and contracts.  This gas of gravitons 

has w=1/3; when present in sufficiently appreciable number 
density, these gravitons will cause a crunch when one 

reaches minimal scale factor, instead of acquiescing to a  
“bounce.”

Note that the way we estimated both classical and 
quantum death is applicable only to the Universes with  

“large” ratio of maximal to minimal scale factor.  I 
personally suspect that by combining the covariant entropy 
bound with more traditional considerations, one can prove 

a quantum singularity theorem in general for closed 
Universes.
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VII.  Conclusion/Questions

1.  Can we prove a quantum singularity theorem for closed 
Universes?

2.   In the cases with large ratio of maximal to minimal scale 
factor, can we embed a realistic cosmology into one cycle? 

3.   At the level we’ve worked so far, we do have some 
apparently stable, eternal solutions.  Can we envision one 

of these in the deep past, tunneling to a realistic inflationary 
Universe?

4.  We ignored entropy production due to our classical 
source with w < -1/3.  Would this always dominate the 

effects we discussed, and lead to earlier problems?
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Finally:
5.  The relation of the quantum mechanics of particle 

production in these geometries strongly suggests that one 
consider special periodic quantum states as preferred.  

(Note that for us it was natural to impose initial boundary 
conditions on the field, not periodic BC; but special 

choices...).

Could there by periodic wavefunctions of the Universe in 
such geometries that provide natural choices of boundary 

conditions, and give eternal cosmologies?  

c.f. Hartle/Hawking, which is ad hoc but  “natural”...
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