### Non-Gaussianity as a Probe of New Physics

Daniel Baumann University of Cambridge

#### based on work with Daniel Green

Cornell, July 2011



The current data can be explained completely by  $$\rm FREE\,FIELDS$$  in quasi-de Sitter  $|\dot{H}| \ll H^2$ 

Future data may distinguish models by:

- deviation from scale-invariance  $(\mathbf{n}_{s}-\mathbf{I})$  probes  $\dot{H}$   $\ddot{H}$
- B-mode polarization ( $\mathbf{r}$ ) measures energy scale H
- non-Gaussianity (f\_NL) probes physics beyond H(t)





### **Effective Theory of Inflation**

Cheung et al.

Given an EFT describing the data, we still want to know:

(1) What type of (UV) physics gives rise to the EFT?(2) When does new physics become important?

### **Cosmology as a Probe of New Physics**

Top Down

#### **String Theory**

 $E \sim M_s$ 

- moduli stabilization
- metastable de Sitter
- inflationary instabilities



#### **New Physics**

• UV sensitivity

- strong coupling
- naturalness

### Low-E Predictions $E \sim H$



### Effective Theory $E \sim H$

E > H

#### **New Physics**



strong coupling
 naturalness

#### naturalness

### **Effective Theory**

#### The Standard Model

without the Higgs



WW scattering violates perturbative unitarity



#### The Standard Model

with the Higgs



### Inflation

with small sound speed



### Outline

#### **I. Effective Theory of Inflation**

(inflationary perturbations as **Goldstone bosons**)

Creminelli et al. Cheung et al.

#### II. Energy Scales



#### III. Weakly-Coupled UV-Completion

DB and Daniel Green

#### **IV. Natural SUSY Realization**

(work in progress)

# The Effective Theory of Inflation

Cheung, Creminelli, Fitzpatrick, Kaplan and Senatore Creminelli, Luty, Nicolis and Senatore

#### **Adiabatic Perturbations as Goldstone Bosons**

#### cosmology



 $\phi_2$ 

time-dependent FRW backgrounds break time translation invariance introduce Goldstone boson

 $U \equiv t + \pi(x)$ 

gauge theory

spontaneous breaking of a non-Abelian symmetry

 $G \rightarrow H$ 

Goldstone bosons

 $U = e^{i \pi(x)/f_{\pi}}$ generators of G/H

adiabatic perturbations

$$\delta\phi_a(x) \equiv \phi_a(t + \pi(x)) - \bar{\phi}_a(t)$$

curvature perturbations

$$\zeta = H\pi$$

#### The low-energy expansion of

$$U \equiv t + \pi(x)$$
  $t \to t + \xi_0(x)$   
 $\pi \to \pi - \xi_0(x)$ 

is the effective theory of inflation:

$$\mathcal{L}_{\text{eff}} = f(U, (\partial U)^2, \Box U, \cdots)$$

### **Slow-Roll Inflation**



### **Slow-Roll Inflation**

 $\mathcal{L} = M_{\rm pl}^2 \dot{H} \left( \partial_{\mu} U \right)^2 - M_{\rm pl}^2 (3H^2 + \dot{H})$   $\uparrow \qquad \uparrow$   $-\frac{1}{2} (\partial_{\mu} \phi)^2 \qquad V(\phi)$ 

#### just slow-roll inflation in disguise!

## **Slow-Roll Inflation** $\mathcal{L} = M_{\rm pl}^2 \dot{H} (\partial_{\mu} U)^2 - M_{\rm pl}^2 (3H^2 + \dot{H})$ $g^{\mu\nu}\partial_{\mu}(t+\pi)\partial_{\nu}(t+\pi)$ decoupling $g^{\mu\nu} \rightarrow \bar{g}^{\mu\nu}$

$$(\partial_{\mu}U)^2 = -1 - 2\dot{\pi} + (\partial_{\mu}\pi)^2$$

$$\mathcal{L}_{\rm s.r.} = M_{\rm pl}^2 \dot{H} (\partial_\mu \pi)^2$$

massless

Gaussian

$$\begin{array}{rcl} & \displaystyle \begin{array}{c} \textbf{Small Sound Speed} \\ M_{\rm pl}^{2} \dot{H} (\partial_{\mu} \pi)^{2} & + & \frac{1}{2} M_{2}^{4} \left[ (\partial_{\mu} U)^{2} + 1 \right]^{2} \\ & & & \text{no tadpoles!} \\ & & & \text{decoupling} \\ & & & (\partial_{\mu} U)^{2} = -1 - 2 \dot{\pi} + (\partial_{\mu} \pi)^{2} \\ & & & 2 M_{2}^{4} \left( \dot{\pi}^{2} - \dot{\pi} (\partial_{\mu} \pi)^{2} + \cdots \right) \end{array} \end{array}$$

modifies kinetic term but **not** gradient term:

$$-(M_{\rm pl}^2\dot{H} - 2M_2^4)\dot{\pi}^2 + M_{\rm pl}^2\dot{H}(\partial_i\pi)^2$$
  
i.e. induces a **sound speed** 
$$\frac{1}{c_s^2} \equiv 1 - \frac{2M_2^4}{M_{\rm pl}^2\dot{H}}$$



Cheung et al.

### **Energy Scales**

with Daniel Green

### **Energy Scales**





### Symmetry Breaking Scale

Spontaneously broken  $ightarrow = \int d^3x \, j^0$  does not exist at low-E global symmetry:

$$j^{\mu} = f_{\pi} \partial^{\mu} \pi + \cdots \qquad \xrightarrow{x \to \infty} \qquad j^{0} = f_{\pi} x^{-2} + \cdots$$

Natural definition of the **symmetry breaking scale**:

$$\Lambda_b = f_{\pi}$$

### Symmetry Breaking Scale

Current of time translations:

 $j^{\mu} = T^{0\mu}$ 

Symmetry breaking:

$$\mathbf{X} = \int d^3x \, T^{00}$$
 doesn't exist.

EFT of Inflation:

•

$$T^{00} = \frac{M_{\rm pl}^2 H}{c_s^2} \dot{\pi} + \cdots$$

$$M_{\rm pl}^2 \dot{H} c_s^{-2} \text{ controls breaking.}$$
But this is an energy density not an energy<sup>4</sup>.
Use dispersion relation:  $\omega = c_s k$ 

$$\Lambda_b^4 = M_{\rm pl}^2 |\dot{H}| c_s$$

 $\Lambda_{\star}^4 = M_{\rm pl}^2 |\dot{H}| c_s^5$ 

### Small Sound Speed

Hierarchies are (or will be) fixed by observations:



### Small Sound Speed

New Physics near Hubble ?



### $E \sim H$ **New Physics on the Horizon** with Daniel Green Planck

Recall:

$$\Lambda_{\star}^4 = M_{\rm pl}^2 |\dot{H}| c_s^{-2} \times c_s^7$$
 dispersion relation

What 'new physics' can keep the theory weakly coupled ?

**Change the dispersion relation!** 

$$\Lambda_{\star}$$
  $\omega = k^2/
ho$   
-  $E_{\rm new}$   
 $\omega = c_s k$ 

I. Consider two decoupled free fields.

$$-(\partial_{\mu}\pi_{c})^{2}-(\partial_{\mu}\sigma)^{2}$$

- I. Consider two decoupled free fields.
- 2. Perturb by a relevant "mixing operator".

 $-(\partial_{\mu}\pi_{c})^{2} - (\partial_{\mu}\sigma)^{2} + \rho \dot{\pi}_{c}\sigma$ e.g. gelaton, curved trajectories, ... Tolley and Wyman, Cremonini et al., Achucarro et al., Chen and Wang, ...

- I. Consider two decoupled free fields.
- 2. Perturb by a relevant "mixing operator".

$$-(\partial_{\mu}\pi_{c})^{2} - (\partial_{\mu}\sigma)^{2} + \rho \dot{\pi}_{c}\sigma$$

for  $\omega > \rho$ : the mixing is a small perturbation for  $\omega < \rho$ : the mixing dominates the dynamics  $\mathbf{v}$ non-relativistic theory with non-linear dispersion:  $\omega = \frac{k^2}{\rho}$ 



- I. Consider two decoupled free fields.
- 2. Perturb by a relevant "mixing operator".
- 3. Add a small mass term:  $\mu \ll \rho$

$$-(\partial_{\mu}\pi_{c})^{2} - (\partial_{\mu}\sigma)^{2} + \rho \dot{\pi}_{c}\sigma - \mu^{2}\sigma^{2}$$

for  $\omega < E_{\text{new}} \equiv \frac{\mu^2}{\rho}$ : the mass term dominates over gradients  $\rightarrow \sigma \sim \frac{\rho}{\mu^2} \dot{\pi}_c \rightarrow \mathcal{L}_{\text{eff}} \sim \left(1 + \frac{\rho^2}{\mu^2}\right) \dot{\pi}_c^2 - (\partial_i \pi_c)^2$   $\boxed{\frac{1}{c_s^2}}$ 



### Weakly Coupled Effective Theory



Use this action to compute observables at freeze-out  $\omega = H$ 

### **Distinguishing Models**

#### Two types of models:

**Strongly Coupled** e.g. DBI inflation / P(X) models

weakly coupled at freeze-out

background requires UV-completion

Weakly Coupled e.g. change in dispersion

• can arise in controlled effective theory

• requires full model to compute 3-point function

Try to distinguish by correction to 3-point function

### **Observational Signatures**



### **Observational Signatures**



### Naturalness

#### with Daniel Green

(work in progress)

Is 
$$c_s \simeq \frac{\mu}{\rho} \ll 1$$
 natural?

$$\mathcal{L} \subset \rho \left( \dot{\pi}_c + \frac{(\partial_\mu \pi_c)^2}{(M_{\rm pl}^2 \dot{H})^{1/2}} \right) \sigma - \mu^2 \sigma^2$$



### Supersymmetry

see Daniel Green's talk

Consider a chiral superfield

$$\Phi = \sigma + i (M_{\rm pl}^2 \dot{H})^{1/2} (t + \pi) + \cdots$$

with Lagrangian

$$\begin{split} \mathcal{L} &= \int d^{4}\theta \left[ (\Phi + \Phi^{\dagger})^{2} + \frac{1}{\Lambda} (\Phi + \Phi^{\dagger})^{3} + \cdots \right] \\ & \checkmark \\ \rho &= \frac{\rho \left[ (\partial_{t}t)\dot{\pi}_{c} + \frac{(\partial_{\mu}\pi_{c})^{2}}{(M_{\mathrm{pl}}^{2}\dot{H})^{1/2}} \right] \sigma + \text{fermions} \\ \rho &= \frac{(M_{\mathrm{pl}}^{2}\dot{H})^{1/2}}{\Lambda} \end{split}$$



### Supersymmetry

see Daniel Green's talk

without SUSY

with SUSY



#### Small sound speed is unnatural without SUSY, but becomes natural with SUSY !

Even if SUSY isn't discovered at the TeV scale, naturalness motivates SUSY in inflation.

for a systematic treatment see Daniel Green's talk :

Signatures of Supersymmetry from the Early Universe

### THANK YOU!