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Overview

Bmad (Otherwise known as “Baby MAD" or “Better MAD" or just plain “Be MAD!") is a subroutine
library for charged–particle and X-Ray simulations in accelerators and storage rings. Bmad has been
developed at the Cornell Laboratory for Accelerator-based ScienceS and Education (CLASSE) and has
been in use since 1996.

Prior to the development of Bmad, simulation programs at Cornell were written almost from scratch
to perform calculations that were beyond the capability of existing, generally available software. This
practice was inefficient, leading to much duplication of effort. Since the development of simulation
programs was time consuming, needed calculations where not being done. As a response, the Bmad
subroutine library, using an object oriented approach and written in Fortran 2008, were developed. The
aim of the Bmad project was to:

• Cut down on the time needed to develop programs.
• Cut down on programming errors.
• Provide a simple mechanism for lattice function calculations from within control system programs.
• Provide a flexible and powerful lattice input format.
• Standardize sharing of lattice information between programs.

Bmad can be used to study both single and multi–particle beam dynamics as well as X-rays. Over the
years, Bmad modules have been developed for simulating a wide variety of phenomena including intra
beam scattering (IBS), coherent synchrotron radiation (CSR), Wakefields, Touschek scattering, higher
order mode (HOM) resonances, etc., etc. Bmad has various tracking algorithms including Runge–Kutta
and symplectic (Lie algebraic) integration. Wakefields, and radiation excitation and damping can be
simulated. Bmad has routines for calculating transfer matrices, emittances, Twiss parameters, dispersion,
coupling, etc. The elements that Bmad knows about include quadrupoles, RF cavities (both storage ring
and LINAC accelerating types), solenoids, dipole bends, Bragg crystals etc. In addition, elements can
be defined to control the attributes of other elements. This can be used to simulate the “girder” which
physically support components in the accelerator or to easily simulate the action of control room “knobs”
that gang together, say, the current going through a set of quadrupoles.

To be able to extend Bmad easily, Bmad has been developed in a modular, object oriented, fashion to
maximize flexibility. As just one example, each individual element can be assigned a particular tracking
method in order to maximize speed or accuracy and the tracking methods can be assigned via the lattice
file or at run time in a program.
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Introduction

As a consequence of Bmad being a software library, this manual serves two masters: The programmer
who wants to develop applications and needs to know about the inner workings of Bmad, and the user
who simply needs to know about the Bmad standard input format and about the physics behind the
various calculations that Bmad performs.

To this end, this manual is divided into three parts. The first two parts are for both the user and
programmer while the third part is meant just for programmers.

Part I
Part I discusses the Bmad lattice input standard. The Bmad lattice input standard was developed
using the MAD [Grote96, Iselin94]. lattice input standard as a starting point but, as Bmad evolved,
Bmad’s syntax has evolved with it.

Part II
part II gives the conventions used by Bmad— coordinate systems, magnetic field expansions, etc.
— along with some of the physics behind the calculations. By necessity, the physics documentation
is brief and the reader is assumed to be familiar with high energy accelerator physics formalism.

Part III
Part III gives the nitty–gritty details of the Bmad subroutines and the structures upon which they
are based.

More information, including the most up–to–date version of this manual, can be found at the Bmad
web site[Bmad]. Errors and omissions are a fact of life for any reference work and comments from you,
dear reader, are therefore most welcome. Please send any missives (or chocolates, or any other kind of
sustenance) to:

David Sagan <dcs16@cornell.edu>

The Bmad manual is organized as reference guide and so does not do a good job of instructing the
beginner as to how to use Bmad. For that there is an introduction and tutorial on Bmad and Tao (§1.2)
concepts that can be downloaded from the Bmad web page. Go to either the Bmad or Tao manual pages
and there will be a link for the tutorial.

It is my pleasure to express appreciation to people who have contributed to this effort, and without
whom, Bmad would only be a shadow of what it is today: To David Rubin and Georg Hoffstaetter
for their support all these years, to Étienne Forest (aka Patrice Nishikawa) for use of his remarkable
PTC/FPP library (not to mention his patience in explaining everything to me), to Desmond Barber
for very useful discussions on how to simulate spin, to Jonathan Laster, Mark Palmer, Matt Rendina,
and Attilio De Falco for all their work maintaining the build system and for porting Bmad to different
platforms, to Frank Schmidt and CERN for permission to use the MAD tracking code. To Hans Grote
and CERN for granting permission to adapt figures from the MAD manual for use in this one, to
Martin Berz for his DA package, and to Dan Abell, Jacob Asimow, Ivan Bazarov, Moritz Beckmann,
Scott Berg, Oleksii Beznosov, Kevin Brown, Joel Brock, Sarah Buchan, Avishek Chatterjee, Jing Yee
Chee, Christie Chiu, Joseph Choi, Robert Cope, Jim Crittenden, Laurent Deniau, Bhawin Dhital, Gerry
Dugan, Michael Ehrlichman, Jim Ellison, Ken Finkelstein, Mike Forster, Thomas Gläßle, Juan Pablo
Gonzalez-Aguilera, Sam Grant, Colwyn Gulliford, Eiad Hamwi, Klaus Heinemann, Richard Helms, Lucy
Lin, Henry Lovelace III, Chris Mayes, Vasiliy Morozov, Karthik Narayan, Katsunobu Oide, Tia Plautz,
Matt Randazzo, Robert Ryne, Michael Saelim, Jim Shanks, Matthew Signorelli, Hugo Slepicka, Jeff
Smith, Jonathan Unger, Jeremy Urban, Ningdong Wang, Suntao Wang, Mark Woodley, and Demin
Zhou for their help.
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Chapter 1

Orientation

1.1 What is Bmad?

Bmad is an open-source software library (aka toolkit) for simulating charged particles and X-rays. Bmad
is not a program itself but is used by programs for doing calculations. The advantage of Bmad over
a stand-alone simulation program is that when new types of simulations need to be developed, Bmad
can be used to cut down on the time needed to develop such programs with the added benefit that the
number of programming errors will be reduced.

Over the years, Bmad has been used for a wide range of charged-particle and X-ray simulations. This
includes:
Lattice design X-ray simulations
Spin tracking Wakefields and HOMs
Beam breakup (BBU) simulations in ERLs Touschek Simulations
Intra-beam scattering (IBS) simulations Dark current tracking
Coherent Synchrotron Radiation (CSR) Frequency map analysis

1.2 Tao and Bmad Distributions

The strength of Bmad is that, as a subroutine library, it provides a flexible framework from which
sophisticated simulation programs may easily be developed. The weakness of Bmad comes from its
strength: Bmad cannot be used straight out of the box. Someone must put the pieces together into a
program. To remedy this problem, the Tao program[Tao] has been developed. Tao, which uses Bmad
as its simulation engine, is a general purpose program for simulating particle beams in accelerators and
storage rings. Thus Bmad combined with Tao represents the best of both worlds: The flexibility of a
software library with the ease of use of a program.

Besides the Tao program, an ecosystem of Bmad based programs has been developed. These programs,
along with Bmad, are bundled together in what is called a Bmad Distribution which can be downloaded
from the web. The following is a list of some of the more commonly used programs.

bmad_to_mad_sad_elegant
The bmad_to_mad_sad_elegant program converts Bmad lattice format files to MAD8, MADX, Elegant
and SAD format.

25
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bbu
The bbu program simulates the beam breakup instability in Energy Recovery Linacs (ERLs).

dynamic_aperture
The dynamic_aperture program finds the dynamic aperture through tracking.

ibs_linac
The ibs_linac program simulates the effect of intra-beam scattering (IBS) for beams in a Linac.

ibs_ring
The ibs_ring program simulates the effect of intra-beam scattering (IBS) for beams in a ring.

long_term_tracking
The long_term_tracking_program is for long term tracking of a particle or beam possibly includ-
ing tracking of the spin.

lux
The lux program simulates X-ray beams from generation through to experimental end stations.

mad8_to_bmad.py, madx_to_bmad.py
These python programs will convert MAD8 and MADX lattice files to to Bmad format.

moga
The moga (multiobjective genetic algorithms) program does multiobjective optimization.

synrad
The synrad program computes the power deposited on the inside of a vacuum chamber wall due to
synchrotron radiation from a particle beam. The calculation is essentially two dimensional but the
vertical emittance is used for calculating power densities along the centerline. Crotch geometries
can be handled as well as off axis beam orbits.

synrad3d
The synrad3d program tracks, in three dimensions, photons generated from a beam within the
vacuum chamber. Reflections at the chamber wall is included.

tao
Tao is a general purpose simulation program.

1.3 Resources: More Documentation, Obtaining Bmad, etc.

More information and download instructions are readily available at the Bmad web site:
www.classe.cornell.edu/bmad/

Links to the most up-to-date Bmad and Tao manuals can be found there as well as manuals for other
programs and instructions for downloading and setup.

The Bmad manual is organized as reference guide and so does not do a good job of instructing the
beginner as to how to use Bmad. For that there is an introduction and tutorial on Bmad and Tao (§1.2)
concepts that can be downloaded from the Bmad web page. Go to either the Bmad or Tao manual pages
and there will be a link for the tutorial.

www.classe.cornell.edu/bmad/
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1.4 PTC: Polymorphic Tracking Code

The PTC/FPP library of Étienne Forest handles Taylor maps to any arbitrary order. This is also
known as Truncated Power Series Algebra (TPSA). The core Differential Algebra (DA) package used by
PTC/FPP was developed by Martin Berz[Berz89]. The PTC/FPP libraries are interfaced to Bmad so
that calculations that involve both Bmad and PTC/FPP can be done in a fairly seamless manner.

Basically, the FPP (“Fully Polymorphic Package”) part of the PTC/FPP code handles Taylor map
manipulation. This is purely mathematical. FPP has no knowledge of accelerators, magnetic fields,
particle tracking etc. PTC (“Polymorphic Tracking Code”) implements the physics and uses FPP to
handle the Taylor map manipulation. Since the distinction between FPP and PTC is irrelevant to the
non-programmer, “PTC” will be used to refer to the entire PTC/FPP package.

PTC is used by Bmad when constructing Taylor maps and when the tracking_method §6.1) is set to
symp_lie_ptc. All Taylor maps above first order are calculated via PTC. No exceptions.

For more discussion of PTC see Chapter §28. For the programmer, also see Chapter §38.

For the purposes of this manual, PTC and FPP are generally considered one package and the combined
PTC/FPP library will be referred to as simply “PTC”.
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Chapter 2

Bmad Concepts and Organization

This chapter is an overview of some of the nomenclature used by Bmad. Presented are the basic concepts,
such as element, branch, and lattice, that Bmad uses to describe such things as LINACs, storage
rings, X-ray beam lines, etc.

2.1 Lattice Elements

The basic building block Bmad uses to describe a machine is the lattice element. An element can be a
physical thing that particles travel “through” like a bending magnet, a quadrupole or a Bragg crystal, or
something like a marker element (§4.32) that is used to mark a particular point in the machine. Besides
physical elements, there are controller elements (Table 4.3) that can be used for parameter control of
other elements.

Chapter §4 lists the complete set of different element types that Bmad knows about.

In a lattice branch (§2.2), The ordered array of elements are assigned a number (the element index)
starting from zero. The zeroth beginning_ele (§4.4) element, which is always named BEGINNING,
is automatically included in every branch and is used as a marker for the beginning of the branch.
Additionally, every branch will, by default, have a final marker element (§4.32) named END.

2.2 Lattice Branches

The next level up from a lattice element is the lattice branch. A lattice branch contains an
ordered sequence of lattice elements that a particle will travel through. A branch can represent a
LINAC, X-Ray beam line, storage ring or anything else that can be represented as a simple ordered list
of elements.

Chapter §7 shows how a branch is defined in a lattice file with line, list, and use statements.

A lattice (§2.3), has an array of branches. Each branch in this array is assigned an index starting
from 0. Additionally, each branch is assigned a name which is the line that defines the branch (§7.7).

Branches can be interconnected using fork and photon_fork elements (§4.22). This is used to simulate
forking beam lines such as a connections to a transfer line, dump line, or an X-ray beam line. A branch
from which other branches fork but is not forked to by any other branch is called a root branch. A
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branch that is forked to by some other branch is called a downstream branch.

2.3 Lattice

an array of branches that can be interconnected together to describe an entire machine complex. A
lattice can include such things as transfer lines, dump lines, x-ray beam lines, colliding beam storage
rings, etc. All of which can be connected together to form a coherent whole. In addition, a lattice may
contain controller elements (Table 4.3) which can simulate such things as magnet power supplies
and lattice element mechanical support structures.

Branches can be interconnected using fork and photon_fork elements (§4.22). This is used to simulate
forking beam lines such as a connections to a transfer line, dump line, or an X-ray beam line. The branch
from which other branches fork but is not forked to by any other branch is called a root branch.

A lattice may contain multiple root branches. For example, a pair of intersecting storage rings will
generally have two root branches, one for each ring. The use statement (§7.7) in a lattice file will list
the root branches of a lattice. To connect together lattice elements that are physically shared between
branches, for example, the interaction region in colliding beam machines, multipass lines (§9) can be
used.

The root branches of a lattice are defined by the use (§7.7) statement. To further define such things
as dump lines, x-ray beam lines, transfer lines, etc., that branch off from a root branch, a forking
element is used. Fork elements can define where the particle beam can branch off, say to a beam dump.
photon_fork elements can define the source point for X-ray beams. Example:

erl: line = (..., dump, ...) ! Define the root branch
use, erl
dump: fork, to_line = d_line ! Define the fork point
d_line: line = (..., q3d, ...) ! Define the branch line

Like the root branch Bmad always automatically creates an element with element index 0 at the
beginning of each branch called beginning. The longitudinal s position of an element in a branch is
determined by the distance from the beginning of the branch.

Branches are named after the line that defines the branch. In the above example, the branch line would
be named d_line. The root branch, by default, is called after the name in the use statement (§7.7).

The “branch qualified” name of an element is of the form
branch_name>>element_name

where branch_name is the name of the branch and element_name is the “regular” name of the element.
Example:

root>>q10w
xline>>cryst3

When parsing a lattice file, branches are not formed until the lattice is expanded (§3.24). Therefore, an
expand_lattice statement is required before branch qualified names can be used in statements. See
§3.6 for more details.

2.4 Lord and Slave Elements

A real machine is more than a collection of independent lattice elements. For example, the field strength
in a string of elements may be tied together via a common power supply, or the fields of different elements
may overlap.
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A) Physical Layout: B) Bmad Representation:
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Figure 2.1: Superposition Example. A) Interaction region layout with quadrupoles overlapping a
solenoid. B) The Bmad lattice representation has a list of split elements to track through and the
undivided “lord” elements. Pointers (double headed arrows), keep track of the correspondence between
the lords and their slaves.

Bmad tries to capture these interdependencies using what are referred to as lord and slave elements.
The lord elements may be divided into two classes. In one class are the controller elements. These are
overlay (§4.40), group (§4.25), ramper (§4.44), and girder (§4.23) elements that control the attributes
of other elements which are their slaves.

The other class of lord elements embody the separation of the physical element from the track that a
particle takes when it passes through the element. There are two types

An example will make this clear. Superposition (§8) is the ability to overlap lattice elements spatially.
Fig. 2.1 shows an example which is a greatly simplified version of the IR region of Cornell’s CESR storage
ring when CESR was an e+/e– collider. As shown in Fig. 2.1A, two quadrupoles named q1w and q1e
are partially inside and partially outside the interaction region solenoid named cleo. In the lattice file,
the IR region layout is defined to be

cesr: line = (... q1e, dft1, ip, dft1, q1w ...)
cleo: solenoid, l = 3.51, superimpose, ref = ip

The line named cesr ignores the solenoid and just contains the interaction point marker element named
ip which is surrounded by two drifts named dft1 which are, in turn, surrounded by the q1w and q1e
quadrupoles. The solenoid is added to the layout on the second line by using superposition. The “ref = ip”
indicates that the solenoid is placed relative to ip. The default, which is used here, is to place the center
of the superimposed cleo element at the center of the ip reference element. The representation of the
lattice in Bmad will contain two branch sections (“sections” is explained more fully later): One section,
called the tracking section, contains the elements that are needed for tracking particles. In the current
example, as shown in Fig. 2.1B, the first IR element in the tracking section is a quadrupole that represents
the part of q1e outside of the solenoid. The next element is a combination solenoid/quadrupole, called
a sol_quad, that represents the part of q1e inside cleo, etc. The other branch section that Bmad
creates is called the lord section This section contain the undivided “physical” super_lord elements
(§8) which, in this case are q1e, q1w, and cleo. Pointers are created between the lords and their
super_slave elements in the tracking section so that changes in parameters of the lord elements can be
transferred to their corresponding slaves.

super_lords are used when there are overlapping fields between elements, the other case where there is a
separation between the physical (lord) element and the (slave) element(s) used to track particles through
comes when a particle passes through the same physical element multiple times such as in an Energy
Recovery Linac or where different beams pass through the same element such as in an interaction region.
In this case, multipass_lords representing the physical elements and multipass_slaves elements
which are used for tracking can be defined (§9). Superposition and multipass can be combined in
situations where there are overlapping fields in elements where the particle passes through
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Each lattice element is assigned a slave_status indicating what kind of slave it is and a lord_status
indicating what kind of lord it is. Normally a user does not have to worry about this since these status
attributes are handled automatically by Bmad. The possible lord_status settings are:

girder_lord
A girder_lord element is a girder element (§4.23).

multipass_lord
multipass_lord elements are created when multipass lines are present (§9).

overlay_lord
An overlay_lord is an overlay element (§4.40).

group_lord
A group_lord is a group element (§4.25).

super_lord
A super_lord element is created when elements are superimposed on top of other elements (§8).

not_a_lord
This element does not control anything.

Any element whose lord_status is something other than not_a_lord is called a lord element. In the
tracking part of the branch, lord_status will always be not_a_lord. In the lord section of the
branch, under normal circumstances, there will never be any not_a_lord elements.

Lord elements are divided into two classes. A major lord represents a physical element which the slave
elements are a part of. super_lords and multipass_lords are major lords. As a consequence, a major
lord is a lord that controls nearly all of the attributes of its slaves. The other lords — girder_lords,
group_lords and overlay_lords — are called minor lords. These lords only control some subset of a
slaves attributes.

The possible slave_status settings are

multipass_slave
A multipass_slave element is the slave of a multipass_lord (§9).

slice_slave
A slice_slave element represents a longitudinal slice of another element. Slice elements are not
part of the lattice but rather are created on-the-fly when, for example, a program needs to track
part way through an element.

super_slave
A super_slave element is an element in the tracking part of the branch that has one or more
super_lord lords (§8).

minor_slave
minor_slave elements are elements that are not slice_slaves and are only controlled by minor
lords (overlay_lords, group_lords, or girder_lords).

free
A free element is an element with no lords.
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For historical reasons, each branch in a lattice has a tracking section and a lord section and the
tracking section is always the first (lower) part of the element array and the lord section inhabits
the second (upper) part of the array. All the lord elements are put in the lord section of branch 0
and all the other lord sections of all the other branches are empty.

As a side note, Étienne Forest’s PTC code (§1.4) uses separate structures to separate the physical element,
which PTC calls an element from the particle track which PTC call a fibre. [Actually, PTC has two
structures for the physical element, element and elementp. The latter being the “polymorph” version.]
This element and fibre combination corresponds to Bmad multipass_lord and multipass_slave
elements. PTC does not handle overlapping fields as Bmad does with superposition (§8).
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Chapter 3

Lattice File Statements

A lattice (§2) defines the sequence of elements that a particle will travel through along with the attributes
(length, strength, orientation, etc.) of the elements. A lattice file (or files) is a file that is used to describe
an accelerator or storage ring.

When Bmad was first developed, The Bmad lattice file syntax was modeled upon the format defined for
the MAD program[Grote96]. Since then, the Bmad format has been developed to meet ever increasing
simulation needs so currently there are many differences between the two formats. One difference, which
has been present from the very start, is that there are no “action” commands (action commands tell the
program to calculate the Twiss parameters, do tracking, etc.) in a Bmad lattice file. The reason for this
is due to the fact that Bmad is a software library and not a program. That is, interacting with the user
to determine what actions a Bmad based program should take is left to the program itself and is not
part of the Bmad standard.

3.1 File Example and Syntax

The following (rather silly) example shows some of the features of a Bmad lattice file:
! This is a comment
parameter[E_TOT] = 5e9 ! Parameter definition
pa1 = sin(3.47 * pi / c_light) ! Constant definition
bend1: sbend, type = "arc bend", l = 2.3, ! An element definition

g = 2*pa1, tracking_method = bmad_standard
bend2: bend1, l = 3.4 ! Another element def
bend2[g] = 105 - exp(2.3) / 37.5 ! Redefining an attribute
ln1: line = (ele1, ele2, ele3) ! A line definition
ln2: line = (ln1, ele4, ele5) ! Lines can contain lines
arg_ln(a, b): line = (ele1, a, ele2, b) ! A line with arguments.
use, ln2 ! Which line to use for the lattice

A Bmad lattice file consists of a sequence of statements. An exclamation mark (!) denotes a comment
and the exclamation mark and everything after the exclamation mark on a line are ignored.

Bmad is generally case insensitive. Most names are converted to uppercase. Exceptions are file names
and atomic formulas for materials used in crystal diffraction. Also type, alias, and descrip string
labels which can be set for any element are not converted (§5.3).

35
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Normally a statement occupies a single line in the file. Several statements may be placed on the same
line by inserting a semicolon (“;”) between them. A long statement can occupy multiple lines by putting
an ampersand (“&”) at the end of each line of the statement except for the last line. Additionally, lines
that end with an “implicit end-line continuation character” are automatically continued to the next line
and lines that begin with an “implicit begin-line continuation character are automatically appended to
the previous line. The implicit end-line continuation characters are:

, ( { [ =
The implicit begin-line continuation characters are:

, ) } ] =
The following example shows a command extending over four lines

wall = { ! End-line continuation character.
section = {s = 0.45
} ! Begin-line continuation character.

} ! Begin-line continuation character.
Note: The symbols “+”, “-”, “*”, and “/” are not valid implicit continuation characters. The reason for
this is to avoid confusion when a species name (for example “He++”) comes at the end of a line.

A single line in a lattice file is limited to 500 characters. Commands have no restrictions as to the
number of lines they may be continued over and there is no limit to the length of a command.

Names of constants, elements, lines, etc. are limited to 40 characters. The first character must be a
letter (A — Z). The other characters may be a letter, a digit (0 — 9) or an underscore (_). Other
characters may appear but should be avoided since they are used by Bmad for various purposes. For
example, the backslash (\) character is used to by Bmad when forming the names of superposition slaves
(§8) and dots (.) are used by Bmad when creating names of tagged elements (§7.8). Also use of special
characters may make the lattice files less portable to non-Bmad programs.

The following example constructs a linear lattice with two elements:
parameter[geometry] = open
parameter[e_tot] =2.7389062E9
parameter[particle] = POSITRON
beginning[beta_a] = 14.5011548
beginning[alpha_a] = -0.53828197
beginning[beta_b] = 31.3178048
beginning[alpha_b] = 0.25761815
q: quadrupole, l = 0.6, b1_gradient = 9.011
d: drift, l = 2.5
t: line = (q, d)
use, t

here parameter[geometry] (§10.1) is set to open which specifies that the lattice is not circular. In this
case, the beginning Twiss parameters need to be specified and this is done by the beginning statements
(§10.4). A quadrupole named q and a drift element named d are specified and the entire lattice consists
of element q followed by element d.

3.2 Digested Files

Normally the Bmad parser routine will create what is called a “digested file” after it has parsed a lattice
file so that when a program is run and the same lattice file is to be read in again, to save time, the
digested file can be used to load in the lattice information. This digested file is in binary format and
is not human readable. The digested file will contain the transfer maps for all the elements. Using a
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digested file can save considerable time if some of the elements in the lattice need to have Taylor maps
computed. (this occurs typically with map–type wigglers).

Bmad creates the digested file in the same area as the lattice file. If Bmad is not able to create a
digested file (typically because it does not have write permission in the directory), an error message will
be generated but otherwise program operation will be normal.

Digested files contain the names of the lattice files used to create them. If a lattice file has been modified
since the digested file has been created then the lattice files will be reread and a new digested file will
be generated.

Note: If any of the random number functions (§3.14) are used in the process of creating the lattice, the
digested file will be ignored. In this case, each time the lattice is read into a program, different random
numbers will be generated for expressions that use such random numbers.

Digested files can also be used for easy transport of lattices between programs or between sessions of
a program. For example, using one program you might read in a lattice, make some adjustments (say
to model shifts in magnet positions) and then write out a digested version of the lattice. This adjusted
lattice can now be read in by another program.

3.3 Element Sequence Definition

A line defines a sequence of elements. lines may contain other lines and so a hierarchy may be
established. One line is selected, via a use statement, that defines the lattice. For example:

l3: line = (l1, l2) ! Concatenate two lines
l1: line = (a, b, c) ! Line with 3 elements
l2: line = (a, z) ! Another line
use, l3 ! Use l3 as the lattice definition.

In this case the lattice would be
(a, b, c, a, z)

Lines can be defined in any order. See Chapter 7 for more details.

The superimpose construct allows elements to be placed in a lattice at a definite longitudinal position.
What happens is that after a lattice is expanded, there is a reshuffling of the elements to accommodate
any new superimpose elements. See §8 for more details.

3.4 Lattice Elements

The syntax for defining a lattice element roughly follows the MAD [Grote96] program:
ele_name: keyword [, attributes]

where ele_name is the element name, keyword is the type of element, and attributes is a list of the
elements attributes. Chapter 4 gives a list of elements types with their attributes. Overlay and group
type elements have a slightly different syntax:

ele_name: keyword = { list }, master-attribute [= value] [, attributes]
and Girder elements have the syntax

ele_name: keyword = { list } [, attributes]
For example:

q01w: quadrupole, type = "A String", l = 0.6, tilt = pi/4
h10e: overlay = { b08e, b10e }, var = {hkick}
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The keyword specifying the element type can be the name of an element that has already been declared.
In this case, the element being defined will inherit the attributes that have been set for the element
associated with keyword. Example:

qa, quad, l = 0.6, tilt = pi/4 ! Define QA.
qb: qa ! QB Inherits from QA.
qa[k1] = 0.12 ! QB unaffected by modifications of QA.

In this example, element QB inherits the attributes of QA which, in this case, are the length and tilt
parameters of QA. Once QB is defined, the elements are separate so modifications of the parameters of
QA after QB is defined will not affect QB.

Bmad allows element names to be abbreviations of element types. For example, “Q”, QU”, and “QUADRUPOL”
are all valid element names but “QUADRUPOLE”, being an exact match to the corresponding element type,
is not. Care must be used when using elements that are abbreviations of element types since Bmad
allows element type names to be abbreviated (but element names may not be abbreviated when using
inheritance). For example:

q1: quad ! Q1 is a quadrupole since it comes before the next line.
quad: sextupole ! QUAD element is defined to be a sextupole.
q2: quad ! Q2 is a sextupole as it inherits from QUAD.
q3: qua ! Q3 is a quadrupole. Inherit from names cannot be abbreviated.

3.5 Lattice Element Names

A valid element name may be up to 40 characters in length. The first character of the name must be a
letter [A-Z]. After that, the rest of the name can contain only letters, digits [0-9], underscore “_”, period
“.”, backslash “\”, or a hash mark “#”. A double hash mark “##” is not permitted since this interfers
with the notation for finding the N th element with a given name (§3.6). It is best to avoid these last
three symbols since Bmad uses them to denote “relationships”. Periods are used for tagging (§7.8), and
backslash and hash marks are used for to compose names for superposition (§8) and multipass (§9) slave
elements.

There is a short list of names that cannot be used as an element, line or list name. These reserved names
are:

beam no_digested root
beginning no_superimpose slice_lattice
call parameter start_branch_at
calc_reference_orbit parser_debug superimpose
combine_consecutive_elements particle_start title
debug_marker print use
end_file redef use_local_lat_file
expand_lattice remove_elements write_digested
merge_elements return

Note: The one exception is if end is used to define a marker. This exception is allowed since Bmad uses
the end name to define a marker in any case.

It is perfectly acceptable for multiple lattice elements to have the same name. Example:
q: quadrupole, ...
aline: line = (5*q)
use, aline

This will produce a lattice with five elements named “q”. The exception is group (§4.25) and overlay
(§4.40) controller elements will always have unique names. It is important to keep in mind that elements
with the same name do not necessarily have the same parameter values. See Section §3.6 for an example.
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3.6 Matching to Lattice Element Names

Where appropriate, for example when setting element attributes (§3.7), the wild card characters “*”
and “%” can be used to select multiple elements. The “*” character will match any number of characters
(including zero) while “%” maches to any single character. Additionally, matching can be restricted to
a certain element class using the syntax:

class::element_name

where class is a class (EG: sextupole). For example:
m* ! Match to all elements whose name begins with "m".
a%c ! Match to "abc" but not to "ac" or "azzc".
quadrupole::*w ! Match to all quadrupoles whose name ends in "w"

Note: The character “%” can be used in expressions used for setting lattice element parameter values.
In this case, the “%” character represents the name of the lattice element whose parameter is being set.
This is discussed in section §3.7.

Instead of matching to an element name, matches may be made to type, alias, or descrip attributes
(§5.3) using the syntax:

attribute_name::string

where attribute_name is one of:
type
alias
descrip

and string is a string to match to which can include wild card characters “*” and “%”. If string
contains blank characters, the string must be enclosed with single or double quotation marks. Note: An
element attribute that is blank will never match. Also note that while type, alias, or descrip strings
may have lower case characters (unlike element names, these strings are not converted to upper case),
matching is always case insensitive. For Example:

type::"det bpm*" ! Match to all elements whose type string starts with "det bpm".
alias::* ! Match to all elements whose alias string is not blank.

After lattice expansion (§3.24), the general syntax to specify a set of elements is:
{branch_id>>}{class::}element_id
{branch_id>>}element_name##N ! N^th instance of element_name in

! branch with branch_id
{branch_id>>}{class::}element_id{##N}+M ! M^th element after element
{branch_id>>}{class::}element_id{##N}-M ! M^th element before element

where {...} marks an optional component, class is a class name, branch_id is a branch name or
index (§2.2), element_id is and element name or element index (§7.2), and ##N indicates that the Nth

matching element in a branch is to be used. Examples:
x_br>>quad::q* ! All quadrupoles of branch "x_br" whose name begins with "q".
2>>45 ! element #45 of branch #2.
q01##3 ! The 3rd element named q01 in each branch where there are at

! least three elements named q01.
q01-1 ! Elements just before all elements named q01.
q01##3+0 ! Same as q01##3.

Note: Group and overlay elements have unique names so using ## is unnecessary.

Note: When using the ## construct, super_lord and girder_lord elements are considered to be situated
where their slave elements are situated in the lattice. This is independent of where they actually exist
which is in the lord part of branch 0 (§2.4).
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Note: When using +M and -M offsets, no space should be put around the plus or minus signs. Off-
sets cannot be used with overlay, group, ramper_lord or multipass_lord elements. If used with a
super_lord or girder element, for a -M offset the element selected is the Mth element before the first
slave element of the lord and for a +M offset the element selected is the Mth element after the last slave
element of the lord. Also, independent of the geometry of the branch, the element selected will “wrap”
around the ends of the branch. For example, if a lattice branch looks like:

Index Name
0 Beginnning
1 A
2 B\1 ! First super_slave of B super_lord
3 M
4 B\2 ! Second super_slave of B super_lord
5 C

then
Name Translates to Name Translates to
---- ------------- ---- -------------
B-1 A B+1 C
B-2 Beginning B+2 Beginning
B-3 C B+3 A
B-4 B\2 B+4 B\1

It is advised to avoid setting the parameters of differing elements that share the same name to differing
values since this can lead problems later on. For example, consider this in a lattice file named, say,
lat.bmad:

q1: quadrupole, ...
a: line = (..., q1, ...)
b: line = (..., q1, ...)
c: line = (a, b) ! There are two q1 elements.

! One from A-line and one from B-line.
use, c
expand_lattice ! Expand the lattice
q1##1[k1] = 0.1 ! Set first element whose name is q1
q1##2[k1] = 0.2 ! Set second element whose name is q1

Now if later on someone wants to study just the B line that person could try to do this by creating a
second file with just two lines:

call, file = lat.bmad
use, b

Normally this would work but in this case the lattice is invalid since there is only one q1 element in line
B. A more flexible solution would be to use unique names for the two q1 elements.

Multiple elements in a lattice may share the same name. When multiple branches are present, to
differentiate elements that appear in different branches, the “branch qualified” element name may be
used. The branch qualified element name is of the form

branch_name>>element_name

where branch_name is the name of the branch and element_name is the “regular” name of the element.
Example:

root>>q10w
x_branch>>crystal3

For branch lines (§2.2), the full “branch qualified” name of an element is of the form
branch_name>>element_name
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where branch_name is the name of the branch and element_name is the “regular” name of the element.
Example:

root>>q10w
xline>>cryst3

Using the full name is only needed to distinguish elements that have the same regular name in separate
branches. When parsing a lattice file, branches are not formed until the lattice is expanded (§3.24).
Therefore an expand_lattice statement is required before full names can be used in statements.

After lattice expansion (§3.24), when setting element attributes (§3.7, a comma delimited list of names
can be used (the commas are actually optional). Each item in a list is either the name of an element or
an element range. An element range has the syntax:

{branch>>}{class::}ele1:ele2

where
branch ! Optional branch name or index.
class ! Optional element class name ("quadrupole", "sbend", etc.)
ele1 ! Starting element of the range which includes ele1.
ele2 ! Ending element of the range which includes ele2.

For example:
3,15:17 ! Elements with index 3, 15, 16, and 17 in branch 0.
3 15:17 ! Same as above (commas are optional).
2>>45:51 ! Elements 45 through 51 of branch 2.
q1:q5 ! Elements between q1 and q5.
sbend::q1:q5 ! All sbend elements between q1 and q5 including q1 and q5 if they.

! are sbends. Notice that q1 and q5 do not have to be sbends

if the element index of ele1 is greater than ele2 then the range wraps around the end of the lattice.
For example, if branch0 has 360 tracking elements (§2.4), the range 321:72 is equivalent to 372:360,
0:72.

With a comma delimited list of names, a tilde prefix can be used to remove elements from the list.
Adding and subtracting elements is done left to right. For example:

*::*, ~quadrupole::* ! All elements except quadrupoles
b*, ~b1*, b13 ! All elements with names beginning with B except

! elements with names beginning with B1. However,
! elements named B13 are retained.

With a list of names, an ampersand “&” can be used to form the intersection of two sets.
100:200 & sbend::* ! All sbend elements whose index is between 100 and 200.
q* & quad::* ! Equivalent to "quadrupole::q*".
q* & quad::* b1 ! Equivalent to "quadrupole::q*, b1".

When lattice expansion occurs during parsing of a lattice (§3.23), all rbend elements are converted to
sbend elements (§4.5) but there is a sub_key element parameter that is used so Bmad knows which
bend elements were defined as rbends in the lattice file. After lattice expansion, the string sbend::*
will match to all bend elements irregardless of whether a bend was defined to be a sbend or a rbend. On
the other hand, after lattice expansion the string rbend::* will match to all bend elements that were
defined as rbends before expansion.

3.7 Lattice Element Parameters

Any lattice element has various attributes like its name, its length, its strength, etc. The values of
element attributes can be specified when the element is defined. For example:
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b01w: sbend, l = 6.0, rho = 89.0 ! Define an element with attributes.

After an element’s definition, most attributes may be referred to using the syntax
class::element_name[attribute_name]

Examples:
q01[k1] ! K1 attribute of element Q01.
sbend::b0%[dg] ! DG attribute of sbend elements whose name

! has three characters starting with "B0"

Some element parameters have a more complicated syntax and are listed in section §3.8.

Element attributes can be set or used in an algebraic expression:
b01w[roll] = 6.5 ! Set an attribute value.
b01w[L] = 6.5 ! Change an attribute value.
b01w[L] = b01w[rho] / 12 ! OK to reset an attribute value.
my_const = b01w[rho] / b01w[L] ! Use of attribute values in an expression.

Notice that there can be no space between the element name and the [ opening bracket.

Chapter Chapter 4 lists the attributes appropriate for each element class.

When setting an attribute value, if more than one element has the element_name then all such elements
will be set. When setting an attribute value, if element_name is the name of a type of element, all
elements of that type will be set. For example

q_arc[k1] = 0.234 ! Set all elements named Q_ARC.
rfcavity::*[voltage] = 3.7 ! Set all RFcavity elements.

To set an attribute for multiple element at one time, The wild cards “*”, and “%” can be used in element
names (§3.6). Examples:

*[tracking_method] = bmad_standard ! Matches all elements.
quadrupole::Q*[k1] = 0.234 ! Matches all quadrupoles with names beginning with Q.
Q%1[k1] = 0.234 ! Matches to "Q01" but not "Q001".

Unlike when there are no wild cards used in a name, it is not an error if a name with wild cards does
not match to any element. Note: A name with wild cards will never match to the BEGINNING element
(§7.7).

The “%” symbol can be used in expression to represent the lattice element whose parameter is being set.
For example:

s%z[k2] = %[k2] + 0.03 * ran_gauss()

The “s%z” on the left hand side matches to all three letter elements whose name begins with “s” and
ends with “z”. For each element that is matched, the “%[k2]” in the expression on the right hand side
will be the k2 value of that element. Thus, if there are three elements, named s0z, saz, and s.z, in the
lattice that match s%z, the above command is equivalent to the following three commands

s0z[k2] = s0z[k2] + 0.03 * ran_gauss()
saz[k2] = saz[k2] + 0.03 * ran_gauss()
s.z[k2] = s.z[k2] + 0.03 * ran_gauss()

After lattice expansion (§3.24), the attributes of specific elements may be set using the syntax as discussed
in Section §3.6. Example:

expand_lattice ! Expand the lattice.
97[x_offset] = 0.0023 ! Set x_offset attribute of 97th element
b2>>si_cryst##2[tilt] = 0.1 ! Tilt the 2nd instance of "si_cryst" in branch "b2"
5:32[x_limit] = 0.3 ! Sets elements with indexes 5 through 32 in branch 0.
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3.8 Nonstandard Parameter Syntax

This section lists parameters that have a “nonstandard” syntax (not in the form “ename[parameter]””).
In the following, “ename” is an element name, and “N”, “N1”, “N2”, “N3” and “M” along with <out>, <n1>,
and <n2> are integers.

AC_kicker (§4.2):
ename[amp_vs_time(N)%time]
ename[amp_vs_time(N)%amp]
ename[frequencies(N)%freq]
ename[frequencies(N)%amp]
ename[frequencies(N)%phi]

Cartesian map (§5.16.2):
ename[cartesian_map(N)%field_scale]
ename[cartesian_map(N)%r0(1)]
ename[cartesian_map(N)%r0(2)]
ename[cartesian_map(N)%r0(3)]
ename[cartesian_map(N)%master_parameter]
ename[cartesian_map(N)%t(M)%A] -- M^th term in N^th map.
ename[cartesian_map(N)%t(M)%kx]
ename[cartesian_map(N)%t(M)%ky]
ename[cartesian_map(N)%t(M)%kz]
ename[cartesian_map(N)%t(M)%x0]
ename[cartesian_map(N)%t(M)%y0]
ename[cartesian_map(N)%t(M)%phi_z]

Controller knot points (§5.4):
ename[x_knot(N)] -- N^th x_knot point.
ename[slave(M)%y_knot(N)] -- N^th y_knot point for M^th slave.

Custom attributes (§3.9):
ename[r_custom(N1, N2, N3)]
ename[r_custom(N1, N2)] -- Equivalent to ename[r_custom(N1, N2, 0)]
ename[r_custom(N1)] -- Equivalent to ename[r_custom(N1, 0, 0)]

Cylindrical map (§5.16.3):
ename[cylindrical_map(N)%phi0_fieldmap]
ename[cylindrical_map(N)%theta0_azimuth]
ename[cylindrical_map(N)%field_scale]
ename[cylindrical_map(N)%dz]
ename[cylindrical_map(N)%r0(1)]
ename[cylindrical_map(N)%r0(2)]
ename[cylindrical_map(N)%r0(3)]
ename[cylindrical_map(N)%master_parameter]

Gen_Grad map (§5.16.5):
ename[gen_grad_map(N)%field_scale]
ename[gen_grad_map(N)%r0(1)]
ename[gen_grad_map(N)%r0(2)]
ename[gen_grad_map(N)%r0(3)]
ename[gen_grad_map(N)%master_parameter]

Grid_field (§5.16.4):
ename[grid_field(N)%phi0_fieldmap]
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ename[grid_field(N)%interpolation_order]
ename[grid_field(N)%harmonic]
ename[grid_field(N)%geometry]
ename[grid_field(N)%ename_anchor_pt]
ename[grid_field(N)%phi0_fieldmap]
ename[grid_field(N)%field_scale]
ename[grid_field(N)%dr(1)]
ename[grid_field(N)%dr(2)]
ename[grid_field(N)%dr(3)]
ename[grid_field(N)%r0(1)]
ename[grid_field(N)%r0(2)]
ename[grid_field(N)%r0(3)]
ename[grid_field(N)%master_parameter]

Long range wake (§5.20.3):
ename[lr_wake%amp_scale]
ename[lr_wake%time_scale]
ename[lr_wake%freq_spread
ename[lr_wake%mode(N)%freq_in]
ename[lr_wake%mode(N)%freq]
ename[lr_wake%mode(N)%r_over_q]
ename[lr_wake%mode(N)%damp]
ename[lr_wake%mode(N)%phi]
ename[lr_wake%mode(N)%polar_angle]
ename[lr_wake%mode(N)%polarized]

Surface curvature (§5.11):
ename[curvature%spherical]
ename[curvature%elliptical_x]
ename[curvature%elliptical_y]
ename[curvature%elliptical_z]
ename[curvature%x(N1)y(N2)]

Taylor terms (§4.52):
ename[tt<out><n1><n2>...] ! Orbital terms. EG: rot[tt13] -> M13 matrix term
ename[ttS0<n1><n2><n3>...] ! S0 spin quaternion terms.
ename[ttSx<n1><n2><n3>...] ! Sx spin quaternion terms.
ename[ttSy<n1><n2><n3>...] ! Sy spin quaternion terms.
ename[ttSz<n1><n2><n3>...] ! Sz spin quaternion terms.

Wall for vacuum chambers and masks (§5.12):
ename[wall%section(N)%s]
ename[wall%section(N)%wall%dr_ds]
ename[wall%section(N)%v(M)%x]
ename[wall%section(N)%v(M)%y]
ename[wall%section(N)%v(M)%radius_x]
ename[wall%section(N)%v(M)%radius_y]
ename[wall%section(N)%v(M)%tilt]

3.9 Custom Element Attributes

Real scalar and vector custom element attributes may be defined for any class of element and real scaler
parameters can be defined for the lattice as a whole. Custom element attributes are useful with programs
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that need to associate “extra” information with particular lattice elements or the lattice itself and it is
desired that this extra information be settable from within a lattice file. For example, a program might
need an error tolerance for the strength of quadrupoles.

Adding custom attributes will not disrupt programs that are not designed to use the custom attributes.
Currently, up to 40 named custom attributes may be defined for any given element class. The syntax
for defining custom attributes is:

parameter[custom_attributeN] = {class_name::}attribute_name
Where “N” is an integer between 1 and 40 and "attribute_name" is the name of the attribute. To restrict
the custom attribute to a particular element class, the element class can be prefixed to the attribute
name. To define a global parameter for the lattice, use parameter” as the class name. Examples:

parameter[custom_attribute1] = quadrupole::error_k1
parameter[custom_attribute1] = mag_id
parameter[custom_attribute1] = sextupole::error_k2
parameter[custom_attribute2] = color
parameter[custom_attribute2] = parameter::quad_mag_moment

The first line in the example assigns, for the first custom attribute group (custom_attribute1), a name
of error_k1 to all quadrupoles. The second line in the example assigns to the first custom attribute
group the name mag_id to all element classes except quadrupoles since that class of element already has
an assigned name. The third line assigns, for the first custom attribute group, a name of error_k2 to
all sextupoles overriding the mad_id name. The fourth line in the above example assigns, for the second
custom attribute group, a name of color to all element classes. Finally, the last line defines a global
parameter called quad_mag_moment.

Once a custom attribute has been defined it may be set for an element of the correct class. Example:
parameter[custom_attribute2] = lcavity::rms_phase_err
parameter[custom_attribute3] = parameter::cost
...
parameter[cost] = 140000000
l2a: lcavity, rms_phase_err = 0.0034, ...

Notice that defining the name for a custom attribute must come before its use.

Custom attributes that are assigned to an individual element class, like error_k1 above, are called
“class-specific” attributes. Custom attributes, like mag_id above, that are assigned to all ele-
ment classes, are called “common” attributes. For a given custom attribute group, The setting of a
class-specific attribute will take precedence over the setting of a common attribute. Thus, in the
above example, the fact that quadrupole::error_k1 comes before mag_id and sextupole::error_k2
appears after does not affect anything. Once a common attribute is defined for a given custom attribute
group, it cannot be changed. Similarly, once a class-specific attribute is defined for a given class for
a given custom attribute group it cannot be changed. Trying to redefine a given custom attribute using
a new name that is the same as the old name is not considered an error. For example, the following is
OK:

parameter[custom_attribute2] = color
parameter[custom_attribute2] = color ! OK since the same name is used.

Custom attributes are global in a program and not lattice-specific. That is, if a program reads in two
different lattices the custom attribute settings of both lattices will be combined.

For someone creating a program, section §31.19 describes how to make the appropriate associations.

Note: If custom string information needs to be associated with an element, the type, alias and descrip
element components (§5.3) are available.

Besides the named custom attributes described above, there is a three dimensional vector, called
r_custom, associated with each element that can be used to store numbers. For example:
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qq: quadrupole, r_custom(-2,1,5) = 34.5, r_custom(-3) = 77.9

Negative indices are accepted and if only one or two indices are present, the others are assumed to be
zero. Thus r_custom(-3) is equivalent to r_custom(-3,0,0).

Note: When there is a superposition (§8), the super_slave elements that are formed do not have any
custom attributes assigned to them even when their super_lord elements have custom attributes. This
is done since the Bmad bookkeeping routines are not able to handle the situation where a super_slave
element has multiple super_lord elements and thus the custom attributes from the different super_lord
elements have to be combined. Proper handling of this situation is left to any custom code that a program
implements to handle custom attributes.

3.10 Parameter Types

There are five types of parameters in Bmad: reals, integers, switches, logicals (booleans), and strings.
Acceptable logical values are

true false
t f

For example
rf1[is_on] = False

String literals can be quoted using double quotes (") or single quotes (’). If there are no blanks or
commas within a string, the quotes can be omitted. For example:

Q00W: Quad, type = "My Type", alias = Who_knows, &
descrip = "Only the shadow knows"

Unlike most everything else, strings are not converted to uppercase.

Switches are parameters that take discrete values. For example:
parameter[particle] = positron
q01w: quad, tracking_method = bmad_standard

The name “switch” can refer to the parameter (for example, tracking_method) or to a value that it can
take (for example, bmad_standard). The name “method” is used interchangeably with switch.

3.11 Particle Species Names

For the purpose of assigning names to simulated particles, particles are divided into four groups. One
group are are “fundamental particles”. These are:

electron, positron
muon, antimuon
proton, antiproton
neutron anti_neutron
deuteron anti_deuteron
pion+, pion0, pion-
helion anti_helion ! #3He
photon

For historical reasons, names for the fundamental particles are not case sensitive.

Another group are atoms. The general syntax for atoms is:
{#nnn}AA{ccc}
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The curly brackets {...} denote optional prefixes and suffixes. AA here is the atomic symbol, #nnn is the
number of nucleons, and ccc is the charge. Examples:

parameter[particle] = #12C+3 ! Triply charged carbon-12.
parameter[p0c] = 12 * 500e6 ! Reference momentum is total momentum for particle.
parameter[particle] = He-- ! Doubly charged He.

If the number of nucleons is given, the appropriate weight for that isotope is used. If the number of
nucleons is not present, the mass is an average weighted by the isotopic abundances of the element. The
charge may be given by using the appropriate number of plus (+) or minus (-) signs or by using a plus or
minus sign followed by a number. Thus “---” is equivalent to “-3”. Names here are case sensitive. “@M”
must be used and not “@m” for specifying the mass. The mass of an atom is adjusted by the number of
electrons relative to neutral. That is

matom = mneutral atom − C ·melectron (3.1)

where C is the charge in units number of electrons relative to neutral. No adjustment is made for mass
shifts due to finite electron binding energies. This shift is small typically being well less than 1% of the
mass of the electron.

Anti-atoms made with antimatter have names using the prefix “anti”. For example, a bare gold anti-
atom nucleous would be designated antiAu-79.

Note: When setting the reference momentum parameter[p0c], or reference total energy parameter[E_tot],
the total for the whole particle is used. Not the value per nucleon.

Another group of particles are the “known” molecules. The syntax for these are:
BBB{@Mxxxx}{ccc}

@Mxxxx is the mass in AMU, ccc is the charge, and BBB is the molecular formula. The mass may to
specified to hundredths of an AMU. The known molecules are:

CO CO2
D2 D2O
OH O2
H2 H2O HF
N2 NH2 NH3
CH2 CH3 CH4
C2H3 C2H4 C2H5

Like with atoms, if the mass is not specified, the average isotopic mass is used. Examples:
C2H3@M28.4+ ! Singly charged C2H3 with mass of 28.4
CH2 ! Neutral CH2

Like the atomic formulas, molecular formulas are case sensitive. Like atoms, the mass of a known
molecule is adjusted by the number of electrons relative to neutral.

The last group of particle are particles where only the mass and charge are specified. The syntax for
these are:

@Mxxxx{ccc}

Example:
@M37.54++ ! Doubly charged molecule of mass 37.54 AMU.

Note: When setting the value of a variable to be a particle species ID, use the species function as
discussed in §3.14.
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3.12 Units and Constants

Bmad uses SI (Système International) units as shown in Table 3.1. Note that MAD uses different units.
For example, MAD’s unit of Particle Energy is GeV not eV.

Note: For compatibility with MAD, the beam, energy = xxx command (§10.3) uses GeV and the
emass and pmass constants (see below this section) also use GeV. It is recommended that the use of
these constructs be avoided.

Quantity Units

Angles radians
Betatron Phase radians
Current Amps
Frequency Hz
Kick radians
Length meters
Magnetic Field Tesla
Particle Energy eV
RF Phase Angles radians/2π
Voltage Volts

Table 3.1: Physical units used by Bmad.

Bmad defines commonly used physical and mathematical constants shown in Table 3.2. All symbols
use straight SI units except for emass and pmass which are provided for compatibility with MAD and
should be avoided.

As an alternative, the mass_of, and anomalous_moment_of functions (§3.14) may be used in place of
the defined constants for mass and anomalous magnetic moment.

Note: The standard definition of the magnetic moment g-factor for spin 1/2 fundamental particles is

µ = g
q

2m
S (3.2)

where µ is the magnetic moment, q is the particle charge, and m is the mass. The anomalous moment
a is then defined to be

a =
g − 2

2
(3.3)

For nuclei and other composite baryonic particles, it is conventional to define the g-factor using

µ = g
e

2mp
S (3.4)

where mp is the mass of the proton. This is inconvenient for calculations since an equation like Eq. (23.2)
would not work for all particles. To get around this, the g-factors used by Bmad are always derived from
Eq. (3.2) (think of this as an “effective” g-factor).
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Symbol Value Units Name

pi 3.141592653589793
twopi 2 * pi
fourpi 4 * pi
e 2.718281828459045
e_log 2.718281828459045
sqrt_2 1.414213562373095
degrad 180 / pi From rad to deg
degrees pi / 180 From deg to rad
raddeg pi / 180 From deg to rad
anom_moment_deuteron −0.1425617662 Deuteron anomalous magnetic moment∗
anom_moment_electron 0.00115965218128 Electron anomalous magnetic moment
anom_moment_muon 0.00116592089 muon anomalous magnetic moment
anom_moment_proton 1.792854734463 proton anomalous magnetic moment
anom_moment_he3 −4.184153686 He3 anomalous magnetic moment∗
fine_struct_const 0.0072973525693 Fine structure constant
m_deuteron 1.87561294257 · 109 eV Deuteron mass
m_electron 0.51099895000 · 106 eV Electron mass
m_neutron 0.93956542052 · 109 eV Neutron mass
m_muon 105.6583755 · 106 eV Muon mass
m_pion_0 134.9766 · 106 eV π0 mass
m_pion_charged 139.57018 · 106 eV π+, π− mass
m_proton 0.93827208816d · 109 eV Proton mass
c_light 2.99792458 · 108 m/sec Speed of light
r_e 2.8179403262 · 10−15 m Electron radius
r_p 1.5346982647 · 10−18 m Proton radius
e_charge 1.602176634 · 10−19 Coul Electron charge
h_planck 4.135667696 · 10−15 eV*sec Planck’s constant
h_bar_planck 6.582118990 · 10−16 eV*sec Planck / 2π
emass 0.51099895000 · 10−3 GeV Electron mass (please avoid using)
pmass 0.93827208816 GeV Proton mass (please avoid using)

∗ Effective anomalous moments. See the discussion after Eq. (3.2).

Table 3.2: Physical and mathematical constants recognized by Bmad.

3.13 Arithmetic Expressions

Arithmetic expressions can be used in a place where a real value is required. The standard operators
are defined:

a+ b Addition
a− b Subtraction
a ∗ b Multiplication
a / b Division
a ∧ b Exponentiation

Bmad also has a set of intrinsic functions. A list of these is given in §3.14.

Literal constants can be entered with or without a decimal point. An exponent is marked with the letter
E. For example

1, 10.35, 5E3, 314.159E-2

Symbolic constants can be defined using the syntax
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constant_name = expression

Alternatively, to be compatible with MAD, using “:=” instead of “=” is accepted
constant_name := expression

Examples:
my_const = sqrt(10.3) * pi^3
abc := my_const * 23

Unlike MAD, Bmad uses immediate substitution so that all constants in an expression must have been
previously defined. For example, the following is not valid:

abc = my_const * 23 ! No: my_const needs to be defined first.
my_const = sqrt(10.3) * pi^3

here the value of my_const is not known when the line “abc = . . .” is parsed. Note: To get the effect of
delayed evaluation, use overlay (§4.40) or group (§4.25) controller elements.

Once defined, symbolic constants cannot be redefined. For example:
my_const = 1
my_const = 2 ! No! my_const cannot be redefined.

The restriction against redefining constants was implemented to avoid hard to find problems. On very
rare occasions, it is convenient to be able to redefine constants so if the redefinition has a redef: prefix,
a constant can be redefined

my_const = 1
redef: my_const = 2 ! OK!

It is advised not to use redef unless there a very good reason for its use.

group (§4.25) and overlay (§4.40) controller elements are an exception to the immediate evaluation
rule. Since controller elements may control elements that do not exist until lattice expansion (§3.24),
the arithmetic expressions associated with controller elements are not evaluated until lattice expansion.
Example:

s_20W: sextupole, l = 0.27
sk: overlay = {s_20W[a1]:-2*s_20W[L]}, var = {k1}, k1 = 0.2
s_20W[L] = 0.34
s_30E: s_20W
...
expand_lattice

Here the expression of overlay sk is evaluated, when the lattice is expanded, to be -0.68 = -2*0.34.
This uses the length of element s_20W at the point when the lattice is expanded and not at the point
when sk was defined. Additionally, the element s_30E, which inherits the attributes of s_20W, inherits
a value of zero for a1 (skew multipole moment) since inheritance uses immediate evaluation just like the
setting of constants.

Element attributes can be used after they have been defined but not before. Example:
sa: sextupole, l = 0.3, k2 = 0.01 * sa[L] ! Good
sb: sextupole, k2 = 0.01 * sb[L], l = 0.3 ! BAD SET OF K2. L IS DEFINED AFTER.

In this example, the k2 attribute of element sa is correctly set since k2 is defined after l. On the other
hand, k2 of element sb will have a value of zero since l of sb defaults to zero before it is set.

One potential pitfall with immediate substitution is that when an element attribute changes, it does not
affect prior evaluations. Example:

s1: sextupole, k2 = 2.3
aa = s1[k2] ! aa = 2.3
s1[k2] = 1.7 ! value of aa does not change
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Here the value of constant aa will remain fixed at 2.3 no matter how the value of s1[k2] is altered after
aa is defined.

Another potential pitfall is when using dependent element attributes (§5.1). For example:
b01w: sbend, l = 0.5, angle = 0.02
a_const = b01w[g] ! No: bend g has not yet been computed!

Here the bend strength g (§4.5) will eventually be computed to be 0.04 (= angle / l) but that computation
does not happen until lattice expansion (§3.24). In this case, the value of a_const will be the default
value of g which is zero. As a rule of thumb, never rely on dependent attributes having their correct
value.

3.14 Intrinsic functions

The following intrinsic functions are recognized by Bmad:
sqrt(x) Square Root
log(x) Logarithm
exp(x) Exponential
sin(x), cos(x) Sine and cosine
tan(x), cot(x) Tangent and cotangent
sinc(x) Sin(x)/x Function
asin(x), acos(x) Arc sine and Arc cosine
atan(x) Arc tangent
atan2(y, x) Arc tangent of y/x
sinh(x), cosh(x) Hyperbolic sine and cosine
tanh(x), coth(x) Hyperbolic tangent and cotangent
asinh(x), acosh(x) Hyperbolic arc sine and Arc cosine
atanh(x), acoth(x) Hyperbolic arc tangent and cotangent
abs(x) Absolute Value
factorial(n) Factorial
ran() Random number between 0 and 1
ran_gauss() Gaussian distributed random number
ran_gauss(sig_cut) Gaussian distributed random number
int(x) Nearest integer with magnitude less then x
nint(x) Nearest integer to x
sign(x) 1 if x positive, -1 if negative, 0 if zero
floor(x) Nearest integer less than x
ceiling(x) Nearest integer greater than x
modulo(a, p) a - floor(a/p) * p. Will be in range [0, p].
mass_of(A) Mass of particle A
charge_of(A) Charge, in units of the elementary charge, of particle A
anomalous_moment_of(A) Anomalous magnetic moment of particle A
species(A) Species ID of A

ran_gauss is a Gaussian distributed random number with unit RMS. Both ran and ran_gauss use a
seeded random number generator. To choose the seed set

parameter[ran_seed] = <Integer>

A value of zero will set the seed using the system clock so that different sequences of random numbers
will be generated each time a program is run. The default behavior if parameter[ran_seed] is not
present is to use the system clock for the seed.
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The ran_gauss(cut) function with an argument truncates the distribution so that no values are returned
with an absolute value greater than cut. If cut is non-positive, it is ignored so that, for example,
ran_gauss(-1) is equivalent to ran_gauss().

If an element is used multiple times in a lattice, and if ran or ran_gauss is used to set an attribute
value of this element, then to have all instances of the element have different attribute values the setting
of the attribute must be after the lattice has been expanded (§3.24). For example:

a: quad, ...
a[x_offset] = 0.001*ran_gauss()
my_line: line = (a, a)
use, my_line

Here, because Bmad does immediate evaluation, the x_offset values for a gets set in line 2 and so both
copies of a in the lattice get the same value. This is probably not what is wanted. On the other hand if
the attribute is set after lattice expansion:

a: quad, ...
my_line: line = (a, a)
use, my_line
expand_lattice
a[x_offset] = 0.001*ran_gauss()

Here the two a elements in the lattice get different values for x_offset.

The following functions take a species ID as the argument:
mass_of(A), charge_of(A)
anomalous_moment_of(A), species(A)

See §3.11 for the syntax of naming particles.

The mass_of, charge_of, and anomalous_moment_of functions give the mass of, charge of (in units of
the elementary charge), and anomalous moment of, a particle. Example:

parameter[particle] = deuteron
am = anomalous_moment_of(parameter[particle])^2
my_particle = species(He++) ! my_particle now represents He++
chg1 = charge_of(my_particle) ! chg = charge of He++
chg2 = charge_of(He++) ! Same as previous line
chg3 = charge_of(species(He++)) ! Same as previous line

The species function is needed in the definition of my_particle in the above example so that Bmad
knows that the string “He++” represents a type of particle. Inside functions like mass_of, the use of
species is optional since, in this case, Bmad can correctly parse the argument.

The value returned by the mass_of function accounts for the ionization state of a particle in that there
is a correction for the change in the number of electrons a particle has. Thus the values of mass_of#3He
will be heavier than mass_of#3He++ by two electron masses. This correction only involves multiples of
the electron mass and variations in the particle mass due to electron binding energies is not accounted
for. These binding energy corrections are generally very small. If the isotopic state is not specified for
an atom, the average weighted by the natural abundance is used.

3.15 Statement Order

With some exceptions, statements in a lattice file can be in any order. For example, the lines (§7.2)
specified in a use statement (§7.7) can come after the use statement. And group (§4.25) and overlay
(§4.40) controller elements may be defined before the slave elements whose parameters they control are
defined.
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The exceptions to this rule are:

• If there is an expand_lattice statement (§3.23), everything necessary for lattice expansion must
come before. In particular, all lines (§7.2), lists (§7.6), and use (§7.7) statements necessary for
lattice expansion must come before.

• Immediate evaluation of arithmetic expressions (§3.13) mandates that values be defined before use.

• A lattice element must be defined before any of its parameters are set. Example:
pp[z_offset] = 0.1 ! WRONG! PP HAS NOT BEEN DEFINED YET!
pp: patch ! Here PP is defined

In this example, the z_offset of the element pp is set before pp has been defined. This is an error.
As a corollary to this rule, element parameters that are set using wild card characters will only
affect those parameters that have been already defined. For example:

crystal::*[b_param] = 0.2
c5: crystal

In this example, the b_param of all crystal elements is set to 0.2 except for c5 and all other
crystal elements that are defined after the set.

3.16 Print Statement

The print statement prints a message at the terminal when the lattice file is parsed by a program.
Syntax:

print <string>

Where <string> is the string to be printed. Variable values can be printed by using back-tick charac-
ters. For example:

print Remember! Q01 quad strength of `q01[k1]` not yet optimized!
print Optimization is as easy as 2 + 2 = `2+2`.

will result in the following being printed:
Message in Lattice File: Remember! Q01 quad strength of 0.4526 not yet optimized!
Message in Lattice File: Optimization is as easy as 2 + 2 = 4.

The print statement is useful to remind someone using the lattice of important details.

3.17 Title Statement

The title statement sets a title string which can be used by a program. For consistency with MAD
there are two possible syntaxes

title, <String>

or the statement can be split into two lines
title
<String>

For example
title
"This is a title"
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3.18 Call Statement

It is frequently convenient to separate the lattice definition into several files. Typically there might be
a file (or files) that define the layout of the lattice (something that doesn’t change often) and a file (or
files) that define magnet strengths (something that changes more often). The call is used to read in
separated lattice files. The syntax is

call, filename = <file-name>
Example:

call, filename = "../layout/my_layout.bmad" ! Relative pathname
call, filename = "/nfs/cesr/lat/my_layout.bmad" ! Absolute pathname
call, filename = "$LATDIR/my_layout.bmad" ! Absolute pathname

Environment variables in the file name will be expanded. Bmad will read the called file until a return
or end_file statement is encountered or the end of the file is reached.

For filenames that have a relative pathname, the called file will be searched for relative to the directory
of the calling file. Thus, in the above example, if the file containing the call statements is in the directory
/path/to/lat_dir, the first call will open the file:

/path/to/lat_dir/../layout/my_layout.bmad
To call a file relative to the current working directory, use the environment variable PWD. Example:

call, filename = $PWD/here.bmad
Where a called file is searched for may be modified by using a use_local_lat_file statement. See
Section §3.20 for more details.

3.19 Inline Call

Any lattice elements will have a set of attributes that need to be defined. As a convenience, it is possible
to segregate an element attribute or attributes into a separate file and then “call” this file using an “inline
call”. The inline call has three forms:

<ele_name>: <ele_type>, ..., call::<file_name>, ... ! or
<ele_name>: <ele_type>, ..., <attribute_name> = call::<file_name>, ... ! or
<ele_name>[<attribute_name>] = call::<file_name>

where <attribute_name> is the name of the attribute and <file_name> is the name of the where the
attribute structure is given. The Environment variables in the file name will be expanded. Example:

c: crystal, call::$AB/my_curvature.bmad, h_misalign = call::my_surface.bmad, ...
For grid_fields, which can take some time to parse, a HDF5 binary file can to created and then the
HDF5 file, which must have a .h5 or .hdf5 suffix, can be read in with an inline call Example:

qq: quadrupole, grid_field = call::my_grid.h5, ...
To create hdf5 files, first create a lattice with the grid_field defined with plain text. Next read the
lattice into any program that can create Bmad lattice files (for example, the Tao program (§1.2) can do
this) and have the program then generate a lattice file.

3.20 Use_local_lat_file Statement

It is sometimes convenient to override where Bmad looks for called files (see §3.18). For example, suppose
it is desired to temporarily override the settings in a called file without modifying the called file itself.
In this case, the use_local_lat_file statement can be used. When this statement is encountered in a
lattice file, the local directory (that is, the directory from which the program is run) is searched first for
the called file and if a file of the correct name is found, that file is used.

An example will make this clear. Suppose lattice file /A/lat.bmad contains the call:
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call, filename = "/B/sub.bmad"

Now suppose that you want to use lat.bmad with a modified sub.bmad but you do not want to modify
/A/lat.bmad or /B/sub.bmad. The solution is to create two new files. One file, call it new.bmad, which
can be situated in any directory, has two lines in it:

use_local_lat_file
call, filename = "/A/lat.bmad"

The second new file is the modified sub.bmad and it must be in the directory from which the program
is run.

3.21 No_Superimpose Statement

In certain cases it is useful to turn off superposition (§8). The no_superposition statement will do
this. To turn off all superpositioning, this statement can appear anywhere as long as it is before
any expand_lattice (§3.23) statement. If the lattice has an expand_lattice statement, and the
no_superposition statement appears after, the no_superposition statement will only block superpo-
sitions that are defined after the no_superposition statement.

3.22 Return and End_File Statements

Return and end_file have identical effect and tell Bmad to ignore anything beyond the return or
end_file statement in the file.

3.23 Expand_Lattice Statement

Normally, lattice expansion happens automatically at the end of the parsing of the lattice file but an
explicit expand_lattice statement in a lattice file will cause immediate expansion. See §3.24 for details.
Subsequent expand_lattice statements after the first one are ignored and have no effect on the lattice.

3.24 Lattice Expansion

At some point in parsing a lattice file, the ordered sequence (or sequences if there are multiple branches)
of elements that form a lattice must be constructed. This process is called lattice expansion since
the element sequence can be built up from sub–sequences (§7). Normally, lattice expansion happens
automatically at the end of the parsing of the lattice file (or files) but an explicit expand_lattice
statement in a lattice file will cause immediate expansion. The reason why lattice expansion may be
necessary before the end of the file is due to the fact that some operations need to be done after lattice
expansion. This includes:

• The ran and ran_gauss functions, when used with elements that show up multiple times in a
lattice, generally need to be used after lattice expansion. See §3.14.

• Some dependent parameters may be set as if they are independent parameters but only if done
before lattice expansion. See §5.1.

• Setting the phi0_multipass attribute for an Lcavity or RFcavity multipass slave may only be
done after lattice expansion (§9).
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• Setting individual element attributes for tagged elements can only be done after lattice expansion
(§7.8).

Notice that all lines (§7.2), lists (§7.6), and use (§7.7) statements necessary for lattice expansion must
come before an expand_lattice statement.

Lattice expansion is only done once so it is an error if multiple expand_lattice statements are present.

The steps used for lattice expansion are:

1. Instantiate all of the lines listed in the last use statement (§7.7). If an instantiated line has fork
or photon_fork (§4.22) elements, instantiate the lines connected to the fork elements if the fork
or photon_fork is connected to a new branch. Instantiation of a given line involves:

(a) Line expansion (§7) where the element sequence is constructed from the line and sub-lines.

(b) Adding any superpositions (§8).

2. Form multipass lords and mark the appropriate multipass slaves (§9).

3. Add girder control elements (§4.23).

4. Add group (§4.25) and overlay (§4.40) control elements.

A lattice file where all the statements are post lattice expansion valid is called a “secondary lattice
file”. To promote flexibility, Bmad has methods for parsing lattices in a two step process: First, a
“primary” lattice file that defines the basic lattice is read. After the primary lattice has been parsed and
lattice expansion has been done, the second step is to read in one or more secondary lattice files. Such
secondary lattice files can be used, for example, to set such things as element misalignments. The point
here is that there are no calls (§3.18) of the secondary files in the primary file so the primary lattice file
does not have to get modified when different secondary files are to be used.

3.25 Calc_Reference_Orbit Statement

The calc_reference_orbit statement triggers the computation of the “standard” reference orbit which
is defined to be the closed orbit if the geometry (set by parameter[geometry] (§10.1)) is closed and
which is defined to be the orbit as calculated from the starting position (set by any particle_start
statements (§10.2)) if the geometry is open.

The calc_reference_orbit statement is used before a merge_elements statement (§3.26) to signal
that the maps of the Taylor elements produced by the merge_elements statement are computed from
the standard reference orbit and not the zero orbit.

The calc_reference_orbit statement must come after an expand_lattice command (§3.24).

The calc_reference_orbit statement can only be used if the standard reference orbit can be computed.
For example, for a lattice with closed geometry, the closed orbit must exist.

The calc_reference_orbit statement has no arguments. Example:
expand_lattice ! Expand the lattice.
calc_reference_orbit ! Compute the reference orbit.
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3.26 Merge_Elements Statement

The merge_elements statement is used to merge groups of consecutive elements into single taylor ele-
ments (§4.52) for faster tracking. The syntax of this statement is

merge_elements <list>
where <list> is a list of elements that are not to be combined.

Example:
call, file = my_ring.bmad ! Read in a lattice
parameter[taylor_order] = 3 ! Set the taylor order for the maps
expand_lattice ! Expand the lattice
calc_reference_orbit ! ref orbit calc.
merge_elements sbend::*, bb ! Merge everything but sbend elements and

! any elements named BB.
In this example, groups of elements that are between bends (with the exception of any elements named
“BB”), are replaced by taylor elements. The order of the Taylor maps is set by parameter[taylor_order]
(§10.1).

The merge_elements statement must come after an expand_lattice command (§3.24).

If there is a calc_reference_orbit statement before the merge_elements statement, the “standard”
reference orbit (§3.25) is used for the computation of the Taylor maps. Otherwise the zero orbit is used
as the reference orbit.

3.27 Combine_Consecutive_Elements Statement

The combine_consecutive_elements statement is used to combine consecutive elements with the same
name into a single element. If a marker element has been placed in between two element with the same
name, the marker element will be discarded. This can be a useful statement to add when given a lattice
where elements have been split into two.1 The combine_consecutive_elements statement must come
after lattice expansion (§3.24). Example:

m: marker
myline: line = (q1, m, q1)
use, myline
expand_lattice
combine_consecutive_elements

In this case the finished line will will have a single q1 element whose length will be twice the length of
q1

3.28 Remove_Elements Statement

The remove_elements statement is used to remove elements from the lattice. The remove_elements
statement must come after lattice expansion (§3.24). The syntax of the remove_elements statement is

remove_elements <element-list>
where <element-list> is a list of elements (§3.6). For example

expand_lattice ! Lattice expansion must happen first
remove_elements overlay::*
1This is common in lattices translated from MAD.
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In this example, all overlay elements are to be removed. This is useful, for example, when direct control
of overlay slave parameters is desired.

3.29 Slice_Lattice Statement

The slice_lattice statement is used to remove elements from the lattice. The slice_lattice is
useful when analysis of only part of the lattice is desired and the analysis of the entire lattice can take
a significant amount of time.

The slice_lattice statement must come after lattice expansion (§3.24). The syntax of the slice_lattice
statement is

slice_lattice <element-list>
where <element-list> is a list of elements (§3.6). For example

expand_lattice ! Lattice expansion must happen first
slice_lattice q1##2:357,end

In this example, all elements outside of the range from element q1##2 (the second instance of q1 in the
lattice) to element with index number 357 are discarded except for the element named end (which is
typically the last element in any lattice branch). Additionally, the lord elements (§2.4) of any elements
that remain are retained and the beginning element at the start of any branch is also retained.

For any lattice branch where elements are removed, the Twiss parameters and reference energy is com-
puted, and the Twiss parameters and reference energy at the entrance end of the first element that is
not removed is transferred to the beginning branch element. The branch geometry is also set to open.

For a lattice branch with a closed geometry, the Twiss parameters are computed with the RF on. That is,
the reference momentum at the beginning of the sliced lattice branch, which is computed from the closed
orbit phase space pz of the unsliced lattice, may be non-zero. This will affect the Twiss calculation. If
this is not what is wanted, the RF can be turned off before the slice_lattice command which will
ensure the reference momentum is zero at the beginning of the lattice branch. Example:

expand_lattice
rfcavity::*[is_on] = False ! Turn RF off
slice_lattice q1##2:357 ! Slice the lattice
! This shows how to reset the RF and geometry if needed.
rfcavity::*[is_on] = True ! Turn RF back on
parameter[geometry] = closed ! Change the geometry.
... etc ...

To create a lattice slice that wraps around the lattice ends, that is, joins a section at the end of the
lattice followed by a section at the beginning of the lattice, use a start_branch_at statement before a
slice_lattice statement. Example:

expand_lattice
start_branch_at Q9
slice_lattice Q9:Q1 ! With Q1 being before Q9 in the original lattice.

3.30 Start_Branch_At Statement

The start_branch_at statement is used to shift the starting point of a lattice branch while keeping the
relative order of the elements the same. The syntax of the start_branch_at statement is

start_branch_at <lattice-element> ! or
start_branch_at, move_end_marker <lattice-element>
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where <lattice-element> is the name or index of a lattice element to be moved to the start of the
branch the element is in. The start_branch_at statement must come after lattice expansion (§3.24).

The shifting only applies to elements in the tracking part of the lattice (§2.4). The BEGINNING element
of the branch (§7.7) and any lord elements are unaffected. The end marker element (§7.1), if it is present
(that is, if no parameter[no_end_marker] is used), will also remain at the end of the branch except if
the move_end_marker option is used with start_branch_at. For example:

expand_lattice ! Lattice expansion must happen first
start_branch_at Q3

In this example, the elements in the lattice branch containing Q3 would be shifted so that the Q3 element
is the first element in the branch. Thus, if the lattice branch originally consisted of the elements

Beginning, Q1, Q2, Q3, Q4, Q5, Q6, End
then the shifted lattice would be

Beginning, Q3, Q4, Q5, Q6, Q1, Q2, End
Elements that originally come before the new starting point are always wrapped around to the end of
the branch. If the move_end_marker is present:

start_branch_at, move_end_marker Q3
then the shifted lattice would be

Beginning, Q3, Q4, Q5, Q6, End, Q1, Q2
Also see the slice_lattice statement (§3.29).

3.31 Debugging Statements

There are a few statements which can help in debugging the Bmad lattice parser itself. That is, these
statements are generally only used by programmers. These statements are:

debug_marker
no_digested
parser_debug
write_digested

The debug_marker statement is used for marking a place in the lattice file where program execution is
to be halted. This only works when running a program in conjunction with a program debugging tool.

The no_digested statement if present, will prevent Bmad from creating a digested file (§3.2). That is,
the lattice file will always be parsed when a program is run. The write_digested statement will cancel
a no_digested statement.

The parser_debug statement will cause information about the lattice to be printed out at the terminal.
The syntax is

parser_debug <switches>
Valid <switches> are

particle_start ! Print the particle_start information.
const ! Print table of constants defined in the lattice file.
ele <n1> <n2> ... ! Print full info on selected elements.
lattice ! Print a list of lattice element information.
lord ! Print full information on all lord elements.
seq ! Print sequence information.
slave ! Print full information on all slave elements.
time ! Print timing information.

Here < n1 >, < n2 >, etc. are the index of the selected elements in the lattice. Example
parser_debug var lat ele 34 78
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Chapter 4

Lattice Elements

A lattice is made up of a collection of elements — quadrupoles, bends, etc. This chapter discusses the
various types of elements available in Bmad.

Element Section Element Section

AB_Multipole 4.1 Mask 4.33
AC_Kicker 4.2 Match 4.34
BeamBeam 4.3 Monitor 4.27
Beginning_Ele 4.4 Multipole 4.36
Converter 4.8 Null_Ele 4.38
Crab_Cavity 4.9 Octupole 4.39
Custom 4.11 Patch 4.41
Drift 4.14 Photon_Fork 4.22
E_Gun 4.15 Pipe 4.27
Ecollimator 4.7 Quadrupole 4.43
ElSeparator 4.16 Rbend 4.5
EM_Field 4.17 Rcollimator 4.7
Feedback 4.18 RF_bend 4.45
Fiducial 4.19 RFcavity 4.46
Floor_Shift 4.20 Sad_Mult 4.47
Foil 4.21 Sbend 4.5
Fork 4.22 Sextupole 4.49
GKicker 4.24 Sol_Quad 4.50
HKicker 4.28 Solenoid 4.51
Hybrid 4.26 Taylor 4.52
Instrument 4.27 Thick_Multipole 4.53
Kicker 4.29 Undulator 4.54
Lcavity 4.30 VKicker 4.28
Marker 4.32 Wiggler 4.54

Table 4.1: Table of element types suitable for use with charged particles. Also see Table 4.3

Most element types available in MAD are provided in Bmad. Additionally, Bmad provides a number of
element types that are not available in MAD. A word of caution: In some cases where both MAD and
Bmad provide the same element type, there will be an overlap of the attributes available but the two
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sets of attributes will not be the same. The list of element types known to Bmad is shown in Table 4.1,
4.2, and 4.3. Table 4.1 lists the elements suitable for use with charged particles, Table 4.2 which lists the
elements suitable for use with photons, and finally Table 4.3 lists the controller element types that
can be used for parameter control of other elements. Note that some element types are suitable for both
particle and photon use.

Element Section Element Section

Beginning_Ele 4.4 Lens 4.31
Capillary 4.6 Marker 4.32
Crystal 4.10 Mask 4.33
Custom 4.11 Match 4.34
Detector 4.12 Monitor 4.27
Diffraction_Plate 4.13 Mirror 4.35
Drift 4.14 Multilayer_Mirror 4.37
Ecollimator 4.7 Patch 4.41
Fiducial 4.19 Photon_Fork 4.22
Floor_Shift 4.20 Photon_Init 4.42
Fork 4.22 Pipe 4.27
GKicker 4.24 Rcollimator 4.7
Instrument 4.27 Sample 4.48

Table 4.2: Table of element types suitable for use with photons. Also see Table 4.3

Element Section Element Section

Group 4.25 Overlay 4.40
Girder 4.23 Ramper 4.44

Table 4.3: Table of controller elements.

For a listing of element attributes for each type of element, see Chapter §15.
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4.1 AB_Multipole

An ab_multipole is a thin magnetic multipole lens up to 21st order. The basic difference between this
and a multipole (§4.36) is the input format. See section §17.1 for how the multipole coefficients are
defined.

General ab_multipole attributes are:

Attribute Class § Attribute Class §
an, bn multipoles 5.15 Length 5.13
Aperture limits 5.8 Offsets & tilt 5.6
Chamber wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6
Is_on 5.14

See §15.3 for a full list of element attributes along with a their units.

The length l is a fictitious length that is used for synchrotron radiation computations and affects the
longitudinal position of the next element but does not affect any tracking or transfer map calculations.
The x_pitch and y_pitch attributes are not used in tracking.

When an ab_multipole is superimposed (§8) on a lattice, it is treated as a zero length element and in
this case it is an error for the length of the ab_multipole to be set to a nonzero value.

Unlike a multipole, an ab_multipole will not affect the reference orbit if there is a dipole component.

Example:
abc: ab_multipole, a2 = 0.034e-2, b3 = 5.7, a11 = 5.6e6/2
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4.2 AC_Kicker

An ac_kicker element simulates a time dependent kicker element.

General ac_kicker attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Length 5.13
Custom Attributes 3.9 Mag & Elec multipoles 5.15
Description strings 5.3 Offsets, pitches & tilt 5.6
Field Maps 5.16 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Tracking & transfer map 6

See §15.4 for a full list of element attributes along with a their units.

Attributes specific to a ac_kicker element are:
t_offset = <Real> ! Time offset of field waveform.
interpolation = <switch> ! cubic (default) or linear.
amp_vs_time = {(<time1>, <Amp1>), (<time2>, <Amp2>), ...} ! Field amp vs Time.
frequencies = {(<freq1>, <Amp1>, <phi1>),

(<freq2>, <Amp2>, <phi2>), ...} ! Freq components.

Note: The frequencies attribute phases phi1, phi2, phi3, etc., have units of radians/2pi.

An ac_kicker element is like a kicker (§4.29) element except that the field varies in time. The field is
calculated in two steps:

1. Calculate the field the same as for a kicker element (§4.29).

2. Scale the field using the function A(δt) (discussed below)

B(δt) = A(δt)B0, E(δt) = A(δt)E0 (4.1)

where B and E are the applied magnetic and electric fields, and B0 and E0 are the fields as
calculated as if the element where a kicker ignoring the time dependence.

δt = teff − t0 where teff is the effective time as discussed in §25.1 and t0 is the value of the t_offset
attribute.

There are two ways to specify the dimensionless time variation A(δt) of the field. One way is to specify
points (A, δt) using the amp_vs_time attribute. Example:

mk: ac_kicker, l = 0.3, scale_multipoles = F, b1 = 0.27, t_offset = 3.6e-8,
amp_vs_time = {(-1.2e-6, 0.02), ... }

The element in this example is an AC quadrupole kicker. The times (in seconds) must be in ascending
order and no two times may be the same. The method used to interpolate between the time points is
determined by the setting of the interpolate parameter which may be one of

linear ! Linear interpolation.
cubic ! Cubic spline interpolation (default).
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For times outside of the range specified by amp_vs_time, the amplitude will be extrapolated. For the
cubic spline, extrapolation is only permitted over a distance outside the time range equal to the time
difference between an end point and the next nearest point.

The second way to specify the waveform is to specify the frequencies in the spectrum using the frequencies
attribute. In this case the amplitude is:

A(t) =
∑
i

Ai cos(2π(fi δt+ ϕi)) (4.2)

Example:
mk: ac_kicker, l = 0.3, field_calc = fieldmap, cartesian_map = {...},

frequencies = {(3.4e6, 0.34, 0.12), ...}, a0_elec = 1e5

When using a frequency spectrum, the interpolate attribute is ignored. Note: The units of the phases
phi with the frequencies attribute are rad/2pi.

To specify an amp_vs_time component after an ac_kicker element has been defined, use the syntax
name[AMP_VS_TIME(i)%time] ! Time of i^th point.
name[AMP_VS_TIME(i)%amp] ! Amplitude of i^th point.

where name is the name of the element and i is the index of the point. To specify a frequencies
component after an ac_kicker element has been defined, use the syntax

name[FREQUENCIES(i)%freq] ! Frequency of i^th spectrum point.
name[FREQUENCIES(i)%amp] ! Amplitude of i^th spectrum point.
name[FREQUENCIES(i)%phi] ! Phase (rad/2pi) of i^th spectrum point.

Example:
mk: ac_kicker, amp_vs_time = {(-1.2e-6, 0.02), ... }
mk[amp_vs_time(2)%amp] = 0.03 ! Change 2nd point amplitude.

When specifying the time dependent using a set of frequencies, it is generally advisable to use absolute
time tracking (§25.1). This can be done in the lattice file by setting

bmad_com[absolute_time_tracking] = T

Note: The calculated field will only obey Maxwell’s equations in the limit that the time variation of the
field is “slow”:

ω ≪ c

r
(4.3)

where ω is the characteristic frequency of the field variation, c is the speed of light, and r is the charac-
teristic size of the ac_kicker element. That is, the fields at opposite ends of the element must be able
to “communicate” (which happens at the speed of light) in a time scale short compared to the time scale
of the change in the field.
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4.3 BeamBeam

A beambeam element simulates an interaction with an opposing (“strong”) beam traveling in the opposite
direction. The strong beam is assumed to be Gaussian in shape. In the bmad_standard calculation the
beam–beam kick is computed using the Bassetti–Erskine complex error function formula[Talman87]

General beambeam attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Is_on 5.14 Tracking & transfer map 6

See §15.5 for a full list of element attributes along with a their units.

Attributes specific to a beambeam element are:
sig_x = <Real> ! Horizontal strong beam sigma at the center
sig_y = <Real> ! Vertical strong beam sigma at the center
sig_z = <Real> ! Strong beam length
charge = <Real> ! Strong beam charge. Default = -1
n_particle = <Real> ! Number of particles in strong beam.
n_slice = <Int> ! Number of strong beam slices
crab_x1 = <Real> ! Crabbing linear coefficient.
crab_x2 = <Real> ! Crabbing quadratic coefficient.
crab_x3 = <Real> ! Crabbing cubic coefficient.
crab_x4 = <Real> ! Crabbing 4th order coefficient.
crab_x5 = <Real> ! Crabbing 5th order coefficient.
crab_tilt = <Real> ! Crabbing tilt.
species_strong = <Species> ! Strong beam species
E_tot_strong = <Real> ! Strong beam particle energy
beta_a_strong = <Real> ! Strong beam $a$-mode beta Twiss parameter
alpha_a_strong = <Real> ! Strong beam $a$-mode alpha Twiss parameter
beta_b_strong = <Real> ! Strong beam $b$-mode beta Twiss parameter
alpha_b_strong = <Real> ! Strong beam $b$-mode alpha Twiss parameter
bbi_constant ! See below. Dependent attribute (§5.1).
ks = <Real> ! Solenoid strength.
bs_field = <Real> ! Solenoid field strength.
field_master = <T/F> ! Is ks or bs_field value the master (§5.2)?
s_beta_ref = <Real> ! Reference position of strong beam Twiss.
z_crossing = <Real> ! Weak particle phase space z when strong beam center reaches IP.
repetition_frequency = <Real> ! Strong beam repetition rate.

The strength of the strong beam is set by:
charge * n_particle

The default The default value of charge is -1 which indicates that the strong beam has the opposite
charge of the weak beam. The default for n_particle is 0.

For historical reasons, the global parameter parameter[n_part] (§10.1) will be used in place of n_particle
if n_particle has a value of 0.
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sig_z are the strong beam’s longitudinal sigma. The strong beam is divided up into n_slice equal
charge (not equal thickness) slices. Propagation through the strong beam involves a kick at the charge
center of each slice with propagation between slice centers. A solenoid field can be set for the regions
in between the slice centers. The kicks are calculated using the standard Bassetti–Erskine complex
error function formula[Talman87]. Even though the strong beam can have a finite sig_z, the length of
the beambeam element is zero. This is achieved by propagating a particle at the beginning and at the
end of tracking so that the longitudinal starting point and ending points are at the beambeam element.
Documentation of how a particle is tracked through a beambeam element is given in §25.5.

The ks and bs_field parameters are the normalized and unnormalized solenoid strengths (§5.2) related
through Eq. (17.3). If the beambeam element is superimposed on top of a solenoid, the beambeam
element will inherit the solenoid field strength from the solenoid element instead.

The strong beam Twiss parameters beta_a_strong, beta_b_strong, alpha_a_strong, and alpha_b_strong
are the Twiss parameters of the strong beam at the s-position given by s_twiss_ref. Additionally,
sig_x, sig_y are the transverse sigmas of the strong beam at this point. S_beta_ref is measured rela-
tive to the position of thebeambeam element. If beta_a_strong is zero (the default), the a-mode Twiss
parameters as calculated from the lattice is used. Similarly, if beta_b_strong is zero (the default), the
b-mode Twiss parameters as calculated from the lattice is used. To calculate the sigmas of any given
slice, sig_x and sig_y are extrapolated using the Twiss parameters at s_twiss_ref.

The x_offset, y_offset, and z_offset attributes (§5.6) are used to offset the strong beam. The
x_pitch and y_pitch parameters orient the strong beam with respect to the laboratory coordinate
system. This will be give the beam–beam interaction a crossing angle. The full crossing angle is the
angle of the strong beam (set by x_pitch and y_pitch) with respect to the trajectory of the weak beam
centroid. The weak beam centroid orbit will be the closed orbit if the lattice geometry is closed. If the
lattice geometry is open, the weak beam centroid orbit is determined by the beginning centroid orbit of
the weak beam (which can be program dependent) and details of the lattice between the beginning of
the lattice and the beambeam element.

To curve the strong beam centroid to simulate crabbing, the following parameters can be used:

crab_x1, crab_x2, crab_x3
crab_x4, crab_x5, crab_tilt

If crab_tilt is zero (the default), the strong beam centroid (xc, yc) will have yc zero and

xc(z) = crab_x1 · z + crab_x2 · z2 + crab_x3 · z3 + crab_x4 · z4 + crab_x5 · z5 (4.4)

where positive xc and yc are the same as positive x and positive y for the weak beam and z is the
longitudinal position with respect to the strong beam center with positive z being towards the head
of the strong bunch (and remember that since the strong bunch is going in the opposite direction, the
head of the strong bunch is opposite that of the weak bunch). With a finite crab_tilt, the curvature
is rotated around the z axis as shown in figure 5.2.

The bbi_constant is a measure of the beam–beam interaction strength. It is a dependent variable and
is calculated from the equation

Cbbi = N me re/(2π γ (σx + σy)) (4.5)

In the linear region, near x = y = 0, the beam–beam kick is approximately

kx = −4π xCbbi/σx
ky = −4π y Cbbi/σy (4.6)
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and the linear beam–beam tune shift is

dQx = Cbbi βx/σx

dQy = Cbbi βy/σy

(4.7)

The species_strong and E_tot_strong give the particle species and particle energy of the strong beam.
This is only relevant if the velocity of the strong beam is not equal to the velocity of the weak beam.

The z_crossing parameter sets where the center of the strong beam is relative to the plane of the
beambeam element (the IP) at the time when a weak particle with z = 0 is at the IP. For example, if
tracking is done with radiation damping on, the (weak beam) closed orbit will have a finite phase space
z value at the beambeam element. To have the weak beam and strong beam centers cross the plane of
the beambeam element at the same time, the value of z_crossing should be set to the value of the weak
beam closed orbit z at the IP.

When with absolute time tracking (§25.1) is in use, the repetition_frequency parameter (along with
the z_crossing parameter) is used to calculate the time that the strong bunch crosses the plane of the
beambeam element. Generally, this frequency should be set equal to the fundamental RF frequency or
some harmonic thereof. If this frequency is zero (the default), Bmad will assume that the repetition
frequency is a harmonic of the reference particle oscillation time so that in this case a particle’s phase
space z coordinate will be used.

Example:
bbi: beambeam, sig_x = 3e-3, sig_y = 3e-4, x_offset = 0.05, n_particle = 1.3e9
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4.4 Beginning_Ele

A beginning_ele element, named “BEGINNING”, is placed at the beginning of every branch (§2.2) of
a lattice to mark the start of the branch. The beginning_ele always has element index 0 (§2). The
creation of this beginning_ele element is automatic and it is not permitted to define a lattice with
beginning_ele elements at any other position.

The attributes of the beginning_ele element in the root branch are are generally set using beginning
(§10.4) statements or line parameter (§10.4) statements. [The attributes of other beginning_ele ele-
ments are set solely with line parameter statements.]

If the first element after the beginning_ele element at the start of a branch is reversed (§7.4), the
beginning_ele element will be marked as reversed so that a reflection patch is not needed in this
circumstance.

See §15.6 for a full list of element attributes.
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4.5 Bends: Rbend and Sbend

Rbends and sbends are dipole bends. The difference is that rbend elements use a Cartesian (“rectangular”)
coordinate system to describe the shape of the magnet while sbend elements use a polar (“sector”)
coordinate system.

For any given sbend element it is possible to construct an equivalent rbend element that has the same
shape and vice versa. Given this, and to simplify internal bookkeeping, all rbend elements are converted
to sbend elements when a lattice is read in to a program. In order to preserve the information as to
whether a bend element was originally specified as an sbend or an rbend in the lattice file, all bend
elements have a sub_key parameter which is appropriately set when the lattice is parsed. This sub_key
parameter does not affect tracking and is only used if a new lattice file is generated by the program.

General rbend and sbend attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Is_on 5.14 Field Maps 5.16
Integration settings 6.4 Tracking & transfer map 6
Length 5.13

See §15.7 for a full list of element attributes along with a their units.

Attributes specific to rbend and sbend elements are:
angle = <Real> ! Design bend angle. Dependent var (§5.1).
b_field = <Real> ! Design field strength (= P_0 g / q) (§5.1).
db_field = <Real> ! Actual - Design bending field difference (§5.1).
b_field_tot ! Net field = b_field + db_field. Dependent param (§5.1).
b1_gradient = <Real> ! Quadrupole field strength (§5.1).
b2_gradient = <Real> ! Sextupole field strength (§5.1).
e1, e2 = <Real> ! Face angles.
exact_multipoles = <Switch> ! Curved coordinate correction? off is default.
fint, fintx = <Real> ! Face field integrals.
g = <Real> ! Design bend strength (= 1/rho).
dg = <Real> ! Actual - Design bend strength difference (§5.1).
g_tot ! Net design strength = g + dg Dependent param (§5.1).
h1, h2 = <Real> ! Face curvature.
hgap, hgapx = <Real> ! Pole half gap.
k1 = <Real> ! Quadrupole strength.
k2 = <Real> ! Sextupole strength (§5.1).
l = <Real> ! "Length" of bend. See below.
l_arc = <Real> ! Arc length. For rbends only.
l_chord = <Real> ! Chord length. See §5.13.
l_rectangle = <Real> ! "Rectangular" length.
l_sagitta ! Sagittal length. Dependent param (§5.1).
ptc_field_geometry = <Switch> ! See below. Default is sector.
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Figure 4.1: Coordinate systems for (a) normal (non-reversed)rbend, (b) normal sbend, and (c) reversed
sbend elements. The bends are viewed from “above” (viewed from positive y). Normal bends have g,
angle, and rho all positive. Reversed bends have g, angle, and rho all negative. The face angles e1
and e2 are drawn for reference_pt set to none or center. For (a) and (b), as drawn, the e1 and e2
face angles are both positive. For (c), as drawn, e1 and e2 are both negative. In all cases, L is positive.
Notice that for reversed bends, the x-axis points towards the center of the bend while for normal bends
the x-axis points towards the outside.

ptc_fringe_geometry = <Switch> ! Sec. §5.21.2
rho = <Real> ! Design bend radius. Dependent param (§5.1).
roll = <Real> ! See 5.6.
fiducial_pt = <switch> ! See below. Default is none.
field_master = <T/F> ! See 5.2.

angle
The total design bend angle. A positive angle represents a bend towards negative x values (see
Fig. 16.2).

B_field, dB_field
The B_field parameter is the design magnetic bending field which determines the reference orbit
and the placement of lattice elements downstream from the bend. The dB_field parameter is the
difference between the actual (“total”) field and the design field. Thus:

Actual B-field = B_field + dB_field
See the discussion of g and dg below for more details.

e1, e2
The rotation angle of the entrance pole face is e1 and at the exit face it is e2. Zero e1 and e2
for an rbend gives a rectangular magnet (Fig. 4.1a). Zero e1 and e2 for an sbend gives a wedge
shaped magnet (Fig. 4.1b). An sbend with an e1 = e2 = angle/2 is equivalent to an rbend with
e1 = e2 = 0. This formula holds for both positive and negative angles. For rbend elements,
the above discussion is true if fiducial_pt is set to none or center. If fiducial_pt is set to
entrance_end, then the face angles are measured with respect to the entrace coordinates (s1x1).
If the fiducial_pt is set to exit_end, the face angles are measured with respect to the exit
coordinates (s2, x2). Thus

e1(f_pt=none) = e1(f_pt=entrance_end) - angle/2 = e1(f_pt=exit_end) + angle/2
e2(f_pt=none) = e2(f_pt=entrance_end) + angle/2 = e2(f_pt=exit_end) - angle/2

Note: The correspondence between e1 and e2 and the corresponding parameters used in the SAD
program [SAD] is:

e1(Bmad) = e1(SAD) * angle + ae1(SAD)
e2(Bmad) = e2(SAD) * angle + ae2(SAD)

exact_multipoles
The exact_multipoles switch can be set to one of:
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off ! Default
vertically_pure
horizontally_pure

This switch determines if the multipole fields, both magnetic and electric, and including the k1 and
k2 components, are corrected for the finite curvature of the reference orbit in a bend. See §17.3 for a
discussion of what vertically pure versus horizontally pure means. Setting exact_multipoles
to vertically_pure means that the individual an and bn multipole components are used with the
vertically pure solutions

B =

∞∑
n=0

ï
an
n+ 1

∇ϕrn +
bn

n+ 1
∇ϕin

ò
, E =

∞∑
n=0

ï
aen
n+ 1

∇ϕin +
ben
n+ 1

∇ϕrn
ò

(4.8)

and if exact_multipoles is set to horizontally_pure the horizontally pure solutions ψrn and ψin
are used instead of the vertically pure solutions ϕrn and ϕin.

To use exact multipoles with PTC based tracking (§6), the PTC exact model tracking must be
turned on. That is, in the lattice file set:

ptc_com[exact_model] = T
With exact model tracking, PTC always assumes that multipole coefficient values correspond to
horizontally_pure. In this case, Bmad will convert vertically_pure to horizontally_pure
as needed when passing multipole coefficients to PTC. Note that in the case where PTC is doing
exact model tracking (§6.4) but the exact_multipoles switch is set to off, PTC will still be
treating the multipoles as horizontally_pure even though Bmad tracking will be treating them
as straight line multipoles. Note: If the bend has an associated electric field, PTC will always be
doing exact modeling.

fint, fintx, hgap, hgapx
The field integrals for the entrance pole face is given by the product of the fint and hgap param-
eters with hgap being the half gap between poles at the entrance face

FH1 ≡ FintHgap =

∫
pole

ds
By(s) (By0 −By(s))

2B2
y0

(4.9)

For the exit pole face there is a similar equation using fintx and hgapx which defines FH2. In the
above equation By0 is the field in the interior of the dipole. The values of fint, fintx, hgap, and
hgapx are never used in isolation when tracking. Only the values for FH1 and FH2 matter.

If fint or fintx is given without a value then a value of 0.5 is used. If fint or fintx is not
present, the default value of 0 is used. Note: MAD does not have the fintx and hgapx attributes.
MAD just assumes that the values are the same for the entrance and exit faces. For compatibility
with MAD, if fint is given but fintx is not, then fintx is set equal to fint. Similarly, hgapx
will be set to hgap if hgapx is not given. Note that this setting of fintx or hgapx using the value
of fint or hgap will only be done before lattice expansion (§3.24).

Note: To have an effect, both fint and hgap (or fintx and hgapx) must be non-zero.

Note: The SAD program uses fb1+f1 for the entrance fringe and fb2+f1 for the exit fringe. The
correspondence between the two is
FH1 = fint * hgap = (fb1 + f1) / 12
FH2 = fintx * hgapx = (fb2 + f1) / 12

fint and hgap can be related to the Enge function which is sometimes used to model the fringe
field. The Enge function is of the form

By(s) =
By0

1 + exp[P (s)]
(4.10)
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where
P (s) = C0 + C1 s+ C2 s

2 + C3 s
3 + . . . (4.11)

The C0 term simply shifts where the edge of the bend is. If all the Cn are zero except for C0 and
C1 then

C1 =
1

2Hgap Fint
(4.12)

fiducial_pt
The fiducial_pt parameter sets a fiducial point which can be used to keep the shape of the bend
constant when, in a program, the parameters rho, g, b_field or angle are varied. Varying these
parameters typically happens when doing machine design. Using a fiducial point can be helpful
when designing a machine usin bend magnets that already exist.

The fiducial_pt parameter has four possible settings:
none ! No fiducial point (default).
entrance_end ! The entrance point is the fiducial point.
center ! The center of the reference curve is the fiducial point.
exit_end ! The exit point is the fiducial point.

With fiducial_pt set to none (the default). The bend shape is not held constant. With the other
three settings, the bend shape will be held constant as discussed in §25.8. With fiducial_pt
set to entrance_end, the reference trajectory at the entrance end is held fixed in both position
and orientation with respect to the bend face and g, l and e2, along with the other depdendent
parameters, are adjusted to both give the desired change in what was varied (which is one of rho,
g, b_field or angle) and to keep the shape of the bend unchanged. See Fig. 25.3a. Similarly, if
fiducial_pt is set to center, the center of the reference trajectory is held fixed in both position
and orientation and if fiducial_pt is set to exit_end, the exit point is held fixed in both position
and orientation.

g, dg, rho
The design bending radius which determines the reference coordinate system is rho (see §16.1.1).
g = 1/rho is the curvature function and is proportional to the design dipole magnetic field. g is
related to the design magnetic field B_field via

g =
q

p0
B_field (4.13)

where q is the charge of the reference particle and p0 is the reference momentum. It is important to
keep in mind that changing g will change the design orbit (§16) and hence will move all downstream
lattice elements in space.

The parameter dg is the difference between the actual and the design bending strengths. The
relationship between dg and dB_field is analogous to the relationship between g and B_field in
Eq. (4.13). The actual (“total”) field strength is given by the sum:

Actual g = g + dg
Changing dg leaves the design orbit and the positions of all downstream lattice elements unchanged
but will vary a particle’s orbit. One common mistake when designing lattices is to vary g and not
dg which results in downstream elements moving around. See Sec. §13.2 for an example.

Note: A positive g, which will bend particles and the reference orbit in the −x direction represents
a field of opposite sign as the field due a positive hkick.

h1, h2
The attributes h1 and h2 are the curvature of the entrance and exit pole faces. They are present for
compatibility with MAD but are not yet implemented in terms of tracking and other calculations.
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k1, b1_gradient
The normalized and unnormalized (§5.2) quadrupole strength. See Eqs. (17.2) and (17.3).

k2, b2_gradient
The normalized and unnormalized (§5.2) sextupole strength. See Eqs. (17.2) and (17.3).

l, l_arc, l_chord, l_sagitta
For compatibility with MAD, for an rbend, l is the chord length and not the arc length as it is
for an sbend. After reading in a lattice, Bmad will internally convert all rbends into sbends, and
the l_chord attribute of the created sbend will be set to the input l. The l of the created sbend
will be set to the true path length (see above). Alternatively for an rbend, instead of setting l,
the l_arc attribute can be used to set the true arc length.

For sbend elements, l_chord will be set to the calculated chord length. For both types of bends,
the l_sagitta parameter will be set to the sagitta length (The sagitta is the distance from the
midpoint of the arc to the midpoint of the chord). l_sagitta can be negative and will have the
same sign as the g parameter.

l_rectangle
The l_rectangle parameter is the “rectangular” length defined to be the distance between the
entrance and exit points. The coordinate system used for the calculation is defined by the setting of
fiducial_pt. Fig. 4.1a shows l_rectangle for fiducial_pt set to entrance_end (the coordinate
system corresponds to the entrance coordinate system of the bend). In this case, and in the case
where fiducial_pt is set to exit_end, the rectangular length will be ρ sinα. If fiducial_pt is
set to none or center, l_rectangle is the same as the chord length.

ref_tilt
The ref_tilt attribute rotates a bend about the longitudinal axis at the entrance face of the bend.
A bend with ref_tilt of π/2 and positive g bends the element in the −y direction (“downward”).
See Fig. 16.7. It is important to understand that ref_tilt, unlike the tilt attribute of other
elements, bends both the reference orbit along with the physical element. Note that the MAD
tilt attribute for bends is equivalent to the Bmad ref_tilt. Bends in Bmad do not have a tilt
attribute.

Important! Do not use ref_tilt when doing misalignment studies for a machine. Trying to
misalign a dipole by setting ref_tilt will affect the positions of all downstream elements! Rather,
use the roll parameter.

The difference between rbend and sbend elements is the way the l, e1, and e2 attributes are interpreted.
To ease the bookkeeping burden, after reading in a lattice, Bmad will internally convert all rbends into
sbends. This is done using the following transformation on rbends:

l_chord(internal) = l(input)
l(internal) = 2 * asin(l_chord * g / 2) / g
e1(internal) = e1(input) + theta / 2
e2(internal) = e2(input) + theta / 2

The attributes g, angle, and l are mutually dependent. If any two are specified for an element Bmad
will calculate the appropriate value for the third. After reading in a lattice, angle is considered the
dependent variable so if l or g is veried, the value of angle will be set to g * l. if theta is varied, l
will be set accordingly.

Since internally all rbends are converted to sbends, if one wants to vary the g attribute of a bend and
still keep the bend rectangular, an overlay (§4.40) can be constructed to maintain the proper face angles.
For example:
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l_ch = 0.54
g_in = 1.52
l_coef = asin(l_ch * g_in / 2) / g_in
my_bend: rbend, l = l_ch, g = g_in
my_overlay: overlay = {my_bend, my_bend[e1]:l_coef, my_bend[e2]:l_coef},

var = {g}, g = g_in

Notice that l_coef is just arc_length/2.

In the local coordinate system (§16.1.1), looking from “above” (bend viewed from positive y), and with
ref_tilt = 0, a positive angle represents a particle rotating clockwise. In this case. g will also be
positive. For counterclockwise rotation, both angle and g will be negative but the length l is always
positive. Also, looking from above, a positive e1 represents a clockwise rotation of the entrance face and
a positive e2 represents a counterclockwise rotation of the exit face. This is true irregardless of the sign
of angle and g. Also it is always the case that the pole faces will be parallel when

e1 + e2 = angle

Example bend specification:
b03w: sbend, l = 0.6, k1 = 0.003, fint ! gives fint = fintx = 0.5

ptc_field_geometry determines what reference coordinates PTC uses within a bend for calculating
higher order fields. This only affects tracking if PTC is being used and if ptc_com[exact_model] is set
to True (§11.4). Possible values for ptc_field_geometry are:

sector ! Default
straight

For sector reference coordinates, the field coordinate reference frame is with respect to the arc of
the reference trajectory. For straight coordinates the coordinate reference frame is with respect to the
chord line. For a bend where there are no other fields besides the basic dipole field, tracking is essentially
unaffected.1 When there are quadrupole or higher order fields, the fields are centered about the reference
frame set by ptc_field_geometry. Since Bmad based tracking does not implement straight geometry
tracking, Bmad and PTC tracking will show marked differences when ptc_field_geometry is set to
straight.

1There will be a small difference due to the fact that with a straight geometry tracking uses a coordinate system with
the z-axis along the chord and with a sector geometry an integration step uses the curvilinear coordinate system with the
z-axis along the arc of the bend. If the length of an integration step is made small, this difference will go to zero.
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4.6 Capillary

A capillary element is a glass tube that is used to focus x-ray beams.

General capillary attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, Pitches & Tilt 5.6
Capillary Wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Tracking & transfer map 6
Description strings 5.3

See §15.9 for a full list of element attributes along with a their units.

Attributes specific to a capillary element are:
critical_angle_factor = <Real> ! Critical angle * Energy (rad * eV)

The critical angle above which photons striking the capillary surface are refracted into the capillary mate-
rial scales as 1/Energy. The constant of critical angle * energy is given by the critical_angle_factor.

The inside wall of a capillary is defined using the same syntax used to define the chamber wall for other
elements (§5.12).

The length of the capillary is a dependent variable and is given by the value of s of the last wall
cross-section (§5.12.4).
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4.7 Collimators: Ecollimator and Rcollimator

An ecollimator is a drift with elliptic collimation. An rcollimator is a drift with rectangular colli-
mation.

Alternatively, for defining a collimator with an arbitrary shape, a mask element (§4.33) may be used.

General ecollimator and rcollimator attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, Pitches & Tilt 5.6
Chamber wall 5.12 Overlapping Fields 5.18
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

Attributes specific to a capillary element are:
px_aperture_width2 = <real> ! px aperture half width
px_aperture_center = <real> ! px aperture center
py_aperture_width2 = <real> ! py aperture half width
py_aperture_center = <real> ! py aperture center
z_aperture_width2 = <real> ! z aperture half width
z_aperture_center = <real> ! z aperture center
pz_aperture_width2 = <real> ! pz aperture half width
pz_aperture_center = <real> ! pz aperture center

Note: Collimators are the exception to the rule that the aperture is independent of any tilts. See §5.8
for more details. Additionally, the default setting of offset_moves_aperture is True for collimators
(§5.8.1).

Besides the standard aperture settings 5.8 that can be used to limit x and y phase space coordinates,
collimators can be used to limit the other four phase space coordinates as well. For rcollimator
elements, particles are collimated if px_aperture_width2 is greater than zero and

px < px_aperture_center - px_aperture_width2 or
px > px_aperture_center + px_aperture_width2

with similar equations for py, z, and pz. For ecollimator elements, if px_aperture_width2 and
py_aperture_width2 are both nonzero, particles are collimated if

((px - px_aperture_center) / px_aperture_width2)^2 +
((py - py_aperture_center) / py_aperture_width2)^2 < 1

If one or both of px_aperture_width2 or py_aperture_width2 are zero, the computation is the same
as for an rcollimator. A similar situation occurs for z and pz.

Example:
d21: ecollimator, l = 4.5, x_limit = 0.09, y_limit = 0.05,

px_aperture_width2 = 0.3, py_aperture_width = 0.1
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4.8 Converter

A converter element represents a target (plate) onto which particles are slammed in order to generate
particles of a different type. For example, a tungsten plate which is bombarded with electrons to generate
positrons.

General custom attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Length 5.13
Custom Attributes 3.9 Offsets, pitches & tilt 5.6
Description strings 5.3 Reference energy 5.5
Integration settings 6.4 Superposition 8

Tracking & transfer map 6

The attributes specific to an converter are
distribution = <Struct> ! Outgoing particle distribution.
pc_out_min = <Real> ! Minimum outgoing particle momentum (eV).
pc_out_max = <Real> ! Maximum outgoing particle momentum (eV).
angle_out_max = <Real> ! Maximum outgoing angle.
species_out = <SpeciesID> ! Output species.
p0c = <Real> ! Output ref momentum.
E_tot = <Real> ! Output ref energy. Dependent var (§5.1).

The species of the outgoing particles is specified by the species_out parameter (§3.11).

The converter must be the last element in a lattice branch (§2.2) except for possible fork, photon_fork
or marker elements. A fork or photon_fork element (§4.22) after the converter is used to connect to
the line containing the elements that come after the converter Example:

parameter[particle] = electron
parameter[geometry] = open
to_after: fork, to_line = after_cvter
cvter, species_out = positron, p0c = 3e6, distribution = ...
pre_linac: line = (..., cvter, to_after)
after_cvter: line = (...) ! Everything after the converter.
after_cvter[beta_a] = 27; after_cvter[beta_b] = 32
use, pre_linac

The line up to the fork element, pre_linac, has the converter just before the fork element. The fork
element, called to_after, connects to the line named after_cvter which contains all the elements
after the converter. The reference particle and reference momentum for the after_cvter line is set to
positron and 3e6 respectively to agree with the setting of species_out and p0c set in the converter
element.

Since Bmad cannot calculate the appropriate Twiss and dispersion values after the converter, values
must be set in the lattice file. Thus, in the above example, the starting beta function at the beginning
of the after_cvter line is set to be βa = 27 m and βb = 32 m.

The p0c and E_tot attributes of the converter set the reference momentum or energy at the exit end of
the converter. At least one of these attributes must be set. If both are set, E_tot is calculated to be
consistent with p0c.

The distribution parameter of a converter element specifies the distribution of outgoing particles
for a given converter thickness. Multiple distribution instances with differing thicknesses may be



4.8. CONVERTER 79

present in an element. The actual thickness of the converter will be taken to be the element’s, length L
parameter. During tracking, the outgoing distribution will be computed by interpolating between the two
distributions that bracket the actual thickness. The exception is when there is only onedistribution
present. In this case, the calculation will just use that distribution for the calculation independent of
the element length. Example:
cvter: converter, ..., distribution = {

material = tungsten, ! Optional. Not used in tracking.
thickness = 0.003, ! Converter thickness for this distribution.
sub_distribution = {...}, ! Distribution at one incoming momentum.
sub_distribution = {...}, ! Distribution at another incoming momentum.
... ! etc.

}
The material component is optional and is only for recording the converter material. Each distribution
is made up of a number of sub_distribution components. Each one specified the outgoing distribution
for a given incoming particle momentum. During tracking, interpolation is used to compute the distri-
bution appropriate for an incoming particle with a given momentum. It is an error in the momentum
of the incoming particle is outside the range of the momentums specified in the sub_distributions. A
given sub_distribution will look like:

sub_distribution = {
pc_in = 3e8, ! Incoming momentum*c (eV)>
prob_pc_r = {...}, ! Momentum and radius probability table
direction_out = {...}, ! Momentum orientation probability coefs

}
A sub_distribution has three components: The pc_in component specifies the incoming particle
momentum appropriate for the sub_distribution, the prob_pc_r component holds a two-dimensional
table of the probability P (pout, r) (Eq. (25.65)), and direction_out holds the coefficients for calculating
the outgoing particle direction. prob_pc_r look like:

prob_pc_r = {
r_values = [0.0, 4.9e-5, 1.25e-4, ...],
row = {pc_out = 1.55e6, prob = [0.0, 6.1e-6, 1.23e-5, ...]},
row = {pc_out = 3.96e6, prob = [0.0, 1.1e-5, ...]},
... ! More rows

}
A probl_pc_r has one r_values component and multiple row components. The r_values component
is a vector of radius values for the columns of the probability table. The value for the first column is
always zero and the radius values are strictly increasing. Each row component represents one row of the
table. Each row has a momentum value pc_out in eV along with a prob component which is a vector
of probability values. The length of a prob vector is always equal to the length of the r_values vector
which is the number of columns in the table. The probability value of the first column is always zero
which reflects the fact that there is vanishing area in an annulus of width dr as r tends to zero.

The direction_out component of sub_distribution look like:
direction_out = {

c_x = {...},
alpha_x = {...},
alpha_y = {...},
beta = {...},
dxds_min = {...},
dxds_max = {...},
dyds_max = {...}

}
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The c_x, alpha_x, alpha_y, and beta, components of direction_out give the coefficients for calculating
cx, αx, αy, and β respectively in Eq. (25.70). The other three components give, dxds_min, dxds_max,
and dyds_max give the range for x′ and y′ over which Eq. (25.70) is valid. By symmetry, dyds_min will
be equal to -dydx_max. The form of all these components is similar. For example:

dxds_min = {
fit_1d_r = {pc_out = 1.5e+06, poly = [-2.48, -658.4, -2.26e5, 1.71e+8]},
fit_1d_r = {pc_out = 3.9e+06, poly = [...]},
...,
C = 2.99394,
fit_2d_pc = {k = 1.96e-8, poly = [1.0, -4.10e-10, 3.7e-16, 2.77e-27]},
fit_2d_r = {k = 4.2e-4, poly = [-4.50, 400.2, -108985, 9.18e+06]},

}

Here there are multiple fit_1d_r components, one for each fit Γi fit function (Eq. (25.72)). The pc_out
sub-component of a fit_1d_r component gives the momentum pi at which the fit function fits the data
and the poly sub-component of fit_1d_r gives the polynomial coefficients needed for Eq. (25.72). The
C, fit_2d_pc and fit_2d_r components are used for computing Ξ (Eq. (25.73)). The k sub-components
of fit_2d_pc and fit_2d_r give kp and kr respectively in Eq. (25.73) and the poly sub-components of
fit_2d_pc and fit_2d_r give the polynomial coefficients wn and kn respectively.

To calculate the distributions and output the appropriate distribution structures which then can be
incorporated into a Bmad lattice, there is modeling code that is distributed with Bmad. Specifically, it
is in the directory

$ACC_ROOT_DIR/util_programs/converter_element_modeling

[See your local Bmad Guru if you don’t know how to find this directory.] There is documentation for
running the program in this directory. The distribution modeling is based upon the Geant simulation
toolkit for the simulation of the passage of particles through matter.

The mechanics of how Bmad generates outgoing particles is discussed in Sec. §25.9. In a tracking
simulation, a single outgoing particle is generated for each incoming particle. All outgoing particles will
be assigned a weight that represent how many actual outgoing particles a single actual incoming particle
will generate. For example, if an actual incoming particle with a particular momentum would generate,
on average, 0.42 particles, the outgoing particle in the simulation will have a weight of 0.42. To make
simulations more efficient, the pc_out_min, pc_out_max, and angle_out_max parameters can be set to
restrict the momentum and angle range of outgoing particles. If the outgoing particles are restricted
in momentum or angle, the weight of the outgoing particles will be appropriately adjusted such that
the weighted distribution of outgoing particles within the momentum and/or angle restricted range is
independent of the whether or not there is are restrictions. A value of zero (the default) for any one of
these parameters means that that parameter is ignored.
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4.9 Crab_Cavity

A crab_cavity is an RF cavity that gives a z-dependent kick. This is useful in colliding beam machines,
where there is a finite crossing angle at the interaction point, to rotate the beams near the IP.

General crab_cavity attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Length 5.13
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6

See §15.12 for a full list of element attributes along with a their units.

The attributes specific to an crab_cavity are
gradient = <Real> ! Accelerating gradient (V/m).
phi0 = <Real> ! Phase (rad/2π) of the reference particle with

! respect to the RF. phi0 = 0 is on crest.
phi0_multipass = <Real> ! Phase (rad/2π) with respect to a multipass lord (§9).
rf_frequency = <Real> ! RF frequency (Hz).
harmon = <Real> ! Harmonic number
harmon_master = <Logic> ! Is harmon or rf_frequency the dependent var with ref energy changes?
voltage ! Cavity voltage. Dependent attribute (§5.1).

The Hamiltonian Hcrab for a thin crab cavity is[Sun10]:

Hcrab = −rq V x sin(k t+ 2π ϕ0) (4.14)

where x and z are particle coordinates, rq is the charge relative to the reference particle, V is the
“effective” cavity voltage, ϕ0 is a user settable phase, and k is the wave number

k =
2π frf
c

(4.15)

Which give kicks of

∆px = − 1

c P0

∂Hcrab

∂x
=
rq V

cP0
sin(k t+ 2π ϕ0)

∆E = −∂Hcrab

∂t
= rq V k x cos(k t+ 2π ϕ0) (4.16)

Note: The sign of Hcrab used by Authors in the literature is not standardized. Bmad uses the convention
such that a particle with the charge of the reference particle and with z and V positive will have a positive
∆px.

In the above equations rq is the relative charge between the reference particle (set by the parameter[particle]
parameter in a lattice file) and the particle being tracked through the cavity. For example, if the refer-
ence particle and and the tracked particle are the same, rq is unity independent of the type of particle
tracked.
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The equations of motion can also be derived from analysis of a TM110 cavity mode for particles near the
centerline[Kim11]. With this mode, the transverse kick is due to the magnetic field and the longitudinal
kick is due to the electric field. Using this, the integrated electric and magnetic fields needed for spin
tracking are: ∫

By =
−V
c

sin(k z + 2π ϕ0)∫
Es = β V k x cos(k z + 2π ϕ0) (4.17)

where β = v/c is the normalized speed of the particle.
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4.10 Crystal

A crystal element represents a crystal used for photon diffraction.

General crystal attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Surface Properties 5.11
Custom Attributes 3.9 Symplectify 6.7
Description strings 5.3 Offsets, Pitches & Tilt 5.6
Reference energy 5.5 Tracking & transfer map 6
Reflection tables 5.10

See §15.13 for a full list of element attributes along with a their units.

Attributes specific to a crystal element are:
b_param = <Real> ! b parameter for photons with the reference energy.
crystal_type = <String> ! Crystal material (§5.9) and reflection plane.
psi_angle = <Real> ! Rotation of H-vector about the surface normal.
thickness = <Real> ! Thickness of crystal for Laue diffraction.
ref_orbit_follows = <which_beam> ! Reference orbit aligned with what outgoing beam?
graze_angle_in = <Real> ! Angle between incoming ref orbit and surface.
graze_angle_out = <Real> ! Angle between outgoing ref orbit and surface.

Dependent variables (§5.1) specific to a crystal element are:
alpha_angle ! Angle of H-vector with respect to the surface normal.
bragg_angle ! Nominal Bragg angle at the reference wave length.
bragg_angle_in ! Incoming grazing angle for Bragg diffraction.
bragg_angle_out ! Outgoing grazing angle for Bragg diffraction.
d_spacing ! Lattice plane spacing.
darwin_width_pi ! Darwin width for pi polarized light (radians).
darwin_width_sigma ! Darwin width for sigma polarized light (radians).
dbragg_angle_de ! Variation of the Bragg angle with energy (radians/eV).
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Figure 4.2: Crystal element geometry. A) Geometry for Bragg diffraction. The geometry shown is for
ref_tilt = 0 (reference trajectory in the x-z plane). The angle αH (alpha_angle) is the angle of the H
vector with respect to the surface normal n̂. For ψ (psi_angle) zero, the incoming reference orbit, the
outgoing reference orbit, n̂, and H are all coplanar. B) Geometry for Laue diffraction. In this case there
are three outgoing beams: The Bragg diffracted beam, the forward diffracted beam, and the undiffracted
beam.
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l ! Length of reference orbit.
pendellosung_period_pi ! Pendellosung period for pi polarized light.
pendellosung_period_sigma ! Pendellosung period for sigma polarized light.
ref_wavelength ! Reference wavelength (§5.5). Dependent attribute (§5.1).
ref_cap_gamma ! Γ at the reference wavelength.
tilt_corr ! Tilt correction due to a finite psi_angle.
v_unitcell ! Unit cell volume.

The crystal_type attribute defines the crystal material and diffraction lattice plane. The syntax is
"ZZZ(ijk)" where ZZZ is the material name and ijk are the Miller indices for the diffraction plane. For
example,

b_cryst1: crystal, crystal_type = "Si(111)", b_param = -1, ...
The atomic formula is case sensitive so, for example, "SI(111)" is not acceptable. The list of known crys-
tal materials is given in §5.9. Given the crystal_type, the spacing between lattice planes (d_spacing),
the unit cell volume (v_unitcell), and the structure factor[Bater64] values can be computed.

The b_param is the standard b asymmetry factor

b =
sin(αH + θB)

sin(αH − θB)
(4.18)

where θB is the Bragg angle (bragg_angle)

θB = sin−1

Å
λ

2 d

ã
(4.19)

and αH (alpha_angle) is the angle of the reciprocal lattice H vector with respect to the surface normal
as shown in Fig. 4.2A. If b_param is set to -1 then there is Bragg reflection and alpha_H is zero. If
b_param is set to 1 then there is Laue diffraction again with alpha_H zero. With the orientation shown
in Fig. 4.2A, alpha_H is positive.

The ref_orbit_follows parameter sets how the outgoing reference orbit is constructed. This is only
relevant with Laue diffraction. The possible settings of this parameter are:

bragg_diffracted ! Default
forward_diffracted
undiffracted

The geometry of this situation is shown in Fig. 4.2B. The reference orbit for the undiffracted beam
is just a straight line extension of the incoming reference trajectory. This trajectory is that trajectory
that photons whose energy is far from the Bragg condition (that is, far from the reference energy) will
follow. The forward_diffracted reference orbit is parallel to the undiffracted trajectory and is the
trajectory of the forward diffracted photons whose energy is the reference energy and whose incoming
orbit is on the incoming reference trajectory. Finally, the bragg_diffracted reference orbit (the default)
is the backward diffracted orbit.

Note: Changing the setting of ref_orbit_follows will change the reference orbit downstream of the
crystal which, in turn, will change the placement all downstream elements.

The value of the element reference orbit length l is calculated by Bmad. L will be zero for Bragg diffrac-
tion. For Laue diffraction, l will depend upon the crystal thickness and the setting of ref_orbit_follows.

If psi_angle is zero, the incoming reference orbit, the outgoing reference orbit, n̂ and H are all coplanar.
A non-zero psi_angle Rotates the H vector around the +x̂ axis of the Element Reference Frame (See
Fig. 4.2A).

To keep the outgoing reference trajectory independent of the value of psi_angle, the crystal will be
automatically tilted by the appropriate “tilt correction” tilt_corr. The calculation of tilt_corr is
outlined in §26.4.2. tilt_corr will be zero if psi_angle is zero.
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The reference trajectory for a Bragg crystal is that of a zero length bend (§16.2.3) and hence the length
(l) parameter of a crystal is fixed at zero. If the graze_angle_in and graze_angle_out angles are zero
(the default), the orientation of the reference trajectory with respect to the crystal surface is specified by
the incoming Bragg angle bragg_angle_in (θg,in) and outgoing Bragg angle bragg_angle_out (θg,out)
as shown in Fig. 4.2A. These angles are computed from the photon reference energy and the other crystal
parameters such that a photon with the reference energy traveling along the reference trajectory will be
in the center of the Darwin curve (§26.4). It is sometimes convenient to be able to specify the angles
that the reference trajectory makes with respect to the crystal independent of the Bragg angles. To do
this, set graze_angle_in and graze_angle_out to the desired angles.

Notice that due to refraction at the surface, the computed bragg_angle from Eq. (4.19) will deviate
slightly from the average of bragg_angle_in and bragg_angle_out.

The reference trajectory in the global coordinate system (§16.2) is determined by the value of the
ref_tilt parameter along with the value of bragg_angle_in + bragg_angle_out. These bragg angles
take into account refraction so that the reference trajectory downstream of the crystal will be properly
centered with respect to the reference photon. A positive bragg_angle_in + bragg_angle_out bends
the reference trajectory in the same direction as a positive g for a bend element. The

A crystal may be offset and pitched (5.6). The incoming local reference coordinates are used for these
misalignments.

When a crystal is bent (§5.11), the H vector is assumed follow the surface curvature. That is, it is
assumed that the lattice planes are curved by the bending.

Example:
crystal_ele: crystal, crystal_type = "Si(111)", b_param = -1

The darwin_width_sigma and darwin_width_pi parameters are the computed Darwin width, in radi-
ans, for sigma and pi polarized light respectively. Here the Darwin width dθD is defined as the width at
the η = ±1 points (cf. Batterman[Bater64] Eq (32))

dθD =
2Γ |P |Re

(
[FH FH ]1/2

)
|b|1/2 sin θtot

(4.20)

where
θtot = bragg_angle_in + bragg_angle_out

The pendellosung_period_sigma and pendellosung_period_pi are the pendellosung periods for Laue
diffraction. If the crystal is set up for Bragg diffraction then the values for these parameters will be set
to zero.

The dbragg_angle_de parameter is the variation in Bragg angle with respect to the photon energy and
is given by the formula

dθB
dE

= − λ

2 dE cos(θB)
(4.21)

See Section §13.5 for an example lattice that can be used to simulate a Rowland circle spectrometer.
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4.11 Custom

A custom element is an element whose properties are defined outside of the standard Bmad subroutine
library. That is, to use a custom element, some programmer must write the appropriate custom routines
which are then linked with the Bmad subroutines into a program. Bmad will call the custom routines at
the appropriate time to do tracking, transfer matrix calculations, etc. See the programmer who wrote
the custom routines for more details! See §37.2 on how to write custom routines.

General custom attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Length 5.13
Custom Attributes 3.9 Offsets, pitches & tilt 5.6
Description strings 5.3 Reference energy 5.5
Field Maps 5.16 Superposition 8
Fringe fields 5.21 Symplectify 6.7
Integration settings 6.4 Tracking & transfer map 6

See §15.14 for a full list of element attributes along with a their units.

As an alternative to defining a custom element, standard elements can be “customized” by setting one
or more of the following attributes to custom:

tracking_method §6.1
mat6_calc_method §6.2
field_calc §6.4
aperture_type §5.8

As with a custom element, setting one of these attributes to custom necessitates the use of custom code
to implement the corresponding calculation.

Attributes specific to a custom element are
val1, ..., val12 = <Real> ! Custom values
delta_e_ref = <Real> ! Change in energy.

delta_e_ref is the energy gain of the reference particle between the starting edge of the element and
the ending edge.

Example:
c1: custom, l = 3, val4 = 5.6, val12 = 0.9, descrip = "params.dat"

In this example the descrip string is being used to specify a file that contains parameters for the element.
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4.12 Detector

A detector element is used to detect particles and X-rays. A detector is modeled as a grid of pixels
which detect particles and x-rays impinging upon them.

General detector element attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber Wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6
Detector Geometry 5.11.1

See §15.15 for a full list of element attributes along with a their units.

Attributes specific to a detector element are:
pixel = {...} ! Define detector pixel grid.

The detector pixels are are arranged in a rectangular grid. The general syntax for defining a detector
pixel grid is

pixel = {
ix_bounds = (<ix_min>, <ix_max>), ! Min/max index bounds in x-direction
iy_bounds = (<iy_min>, <iy_max>), ! Min/max index bounds in y-direction
r0 = (<x0>, <y0>), ! (x,y) coordinates at grid origin
dr = (<dx>, <dy>) ! Spacing between grid points.

}

See Sec. §5.11.1 for an explanation of the various pixel parameters.

Example:
det: detector, pixels =

{ix_bounds = (-4,5), iy_bounds = (-10,10), dr = (0.01, 0.01)}

This example defines a detector with 1 cm x 1 cm pixels.

The aperture_type (§5.8) parameter of a detector will default to auto which will set the aperture
limits to define a rectangular aperture that just cover the area of the pixel grid.

A curved detector can be constructed by setting the appropriate surface curvature parameters (§5.11). It
is assumed that any curvature is only in one dimension (x or y). This allows a straight forward mapping
of the rectangular pixel grid onto the curved surface.
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4.13 Diffraction_Plate

A diffraction_plate element is a flat surface oriented, more or less, transversely to a x-ray beam
through which photon can travel. A diffraction_plate can be used, for example, to model a Fresnel
zone plate or Young’s double slits. A diffraction_plate element is used in places where diffraction
effects must be taken into account. This is in contrast to setting an aperture attribute (§5.8) for other
elements where diffraction effects are ignored.

A diffraction_plate element is similar to a mask (§4.33) element except that with a mask element
coherent effects are ignored. Additionally, a mask element can be used with charged particles while a
diffraction_plate cannot.

General diffraction_plate element attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Mask geometry 5.12
Description strings 5.3 Reference energy 5.5
Is_on 5.14 Tracking & transfer map 6

See §15.16 for a full list of element attributes along with a their units.

Attributes specific to a diffraction_plate element are:
mode = <Type> ! Reflection or transmission
field_scale_factor = <Real> ! Factor to scale the photon field
ref_wavelength ! Reference wavelength (§5.5). Dependent attribute (§5.1).

The mode switch sets whether X-rays are transmitted through the diffraction_plate or or reflected.
Possible values for the mode switch are:

reflection
transmission ! Default

The geometry of the plate, that is, where the openings (in transmission mode) or reflection regions are,
is defined using the “wall” attribute. See (§5.12) for more details.

In transmission mode, a diffraction_plate is nominally orientated transversely to the beam. Like all
other elements, the diffraction_plate can be reoriented using the element’s offsets, pitches and tilt
attributes (§5.6).

The aperture_type (§5.8) parameter of a diffraction_plate will default to auto which will set the
aperture limits to define a rectangular aperture that just cover the clear area of the plate.

The field_scale_factor, if set to a non-zero value (zero is the default) will be used to scale the field
of photons as they pass through the diffraction_plate element:

field -> field * field_scale_factor
Scaling is useful since the electric field of photons traveling through a diffraction_plate are renor-
malized (see Eqs. (26.10) and (26.11)). This can lead to large variation of the photon field and can, for
example, make visual interpretation of plots of field verses longitudinal position difficult to interpret.
field_scale_factor can be used to keep the field more or less constant.

A diffraction_plate that is “turned off” (is_on attribute set to False), does not diffract at all and
transmits through all the light incident on it.

Example:
fresnel: diffraction_plate, wall = {...}
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4.14 Drift

A drift element is a space free and clear of any fields.

General drift attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Symplectify 6.7
Length 5.13 Tracking & transfer map 6

See §15.17 for a full list of element attributes along with a their units.

Example:
d21: drift, l = 4.5

Note: If a chamber wall (§5.12) is needed for a field free space, use a pipe element instead of a drift
[a wall for a drift is not allowed due to the way drifts are treated with superposition. That is, drifts
“disappear” when superimposed upon. (§8)].
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4.15 E_Gun

An e_gun element represents an electron gun and encompasses a region starting from the cathode were
the electrons are generated. General e_gun attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Length 5.13
Chamber wall 5.12 Mag & Elec multipoles 5.15
Custom attributes 3.9 Offsets, pitches & tilt 5.6
Description strings 5.3 Overlapping Fields 5.18
Field autoscaling 5.19 Reference energy 5.5
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6

See §15.20 for a full list of element attributes along with a their units.

The attributes specific to an e_gun are
gradient = <Real> ! Gradient.
gradient_err = <Real> ! Gradient error.
gradient_tot ! Net gradient = gradient + gradient_err. Dependent param (§5.1).
phi0 = <Real> ! Phase (rad/2π) of the reference particle with

! respect to the RF. phi0 = 0 is on crest.
phi0_err = <Real> ! Phase error (rad/2π)
rf_frequency = <Real> ! Frequency of the RF field.
voltage = <Real> ! Voltage. Dependent attribute (§5.1).
voltage_err = <Real> ! Voltage error. Dependent attribute (§5.1).
voltage_tot ! Net voltage = voltage + voltage_err. Dependent param (§5.1).

The voltage is simply related to the gradient via the element length l:
voltage = gradient * l

If the voltage is set to a non-zero value, the length l must also be non-zero to keep the gradient finite.
A particle with the charge as the reference particle will have a positive energy gain if the voltage and
gradient are positive and vice versa.

field_autoscale The voltage and gradient are scaled by field_autoscale and, if there is a finite
rf_frequency, the phase of the frequency is shifted by phi0_autoscale as discussed in Section §5.19.
Autoscaling can be toggled on/off by using the autoscale_phase and autoscale_amplitude toggles.

An e_gun may either be DC if the rf_frequency component is zero of AC if not. For an AC e_gun, the
phase of the e_gun, The phase ϕref is
ϕref = phi0 + phi0_err + phi0_autoscale

Electrons generated at the cathode can have zero initial momentum and this presents a special problem
(§5.5). As a result, the use of e_gun elements are restricted and they can only be used in a “linear”
(non-recirculating) lattice branch. Only one e_gun can be present in a lattice branch and, if it is present,
it must be, except for possibly marker or null_ele elements, the first element in any branch.

Note: In order to be able to avoid problems with a zero reference momentum at the beginning of the
e_gun, the reference momentum and energy associated with an e_gun element (§16.4.1) is calculated as
outlined in Section §5.5. Additionally, the reference momentum at the exit end of the e_gun, that is
p0c, must be non-zero. Thus, for example, if p0c is zero at the start of the lattice, the e_gun voltage
must be non-zero.
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Additionally, in order to be able to avoid problems with a zero reference momentum at the beginning of
the e_gun, absolute time tracking (§25.1) is always used in an e_gun element independent of the setting
of bmad_com[absolute_time_tracking] (§11.2).

Note: The default tracking_method (§6.1) setting for an e_gun is time_runge_kutta and the default
mat6_calc_method is tracking.

In this example the field of an e_gun is given by a grid of field values (§5.16.4):
apex: e_gun, l = 0.23, field_calc = fieldmap, rf_frequency = 187e6,

grid_field = call::apex_gun_grid.bmad

with the file apex_gun_grid.bmad being:
{

m = 0, harmonic = 1,
master_scale = voltage,
geometry = rotationally_symmetric_rz,
r0 = (0, 0),
dr = (0.001, 0.001),
pt(0,0) = ( (0, 0), (0, 0), (1, 0), (0, 0), (0, 0), (0, 0)),
pt(0,1) = ( (0, 0), (0, 0), (0.99, 0), (0, 0), (0, 0), (0, 0)),
... }
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4.16 ELseparator

An elseparator is an electrostatic separator.

General elseparator attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.18 for a full list of element attributes along with a their units.

Attributes specific to an elseparator element are:
gap = <Real> ! Distance between electrodes
voltage ! Voltage between electrodes. This is a settable dependent variable (§5.1).
e_field ! Electric field. This is a settable dependent variable (§5.1).

For an elseparator, the kick for a positively charged particle, with the magnitude of the charge that is
the same as that of the reference particle (set by parameter[particle] §10.1), is determined by hkick
and vkick. The kick for a negatively charged particle is opposite this. The gap for an Elseparator is
used to compute the voltage for a given kick

e_field (V/m) = sqrt(hkick^2 + vkick^2) * P0 * c_light / L
voltage (V) = e_field * gap

Specifying a e_field or voltage with no tilt results in a vertical kick.

Examples:
h_sep1: elsep, l = 4.5, hkick = 0.003, gap = 0.11
h_sep2: elsep, l = 4.5, e_field = 1e5, tilt = pi/2
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4.17 EM_Field

An em_field element can contain general electro-magnetic (EM) fields. Both AC and DC fields are
accommodated. General em_field attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Length 5.13
Custom Attributes 3.9 Offsets, pitches & tilt 5.6
Description strings 5.3 Reference energy 5.5
Field Maps 5.16 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Tracking & transfer map 6

See §15.19 for a full list of element attributes along with a their units.

Attributes specific to an em_field element are:
constant_ref_energy = <Logical> ! Is the reference energy constant? Default = True.
polarity = <Real> ! For scaling the field.

The polarity value is used to scale the magnetic field. By default, polarity has a value of 1.0. Example:

wig1: wiggler, l = 1.6, polarity = -1, cartesian_map = {...}

If the constant_ref_energy logical is set to True (the default), the reference energy (§16.4.1) at the
exit end of the element is set equal to the entrance end reference energy. This is the same behavior for
most other elements. If the constant_ref_energy logical is set to False, the reference energy at the
exit end is calculated like it is in a lcavity or e_gun element.

Note: em_field elements will be created when elements are superimposed (§8) and there is no other
suitable element class.



94 CHAPTER 4. LATTICE ELEMENTS

4.18 Feedback

A feedback element is a lord element with two types of slaves called the input slaves and output slaves.
The feedback element gathers information about particle trajectories from the input slaves and uses this
to either adjust beam trajectories in the output slaves and/or adjust parameters in the output slaves.
A feedback element could be used, for example, to simulate RF feedback systems or beam position
feedback, or cooling of a proton beam by a beam of electrons.

General feedback element attributes are:

Attribute Class Section Attribute Class Section

Custom Attributes 3.9 Description strings 5.3

See §15.21 for a full list of element attributes along with a their units.

NOTE! 2024/3 The feedback element is currently under development so changes can be expected in
the future.

Attributes specific to a feedback element are:
input_ele = <list> ! Lattice element(s) feedback element gets information from
output_ele = <list> ! Lattice elements(s) where the feedback element can influence

! particle trajectories or element parameters.

The input_ele parameter defines a list of lattice elements that specify, when tracking particles, where the
feedback element will monitor particle trajectories. The output_ele parameter defines a list of lattice
elements that specify the points at which the feedback element can either modify particle trajectories
and/or modify lattice element parameters.

The <list> of lattice elements uses the standard Bmad name matching conventions as given in §3.6. If
commas are used in the <list>, the list must be enclosed in curly backets {...} to avoid ambiguities.
Curly brackets are optional when commas are not used. Examples:

fff: feedback, input_ele = bpm5,
output_ele = kicker3 ! Single input and output elements.

fe2: feedback, input_ele = {bpm5},
output_ele = rfcavity::* ! Output to all RF cavities.

g7: feedback, input_ele = {mon1, mon2},
output_ele = type::IRQ ! Match to element’s type field.

The set of input_ele and output_ele elements will be minor_slave slaves of the control_lord
feedback element. Like other lord elements (groups, overlays, etc.), particles are never tracked through
a feedback element itself.

Since feedback systems vary greatly in how they work, a generic feedback element is not currently
planned (but could be in the future as more experience is gained developing feedback simulation code).
This being the case, a program must be specifically setup to handle feedback elements. In particular,
feedback elements in a lattice will not affect any calculation when using the Tao program (but Tao can
still be used to inspect feedback elements and their slaves).

Currently, the only program that handles feedback elements is the e_cooling program that is located
in the bsim directory of a Bmad Release (and this program is currently under development and not ready
for doing simulations). A feedback aware program will handle the task of feedback related parameter
setup so the program documentation should be consulted for specifics.
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4.19 Fiducial

A fiducial element is used to fix the position and orientation of the reference orbit within the global
coordinate system at the location of the fiducial element. A fiducial element will affect the global
floor coordinates (§16.2) of elements both upstream and downstream of the fiducial element.

Other elements that are used to shift the lattice in the global coordinate frame are floor_shift (§4.20)
and patch (§4.41).

General fiducial element attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6

See §15.22 for a full list of element attributes along with a their units.

Attributes specific to a fiducial elements are:
origin_ele = <Name> ! Reference element.
origin_ele_ref_pt = <location> ! Reference pt on reference ele.
dx_origin = <Real> ! x-position offset
dy_origin = <Real> ! y-position offset
dz_origin = <Real> ! z-position offset
dtheta_origin = <Real> ! orientation angle offset.
dphi_origin = <Real> ! orientation angle offset.
dpsi_origin = <Real> ! orientation angle offset.

For tracking purposes, the fiducial element is considered to be a zero length marker. That is, the
transfer map through a fiducial element is the unit map.

A fiducial element sets the global floor coordinates (§16.2) of itself and of the elements, both upstream
and downstream, around it. This can be thought of as a two step process. The first step is to determine
the global coordinates of the fiducial element itself, and the second step is to shift the coordinates of
the elements around it. That is, shifting the position of a fiducial element shifts the lattice elements
around it as one solid body.

The floor coordinates of the fiducial element are determined starting with an origin_ele element. If
origin_ele is not specified, the origin of the global coordinates (§16.2 is used. If the origin_ele has a
finite length, the reference point may be chosen using the origin_ele_ref_pt attribute which may be
set to one of

entrance_end
center ! Default
exit_end

Once the origin reference position is determined, the reference position of the fiducial element is
calculated using the offset attributes

[dx_origin, dy_origin, dz_origin]
[dtheta_origin, dphi_origin, dpsi_origin]

The transformation between origin and fiducial positions is given in §16.2.4.

Once the position of the fiducial element is calculated, all elements of the lattice branch the fiducial
element is contained in, both the upstream and downstream elements, are shifted so that everything



96 CHAPTER 4. LATTICE ELEMENTS

is consistent. That is, the fiducial element orients the entire lattice branch. The exception here is
that if there are flexible patch elements (§4.41) in the lattice branch, the fiducial element will only
determine the positions up to the flexible patch element.

Example: A lattice branch with elements 0 through 103 has a fiducial element at position 34 and a
flexible patch at position 67. In this case the fiducial element will determine the reference orbit for
elements 0 through 66.

Rules:

• If an origin_ele is specified, the position of this element must to calculated before the position
of the fiducial element is calculated (§16.1.1). This means, the origin_ele must be in a prior
lattice branch from the branch the fiducial element is in or the origin_ele in the same branch
as the fiducial element but is positioned upstream from the fiducial element and there is a
flexible patch in between the two elements.

• If a fiducial element affects the position of element 0 in the lattice branch (that is, there are
no flexible patch elements in between), any positioning of element 0 via beginning or line
parameter statements (§10.4) are ignored.

• Fiducial elements must not over constrain the lattice geometry. For example, two fiducial
elements may not appear in the same lattice branch unless separated by a flexible patch.

Another example is that if there are no flexible patch elements in the lattice, and if branch A has
a branch element connecting to branch B, the geometry of branch A will be calculated first and
the geometry of branch B can then be calculated from the known coordinates of the fork element.
If branch B contains a fiducial element then this is an error since the coordinate calculation
never backtracks to recalculate the coordinates of the elements of a branch once the calculation
has finished with that branch.

Example:
f1: fiducial, origin_ele = mark1, x_offset = 0.04

See §13.4 for an example where a fiducial element is used to position the second ring in a dual ring
colliding beam machine.
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4.20 Floor_Shift

A floor_shift element shifts the reference orbit in the global coordinate system without affecting
particle tracking. That is, in terms of tracking, a floor_shift element is equivalent to a marker (§4.32)
element.

Also see patch (§4.41) and fiducial (§4.19) elements.

General floor_shift element attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6
Length 5.13

See §15.23 for a full list of element attributes along with a their units.

Attributes specific to a floor_shift elements are:
l = <Real> ! Length
x_offset = <Real> ! x offset from origin point.
y_offset = <Real> ! y offset from origin point.
z_offset = <Real> ! z offset from origin point.
x_pitch = <Real> ! rotation of the reference coords.
y_pitch = <Real> ! rotation of the reference coords.
tilt = <Real> ! rotation of the reference coords.
origin_ele = <Name> ! Reference element.
origin_ele_ref_pt = <location> ! Reference pt on the reference ele.

The floor_shift element sets the reference orbit at the exit end of the floor_shift element as follows:
Start with the reference orbit at the origin_ele reference point (see below). This coordinate system is
shifted using the offset, pitch and tilt parameters of the floor_shift element. The shifted coordinate
system is used as the coordinate system at the exit end of the floor_shift element. The reference
position transformation through a floor_shift element is given in Section §16.2.4. In this respect,
the floor_shift element is similar to the fiducial element. The difference being that the fiducial
element affects the global floor coordinates of elements both upstream and downstream of the fiducial
element while a floor_shift element only affects the floor position of elements downstream from it.

Like a fiducial element, the transfer map through a floor_shift element will be the unit map. That
is, the phase space coordinates of a particle will not change when tracking through a floor_shift
element.

The l attribute can be used to adjust the longitudinal s position.

The floor_shift element can be used, for example, to restore the correct global geometry when a
section of the lattice is represented by, say, a taylor type element.

If an origin_ele is not specified, the default origin_ele is the lattice element before the floor_shift
element. If an origin_ele is specified, Bmad needs to be able to calculate the position of this element
before the position of the fiducial element is calculated. See the discussion of the origin_ele for
fiducial elements (§4.19). Notice that if the origin_ele is specified, and is different from the element
upstream from the floor_shift element, the coordinates at the exit end of the floor_shift element
is independent of the coordinates of the upstream element.
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If the origin_ele has a finite length, the reference point may be chosen using the origin_ele_ref_pt
attribute which may be set to one of

entrance_end
center
exit_end ! Default

PTC does not have an analogous element for the Floor_shift element. When converting to PTC, a
floor_shift element will be treated as a marker element.

Example:
floor: floor_shift, z_offset = 3.2

This offsets the element after the floor_shift 3.2 meters from the previous element.
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4.21 Foil

A foil element represents a planar sheet of material which can strip electrons from a particle. In
conjunction, there will be scattering of the particle trajectory as well as an associated energy loss.

General foil attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Integration settings 6.4 Tracking & transfer map 6
Is_on 5.14

See §15.57 for a full list of element attributes along with a their units.

Attributes specific to a foil element are:
material_type = <String> ! Foil material.
thickness = <Real> ! Material thickness (m).
density = <Real> ! Input material density (kg/m^3).
density_used ! Density value used in tracking (kg/m^3).
radiation_length = <Vector> ! Input material radiation length (m).
radiation_length_used ! Radiation length used in tracking (m).
area_density = <Vector> ! Input material area density (kg/m^2).
area_density_used ! Area density used in tracking (kg/m^2).
F_factor = <Real> ! lynch_dahl scattering F factor. Default: 0.98.
final_charge = <Integer> ! Final charge state
scatter_test = <Logic> ! For testing scattering. Default: False.
scatter_method = <Switch> ! Scattering algorithm. Default: highland.
dthickness_dx = <Real> ! Wedge slope when the foil is wedge shaped.
x1_edge = <Real> ! Foil edge in the x-direction. Default: -99 m.
x2_edge = <Real> ! Foil edge in the x-direction. Default: 99 m.
y1_edge = <Real> ! Foil edge in the y-direction. Default: -99 m.
y2_edge = <Real> ! Foil edge in the y-direction. Default: 99 m.

x1_edge x2_edge

x_offset
x (body coords) = 0

dthickness_dx
Thickness

Foil

Figure 4.3: Foil geometry. Parameters thickness, dthickness_dx, x1_edge, x2_edge, y1_edge, and
y2_edge determine the foil geometry in body coordinates (see Fig. 16.1). For the drawing, x1_edge is
negative (the associated edge is to the left of x = 0) and the x2_edge is positive. Orientation parameters
like x_offset (§5.6) orient the foil with respect to laboratory coordinates but do not change the foil
shape.
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Scattering is simulated to be Gaussian distributed with a sigma calculated in one of two methods. The
two scattering algorithms are given in section §25.12.1. Which algorithm is used is determined by the
scatter_method parameter which can be set to:

highland ! Default
lynch_dahl
off ! No scattering

Additionally, the scatter_test logical may be used for testing. If set to True (default is False), the
random numbers used in Eq. (25.83) are set to 1.

Energy loss is calculated using the Bethe-Bloch formula as discussed in section §25.12.2.

The material_type is the type of material which can be elemental or a compound material.

The radiation length used in the scattering calculation is given by the radiation_length_used parame-
ter. For compound materials, this parameter is a vector with each value of the vector being the radiation
length of the corresponding component. Radiation_length_used cannot be set directly. Rather, if
the radiation_length parameter is set non-zero, the value (or values for a compound material) will
be transferred to radiation_length_used. If radiation_length is zero (the default), the value of
radiation_length_used will be set by Bmad using measured values from the published literature.

Similarly, the area_density_used (density of the material per unit of surface area) value (or values for a
compound material) needed for the calculation is not set directly but is set in one of two ways depending
upon if the material thickness is non-zero or not. If thickness is non-zero, area_density_used is
set by the product of thickness and density_used while the value of density_used is set by Bmad
to be either the value density if the density is non-zero or by the measured density of the material as
given in the published literature. If thickness is zero (the default), the value of area_density_used
is set equal to the value of area_density. Note that the value of density_used is only used to set
area_density_used when thickness is non-zero and otherwise does not affect the tracking calculation.

Example:
f1: foil, thickness = 1e-2, material_type = "B4C",

density = (2e3, 1e3), radiation_length = (5.49, 4.26)
Here, since material_type is set to B4C, there are two components: Boron and Carbon. If density,
area_density, or radiation_length are present, they must have the same number of values as material
components. Values are set in order so, in the above example, the Carbon component has a density of
1e3 and a radiation length of 4.26.2 In the case where there is a component material, either density or
area_density needs to be set since Bmad is not able to calculate appropriate values in this case. When
there is only one component, the parentheses may be omitted. Example: Example:

stripper: foil, material_type = "Cu", thickness = 0.127, &
radiation_length = 12.3, x1_edge = -0.3

In terms of element placement, The length of a foil element (Eq. (16.7)) is considered to be zero. This
is similar to the beambeam element which is also considered to have zero length but the interaction occurs
over a finite length.

The 6x6 transfer matrix of a foil element is the unit matrix. That is, scattering does not affect the
transfer matrix.

Particles going through the foil are stripped to have a final charge given by final_charge. The default
is to fully strip the particle except if the particle has no electrons to strip, there will be no change in
charge state.

The foil has a rectangular shape and particles will only be considered to have hit the foil if:
x1_edge < x_particle < x2_edge and
y1_edge < y_particle < y2_edge
2From a computational standpoint it does not matter which parameter is associated with which component.
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where (x_particle, y_particle) are the coordinates of the particle in the element body (not the labo-
ratory) coordinate system (Fig. 16.1). See Fig. 4.3. Particles that do not hit the foil pass through the
element without a change in charge nor a change in trajectory. The default for x1_edge and y1_edge is
-99 meters and for x2_edge and y2_edge the default is +99 meters.

The dthickness_dx parameter can be used to get a varying foil thickness. The thickness t at a point
(in body coordinates) (x, y) on the foil will be

t = t0 + x
dt

dx
(4.22)

where t0 is the thickness given by the thickness parameter and dt/dx is given by the dthickness_dx
parameter. To orient the wedge in the transverse plane, use the tilt orientation parameter (§5.6). If
dthickness_dx is non-zero, the area_density and thickness parameters are defined to be the area
density and thickness at (x, y) = (0, 0). If dthickness_dx is non-zero, and if area_density is set (as
opposed to setting the density), then the thickness must be non-zero since otherwise the calculation
of the area density at the point where a particle passes through the foil is singular.

If a foil element is part of a lattice branch with a closed geometry, the closed orbit calculation will
tempararily set the scatter parameter to false since scattering is a random process and the closed orbit
is not well defined in the presence of any random processes (similarly, radiation fluctuations are also
turned off for the closed orbit calculation).
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4.22 Fork and Photon_Fork

A fork or photon_fork element marks the start of an alternative branch for the beam (or X-rays or
other particles generated by the beam) to follow.

Collectively fork and photon_fork elements are called forking elements. An example geometry is shown
in Fig. 4.4. The branch containing a forking element is called the “base branch”. The branch that the
forking element points to is called the “forked-to branch”.

The only difference between fork and photon_fork is that the default particle type for the forked-to
branch forked from a fork element is the same particle type as the base branch. The default particle
type for the forked-to branch from a photon_fork element is a photon. The actual particle associated
with a branch can be set by setting the particle attribute of the forking element.

General fork and photon_fork attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Length 5.13
Chamber wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6
Is_on 5.14

See §15.25 for a full list of element attributes along with a their units.

Attributes specific to fork and photon_fork elements are:
direction = <+/- 1> ! Particles are entering or leaving?
to_line = <LineName> ! What line to fork to.
to_element = <ElementID> ! What element to attach to in the line being forked to.
new_branch = <T/F> ! Make a new branch from the to_line? Default = True.

Branch lines can themselves have forking elements. A branch line always starts out tangential to the
line it is branching from. A patch element (§4.41) can be used to reorient the reference orbit as needed.
Example:

from_line: line = (... A, PB, B, ...) ! Defines base branch
pb: photon_fork, to_line = x_line
x_line: line = (X_PATCH, X1, X2, ...) ! Defines forked-to branch
x_line[p0c] = 1e3 ! Photon reference momentum
x_patch: patch, x_offset = 0.01
use, from_line

x-ray lines

Figure 4.4: Example use of photon_fork elements showing four X-ray lines (branches) attached to a
machine.
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In this example, a photon generated at the fork element PB with x = 0 with respect to the from_line
reference orbit through PB will, when transferred to the x_line, and propagated through X_PATCH, have
an initial value for x of −0.01.

Forking elements have zero length and, like marker elements, the position of a particle tracked through
a forking element does not change.

Forking elements do not have orientational attributes like x_pitch and tilt (5.6). If the orientation
of the forked-to branch needs to be modified, this can be accomplished using a patch element at the
beginning of the line.

The is_on attribute, while provided for use by a program, is ignored by Bmad proper.

If the reference orbit needs to be shifted when forking from one ring to another ring, a patch can be
placed in a separate “transfer” line to isolate it from the branches defining the rings. Example:

ring1: line = (... A, F1, B, ...) ! First ring
x_line: line = (X_F1, X_PATCH, X_F2) ! "Transfer" line
ring2: line = (... C, F2, D, ...) ! Second ring
use, ring1

f1: fork, to_line = x_line
f2: fork, to_line = x_line, direction = -1
x_patch: patch, x_offset = ...
x_f1: fork, to_line = ring1, to_element = f1, direction = -1
x_f2: fork, to_line = ring2, to_element = f2

Here the fork F1 in ring1 forks to x_line which in turn forks to ring2.

The above example also illustrates how to connect machines for particles going in the reverse direction.
In this case, rather than using a single fork element to connect lines, pairs of fork elements are used.
Ring2 has a fork element f2 that points back through x_line and then to ring1 via the x_f1 fork.
Notice that both f2 and x_f2 have their direction attribute set to -1 to indicate that the fork is
appropriate for particles propagating in the -s direction. Additionally, since f2 has direction set to -1,
it will, by default, connect to the downstream end of the x_line. The default setting of direction is 1.

It is important to note that the setting of direction does not change the placement of elements in the
forked line. That is, the global position (§16.2) of any element is unaffected by the setting of direction.
To shift the global position of a forked line, patch elements must be used. In fact, the direction
parameter is merely an indicator to a program on how to treat particle propagation. The direction
parameter is not used in any calculation done by Bmad.

The to_element attribute for a forking element is used to designate the element of the forked-to branch
that the forking element connects to. To keep things conceptually simple, the to_element must be a
“marker-like” element which has zero length and unit transfer matrix. Possible to_element types are:

beginning_ele
fiducial
fork and photon_fork
marker

When the to_element is not specified, the default is to connect to the beginning of the forked-to branch
if direction is 1 and to connect to the end of the downstream branch if direction is -1. In this case,
there is never a problem connecting to the beginning of the forked-to branch since all branches have a
beginning_ele element at the beginning. When connecting to the end of the forked-to branch the last
element in the forked-to branch must be a marker-like element. Note that, by default, a marker element
is placed at the end of all branches (§7.1)
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The default reference particle type of a branch line will be a photon is using a photon_fork or will be
the same type of particle as the base branch if a fork element is used. If the reference particle of a
branch line is different from the reference particle in the base branch, the reference energy (or reference
momentum) of a forked-to branch line needs to be set using line parameter statements (§10.4). If the
reference particle of a branch line is the same as the reference particle in the base branch, the reference
energy will default to the reference energy of the base branch if the reference energy is not set for the
branch.

Example showing an injection line branching to a ring which, in turn, branches to two x-ray lines:
inj: line = (..., br_ele, ...) ! Define the injection line
use, inj ! Injection line is the root
br_ele: fork, to_line = ring ! Fork element to ring
ring: line = (..., x_br, ..., x_br, ...) ! Define the ring
ring[E_tot] = 1.7e9 ! Ring ref energy.
x_br: photon_fork, to_line = x_line ! Fork element to x-ray line
x_line: line = (...) ! Define the x-ray line
x_line[E_tot] = 1e3

The new_branch attribute is, by default, True which means that the lattice branch created out of the
to_line line is distinct from other lattice branches of the same name. Thus, in the above example, the
two lattice branches made from the x_line will be distinct. If new_branch is set to False, a new lattice
branch will not be created if a lattice branch created from the same line already exists. This is useful,
for example, when a chicane line branches off from the main line and then branches back to it.

When a lattice is expanded (§3.24), the branches defined by the use statement (§7.7) are searched for
fork elements that branch to new forked-to branches. If found, the appropriate branches are instantiated
and the process repeated until there are no more branches to be instantiated. This process does not
go in reverse. That is, the lines defined in a lattice file are not searched for fork elements that have
forked-to instantiated branches. For example, if, in the above example, the use statement was:

use, x_line

then only the x_line would be instantiated and the lines inj and ring would be ignored.

If the forked-to branch and base branch both have the same reference particle, and if the element forked
into is the beginning element, the reference energy and momentum of the forked-to branch will be set
to the reference energy and momentum at the fork element. In this case, neither the reference energy
nor reference momentum of the forked-to branch should be set. If it is desired to have the reference
energy/momentum of the forked-to branch different from what is inherited from the fork element, a
patch element (§4.41) can be used at the beginning of the forked-to branch. In all other cases, where
either the two branches have different reference particles or the fork connects to something other than
the beginning element, there is no energy/momentum inheritance and either the reference energy or
reference momentum of the forked-to branch must be set.

How to analyze a lattice with multiple branches can be somewhat complex and will vary from program to
program. For example, some programs will simply ignore everything except the root branch. Hopefully
any program documentation will clarify the matter.
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4.23 Girder

A girder is a support structure that orients the elements that are attached to it in space. A girder can
be used to simulate any rigid support structure and there are no restrictions on how the lattice elements
that are supported are oriented with respect to one another. Thus, for example, optical tables can be
simulated.

General girder attributes are:

Attribute Class Section Attribute Class Section

Custom Attributes 3.9 Length 5.13
Description strings 5.3 Offsets, pitches & tilt 5.6
Is_on 5.14

See §15.27 for a full list of element attributes along with a their units.

Attributes specific to a girder are: Attributes specific to girder elements are:
girder = {<List>} ! List of elements on the Girder
origin_ele = <Name> ! Reference element.
origin_ele_ref_pt = <location> ! Reference pt on reference ele.
dx_origin = <Real> ! x-position offset
dy_origin = <Real> ! y-position offset
dz_origin = <Real> ! z-position offset
dtheta_origin = <Real> ! orientation angle offset.
dphi_origin = <Real> ! orientation angle offset.
dpsi_origin = <Real> ! orientation angle offset.
l ! Girder "Length" (5.13). Dependent attribute (§5.1).

A simple example of a girder is shown in Fig. 4.5. Here a girder supports three elements labeled A, B,
and C where B is a bend so the geometry is nonlinear. Such a girder may specified in the lattice file like:

g1: girder = {A, B, C}
The girder statement can take one of two forms:

<element_name>: GIRDER = {<ele1>, <ele2>, ..., <eleN>}, ...
or

<element_name>: GIRDER = {<ele_start>:<ele_end>}, ...
With the first form, a girder element will be created for each section of the lattice where there is
a “consecutive” sequence of “slave” elements <ele1> through <eleN>. This section of the lattice from
<ele1> through <eleN> is called the “girder support region”. “Consecutive” here means there are no other
elements in the girder support region except for possibly drift and/or marker elements. Drift elements
cannot be controlled by a girder3 but may appear in the girder slave list. If a drift does appear in the
slave list, drift elements will not be ignored when determining if elements are consecutive. Note: If a
drift-like element is desired to be supported by a girder, use a pipe element instead. Marker elements
present in a girder support region, but not mentioned in the girder slave list, are simply ignored.

The second form of a girder statement specifies the first and last elements in the sequence of elements
to be supported. Everything in between except drift elements will be supported by the girder.

Wild card characters (§3.7) can be used in any element name in the girder slave list. Additionally, beam
line names (§7.2) can be used. In this case, any drift elements within a beam line will be ignored.

3This policy was created to avoid the problem where the superposition of marker elements on top of drifts would prevent
girder formation.
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Figure 4.5: Girder supporting three elements labeled A, B, and C. OA is the reference frame at the
upstream end of element A (§16.1.3), OC is the reference frame at the downstream end of element C, and
OG is the default origin reference frame of the girder if the origin_ele parameter is not set. rCA is
the vector from OA to OC . The length l of the girder is set to be the difference in s between points OC
and OA.

A lattice element may have at most one girder supporting it. However, a girder can be supported
by another girder which in turn can be supported by a third girder, etc. Girders that support other
girders must be defined in the lattice file after the supported girders are defined. Example:

g1: girder = {A, B, C}
g2: girder = {g1} ! g2 must come after g1!

A girder may not directly support multipass_slave (§9) or super_slave (§8) elements. Rather, a
girder may support the corresponding lord elements.

The reference frame from which the girder’s offset, pitch, and tilt attributes (§5.6) are measured is
constructed as follows: A reference frame, called the “origin” reference frame may be defined using
the attributes origin_ele and origin_ele_ref_pt which constructs the girder’s origin frame to be
coincident with the reference frame of another element. Example:

g2: girder = {...}, origin_ele = Q, origin_ele_ref_pt = entrance_end

In this example, girder g2 has an origin reference frame coincident with the entrance end frame of an
element named Q. Valid values for origin_ele_ref_pt are

entrance_end
center ! Default
exit_end

For crystal, mirror, and multilayer_mirror elements, setting origin_ele_ref_pt to center results
in the reference frame being the frame of the surface (cf. Fig. 5.6).

To specify that the global coordinates (§16.2) are to be used for a girder set origin_ele to
global_coordinates

Typically this is the same as using the beginning element (§4.4) as the origin_ele except when the
beginning element is offset or reoriented (§10.4).

If origin_ele is not given, the default origin frame is used. The default origin frame is constructed as
follows: Let OA be the reference frame of the upstream end of the first element in the list of supported
elements. In this example it is the upstream end of element A as shown in the figure. Let OC be
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the downstream end of the last element in the list of supported elements. In this example this is the
downstream end of element C. The origin of the girder’s reference frame, marked OG in the figure, will
be half way along the vector rCA from the origin of OA to the origin of OB . The orientation of OG is
constructed by rotating the OA coordinates about an axis perpendicular to the z-axis of OA and rCA
such that the z-axis of OG is parallel with rCA.

Once the origin reference frame is established, the reference frame of the girder can be offset from the
origin frame using the parameters

dx_origin dtheta_origin
dy_origin dphi_origin
dz_origin dpsi_origin

The orientation of the girder’s reference frame from the origin frame is given in §16.2.4. Example:
g3: girder = { ... }, dx_origin = 0.03

This offsets girder g3’s reference frame 3 cm horizontally from the default origin frame. If no offsets
are given, the origin frame is the same as the girder’s reference frame.

The length l of a girder, which is not used in any calculations, is a dependent attribute computed by
Bmad and set equal to the s path length between points OC and OA.

The physical orientation of the girder with respect to it’s reference frame is, like other elements, deter-
mined by the offset, pitch and tilt orientation attributes as outlined in §5.6 and §16.2.4. When a girder
is shifted in space, the elements it supports are also shifted. In this case, the orientation attributes
(x_offset, y_pitch, etc.) give the orientation of the element with respect to the girder. The orienta-
tion with respect to the local reference coordinates is given by x_offset_tot, which are computed from
the orientation attributes of the element and the girder. An example will make this clear:

q1: quad, l = 2
q2: quad, l = 4, x_offset = 0.02, x_pitch = 0.01
d: drift, l = 8
g4: girder = {q1, q2}, x_pitch = 0.002, x_offset = 0.03
this_line: line = (q1, d, q2)
use, this_line

In this example, g4 supports quadrupoles q1 and q2. Since the supported elements are colinear, the
computation is greatly simplified. The reference frame of g4, which is the default origin frame, is at
s = 7 meters which is half way between the start of q1 at at s = 0 meters and the end of q2) which is at
s = 14. The reference frames of q1 and q2 are at their centers so the s positions of the reference frames
is

Element S_ref dS_from_g4
q1 1.0 -6.0
g4 7.0 0.0
q2 12.0 5.0

Using a small angle approximation to simplify the calculation, the x_pitch of g4 produces an offset at
the center of q2 of 0.01 = 0.002 ∗ 5. This, added to the offsets of g4 and q2, give the total x_offset,
denoted x_offset_tot of q2 is 0.06 = 0.01 + 0.03 + 0.02. The total x_pitch, denoted x_pitch_tot, of
q2 is 0.022 = 0.02 + 0.001.

A girder that has its is_on attribute set to False is considered to be unsifted with respect to it’s
reference frame.
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4.24 GKicker

A gkicker element is a “general” zero length kicker element that can displace a particle in all six phase
space dimensions.

General group attributes are:

Attribute Class Section Attribute Class Section

Custom Attributes 3.9 Description strings 5.3

See §15.28 for a full list of element attributes along with a their units.

Attributes specific to a gkicker are:
x_kick = <Real> ! X-position kick
px_kick = <Real> ! X-momentum kick
y_kick = <Real> ! Y-position kick
py_kick = <Real> ! Y-momentum kick
z_kick = <Real> ! Z-position kick
pz_kick = <Real> ! Momentum kick

Example:
gk: gkicker, x_kick = 0.003, pz_kick = 0.12
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4.25 Group

Group elements are a type of control element (§2.4) used to make variations in the attributes of other
elements (called “slave” attributes) during execution of a program. For example, to simulate the action
of a control room knob that changes the beam tune in a storage ring, a group element can be used
to vary the strength of selected quads in a specified manner. Also see overlay (§4.40) The difference
between group and overlay elements is that overlay elements set the values of the attributes directly
while group elements make delta changes to attribute values.

General group attributes are:

Attribute Class Section Attribute Class Section

Custom Attributes 3.9 Is_on 5.14
Description strings 5.3

See §15.28 for a full list of element attributes along with a their units.

There are two types of group elements: Expression based and knot based. The general syntax for a
expression based group element is

name: GROUP = {ele1[attrib1]:exp1, ele2[attrib2]:exp2, ...},
VAR = {var1, var2, ...}, var1 = init_val1, old_var1 = init_val_old1, ...

where ele1[attrib1], ele2[attrib2], etc. specify the slave attributes and exp1, exp2, etc. are the
arithmetical expressions, that are functions of var1, var2, etc., and are used to determine a value for
the slave attributes.

The general syntax for a knot based group element is
name: GROUP = {ele1[attrib1]:{y_knot_points1}, ele2[attrib2]:{y_knot_points2}, ...},

VAR = {var1}, X_KNOT = {x_knot_points}, INTERPOLATION = {type},
var1 = init_val1, old_var1 = init_val_old1, ...

When using knot points, the group may only have one variable parameter.

See Section §5.4 for a detailed description of this syntax.

Example of a expression based group element:
gr1: group = {q[k1]:a+b^2}, var = {a, b}, a = 1, old_a = 2
gr1[old_b] = 2

There are two numbers associated with each variable in a group: One number is the value of the variable
(also called the “present” value) and the other number is the “old” value. To refer to these old values
prepend the string “old_” to the variable name. Thus, in the above example, the old variable values
have names old_a and old_b and these old values can be set in the same manner as the present values.

Example of a knot based group element:
gr2: group = {beginning[E_tot]]:{4e6,...}},

var = {time}, x_knot = {...}, interpolate = cubic
Here the function used to translate from the group’s variables to the slave attribute values is a cubic
spline interpolation based upon the knot points specified (§5.4).

A group element is like an overlay element in that a group element controls the attribute values of
other “slave” elements. The difference is that the value of a slave attribute that is controlled by (one or
more) overlay elements is uniquely determined by the controlling overlay elements. A group element,
on the other hand, is used to make changes in value. An example will make this clear:

gr: group = {q1[k1]:0.1*a^2}, var = {a}, a = 2, old_a = 1
q, quad, k1 = 0.5
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When a program reads the lattice file, initially the value of q[k1] will be 0.5 as set in the definition of
q. Later, during lattice expansion (§3.24), the group elements are added to the lattice. When the group
element gr is added, the fact that old_a and a are different causes the value of q[k1] to be modified.
The delta value is

delta = 0.1*a^2 - 0.1*old_a^2
= 0.3

And this is added to the existing value of 0.5 so that the value of q[k1] becomes 0.8. After the value
of q[k1] has been updated, the value of old_a is automatically update to be the present value of a so
that the value of q[k1] will not be further modified.

In general, deltas used to modify slave attributes are computed as the difference between the arithmetic
expression evaluated with the present variable values and the arithmetic expression evaluated with the
old variable values.

Notice that in a lattice file the value of a slave attribute after the lattice is read in is independent of
whether the group is defined before or after elements whose attributes are controlled by the group. This
is true since the effect of a group element happens when the lattice is expanded, not when parser reads
the group definition. On the other hand, after the lattice has been read in, if a program varies both a
group variable and a slave attribute, the value of the slave attribute will be dependent upon the order
of which is modified first. For example, consider a lattice containing:

gr: group = {q[k1]:a^2}, var = {a}
q, quad

Now if a program first sets gr[a] to 0.3 and then sets q[k1] to 0.5, the result is that q[k1] will have
a value of 0.5. That is, the value of q[k1] will be independent of gr[a]. If the setting is reversed so
that q[k1] is set first, the value of q[k1] will be 0.59. Since the result is order dependent, trying to
“simultaneously” vary the attributes of both group variables and slave attributes can lead to unpredictable
results. For example, consider lattice “optimization” where a program varies a set of lattice parameters
to achieve certain goals (for example, minimum beta at some point in the lattice, etc.). If the list of
parameters to be varied contains both group variables and slave attributes, the actual changes to slave
attributes may be different from what the user expects when the program varies its list of parameters.

During running of a program, If a group element has been turned off (is_on parameter set false), a
change to a variable of the group element is saved but the old variable value is not updated and slave
parameters are not affected. Subsequently, turning on the group element will result in the appropriate
changes to the slave parameters and the old variable value.

Different group elements may control the same slave attribute and a group element may control other
group, overlay or girder element attributes. However, It does not make sense, and it is not permitted,
for a group element to control the same attribute as an overlay element or for a group element to
control a dependent attribute (§5.1). To setup a group element to control the same slave attribute as
an overlay, define an intermediate overlay. For example:

ov: overlay = {qk1 q2[k1], ...}, var = {a}
q, quad
gr: group = {ov_q[k1]:a^2}, var = {a} ! New
ov_q: overlay = {q}, var = {k1} ! New

In this example, the overlay ov controls the attribute q[k1] so it is not permitted for q[k1] to be a
slave of a group element. To have group control of q[k1], two elements are introduced: the group gr
is setup controlling ov_q[k1] and overlay ov_q is an overlay that controls q[k1]. Notice that trying to
control ov directly by a group element will not work since ov controls multiple elements.

A group can be used to control an elements position and length using one of the following attributes:
accordion_edge ! Element grows or shrinks symmetrically
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start_edge ! Varies element’s upstream edge s-position
end_edge ! Varies element’s downstream edge s-position
s_position ! Varies element’s overall s-position. Constant length.

With accordion_edge, start_edge, end_edge, and symmetric_edge the longitudinal position of an
elements edges are varied. This is done by appropriate control of the element’s length and the lengths
of the elements to either side. In all cases the total length of the lattice is kept invariant.

As an example, consider accordion_edge which varies the edges of an element so that the center of the
element is fixed but the length varies:

gr: group = {Z[accordion_edge]:1}, var = {offset}

A change of, say, 0.1 gr’s offset variable moves both edges of element Z by 0.1 meters so that the length
of Z changes by 0.2 meters but the center of Z is constant. To keep the total lattice length invariant,
the lengths of the elements to either side are decreased by 0.1 meters to keep the total lattice length
constant.

q10: quad, l = ...
q11: quad, l = ...
d1: drift, l = ...
d2: drift, l = ...
this_line: line = (... d1, q10, d2, q11, ...)
gr2: group = {q10[start_edge]:1}, var = {a}, a = 0.1

The effect of gr2[a] will be to lengthen the length of q10 and shorten the length of d1.

A lattice file may contain lines and lattice elements that are not part of the actual finished lattice when
the lattice is constructed. Group elements where none of its slave elements are part of the finished
lattice are ignored and are also not part of the finished lattice. When a group element has some slave
elements that are part of the finished lattice and some slave elements that are not, the group element as
implemented in the finished lattice will only control slave elements that actually exist in the finished. In
any case, a slave element that a group element references must be defined (but not necessarily be used
in the finished lattice) in the lattice file. This rule is enforced in order to catch spelling mistakes.

If the arithmetical expression used for an group contains an element attribute, care must be taken if
that element attribute is changed. This is discussed in §3.13 and §5.4.
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4.26 Hybrid

A hybrid element is an element that is formed by a program by concatenating other element together.
Hybrid elements are used to reduce the number of elements in a lattice to speed up a simulation. In
terms of tracking a hybrid element is essentially the same as a taylor element.
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4.27 Instrument, Monitor, and Pipe

Essentially Bmad treats instrument, monitor, and pipe elements like a drift. There is a difference,
however, when superimposing elements (§8). For example, a quadrupole superimposed on top of a drift
results in a free quadrupole element in the tracking part of the lattice and no lord elements are created.
On the other hand, a quadrupole superimposed on top of a monitor results in a quadrupole element
in the tracking part of the lattice and this quadrupole element will have two lords: A quadrupole
superposition lord and a monitor superposition lord. The exception is if a instrument, monitor, and
pipe is superimposed with an element with non-constant reference energy like a lcavity. In this case
no instrument, monitor, or pipe super_lord element is made.

General instrument, monitor, and pipe attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Length 5.13
Custom Attributes 3.9 Offsets, pitches & tilt 5.6
Description strings 5.3 Reference energy 5.5
Hkick & Vkick 5.7 Superposition 8
Instrumental variables 5.22 Symplectify 6.7
Integration settings 6.4 Tracking & transfer map 6

See §15.30 for a full list of element attributes along with a their units.

The offset, pitch, and tilt attributes are not used by any Bmad routines. If these attributes are
used by a program they are typically used to simulate such things as measurement offsets. The is_on
attribute is also not used by Bmad proper. Example:

d21: instrum, l = 4.5



114 CHAPTER 4. LATTICE ELEMENTS

4.28 Kickers: Hkicker and Vkicker

An hkicker gives a beam a horizontal kick and a vkicker gives a beam a vertical kick. Also see the
kicker (§4.29) element.

General hkicker vkicker attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Length 5.13
Custom Attributes 3.9 Mag & Elec multipoles 5.15
Description strings 5.3 Offsets, pitches & tilt 5.6
Field Maps 5.16 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Tracking & transfer map 6

See §15.32 for a full list of element attributes along with a their units.

Note that hkicker and vkicker elements use the kick attribute while a kicker uses the hkick and
vkick attributes. Example:

h_kick: hkicker, l = 4.5, kick = 0.003
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4.29 Kicker

A kicker can deflect a beam in both planes. Note that a kicker uses the hkick and vkick attributes
while hkicker and vkicker elements use the kick attribute. In addition, a kicker can apply a dis-
placement to a particle using the h_displace and v_displace attributes.

General kicker attributes are:

Attribute Class Section Attribute Class Section

Mag & Elec multipoles 5.15 Length 5.13
Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber wall 5.12 Overlapping Fields 5.18
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Fringe Fields 5.21 Symplectify 6.7
Hkick & Vkick 5.7 Field Maps 5.16
Integration settings 6.4 Tracking & transfer map 6
Is_on 5.14

See §15.31 for a full list of element attributes along with a their units.

Example:
a_kick: kicker, l = 4.5, hkick = 0.003
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4.30 Lcavity

An lcavity is a LINAC accelerating cavity. The main difference between an rfcavity and an lcavity
is that, unlike an rfcavity, the reference energy (§16.4.1) through an lcavity is not constant.

General lcavity attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber wall 5.12 Overlapping Fields 5.18
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 RF Couplers 5.17
Field autoscaling 5.19 Superposition 8
Fringe Fields 5.21 Symplectify 6.7
Hkick & Vkick 5.7 Field Maps 5.16
Integration settings 6.4 Tracking & transfer map 6
Is_on 5.14 Wakes 5.20
Length 5.13

See §15.33 for a full list of element attributes along with a their units.

The attributes specific to an lcavity are
cavity_type = <Switch> ! Type of cavity.
gradient = <Real> ! Accelerating gradient (V/m).
gradient_err = <Real> ! Accelerating gradient error (V/m).
gradient_tot ! Net gradient = gradient + gradient_err. Dependent param (§5.1).
phi0 = <Real> ! Phase (rad/2π) of the reference particle with

! respect to the RF. phi0 = 0 is on crest.
phi0_autoscale ! Set by Bmad when autoscaling is turned on §5.19.
phi0_multipass = <Real> ! Phase (rad/2π) with respect to a multipass lord (§9).
phi0_err = <Real> ! Phase error (rad/2π)
e_loss = <Real> ! Loss parameter for short range wakefields (V/Coul).
rf_frequency = <Real> ! RF frequency (Hz).
field_autoscale ! Set by Bmad when autoscaling is turned on §5.19.
voltage ! Cavity voltage. Dependent attribute (§5.1).
voltage_err ! Error voltage
voltage_tot ! Net voltage = voltage + voltage_err. Dependent param (§5.1).
l_active = <Real> ! Active region length. Dependent attribute (§5.1).
n_cell = <Int> ! Number of cavity cells. Default is 1.
longitudinal_mode = <Int> ! Longitudinal mode. Default is 1. May be 0 or 1.

The voltage and voltage_err attributes can be used in place of gradient and gradient_err. The
relationship between gradient and voltage is

voltage = L * gradient
voltage_err = L * gradient_err

The energy kick felt by a particle, assuming no phase slippage, is
dE = rq * gradient_tot * L * cos(2π * (ϕt + ϕref))

where rq is the charge of the particle relative to the charge of the reference particle. where the total
gradient is

gradient_tot = (gradient + gradient_err) * field_autoscale
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ϕt is the part of the phase due to when the particle arrives at the cavity and depends upon whether
absolute time tracking or relative time tracking is being used as discussed in §25.1. The phase
ϕref is
ϕref = phi0 + phi0_multipass + phi0_err + phi0_autoscale

In the above equation rq is the relative charge between the reference particle (set by the parameter[particle]
parameter in a lattice file) and the particle being tracked through the cavity. For example, if the refer-
ence particle and and the tracked particle are the same, rq is unity independent of the type of particle
tracked.

phi0_multipass is only to be used with multipass to shift the phase of the cavity from pass to pass.
See §9.

phi0_autoscale and field_autoscale are calculated by Bmad’s auto-scale module. See Section §5.19
for more details. Autoscaling can be toggled on/off by using the autoscale_phase and autoscale_amplitude
toggles.

The energy change of the reference particle is just the energy change for a particle with z = 0 and no
phase or gradient errors. Thus

dE(reference) = gradient * L * cos(2π * ϕref)

The energy kick for a Bmad lcavity is consistent with MAD. Note: The MAD8 documentation for an
lcavity has a wrong sign. Essentially the MAD8 documentation gives

dE = gradient * L * cos(2π * (ϕref - phi(z))) ! WRONG

This is incorrect.

When short-range wakefields are being simulated, with bmad_com%sr_wakes_on = True (§11.4), the
e_loss attribute can be used to modify the gradient in order to maintain a constant average energy
gain. That is, e_loss can be used to simulate the effect of a feedback circuit that attempts to maintain
the average energy of the bunch after the element constant. The energy kick is then

dE(with wake) = dE + e_loss * n_part * e_charge

n_part is set using the parameter statement (§10.1) and represents the number of particles in a bunch.
e_charge is the magnitude of the charge on an electron (Table 3.2). Notice that the e_loss term is
independent of the sign of the charge of the particle.

The cavity_type is the type of cavity being simulated. Possible settings are:
ptc_standard
standing_wave ! Default
traveling_wave

The cavity_type switch is ignored if a field map is used. With the standing_wave setting, the
transverse trajectory through an lcavity is modeled using equations developed by Rosenzweig and
Serafini[Rosen94] modified to give the correct phase-space area at non ultra-relativistic energies. See
Section §25.14 for more details. Note: The transfer matrix for an lcavity with finite gradient is never
symplectic. See §16.4.2. In addition, couplers (§5.17) and HOM wakes (§5.20) can be modeled.

When an element’s tracking_method is set to runge_kutta, the fields used with field_calc set to
bmad_standard are described in Section (§17.8). With cavity_type set to standing_wave, the longitu-
dinal mode is set by the longitudinal_mode parameter. The possible values are 0 or 1 and the default
setting is 0.

If an element’s cavity_type parameter is set to standing_wave, and if the field_calc parameter is
set to bmad_standard, and if an element’s tracking_method is set to runge_kutta (§6.1), the “active
region” over which there is a finite field is n_cell half-wave pillbox resonators where each pillbox has
length λ/2 (§17.8). The default setting for n_cell is 1. The dependent parameter l_active is set to the
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length of the active region. The active region should have a length less than the length of the element.
If the length of the element is not equal to the active region, the active region is centered in the element
and the regions to either side are treated as field free.

Note: When an element’s tracking_method is set to bmad_standard, settings for the parameters n_cell,
and longitudinal_mode are ignored.

Example:
lwf: lcavity, l = 2.3, rf_frequency = 500e6, voltage = 20e6,

tracking_method = runge_kutta, n_cell = 3, longitudinal_mode = 1

Note: The default bmad_standard tracking for lcavity elements when the velocity β is significantly
different from 1 can only be considered as a rough approximation. Indeed, the only accurate way to
simulate a cavity in this situation is by integrating through the actual field [Cf. Runge Kutta tracking
(§6.1)]
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4.31 Lens

A lens is an element for concentrating or dispersing light rays.

This element is under development...
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4.32 Marker

A marker is a zero length element meant to mark a position.

General marker attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Is_on 5.14
Chamber wall 5.12 Offsets & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Instrumental variables 5.22 Tracking & transfer map 6

See §15.36 for a full list of element attributes along with a their units.

The x_offset, y_offset and tilt attributes are not used by any Bmad routines. Typically, if these
attributes are used by a program, they are used to simulate things like BPM offsets. The is_on attribute
is also not used by Bmad proper.

Example:
mm: mark, type = "BPM"
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4.33 Mask

A mask element defines an aperture where the mask area can essentially have an arbitrary shape.

For X-ray tracking, a mask element is similar to a diffraction_plate (§4.13) element except that with a
diffraction_plate element, coherent effects are taken into account while, with a mask element, coherent
effects are ignored. Also a mask element can be used with charged particles while a diffraction_plate
cannot.

General mask element attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Is_on 5.14 Tracking & transfer map 6

See §15.37 for a full list of element attributes along with a their units.

Notice that, unlike a rcollimator or a ecollimator, a mask element has zero length.

Attributes specific to a mask element are:
mode = <Type> ! Reflection or transmission (photon tracking only).
field_scale_factor = <Real> ! Factor to scale the photon field.
ref_wavelength ! Reference wavelength (§5.5). Dependent attrib (§5.1).
wall = {...} ! Defines mask geometry (5.12, 5.12.6).

Note: These attributes are only pertinent for photon tracking. Charged particle tracking assumes
transmission mode and does not use field_scale_factor and ref_wavelength attributes.

The mode switch, which is only used for photon tracking, sets whether X-rays are transmitted through
the mask or or reflected. Possible values for the mode switch are:

reflection
transmission ! Default

The geometry of the mask, that is, where the openings (in transmission mode) or reflection regions are,
is defined using the “wall” attribute. See §5.12 and 5.12.6 for more details.

In transmission mode, a mask is nominally orientated transversely to the beam. Like all other elements,
the mask can be reoriented using the element’s offsets, pitches and tilt attributes (§5.6).

The aperture_type (§5.8) parameter of a mask will default to auto which will set the aperture limits
to define a rectangular aperture that just cover the clear area of the mask.

The field_scale_factor, if set to a non-zero value (zero is the default) will be used to scale the field
of photons as they pass through the mask element:

field -> field * field_scale_factor

Scaling is useful since the electric field of photons traveling through a mask are renormalized (see
Eqs. (26.10) and (26.11)). This can lead to large variation of the photon field and can, for example, make
visual interpretation of plots of field verses longitudinal position difficult to interpret. field_scale_factor
can be used to keep the field more or less constant.

A mask that is “turned off” (is_on attribute set to False), does not mask at all and transmits everything.

Example:
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scrapper: mask, mode = transmission, wall = {
section = {type = clear, v(1) = {0.9, 0.5}},
section = {type = opaque, r0 = (0, 0.4), v(1) = {0.1, 0.1}}

}
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4.34 Match

A match element is used to match the Twiss parameters between two points.

General match attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Length 5.13
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Is_on 5.14

See §15.38 for a full list of element attributes along with a their units.

Attributes specific to a match element are:
beta_a0, beta_b0 = <Real> ! Entrance betas
beta_a1, beta_b1 = <Real> ! Exit betas
alpha_a0, alpha_b0 = <Real> ! Entrance alphas
alpha_a1, alpha_b1 = <Real> ! Exit alphas
eta_x0, eta_y0 = <Real> ! Entrance etas
eta_x1, eta_y1 = <Real> ! Exit etas
etap_x0, etap_y0 = <Real> ! Entrance momentum dispersion
etap_x1, etap_y1 = <Real> ! Exit eta’
c11_mat0, c12_mat0, c21_mat0, c22_mat0 = <Real> ! Entrance coupling.
c11_mat1, c12_mat1, c21_mat1, c22_mat1 = <Real> ! Exit coupling.
mode_flip0, mode_flip1 = <T/F> ! Mode flip status (§22.1). Default: False.
dphi_a, dphi_b = <Real> ! Phase advances (radians).
x0, px0, y0, py0, z0, pz0 = <Real> ! Entrance coordinates
x1, px1, y1, py1, z1, pz1 = <Real> ! Exit coordinates
delta_time = <Real> ! Change in time.
matrix = <Switch> ! Matrix calculation. Default: standard.
kick0 = <Switch> ! Zeroth order calc. Default: standard.
spin_tracking_model = <Switch> ! How to track the spin?
recalc = <Logical> ! Calculate transfer map? Default is True.

The transfer map for a match element is a first order transformation:

r1 = M r0 +V (4.23)

where r1 is the output coordinates, and r0 are the input coordinates. The matrix M is the linear part
of the map and the vector V is the zeroth order (“kick”) part of the map.

Nomenclature: The parameters beta_a0, alpha_a0, etc. of the match element are called the entrance
(upstream) “element” Twiss parameters. The parameters beta_a1, alpha_a1, etc. of the match element
are called the exit (downstream) “element” Twiss parameters. Similarly, c11_mat0, etc. are the entrance
components of the C coupling matrix (§22.1) and c11_mat1 are the exit end element values. These
parameters in general will be different from the actual computed Twiss and coupling parametersat the
ends of the match element.

The matrix switch determines how the linear M matrix is calculated. Possible settings of this parameter
are:

match_twiss ! Element entrance Twiss set to actual Twiss to match exit end values.
identity ! M is set to the unit matrix.



124 CHAPTER 4. LATTICE ELEMENTS

phase_trombone ! Element Twiss are set so that M produces a pure phase shift.
standard ! Use element values to calc matrix (default).

standard
With matrix set to standard (the default), the matrix M is calculated such that if (and only
if) the actual Twiss and coupling parameters at the entrance of the match element are equal
to the element entrance Twiss and coupling parameters, then the computed Twiss and coupling
parameters at the exit end of the match element will be the element end Twiss and coupling
parameters. Additionally, the phase advances (in radians) will be dphi_a and dphi_b. Exception:
If beta_a0, beta_b0, beta_a1, and beta_b1 are all zero, the matrix will be set to the identity.

identity
With matrix set to identity the transfer matrix will be set to the unit matrix independent of the
element Twiss and coupling settings.

match_twiss
The match_twiss setting for matrix instructs Bmad, when a program is run, to set the element
entrance Twiss and coupling values to the computed Twiss and coupling values from the exit end
of the previous element. This ensures that the computed Twiss and coupling at the element’s exit
end will correspond to the element Twiss and coupling values. This is only done if recalc is set
to True (the default). If recalc is False, no element Twiss and coupling parameters are modified
and the transfer matrix is calculated from the element Twiss and coupling parameters the same as
the standard setting.

match_twiss with recalc set to True can only be used with lattices with an open geometry
(§10.1) since, for a closed lattice, it is not possible to calculate the Twiss parameters at the
previous element independently of the element end Twiss parameters at the match element.

When running a program, if a match element initially has matrix set to match_twiss and recalc
is set to True, the Bmad bookkeeping routines will ensure that the match element’s entrance
element Twiss parameters are appropriately set as explained above. If recalc is now toggled to
False (which is done automatically, for example, by the Tao program), the entrance Twiss attribute
values, and hence the transfer matrix for the match element, will be frozen. Thereafter, variation
of any parameter in the lattice that affects the calculated Twiss parameters at the entrance of the
match element will not affect the match element’s transfer matrix.

phase_trombone
The phase_trombone setting for matrix is conceptually similar to the match_twiss. The difference
is that with phase_trombone, Bmad will modify both the entrance and exit element parameters
so that the actual entrance Twiss and coupling equals the actual exit Twiss and coupling and there
will be a phase advance through the match element that is set by dphi_a and dphi_b for the a
and b modes respectively.

Like the match_twiss setting, the recalc parameter determines if Bmad will modify the element
parameters.

Note: With match_twiss and phase_trombone settings the element’s Twiss and coupling parameters
are modified. With identity and standard the element parameters are not varied.

Note: There is an old notation with logical parameters match_end and phase_trombone instead of
matrix and recalc. The correspondence is

match_end phase_trombone matrix recalc
--------- -------------- -------------- ------
False False standard False or True
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True False match_twiss True
False True phase_trombone True

The setting of match_end and phase_trombone both True is not allowed.

The setting of the kick0 paramter determines how the zeroth order transfer map vector V is constructed.
Possible settings of this parameter are:

match_orbit ! Element entrance orbit set to actual orbit to match exit end values.
zero ! Set V zero.
standard ! Use element orbit values to calc V (default).

standard
With kick0 set to standard (the default), the vector V is set so that if a particle enters the match
element with position (x0, px0, y0, py0, z0, pz0) the element position at the exit end will be
(x1, px1, y1, py1, z1, pz1). With this, V will be:

V =


x1
px1
y1
py1
z1
pz1

−M


x0
px0
y0
py0
z0
pz0

 (4.24)

match_orbit
The match_orbit setting for kick0 instructs Bmad, when a program is run, to set the element
entrance position to the computed orbit from the exit end of the previous element. This ensures
that the computed orbit at the element’s exit end will correspond to the position set in the element.
This is only done if recalc is set to True (the default). If recalc is False, no element position
values are modified and V is calculated from the element position the same as the standard setting.

Like the situation with match_twiss set with matrix, match_orbit with recalc set to True can
only be used with lattices with an open geometry (§10.1) since, for a closed lattice, it is not
possible to calculate the Twiss parameters at the previous element independently of the element
end Twiss parameters at the match element.

zero
The zero setting for kick0 sets V to zero independent of teh element position values.

Note: With the match_orbit setting the element’s entrance orbit values will be modified. With zero
and standard settings the elements parameters will not be varied by Bmad.

The delta_time parameter adds a constant to the particle’s time. This will also affect the z phase space
coordinate through Eq. (16.28) and the transfer map though the element. If delta_time is zero, the
transfer map through the element will be the M matrix as discussed above. With a finite delta_time,
the transfer map will be different from M. The order of operations, is the effect of delta_time is
applied first and the linear transformation above is applied afterwards. Since using match_twiss or
match_orbit with a finite delta_time can be confusing, such a situation is not allowed. Use two
separate match elements if needed.

The settings of spin_tracking_model are:
off ! Spin direction does not change (default).
transverse_field ! Assumes a transverse magnetic field.

With a setting of off (the default), the spin does not change when a particle is tracked through the
element. With a setting of transverse_field, it is assumed that the orbital transfer matrix is due
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solely to transverse magnetic fields so that the integrated spin rotation (Eqs. (23.2), (17.4), and (17.5))
can be related to the orbital transport via∫

ΩΩΩBMT =
1 + aγ

1 + pz
(−∆py,∆px, 0) (4.25)

where ∆px and ∆py are the change in px and py when tracking through the match element and the
small angle approximation (px, py ≪ 1) has been used.

A match element that is “turned off” (is_on attribute set to False), is considered to be like a marker
element. That is, the orbit, spin, and Twiss parameters are unchanged when tracking through a match
element that is turned off.

The length attribute l is not used in the transfer matrix calculation. The length l is used to compute
the time it takes to go through a match element.

Example:
mm: match, beta_a1 = 12.5, beta_b1 = 3.4, eta_x1 = 1.0, matrix = match_twiss



4.35. MIRROR 127

4.35 Mirror

A mirror reflects photons.

General mirror attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Reflection tables 5.10
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Surface Properties 5.11
Offsets, pitches & tilt 5.6 Tracking & transfer map 6
Reference energy 5.5

See §15.39 for a full list of element attributes along with a their units.

Attributes specific to a mirror element are:
graze_angle = <Real> ! Angle between incoming beam and mirror surface.
critical_angle = <Real> ! Critical angle.
ref_wavelength ! Reference wavelength (§5.5). Dependent attribute (§5.1).

The reference trajectory for a mirror is that of a zero length bend (§16.2.3) and hence the length (l)
parameter of a mirror is fixed at zero. The reference trajectory is determined by the values of the
graze_angle and ref_tilt parameters. A positive graze_angle bends the reference trajectory in the
same direction as a positive g for a bend element.

A mirror may be offset and pitched (5.6). The incoming local reference coordinates are used for these
misalignments.
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4.36 Multipole

A multipole is a thin magnetic multipole lens up to 21st order. The basic difference between this and
an ab_multipole is the input format. See section §17.1 for how the multipole coefficients are defined.

General multipole attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Reference energy 5.5
Custom Attributes 3.9 Is_on 5.14
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Description strings 5.3 Tracking & transfer map 6
KnL, KnSL, Tn multipoles 5.15

See §15.41 for a full list of element attributes along with a their units.

The length l is a fictitious length that is used for synchrotron radiation computations and affects the
longitudinal position of the next element but does not affect any tracking or transfer map calculations.

When an multipole is superimposed (§8) on a lattice, it is treated as a zero length element and in this
case it is an error for the length of the multipole to be set to a nonzero value.

Like a MAD multipole, a Bmad multipole will affect the reference orbit if there is a dipole component.
Example:

m1: multipole, k1l = 0.034e-2, t1, k3sl = 4.5, t3 = 0.31*pi
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4.37 Multilayer_mirror

A multilayer_mirror is a substrate upon which multiple layers of alternating substances have been de-
posited. The idea is similar to crystal diffraction: light reflected at each interface constructively interferes
with light reflected from other interfaces. The amplified reflection offsets losses due to absorption.

General crystal attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Symplectify 6.7
Custom Attributes 3.9 Offsets, pitches & tilt 5.6
Description strings 5.3 Superposition 8
Reference energy 5.5 Tracking & transfer map 6
Surface Properties 5.11

The attributes specific to a multilayer_mirror are
material_type = <String> ! Materials in each layer.
d1_thickness = <Real> ! Thickness of layer 1
d2_thickness = <Real> ! Thickness of layer 2
n_cell = <Integer> ! Number of cells (= Number of layers / 2)
ref_wavelength ! Reference wavelength (§5.5). Dependent attribute (§5.1).

See §15.40 for a full list of element attributes along with a their units.

Dependent attributes (§5.1) are
graze_angle ! Angle between incoming beam and mirror surface.
v1_unitcell ! Unit cell volume for layer 1
v2_unitcell ! Unit cell volume for layer 2

A multilayer_mirror is constructed of a number of “cells”. The number of cells is set by n_cell. Each
cell consists of two layers of dielectric material. The materials used is given by the material_type
attribute. The format for this is

material_type = "<material_1>:<material_2>"

where <material_1> and <material_2> are the material names for the first and second layers of the
cell respectively. The first layer is the bottom layer and the second layer is the top layer of the cell.
Material names are case sensitive. So “FE” cannot be used in place of “Fe” A list of materials is given in
§5.9 and can include crystal materials or elemental materials.

Example:
mm: multilayer_mirror, material_type = "W:BORON_CARBIDE", n_cell = 100, &

d1_thickness = 1e-9, d2_thickness = 1.5e-9
m2: multi ! This is a multipole element!!!

Note: Due to the fact that multilayer_mirrors where introduced much later than multipole elements,
if there is an ambiguity in the name as shown in the above example, an element will be considered to
be of type multipole.
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4.38 Null_Ele

A null_ele is a special type of element. It is like a marker but it has the property that when the lattice
is expanded (§7.2) all null_ele elements are removed. The primary use of a null_ele is in computer
generated lattices where it can be used to serve as a reference point for element superpositions (§8).
Another use is to split an element using superposition while avoiding having to add a marker element
to the lattice. Example:

N: null_ele, superimpose, ref = quadrupole::*

This will split all quadrupoles in the lattice in two.

Null_ele elements are not generally useful otherwise.
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4.39 Octupole

An octupole is a magnetic element with a cubic field dependence with transverse offset (§17.1). The
bmad_standard calculation treats an octupole using a kick–drift–kick model.

General octupole attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.42 for a full list of element attributes along with a their units.

Attributes specific to an octupole element are:
k3 = <Real> ! Octupole strength.
b3_gradient = <Real> ! Field strength. (§5.1).
field_master = <T/F> ! See §5.2.

The normalized octupole k3 strength is related to the unnormalized b3_gradient field strength through
Eq. (17.3).

If the tilt attribute is present without a value then a value of π/8 is used. Example:
oct1: octupole, l = 4.5, k3 = 0.003, tilt ! same as tilt = pi/8
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4.40 Overlay

Overlay elements are a type of control element (§2.4) used to make variations in the attributes of other
elements (called “slave” attributes) while a program is running. For example, to simulate the action of a
magnet power supply that controls a string of magnets. Also see group (§4.25) The difference between
group and overlay elements is that overlay elements set the values of the attributes directly while
group elements make delta changes to attribute values.

General overlay attributes are:

Attribute Class Section Attribute Class Section

Custom Attributes 3.9 Is_on 5.14
Description strings 5.3

See §15.43 for a full list of element attributes along with a their units.

There are two types of overlay elements: Expression based and knot based. The general syntax for a
expression based overlay element is

name: OVERLAY = {ele1[attrib1]:exp1, ele2[attrib2]:exp2, ...},
VAR = {var1, var2, ...}, var1 = init_val1, old_var1 = init_val_old1, ...

where ele1[attrib1], ele2[attrib2], etc. specify the slave attributes and exp1, exp2, etc. are the
arithmetical expressions, that are functions of var1, var2, etc., and are used to determine a value for
the slave attributes.

The general syntax for a knot based overlay element is
name: OVERLAY = {ele1[attrib1]:{y_knot_points1}, ele2[attrib2]:{y_knot_points2}, ...},

VAR = {var1}, X_KNOT = {x_knot_points}, INTERPOLATION = {type},
var1 = init_val1, ...

See Section §5.4 for a detailed description of this syntax.

An overlay element is used to control the attributes of other elements. If multiple overlays control the
same slave parameter, the parameter value will be the sum of the values set by the individual overlays.
For example:

over1: overlay = {a_ele, b_ele:2.0}, var = {hkick}, hkick = 0.003
over2: overlay = {b_ele}, var = {hkick}
over2[hkick] = 0.9
a_ele: quad, hkick = 0.05 ! NO: Cannot control slave attributes of overlays
b_ele: rbend, ...
this_line: line = (... a_ele, ... b_ele, ...)
use, this_line

In the example the overlay over1 controls the hkick attribute of the "slave" elements a_ele and b_ele.
over2 controls the hkick attribute of just b_ele. over1[hick] has a value of 0.003 and over2[hkick]
has been assigned a value of 0.9. Thus:

a_ele[hkick] = over1[hkick]
= 0.003

b_ele[hkick] = over2[hkick] + 2 * over1[hkick]
= 0.906

Overlays completely determine the value of the attributes that are controlled by the overlay. in the above
example, the hkick of 0.05 assigned directly to a_ele is overwritten by the overlay action of over1.

The default value for an overlay is 0 so for example
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over3: overlay = {c_ele}, var = {k1}

will make c_ele[k1] = 0.

As illustrated above, different overlay elements may control the same element attribute. And an
overlay element may control other overlay, group or girder elements. However, It does not make
sense for an overlay element to control the same attribute as a group element or for an overlay element
to control a dependent attribute (§5.1).

The is_on parameter may be set for an overlay. If set to False, the overlay will be ignored. If all the
overlays controlling a given attribute are turned off, the attribute can be set directly just like if there
were no controlling overlays to begin with. Example:

abc: overlay = { ... }, ...
abc[is_on] = F

A lattice file may contain lines and lattice elements that are not part of the actual finished lattice when
the lattice is constructed. Group elements where none of its slave elements are part of the finished
lattice are ignored and are also not part of the finished lattice. When a group element has some slave
elements that are part of the finished lattice and some slave elements that are not, the group element as
implemented in the finished lattice will only control slave elements that actually exist in the finished. In
any case, a slave element that a group element references must be defined (but not necessarily be used
in the finished lattice) in the lattice file. This rule is enforced in order to catch spelling mistakes.

If the arithmetical expression used for an overlay contains an element attribute, care must be taken if
that element attribute is changed. This is discussed in §3.13 and §5.4.
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4.41 Patch

A patch element shifts the reference orbit and time. Also see floor_shift (§4.20) and fiducial (§4.19)
elements. A common application of a patch is to orient two lines with respect to each other. For example,
to orient an injection line with the ring it is injecting into (§13.1).

General patch element attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6
Length 5.13

See §15.46 for a full list of element attributes along with a their units.

Attributes specific to a patch elements are:
x_offset = <Real> ! Exit face offset from Entrance.
y_offset = <Real> ! Exit face offset from Entrance.
z_offset = <Real> ! Exit face offset from Entrance.
t_offset = <Real> ! Reference time offset.
x_pitch = <Real> ! Exit face orientation from Entrance.
y_pitch = <Real> ! Exit face orientation from Entrance.
tilt = <Real> ! Exit face orientation from Entrance.
E_tot_offset = <Real> ! Reference energy offset (eV).
E_tot_set = <Real> ! Reference energy at exit end (eV).
flexible = <T/F> ! Default: False.
p0c_set = <Real> ! Reference momentum at exit end (eV).
ref_coords = <Switch> ! Coordinate system defining the length.
user_sets_length = <T/F> ! User sets element length? Default is F.
l = <Real> ! Reference length.

A straight line element like a drift or a quadrupole has the exit face parallel to the entrance face. With
a patch element, the entrance and exit faces can be arbitrarily oriented with respect to one another as

z
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Figure 4.6: A) A patch element can align its exit face arbitrarily with respect to its entrance face. The
red arrow illustrates a possible particle trajectory form entrance face to exit face. B) The reference
length of a patch element, if ref_coords is set to the default value of exit_end, is the longitudinal
distance from the entrance origin to the exit origin using the reference coordinates at the exit end as
shown. If ref_coords is set to entrance_end, the length of the patch will be equal to the z_offset.
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shown in Fig. 4.6A.

There are two different ways the orientation of the exit face is determined. Which way is used is
determined by the setting of the flexible attribute. With the flexible attribute set to False, the
default, The exit face of the patch will be determined from the offset, tilt and pitch attributes as
described in §16.2.4. This type of patch is called “rigid” or “inflexible” since the geometry of the patch
is solely determined by the patch’s attributes as set in the lattice file and is independent of everything
else. Example:

pt: patch, z_offset = 3.2 ! Equivalent to a drift

With flexible set to True, the exit face is taken to be the reference frame of the entrance face of the
next element in the lattice. In this case, it must be possible to compute the reference coordinates of
the next element before the reference coordinates of the patch are computed. A flexible patch will
have its offsets, pitches, and tilt as dependent parameters (§5.1) and these parameters will be computed
appropriately. Here the patch is called “flexible” since the geometry of the patch will depend upon the
geometry of the rest of the lattice and, therefore, if the geometry of the rest of the lattice is modified (is
“flexed”), the geometry of the patch will vary as well. See Section §13.3 for an example.

The coordinates of the lattice element downstream of a flexible patch can be computed if there is a
fiducial element (§4.19) somewhere downstream or if there is a multipass_slave (§9) element which
is just downstream of the patch or at most separated by zero length elements from the patch. In this
latter case, the multipass_slave must represent an N th pass slave with N greater than 1. This works
since the first pass slave will be upstream of the patch and so the first pass slave will have its coordinates
already computed and the position of the downstream slave will be taken to be the same as the first
pass slave. Notice that, without the patch, the position of multipass slave elements are independent of
each other.

With bmad_standard tracking (§6.1) A particle, starting at the upstream face of the patch, is propagated
in a straight line to the downstream face and the suitable coordinate transformation is made to translate
the particle’s coordinates from the upstream coordinate frame to the downstream coordinate frame
(§25.16). In this case the patch element can be thought of as a generalized drift element.

If there are magnetic or electric fields within the patch, the tracking method through the patch must
be set to either runge_kutta or custom. Example:

pa2: patch, tracking_method = runge_kutta, field_calc = custom,
mat6_calc_method = tracking, ...

In order to supply a custom field when runge_kutta tracking is used, field_calc (§6.4) needs to be set
to custom. In this case, custom code must be supplied for calculating the fields as a function of position
(§37.2).

The E_tot_offset attribute offsets the reference energy:
E_tot_ref(exit) = E_tot_ref(entrance) + E_tot_offset (eV)

Setting the E_tot_offset attribute will affect a particle’s px, py and pz coordinates via Eqs. (16.27) and
(16.31). Notice that E_tot_offset does not affect a particle’s actual energy, it just affects the difference
between the particle energy and the reference energy.

Alternatively, to set the reference energy, the E_tot_set or p0c_set attributes can be used to set
the reference energy/momentum at the exit end. It is is an error if more than one of E_tot_offset,
E_tot_set and p0c_set is nonzero.

Important: Bmad may apply the energy transformation either before or after the coordinate transfor-
mation. This matters when the speed of the reference particle is less than c. For this reason, and due to
complications involving PTC, it is recommended to use two patches in a row when both the orbit and
energy are to be patched.
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A patch element can have an associated electric or magnetic field (§5.16). This can happen, for example,
if a patch is used at the end of an injection line to match the reference coordinates of the injection line
to the line being injected into (§13.1) and the patch element is within the field generated by an element
in the line being injected into. In such a case, it can be convenient to set what the reference coordinates
are since the orientation of any fields that are defined for a patch element will be oriented with respect to
the patch element’s reference coordinates. For this, the ref_coords parameter of a patch can be used.
Possible settings are: ref_coords are:

entrance_end !
exit_end ! Default

The default setting of ref_coords is exit_end and with this the reference coordinates are set by the exit
end coordinate system (see Fig. 4.6). If ref_coords is set to entrance_end, the reference coordinates
are set by the entrance end coordinate system. Example:

p1: patch, x_offset = 1, x_pitch = 0.4 ! L = 0.289418 see below
p2: p1, ref_coords = entrance_end ! L = 0

Here p1 has ref_coords set to exit_end (the default). p2 inherits the parameters of p1 and sets
ref_coords to entrance_end.

It is important to keep in mind that if there are multiple patches in a row, while two different config-
urations may be the same in a geometrical sense the total length may not be the same. For example:

pA: patch, x_offset = 1 ! L = 0
pB: patch, x_pitch = 0.4 ! L = 0
sum: line = (pA, pB)

The configuration of pA followed by pB is equivalent geometrically to the p1 patch above but the total
length of the (pA, pB) line is zero which is different from the length of p1.

Unfortunately, there is no intuitive way to define the “length” L of a patch. This is important since
the transit time of the reference particle is the element length divided by the reference velocity. And
the reference transit time will affect how the phase space z coordinate changes through the patch via
Eq. (16.28). If the parameter user_sets_length is set to True, the value of l set in the lattice file will be
used (default is zero). user_sets_length is set to False (the default), the length of a patch is calculated
depending upon the setting of ref_coords. If ref_coords is set to exit_end, the length of the patch
is calculated as the perpendicular distance between the origin of the patch’s entrance coordinate system
and the exit face of the patch as shown in Fig. 4.6B. If ref_coords is set to entrance_end, the length is
calculated as the perpendicular distance between the entrance face and the origin of the exit coordinate
system. In this case, the length will be equal to z_offset.

To provide flexibility, the t_offset attribute can be used to offset the reference time. The reference
time at the exit end of the patch t_ref(exit) is related to the reference time at the beginning of the
patch t_ref(entrance) via

t_ref(exit) = t_ref(entrance) + t_offset + dt_travel_ref
where dt_travel_ref is the time for the reference particle to travel through the patch. dt_travel_ref
is defined to be:

dt_travel_ref = L / beta_ref
Where L is the length of the patch and beta_ref is the reference velocity/c at the exit end of the
element. That is, the reference energy offset is applied before the reference particle is tracked through
the patch. Since this point can be confusing, it is recommended that a patch element be split into two
consecutive patches if the patch has finite l and E_tot_offset values.

While a finite t_offset will affect the reference time at the end of a patch, a finite t_offset will not
affect the time that is calculated for a particle to reach the end of the patch. On the other hand, a finite
t_offset will affect a particle’s z coordinate via Eqs. (16.28). The change in z, δz will be

δz = β · c · t_offset (4.26)
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where β is the normalized particle speed (which is independent of any energy patch). Another way of
looking at this is to note that In a drift, if the particle is on-axis and on-energy, t and t_ref change but
z does not change. In a time patch (a patch with only t_offset finite), t_ref and z change but t does
not.

When a lattice branch contains both normally oriented and reversed elements (§16.1.3), a patch, or series
of patches, which reflects the z direction must be placed in between. Such a patch, (or patches) is
called a reflection patch. See Section §16.2.6 for more details on how a reflection patch is defined. In
order to avoid some confusing conceptual problems involving the coordinate system through a reflection
patch, Runge-Kutta type tracking is prohibited with a reflection patch.4

Since the geometry of a patch element is complicated, interpolation of the chamber wall in the region
of a patch follows special rules. See section §5.12.5 for more details.

4In general, Runge-Kutta type tracking through a patch is a waste of time unless electric or magnetic fields are present.
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4.42 Photon_Init

A photon_init element is used as a starting element for x-ray tracking. A photon_init element can be
used to define such things as the initial energy spectrum and angular orientation. As explained below, a
photon_init element can be a “stand alone” photon source or it can have an associated “physical source”
element.

Note: There is a utility program called photon_init_plot that comes with a Bmad Distribution that
will plot initial photon distributions and can be used as a check.

General photon_init attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Length 5.13
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Tracking & transfer map 6

See §15.47 for a full list of element attributes along with a their units.

Attributes specific to an photon_init element are:
ds_slice = <Real>
E_center = <Real> ! Average init photon energy of 1st mode (eV).
E2_center = <Real> ! Average init photon energy of 2nd mode (eV).
E2_probability = <Real> ! Probability of 2nd mode.
E_center_relative_to_ref = <T/F> ! E_center relative to reference E? Default True.
e_field_x = <Real> ! Polarization. x & y = 0 -> random
e_field_y = <Real>
energy_distribution = <Switch> ! Gaussian, uniform, or curve.
energy_probability_curve = {...} ! Used with energy_distribution = curve. See below.
physical_source = <String> ! physical source of x-rays
ref_wavelength ! Ref wavelength (§5.5). Dep attribute (§5.1).
sig_x = <Real>
sig_y = <Real>
sig_z = <Real>
sig_vx = <Real>
sig_vy = <Real>
sig_E = <Real> ! Init photon energy width of 1st mode (eV).
sig_E2 = <Real> ! Init photon energy width of 2nd mode (eV).
spatial_distribution = <Switch> ! Gaussian or uniform.
transverse_sigma_cut = <Real>
velocity_distribution = <Switch> ! Gaussian, spherical, or uniform.

When the energy_distribution is set to gaussian or uniform, the distribution of photons is bimodal.
The first mode is characterized by the parameters E_center, and sig_E, the second mode is characterized
by the parameters E2_center and sig_E2. The probability of emitting a photon in the second mode is
given by E2_probability.

ds_slice
Used when there is an associated physical source element. The physical source element is sliced into
pieces of thickness ds_slice and each slice is tested to see if photons from the slice can possibly
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pass through the first aperture. When photons are generated, photons will only be generated from
slices where they have a hope of passing through the first aperture. This makes the simulation
more efficient. The default value of ds_slice is 0.01 meter.

E_center, E2_center
Average initial photon energy in eV. If E_center_relative_to_ref is set to True, E_center and
E2_center will be relative to the reference energy.

E_center_relative_to_ref
With a setting of True (the default), E_center and E2_center are taken to be with respect to the
reference energy (§16.4.1). That is, if True, the center energy <E> is

<E-1st-mode> = E1_center + Reference_Energy
<E-2nd-mode> = E2_center + Reference_Energy

If E_center_relative_to_ref is set to False, E_center and E2_center are taken to be the center
energy values independent of the reference energy.

E2_probability
Probability of emitting a photon from the 2nd mode. A value of 0 (the default) will mean that
all photons will be emitted from the 1st mode and a value of 1 will mean that all photons will be
emitted from the 2nd mode.

e_field_x, e_field_y
Electric field component of initial photons in the x and y planes. If both are set to 0 then a random
field is chosen with unit intensity E2

x + E2
y = 1.

energy_distribution
Sets the type of energy spectrum for emitted photons. If there is an associated physical element
then this parameter is ignored and the energy distribution is calculated from the properties of the
physical element. Possible settings are:

gaussian ! Default
uniform
curve

The gaussian setting gives Gaussian distributions for the two modes with width set by sig_E and
sig_E2. The uniform setting gives a flat distribution in the range:

[-sig_E, sig_E] ! For the 1st mode
[-sig_E2, sig_E2] ! For the 2nd mode

The curve setting uses the energy probability curve set by the energy_probability_curve com-
ponent.

energy_probability_curve
The energy_probability_curve attribute provides a way to specify the energy probability distri-
bution when an Gaussian or uniform distribution is not suitable. The probability curve is defined
by specifying the curve at a number of points. The syntax is:

energy_probability_curve = {E1 p1, E2 p2, ..., EN pN}
where the E p pairs are the energy and photon emissian probability at that energy. The commas
between E p pairs is optional. The probability curve does not have to be normalized, Bmad will
take care of that. Bmad will use cubic spline interpolation between points.

physical_source
Used to specify the “physical” source of the photons. See below for more details

sig_E, sig_E2
Energy width of the two modes in eV. See energy_distribution for more details.
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sig_vx, sig_vy
Width of emitted photons in vx/c and vy/c directions. See velocity_distribution for more
details.

sig_x, sig_y, sig_z
Width of emitted photons in x, y and z directions. See spatial_distribution for more details.

spatial_distribution
Sets spacial (x, y, z) spectrum of emitted photons. If there is an associated physical element then
this parameter is ignored and the energy distribution is calculated from the properties of the
physical element. Possible settings are:

gaussian ! Default
uniform

The gaussian setting gives a Gaussian distribution with width σ where σ is
sig_x ! for x distribution
sig_y ! for y distribution
sig_z ! for z distribution

The uniform setting gives a flat distribution in the range: [−σ, σ].

velocity_distribution
Sets the transverse (vx/c, vy/c) velocity spectrum of emitted photons. If there is an associated
physical element then this parameter is ignored and the energy distribution is calculated from
the properties of the physical element. The longitudinal velocity is always computed to make
v2x + v2y + v2z = c2 Possible settings are:

gaussian ! Default
spherical
uniform

The gaussian setting gives a Gaussian distribution with width σ where sigma is
sig_vx for vx/c distribution
sig_vy for vy/c distribution

The uniform setting gives a flat distribution in the range: [−σ, σ]. The spherical setting gives
flat distribution in all directions. With the spherical setting is used, and the next downstream
element excluding drifts and markers is an element with aperture limits (§5.8), Bmad can optimize
photon emission to only emitting photons that are very likely to be within the aperture when they
hit the downstream element. This cuts down on computation time.

For the purposes of positioning the elements in the lattice around it, a photon_init element is considered
to have zero length.

photon_init elements are used in one of two modes: With or without an associated physical source
element specified by the physical_source attribute. Without an associated physical source, the
photon_init element completely specifies the initial photon distribution. With an associated physi-
cal source element, the photon distribution is determined by the properties of the physical source but
the shape of the energy spectrum can be modified by setting attributes in the photon_init element.
Example:

b05w: sbend, l = 3.2, angle = 0.1
pfork: photon_fork, to_line = c_line, superimpose, ref = b05w, offset = 0.4
bend_line: line = (..., b05w, ...)
use bend_line

c_line: line = (pinit, ...)
c_line[E_tot] = 15e3
pinit: photon_init, physical_source = "b05w", sig_E = 2.1
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In this example, the bend b05w is a bend producing photons. It is part of the line bend_line. bend_line
also contains a photon_fork element named pfork which branches to the line c_line. c_line contains
the photon_init element pinit which references b03w as the associated physical source element. When
photons are tracked, they are generated in b05w and then propagated to the pfork fork. After this
they are propagated through c_line. The pinit element acts like a zero length marker element when
photons propagate through it. That is, the pinit element essentially serves to associate c_line with
b03w for the purposes of photon tracking. Also, in this example, pinit modifies the photon energy
spectrum so that only photons whose energy is within 2.1 eV are generated

It is important to note that in the above example, with the photon_init element having an associated
physical source, the setting of things like the spatial shape sig_z, etc. in the photon_init element will
be ignored.

See Section §13.5 for an example lattice that can be used to simulate a Rowland circle spectrometer
using a photon_init element.
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4.43 Quadrupole

A quadrupole is a magnetic element with a linear field dependence with transverse offset (§17.1).

General quadrupole attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Description strings 5.3 Overlapping Fields 5.18
Fringe Fields 5.21 Reference energy 5.5
Hkick & Vkick 5.7 Superposition 8
Integration settings 6.4 Symplectify 6.7
Is_on 5.14 Field Maps 5.16
Length 5.13 Tracking & transfer map 6

See §15.49 for a full list of element attributes along with a their units.

Attributes specific to a quadrupole element are:
b1_gradient = <Real> ! Field strength. (§5.1).
k1 = <Real> ! Quadrupole strength.
fq1 = <Real> ! Soft edge fringe parameter.
fq2 = <Real> ! Soft edge fringe parameter.
field_master = <T/F> ! See §5.2.

The normalized quadrupole k1 strength is related to the unnormalized b1_gradient field strength
through Eq. (17.3).

If the tilt attribute is present without a value then a value of π/4 is used.

For a quadrupole with zero tilt and a positive k1, the quadrupole is horizontally focusing and vertically
defocusing (§17.1).

The fq1 and fq2 parameters are used to specify the quadrupolar “soft” edge fringe. See §18.6 for more
details. The fringe_at and fringe_type settings (§5.21) determine if the fringe field is used in tracking
(§5.21).

Example:
q03w: quad, l = 0.6, k1 = 0.003, tilt ! same as tilt = pi/4
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4.44 Ramper

A ramper element is a type of control element (§2.4). That is, a ramper element can be used to make
variations in the attributes of other elements while a program is running. The ramper element is similar
to an overlay element except that ramper elements are designed to control large sets of elements. Also
ramper elements can be used to smoothly vary parameters as particle are propagated through a lattice.
Ramper elements where implemented to solve the problem of simulating machine ramping where the
strength of many elements in a machine are varied continuously as a function of time. The drawback
of ramper elements is that they can be only be used with programs that that are designed to handle
them.5 Ramper elements will be ignored in programs that are not designed to handle them. How a
program handles ramper elements will be program dependent and the program documentation should
be consulted for details.

Note: ac_kicker elements can also be used for simulating a time dependent element.

General ramper attributes are:

Attribute Class Section Attribute Class Section

Custom Attributes 3.9 Is_on 5.14
Description strings 5.3

See §15.52 for a full list of element attributes.

The syntax for ramper elements is exactly the same as for overlay (§5.4) elements except that ramper
elements do not have a gang attribute.

Like overlays, There are two types of ramper elements: Expression based and knot based. The general
syntax for a expression based ramper element is

name: RAMPER = {ele1[attrib1]:coef1, ele2[attrib2]:coef2, ...}, VAR = {var1}
where ele1[attrib1], ele2[attrib2], etc. specify the slave attributes and exp1, exp2, etc. are the
arithmetical expressions, that are functions of var1, var2, etc., and are used to determine a value for
the slave attributes.

The general syntax for a knot based ramper element is
name: RAMPER = {ele1[attrib1]:{y_knot_points1}, ele2[attrib2]:{y_knot_points2}, ...},

VAR = {var1}, X_KNOT = {x_knot_points}, INTERPOLATION = {type},
var1 = init_val1, ...

See Section §5.4 for a detailed description of this syntax.

Examples:
ramp_e: ramper = {*[e_tot]:{4e+08, 4.00532e+08, 4.01982e+08, ...}},

var = {time}, x_knot = {0, 0.001, 0.002, ...}, interpolation = cubic

amp = 1e9; omega = 0.167; t0 = 0.053
ramp_rf: ramper = {rfcavity::*[voltage]:amp*sin(omega *(t + t0)),

rfcavity::*[phi0]:0.00158*t^2 + 3*q}, var = {t, q}
Ramp_e uses a cubic spline fit to interpolate between the knot points specified in the element definition.
The “*[e_tot]” construct in the definition of ramp_e means that the ramper will be applied to the
e_tot attribute (§5.5) of all elements (since the wild card character “*” (§3.6) will match to all element
names).

5In particular, the long_term_tracking program that is bundled with the Bmad software (§1.2) can handle ramper
elements.
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The ramp_rf ramper in the above example varies the voltage and phase (phi0) attributes of all elements
that match to rfcavity::*. That is, all rfcavity elements. Here mathematical expressions are used
instead of knot points.

Ramper elements can control the variables of other controller element except rampers are not allowed to
control rampers. When a ramper controls variables in other controller elements it is not permitted to
use wild card characters. That is, in the above example, “*” will not match to any controller elements.

If a slave name contains wild card characters, for a given lattice element that the slave name matches
to, it is not required that the controlled attribute be a valid attribute of the element. In the case where
the controlled attribute is not valid for a given lattice element, no attributes of the given lattice element
are varied when and the ramper is varied. For example:

rz: ramper = {*[k1]: ...

In this example the k1 attribute of all those elements that have a k1 attribute will be controlled but
something like a sextupole element which does not have a k1 attribute will not be controlled.

Due to the way bookkeeping is done for ramper elmeents, and unlike group or overlay elements, it
is not permitted for different ramper elements to control the same parameter of a given slave element.
Additionally, parameters that ramper elements control must not be controlled by any overlay (but a
ramper can control an overlay).

Note: There is a program to plot controller response curves bundled with the Bmad software (§1.2)
called controller_function_plot. Documentation on this can be found at:

util_programs/controller_function_plot
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4.45 RF_bend

An rf_bend is an RF cavity with the geometry of an sbend (§4.5). This element is currently considered
to be experimental so please contact a Bmad maintainer if you want to use this type of element.

General rfcavity attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber wall 5.12 Overlapping Fields 5.18
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Symplectify 6.7 Field Maps 5.16
Integration settings 6.4 Tracking & transfer map 6
Is_on 5.14 Wakes 5.20
Length 5.13

See §15.51 for a full list of element attributes along with a their units.

Attributes specific to an rf_bend are:
! Bend-like attributes:
angle = <Real> ! Design bend angle. Dependent var (§5.1).
b_field = <Real> ! Design field strength (= P_0 g / q) (§5.1).
g = <Real> ! Design bend strength (= 1/rho).
l = <Real> ! "Length" of bend. See below.
l_arc = <Real> ! Arc length. For rbends only.
l_chord = <Real> ! Chord length. See §5.13.
l_sagitta ! Sagittal length. Dependent param (§5.1).
rho = <Real> ! Design bend radius. Dependent param (§5.1).
roll = <Real> ! See 5.6.
field_master = <T/F> ! See 5.2.

! RF-like attributes:
rf_frequency = <Real> ! Frequency
harmon = <Real> ! Harmonic number
harmon_master = <Logic> ! Is harmon or rf_frequency the dependent var with ref energy changes?
phi0 = <Real> ! Cavity phase (rad/2pi).
phi0_multipass = <Real> ! Phase variation with multipass (rad/2pi).

Tracking through an rf_bend is limited to Runge Kutta like tracking methods (§6.1). The default
tracking_method is runge_kutta. Fields must be specified using a grid field map (§5.16). The default
field_calc is fieldmap (§6.5.2).

The geometry of the rf_bend is the same as an sbend. An rf_bend has a sector shape which is equivalent
to e1 and e2 being zero for an sbend. Since the fields are specified using a grid field map, there are no
fringe attributes to set (for any elements where a grid field is used, it is always assumed that the fringe
fields are included as part of the grid field).
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4.46 RFcavity

An rfcavity is an RF cavity without acceleration generally used in a storage ring. The main difference
between an rfcavity and an lcavity is that, unlike an lcavity, the reference energy (§16.4.2) through
an rfcavity is constant.

General rfcavity attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber wall 5.12 Overlapping Fields 5.18
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 RF Couplers 5.17
Field autoscaling 5.19 Superposition 8
Fringe Fields 5.21 Symplectify 6.7
Hkick & Vkick 5.7 Field Maps 5.16
Integration settings 6.4 Tracking & transfer map 6
Is_on 5.14 Wakes 5.20
Length 5.13

See §15.50 for a full list of element attributes along with a their units.

Attributes specific to an rfcavity are:
rf_frequency = <Real> ! Frequency
harmon = <Real> ! Harmonic number
harmon_master = <Logic> ! Is harmon or rf_frequency the dependent var with ref energy changes?
voltage = <Real> ! Cavity voltage
phi0 = <Real> ! Cavity phase (rad/2pi).
phi0_multipass = <Real> ! Phase variation with multipass (rad/2pi).
phi0_autoscale = <Real> ! Set by Bmad if autoscaling is turned on (rad/2pi).
gradient = <Real> ! Accelerating gradient (V/m). Dependent attribute (§5.1).
longitudinal_mode = <Int> ! Longitudinal mode. Default is 1. May be 0 or 1.

The integrated energy kick felt by a particle, assuming no phase slippage, is
dE = -e_charge * rq * voltage * sin(2π * (ϕt - ϕref))

where
ϕref = phi0 + phi0_multipass + phi0_autoscale

and ϕt is the part of the phase due to when the particle arrives at the cavity and depends upon whether
absolute time tracking or relative time tracking is being used as discussed in §25.1.

In the above equation rq is the relative charge between the reference particle (set by the parameter[particle]
parameter in a lattice file) and the particle being tracked through the cavity. For example, if the refer-
ence particle and and the tracked particle are the same, rq is unity independent of the type of particle
tracked.

The correspondence between the Bmad phi0 attribute and the lag attribute of MAD is
phi0 = mad + 0.5

phi0_multipass is only to be used to shift the phase with respect to a multipass lord. See §9. e_charge
is the magnitude of the charge on an electron (Table 3.2). Notice that the energy kick is independent of
the sign of the charge of the particle
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phi0_autoscale and field_autoscale are calculated by Bmad’s auto-scale module. See Section §5.19
for more details. Autoscaling can be toggled on/off by using the autoscale_phase and autoscale_amplitude
toggles.

Note: Zero phase for ϕref corresponds to the stable fixed point above transition.

Note: Phi0 is not to be confused with the synchronous phase. The synchronous phase is the phase of
the particle as it passes through the cavity with respect to the RF waveform. The synchronous phase is
not something that is set by the User but rather is established by the balance between the energy gain
of the particle as it goes through the cavities in the ring versus the energy lost to synchrotron radiation.
In fact, for a ring with a single cavity, the synchronous phase is independent of phi0. Changing phi0 in
such a situation will result in the closed orbit phase space z to vary in lock step.

If harmon is non–zero the rf_frequency is calculated by
rf_frequency = harmon * c_light * beta0 / L_lattice

where L_lattice is the total lattice length and beta0 is the velocity of the reference particle at the start
of the lattice. After the lattice has been read in, rf_frequency will be the independent variable (§5.1).

Couplers (§5.17) and HOM wakes (§5.20) can be modeled. In addition, if a field map is specified (§5.16),
tracking using an integrator is possible.

If a field map is specified (§5.16), tracking using an integrator is possible. A field map is only used for
runge_kutta, fixed_step_runge_kutta, and symp_lie_bmad tracking (§6.1). Only the fundamental
mode has an analytical formula for the symplectic tracking. With cavity_type set to standing_wave,
the longitudinal mode is set by the longitudinal_mode parameter. The possible values are 0 or 1 and
the default setting is 0.

The cavity_type is the type of cavity being simulated. Possible settings are:
ptc_standard
standing_wave ! Default
traveling_wave

The cavity_type switch is ignored if a field map is used.

Example:
rf1: rfcav, l = 4.5, harmon = 1281, voltage = 5e6
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4.47 Sad_Mult

A sad_mult element is equivalent to a SAD[SAD] mult element. This element is a combination solenoid,
multipole, bend, and RF cavity.

General sample attributes are:

Attribute Class Section Attribute Class Section

an, bn multipoles 5.15 Length 5.13
Aperture limits 5.8 Offsets, pitches & tilt 5.6
Chamber wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Superposition 8
Description strings 5.3 Tracking & transfer map 6
Fringe Fields 5.21

See §15.53 for a full list of element attributes along with a their units.

Attributes specific to an sad_mult element are:
bs_field = <Real> ! Solenoid field. SAD equivalent: BZ.
ks = <Real> ! Solenoid strength.
e1, e2 = <Real> ! Bend face angles.
eps_step_scale = <Real> ! Step size scale. Default = 1. SAD equivalent: EPS.
fq1, fq2 = <Real> ! Quadrupole fringe integral. SAD equivalents: F1, F2.
x_offset_mult = <Real> ! Mult component offset. SAD equivalent: DX.
y_offset_mult = <Real> ! Mult component offset. SAD equivalent: DY.
fringe_type = <Switch> ! Type of fringe. SAD equivalent: DISFRIN.
fringe_at = <Switch> ! Where fringe is applied. SAD equivalent: FRINGE.

One difference between SAD and Bmad is that SAD defines the solenoid field by what are essentially a
set of marker elements so that the solenoid field at a SAD mult element is not explicitly declared in the
mult element definition. Bmad, on the other hand, requires a sad_mult element to explicitly declare
the solenoid parameters.

Another difference between SAD and Bmad is that, within a solenoid, the reference trajectory is aligned
with the solenoid axis (and not aligned with the axis of the elements within the solenoid region).

The SAD mult element uses normal Kn and skew KSn multipole components. The Bmad sad_mult
element used normal an and skew bn multipole components. As can be seen from the equations in §17.1,
there is a factor of n! between the two representations.

The a0 or b0 multipole moments give a dipole kick (just like a kicker element). The face angles e1 and
e2 are used with the dipole kick in calculating fringe effects.

The fq1 and fq2 parameters are used to specify the quadrupolar “soft” edge fringe. See §18.6 for more
details.

The fringe_at and fringe_type settings determine if the fringe field is used in tracking. See Sec §5.21
for the translation between these two switches and the fringe and disfrin switches of SAD.

The x_offset_mult and y_offset_mult orients the non-solenoid components of the field while leaving
the solenoid component unshifted.

Unlike other elements, the ds_step and num_steps attributes (§6.4) of a sad_mult are dependent
attributes (§5.1) and are not directly settable. Rather these attributes are calculated using SAD’s own
algorithm for setting the step size. To vary the calculated step size for a single sad_mult element,



4.47. SAD_MULT 149

the attribute eps_step_scale may be set. To vary the step size for all sad_mult elements, the global
parameter bmad_com[sad_eps_scale] (§11.4) may be set. The default values for these parameters are:

eps_step_scale = 1
bmad_com[sad_eps_scale] = 5e-3

SAD conventions to be aware of when comparing SAD to Bmad:

• A SAD rotate or chi3 rotation is opposite to a Bmad tilt

• SAD element offsets (dx, dy, dz) are with respect to the entrance end of the element as opposed
to Bmad’s convention of referencing to the element center.

• The Bmad sad_mult element does not have any attributes corresponding to the following SAD
mult element attributes:

angle, harmon, freq, phi, dphi, volt, dvolt

That is, sad_mult elements cannot be used to simulate RF cavities or bends (but a sad_mult can
be used to simulate a kicker type element).

Example:
qs1: sad_mult, l = 0.1, fringe_type = full, b2 = 0.6 / factorial(2)
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4.48 Sample

A sample element is used to simulate a material sample which is illuminated by x-rays.

General sample attributes are:

Attribute Class Section Attribute Class Section
Aperture limits 5.8 Offsets, pitches & tilt 5.6

Chamber wall 5.12 Reference energy 5.5
Custom Attributes 3.9 Surface Properties 5.11
Description strings 5.3 Superposition 8
Integration settings 6.4 Tracking & transfer map 6
Length 5.13

See §15.54 for a full list of element attributes along with a their units.

This element is in development.

Attributes specific to an solenoid element are:
mode = <Switch> ! Reflection or transmission.
material = <type> ! Type of material. §5.9

The mode parameter can be set to:
reflection
transmission

With mode set to reflection, photons will be back scattered from the sample surface isotropically. In
this case the material properties will not matter. Additionally, a patch (§4.41) element will be needed
after the sample element to properly reorient the reference orbit.

With mode set to transmission, photons will be transmitted through the sample. In this case material
will be used to determine the attenuation and phase shift of the photons.

Example:
formula409: sample, x_limit = 10e-3, y_limit = 20e-3, mode = reflection
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4.49 Sextupole

A sextupole is a magnetic element with a quadratic field dependence with transverse offset (§17.1).

General sextupole attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.55 for a full list of element attributes along with a their units.

Attributes specific to an sextupole element are:
k2 = <Real> ! Sextupole strength.
b2_gradient = <Real> ! Field strength. (§5.1).
field_master = <T/F> ! See §5.2.

The normalized sextupole k2 strength is related to the unnormalized b2_gradient field strength through
Eq. (17.3).

The bmad_standard calculation treats a sextupole using a kick–drift–kick model.

If the tilt attribute is present without a value then a value of π/6 is used. Example:
q03w: sext, l = 0.6, k2 = 0.3, tilt ! same as tilt = pi/6
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4.50 Sol_Quad

A sol_quad is a combination solenoid/quadrupole. Alternatively, the sad_mult element can also be
used. The advantage of the sad_mult element is that it can simulate a quadrupole field that is canted
with respect to the solenoid field.

General sol_quad attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.56 for a full list of element attributes along with a their units.

Attributes specific to a sol_quad element are:
k1 = <Real> ! Quadrupole strength.
ks = <Real> ! Solenoid strength.
bs_field = <Real> ! Solenoid Field strength.
b1_gradient = <Real> ! Quadrupole Field strength.
field_master = <T/F> ! See §5.2.

The normalized quadrupole k1 and solenoid ks field strengths are related to the unnormalized b1_gradient
and bs_field field strengths through Eq. (17.3).

Example:
sq02: sol_quad, l = 2.6, k1 = 0.632, ks = 1.5e-9*parameter[p0c]
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4.51 Solenoid

A solenoid is an element with a longitudinal magnetic field.

General solenoid attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.57 for a full list of element attributes along with a their units.

Attributes specific to an solenoid element are:
ks = <Real> ! Solenoid strength.
bs_field = <Real> ! Solenoid field strength.
field_master = <T/F> ! See §5.2.
l_soft_edge = <Real> ! For modeling a ‘‘soft" fringe.
r_solenoid = <Real> ! Solenoid radius.

The ks and bs_field parameters are the normalized and unnormalized solenoid strengths related
through Eq. (17.3).

The bmad_standard tracking model (§6.1) uses a “hard edge” model where the field goes from zero to
full strength. Example:

cleo_sol: solenoid, l = 2.6, ks = 1.5e-9 * parameter[p0c]

“Soft edge” end fields may be simulated by using Runge-Kutta tracking and setting the field_calc
parameter of the element to soft_edge. Equations for the soft edge model are taken from Derby and
Olbert [Derby09]. The equations used are for the exact ideal azimuthally symmetric solenoid model (not
the near-axis approximation model). In this case ks and bs_field are the field of an infinite pipe with
the same current density (equal to µ0 n I in the notation of Derby and Olbert). Example:

soft_sol: solenoid, l = 1.0, field_calc = soft_edge, l_soft_edge = 0.5,
r_solenoid = 0.1, tracking_method = runge_kutta, mat6_calc_method = tracking

Here the solenoid is modeled as a perfect current carrying cylinder with a length of 0.5 meters and a
cylinder radius of 0.1 meters. The length of the element, 1.0 meters, must be greater than l_soft_edge
since particles need to be tracked through the non-zero fringe field that extends outside of the cylinder.
In fact, since the field is always finite everywhere, to the extent that the field is nonzero at the edges
of the element places a bound on the accuracy of the simulation. Note that bmad_standard tracking
will always ignore the setting of field_calc. That is, with bmad_standard tracking the field always
extends to the edges of the element and the value of l_soft_edge is ignored.
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4.52 Taylor

A taylor is a Taylor map (§24.1) that maps the input orbital phase space and possibly spin coordinates
of a particle at the entrance end of the element to the output orbital and spin coordinates at the exit
end of the element. This can be used in place of the MAD matrix element.

General taylor attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Offsets & tilt 5.6
Custom Attributes 3.9 Reference energy 5.5
Description strings 5.3 Superposition 8
Is_on 5.14 Symplectify 6.7
Length 5.13 Tracking & transfer map 6

See §15.58 for a full list of element attributes along with a their units.

Attributes specific to a taylor element are:
ref_orbit = (<x>, <px>, <y>, <py>, <z>, <pz>) ! Reference orbit.
x_ref = <Real> ! $x$ reference orbit component.
px_ref = <Real> ! $p_x$ reference orbit component.
y_ref = <Real> ! $y$ reference orbit component.
py_ref = <Real> ! $p_y$ reference orbit component.
z_ref = <Real> ! $z$ reference orbit component.
pz_ref = <Real> ! $p_z$ reference orbit component.
{<out>: <coef>, <e1> <e2> <e3> <e4> <e5> <e6>} ! Taylor term. First form.
{<out>: <coef> | <n1> <n2> ...} ! Taylor term. Second form.
tt<out><n1><n2>... = <Coef> ! Taylor term. Third form.
delta_ref_time = <Real> ! Change in the reference time.
delta_e_ref = <Real> ! Change in the reference energy.

For historical reasons, there are three different forms that can be used to specify a taylor term. Notice
that the first form (above) uses a comma “,” to separate the <coef> from <e1>, while the second form
uses a vertical bar “|” to separate <coef> from <n1>.

The orbital (x, px, y, py, z, pz) part of the Taylor map, M, maps input orbital coordinates r(in) to the
output orbital coordinates r(out)

r(out) = M(r(in)) (4.27)

Notice that Stern-Gerlach effects are ignored so that the output coordinates are independent of the spin.
M has six componentsMj one for each output coordinate rj(out)

rj(out) =Mj(r(in)) (4.28)

Each Mj is made up of a number of terms

Mj =

Nj∑
k=1

Mjk (4.29)

and each term Mjk is a polynomial in the input orbital coordinates with respect to the reference orbit.

Mjk(r(in)) = Cjk ·Π6
i=1 δr

eijk
i (4.30)
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where Cjk is the coefficient for the term, the eijk are integer exponents, and δr = r(in) − rref with rref
with being the reference orbit.

A term in a Taylor map can be specified by one of three forms as shown above. The first form is
{<out>: <coef>, <e1> <e2> <e3> <e4> <e5> <e6>}

<Out> is an integer in the range 1 to 6 corresponding to the index j in Eq. (4.30) (<out> = 1 for x,
etc.). <coef> corresponds to Cjk in Eq. (4.30), and <e1>, <e2>, <e3>, <e4>, <e5>, and <e6> correspond
to eijk, i = 1 . . . 6. For example, the Taylor map

py(out) = 0.9 · δx+ 2.73 · δy2(in) δpz(in) + . . . (4.31)

would be written as
{4: 0.9, 1 0 0 0 0 0}, {4: 2.73, 0 0 2 0 0 1}, ...

The second form for specifying a Taylor term uses the syntax:
{<out>: <coef> | <n1> <n2> ...}

The set of integers <n1>, <n2> each must be between 1 and 6 inclusive. The value of the ith exponent
eijk in Eq. (4.30) is equal to the number of integers that are equal to i. For example, the above Taylor
map would be written using the second form as

{4: 0.9 | 1}, {4: 2.73 | 336}, ...
Notice that with the second form, spaces between exponent integers is optional.

The third form is like the second form and has the syntax:
tt<out><n1><n2>... = <Coef> ! Taylor term. Third form.

For example, the Taylor map above would be written using the third form as:
tt41 = 0.9, tt4336 = 2.73, ...

The spin (§23.1) part of the transport map Q (§24.2) gives the spin rotation quaternion q (§23.2) as a
function of input orbital coordinates (the form of the T-BMT equation assures that Q cannot depend
upon the spin coordinates):

q = Q(r(in)) (4.32)

q has four components and in analogy to Eq. (4.28) one writes

qj = Qj(r(in)) (4.33)

Each Qj is made up of a number of terms

Qj =
Nj∑
k=1

Qjk (4.34)

and each term Qjk is a polynomial in the input orbital coordinates with respect to the reference orbit.

Qjk(r(in)) = Cjk ·Π6
i=1 δr

eijk
i (4.35)

Rather than using an integer index, the four components of a quaternion are labeled (S1, Sx, Sy, Sz).
The syntax for the spin part uses the three forms as described above. For example

{Sx: 0.43 | 13 } ! or
{Sx: 0.43, 1 0 1 0 0 0} ! or
ttSx13 = 0.43

is equivalent to the term
Sx = 0.43 · δx(in) δy(in) (4.36)

By default, a taylor element starts out with the unit phase space map. That is, a taylor element
starts with the following 6 terms
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{1: 1.0, 1 0 0 0 0 0}, {2: 1.0, 0 1 0 0 0 0},
{3: 1.0, 0 0 1 0 0 0}, {4: 1.0, 0 0 0 1 0 0}
{5: 1.0, 0 0 0 0 1 0}, {6: 1.0, 0 0 0 0 0 1}

Which is equivalent to
{1: 1.0 | 1}, {2: 1.0 | 2}, {3: 1.0 | 3}
{4: 1.0 | 4}, {5: 1.0 | 5}, {6: 1.0 | 6}

If there are no Sx spin terms are present, the Sx quaternion component will always evaluate to zero.
This is equivalent to a single term {Sx: 0.0 |}. Similarly for the Sy and Sz components. If no S1 term
is present, it is considered an error if any Sx, Sy, or Sz term is present. If no S1, Sx, Sy, nor Sz spin
terms are present, S1 component will be given a default term of {S1: 1.0 |}. Thus, if no spin terms are
present at all, the spin map will be the unit map.

The ref_orbit attribute specifies the phase space (x, px, y, py, z, pz) reference orbit at the start of the
element used to construct the Taylor map. Alternatively, the individual components of the reference
orbit may be specified by using the attributes x_ref, px_ref, y_ref, py_ref, z_ref, or pz_ref.

Note: when converting the map from Bmad to PTC (§28), the Bmad/PTC interface code will convert
from Bmad phase space coordinates to PTC phase space coordinates and will convert the map to using
the reference orbit as the map zero orbit. This does not affect tracking but will affect map analysis.

A term in a taylor element will override any previous term with the same out and e1 through e6
indexes. For example the term:

my_tlr: Taylor, {1: 4.5, 1 0 0 0 0 0}

will override the default {1: 1.0, 1 0 0 0 0 0} term.

The l length attribute of a taylor element does not affect phase space coordinates but will affect the
longitudinal s position of succeeding elements and will affect the time it takes a particle to track through
the element The calculation involves first calculating the change in reference time which is the time a
particle with the reference energy would take to transverse the element. Next, Eq. (16.28) is used with
the change in the phase space z coordinate to calculate the time a particle takes to traverse the element.

The time a particle takes to track through a taylor element can also be controlled by setting the
delta_ref_time attribute which sets the travel time for the reference particle. delta_ref_time is a
dependent attribute so that if both l and delta_ref_time are set, the value of delta_ref_time will
be modified by Bmad to correspond to the setting of l.

The delta_e_ref attribute can be used to modify the reference energy at the exit end of the taylor
element. The phase space transport is completely determined by the Taylor map and is independent of
delta_e_ref. For example, with a unit Taylor map, the phase space coordinates px and py constant
through the element independent of delta_e_ref. However, a finite delta_e_ref will modify the
reference momentum P0 and hence through Eq. (16.27) will affect the transport downstream of the
Taylor element. This behavior is in contrast to how delta_e_ref is handled in a patch element. In a
patch element, the transformation used when delta_e_ref is non-zero is to hold as constant the actual
transverse momenta Px and Py and then px and py are modified using Eq. (16.27).

A taylor element that is “turned off” (is_on attribute set to False), is considered to be like a marker
element. That is, the orbit and Twiss parameters are unchanged when tracking through a taylor element
that is turned off.

Example taylor element definitions:
mtlr: Taylor, {4: 2.7, 0 0 2 0 0 1}, {2: 1.9 | 1 1 2},

{S1: 0.43 | 2 }, ...,
ref_orbit = (0.01, 0.003, 0.002, 0.001, 0.0, 0.2)

t_unit: taylor {s1: 1 | } ! This is the identity spin/orbital map.
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And

Note: When tracking a particle’s spin through a map, the quaternion used to rotate the spin is always
normalized to one so that the magnitude of the spin will be invariant.

Note: Tracking through a taylor elements using symp_lie_ptc is the same as tracking with the taylor
tracking method. That is, the Taylor map is simply evaluated and no effort at symplectification is done.
Furthermore, evaluating the Taylor map of a taylor element using the taylor method is faster than
evaluation using symp_lie_ptc. Thus the taylor tracking method should always be used with taylor
elements.
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4.53 Thick_Multipole

A thick_multipole element is like a sextupole or octupole element except that the thick_multipole
does not have a K2 sextupole like parameter nor a K3 octupole like parameter. Rather, thick_multipoles,
like sextupole or octupole elements, have a0, a1, a2, etc. and b0, b1, b2, etc. multipoles (§17.1).
In terms of tracking, given equivalent multipole values, thick_multipoles are indistinguishable from
sextupoles or octupoles. thick_multipole elements are useful for differentiating elements that only
have higher order multipole moments.

General thick_multipole attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.59 for a full list of element attributes along with a their units.

Example:
tm1: thick_multipole, l = 4.5, tilt, x_pitch = 0.34, a7 = 1.23e3, b8 = 7.54e5
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4.54 Wiggler and Undulator

A wiggler or undulator element is basically a periodic array of alternating bends. The difference
between wigglers and undulators is in the x-ray emission spectrum. Charged particle tracking will be
the same.

Henceforth, the term “wiggler” will denote either a wiggler or undulator

General wiggler attributes are:

Attribute Class Section Attribute Class Section

Aperture limits 5.8 Mag & Elec multipoles 5.15
Chamber wall 5.12 Offsets, pitches & tilt 5.6
Custom Attributes 3.9 Overlapping Fields 5.18
Description strings 5.3 Reference energy 5.5
Fringe Fields 5.21 Superposition 8
Hkick & Vkick 5.7 Symplectify 6.7
Integration settings 6.4 Field Maps 5.16
Is_on 5.14 Tracking & transfer map 6
Length 5.13

See §15.60 for a full list of element attributes along with a their units.

There are three types of wigglers. Wigglers that are described using a magnetic field map are called
“map type” and are discussed in §4.54.2. Wigglers that are described assuming a periodic field are
called “periodic type” and are described in §4.54.1. The third type of wiggler has a custom field.
The different wiggler types are distinguished by the setting of the element’s field_calc parameter as
discussed in section §6.5.2. For example:

wig1: wiggler, l = 1.6, field_calc = fieldmap, ...

In this example wig1 is a map type wiggler.

Attributes specific to wiggler and undulator elements are:

b_max = <Real> ! Maximum magnetic field (in T) on the wiggler centerline.
l_period = <Real> ! Length over which field vector returns to the same orientation.
n_period = <Real> ! The number of periods. Dependent attribute (§5.1).
l_pole = <Real> ! Wiggler pole length. DEPRECATED. USE L_PERIOD INSTEAD.
n_pole = <Real> ! The number of poles. DEPRECATED. USE N_PERIOD INSTEAD.
polarity = <Real> ! For scaling the field.
kx = <Real> ! Planar wiggler horizontal wave number.
k1x ! Planar wiggler horizontal defocusing strength. Dep attribute (§5.1).
k1y ! Planar wiggler vertical focusing strength. Dep attribute (§5.1).
g_max ! Maximum bending strength. Dependent attribute.
osc_amplitude ! Amplitude of the particle oscillations. Dependent attribute.

The polarity value is used to scale the magnetic field. By default, polarity has a value of 1.0. Example:

wig1: wiggler, l = 1.6, polarity = -1, cartesian_map = {...}

In this example the wiggler field is defined by a Cartesian map (§5.16.2) and the field is reversed from
what it would be with polarity set to 1.
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4.54.1 Periodic Type Wigglers

Periodic type wigglers are modeled assuming the field is periodic longitudinally. Periodic type
wigglers have their field_calc parameter set to one of

planar_model ! Default
helical_model

For historic purposes, if there is no fieldmap defined for the element (that is, it is not a map type
wiggler), and field_calc is not set, then field_calc will default to planar_model.

Example:
wig2: wiggler, l = 1.6, b_max = 2.1, n_period = 8

This defines a periodic type wiggler with field_type defaulting to planar_model.

For the planar_model, wigglers use a simplified model where the wiggler has field components

Bx = −b_max
kx
ky

sin(kx x) sinh(ky y) cos(kz z + ϕz)

By = b_max cos(kx x) cosh(ky y) cos(kz z + ϕz) (4.37)

Bz = −b_max
kz
ky

cos(kx x) sinh(ky y) sin(kz z + ϕz)

with k2y = k2x + k2z . Here z is the distance from the beginning of the wiggler, the input parameter b_max
is the maximum field on the centerline, and kz is given in terms of the period length (l_period) by

kz =
2π

lperiod
(4.38)

The phase ϕz is chosen so that By is symmetric about the center of the wiggler

ϕz =
−kz L

2
(4.39)

Note: Originally kz was calculated using l_pole — the length of a pole — with the period length being
twice the pole length. When the helical model option was introduced this became problematical since
the period of a helical wiggler could be either 2 or 4 times the pole length depending upon the geometry.
As a result, using the pole length was deprecated and instead the period length or number should be
used.

The helical_model for the field is

Bx = −b_max cosh(kz x) sin(kz z + ϕz) (4.40)
By = b_max cosh(kz y) cos(kz z + ϕz)

Bz = −b_max [sinh(kz x) cos(kz z + ϕz) + sinh(kz y) sin(kz z + ϕz)]

With field_calc set to planar_model, and with bmad_standard tracking (§6), the horizontal and
vertical focusing is assumed small. The vertical motion is modeled as a combination focusing quadrupole
and focusing octupole giving a kick (modified from [Corbett99])

dpy
dz

= k1y

Å
y +

2

3
k2y y

3

ã
(4.41)

where

gmax =
eBmax

P0 (1 + pz)
(4.42)

k1y =
−k2y
2 k2z

g2max (4.43)
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with k1y (a dependent element attribute) being the linear focusing constant.

The averaged horizontal motion is
dpx
dz

= k1x x (4.44)

with

k1x =
k2x
2 k2z

g2max (4.45)

With field_calc set to helical_model, and with bmad_standard tracking, the transport in the ver-
tical and horizontal planes is the same as with the transport in the vertical plane with planar_model
(Eq. (4.41)).

While bmad_standard tracking uses an averaged trajectory, the actual trajectory has oscillations that
look like

x = A cos(kz z) (4.46)
with the amplitude A given by

A =
gmax

k2z
(4.47)

The value of A, computed for an on-energy (pz = 0) particle, is calculated and stored in the dependent
parameter osc_amplitude.

With field_calc set to planar_model and bmad_standard tracking, the phase ϕz in Eqs. (4.39) is
irrelevant. When the tracking involves Taylor maps and symplectic integration, the choice of phase is
such that, with an integer number of periods, a particle that enters the wiggler on-axis will leave the
wiggler on-axis provided there is an integer number of periods. Notice that with field_calc set to
helical_model it is not possible to set the phase so that a particle that enters the wiggler on-axis will
leave the wiggler on-axis.

When using a tracking through a periodic wiggler with a tracking method that integrates through the
magnetic field (§6.4), The magnetic field is approximated using a single wiggler term as if the wiggler
were a map type wiggler. This wiggler model has unphysical end effects and will give results that are
different from the results obtained when using the bmad_standard tracking method.

Tracking a particle through a wiggler is always done so that if the particle starts on-axis with no
momentum offsets, there is no change in the z coordinate even though the actual trajectory through the
wiggler does not follow the straight line reference trajectory.

4.54.2 Map Type Wigglers

Map type wigglers are modeled using a field map as described in section §5.16. Map type wigglers have
their field_calc parameter set to fieldmap. Note: For historic reasons, unlike other types of elements,
field_calc will default to fieldmap if there is a field map present in a wiggler.

Unlike periodic type wigglers, the b_max attribute for a map type wiggler is a dependent attribute
and is set by Bmad to be the maximum field on-axis computed for polarity = 1.

Note: There is no bmad_standard tracking for a map_type wiggler.

4.54.3 Old Wiggler Cartesian Map Syntax

When the wiggler model was first developed, the only type of map that could be used for map type
wigglers was a Cartesian map (§5.16). The syntax for specifying this Cartesian map was different from
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what it is currently. The old syntax for a Cartesian map term was:

term(i) = {C, kx, ky, kz, ϕz} (4.48)

Example:
wig1: wiggler, l = 1.6,

term(1) = {0.03, 3.00, 4.00, 5.00, 0.63},
term(2) = ...

The old syntax was limited to using the cartesian_map y family (§17.5) with x0 = y0 = 0. There was
also a different normalization convention. The old style hyper-y form was

Bx = −C kx
ky

sin(kxx) sinh(kyy) cos(kzz + ϕz)

By = C cos(kxx) cosh(kyy) cos(kzz + ϕz) ! Old style

Bs = −C
kz
ky

cos(kxx) sinh(kyy) sin(kzz + ϕz) (4.49)

with k2y = k2x + k2z .

The old style hyper-xy form was

Bx = C
kx
ky

sinh(kxx) sinh(kyy) cos(kzz + ϕz)

By = C cosh(kxx) cosh(kyy) cos(kzz + ϕz) ! Old style

Bs = −C
kz
ky

cosh(kxx) sinh(kyy) sin(kzz + ϕz) (4.50)

with k2y = k2z − k2x ,

The old style hyper_x form was

Bx = C
kx
ky

sinh(kxx) sin(kyy) cos(kzz + ϕz)

By = C cosh(kxx) cos(kyy) cos(kzz + ϕz) ! Old style

Bs = −C
kz
ky

cosh(kxx) sin(kyy) sin(kzz + ϕz) (4.51)

with k2y = k2x − k2z .

The correspondence between C in the above equations and A in the new equations is given by comparing
Eqs. (4.49), (4.50), and (4.51) with Eqs. (17.34).

When the cartesian_map construct was being developed, an intermediate hybrid syntax was used de-
fined:

term(i) = {A, kx, ky, kz, x0, y0, ϕz, family} (4.52)

The parameters here directly correspond to the cartesian_map forms (see Eqs. (17.31) through (17.36)).

For example, the old style syntax:
term(1) = {0.03*4/5, 3.00, 4.00, 5.00, 0.63 } ! Old style

is equivalent to the hybrid syntax:
term(2) = {0.03, 3.00, 4.00, 5.00, 0, 0, 0.63, y} ! Hybrid style

Note: When converting from the old or hybrid styles to the new syntax, the field_calc parameter
must be set to fieldmap.



Chapter 5

Element Attributes

For a listing of element attributes for each type of element, see Chapter §15.

5.1 Dependent and Independent Attributes

For convenience, Bmad computes the values of some attributes based upon the values of other attributes.
Some of these dependent variables are listed in Table 5.1. Also shown in Table 5.1 are the independent
variables they are calculated from.

Element Independent Variables Dependent Variables

All elements ds_step num_steps
BeamBeam charge, sig_x, sig_y, e_tot bbi_constant
Elseparator hkick, vkick, gap, l, e_tot e_field, voltage
Lcavity gradient, l e_loss, voltage
Rbend, Sbend g, l rho, angle, l_chord
Wiggler (map type) term(i) b_max, k1, rho
Wiggler (periodic type) b_max, e_tot k1, rho

Table 5.1: Partial listing of dependent variables and the independent variables they are calculated from.

For electric and magnetic field strength parameters, the field_master parameter (§5.2) can be used to
determine if the be normalized or unnormalized, values are dependent or independent.

5.2 Field_Master and Normalized Vs. Unnormalized Field Strengths

The field_master attribute of an element sets whether the element’s normalized (normalized by the
reference energy) field strengths or the unnormalized strengths are the independent variables (§5.1).
See §17.1 for details as to how they are related. The setting of field_master also sets whether an
element’s magnetic multipoles (§5.15) are interpreted as normalized or unnormalized (electric multipoles
are always treated as unnormalized).

Table 5.2 shows some normalized and unnormalized field strength attributes. The default value of

163



164 CHAPTER 5. ELEMENT ATTRIBUTES

field_master for an element is False if there are no field values set in the lattice file for that element. If
normalized field values are present then the default is also False. If there are unnormalized field values
present then the default is True.

For example:
Q1: quadrupole, b1_gradient = 0 ! Field strengths are the independent variables
Q1: quadrupole, field_master = T ! Same as above
Q2: quadrupole ! Define Q2.
Q2[b1_gradient] = 0 ! Field strengths now the independent variables.
Q2[field_master] = T ! Same as above.

Specifying both normalized and unnormalized strengths for a given element is not permitted. For
example:

Q3: quadrupole, k1 = 0.6, bl_hkick = 37.5 ! NO. Not VALID.

Element Normalized Unnormalized

Sbend, Rbend g b_field
Sbend, Rbend dg db_field
Solenoid, Sol_quad ks bs_field
Quadrupole, Sol_quad, Sbend, Rbend k1 b1_gradient
Sextupole, Sbend, Rbend k2 b2_gradient
Octupole k3 b3_gradient
HKicker, VKicker kick bl_kick
Most hkick bl_hkick
Most vkick bl_vkick

Table 5.2: Example normalized and unnormalized field strength attributes.

5.3 Type, Alias and Descrip Attributes

There are three string labels associated with any element:
type = "<String>"
alias = "<String>"
descrip = "<String>"

The type and alias attributes can be up to 40 characters in length and descrip can be up to 200
characters. If the attribute string does not contain a blank, comma, or a semicolon, the quotation marks
may be omitted. Unlike the element name, these strings are not converted to upper case.

These labels have a number of purposes. For example, a Bmad based program that is used as an online
machine model could associate a label string with a machine database element to facilitate machine
control. Also these labels can be used with pattern matching when selecting elements (§3.6).

Example:
Q00W: Quad, type = "My Type", alias = Who_knows, &

descrip = "Only the shadow knows"

5.4 Group, Overlay, and Ramper Element Syntax

The syntax for specifying group (§4.25), overlay (§4.40), or ramper (§4.44) elements are virtually
identical and is discussed below. The name “controller” will be used to denote either a group, overlay,
or ramper element.
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Controller elements have a set of one or more “variables” that are used to control the values of attributes
of other elements (called “slave” attributes).

There are two types of controllers in terms of how slave attribute values are computed — Expression
based controllers and knot based controllers. Expression based controllers use mathematical expres-
sions (§3.13) to define how slave attribute values are calculated based upon the values of the controller
variables. Knot based controllers use an array of points (called “knots”) with either linear or cubic spline
interpolation (in particular, the cubic non-smoothing Akima spline[Akima70]) to determine the relation-
ship between variables and slave attributes. With a knot based controller, the number of controller
variables is restricted to be one.

The general syntax for an expression based group element is
name: GROUP = {ele1[attrib1]:exp1, ele2[attrib2]:exp2, ...},

VAR = {var1, var2, ...}, var1 = init_val1,
old_var1 = old_init_val1, ..., GANG = logical, ...

For an expression based overlay element, the syntax is identical except OVERLAY is substituted for
GROUP and there are no old values to set:

name: OVERLAY = {ele1[attrib1]:exp1, ele2[attrib2]:exp2, ...},
VAR = {var1, var2, ...}, var1 = init_val1, GANG = logical, ...

For an expression based ramper element, the syntax is identical to the overlay element except RAMPER
is used in place of OVERLAY and there is no GANG attribute.

In the above, Name is the name of the controller element, ele1, ele2, ... are the elements whose attributes
are to be controlled, attrib1, attrib2, etc. are the controlled attributes (called “slave” attributes), var1,
var2, etc. are the control variables, and exp1, exp2, etc. are the arithmetical expressions that define
the relationship between the variables and the slave attributes. Example:

gr1: group = {q1[k1]:-tan(a)*b, q2[tilt]:b^2}, var = {a, b}

The function ran() and ran_gauss() may be used in expressions with ramper elements but may not
be used for other types of controllers. These functions can be useful with long-term tracking to simulate
such things as ground noise or RF jitter. Example

rf_noise: ramper = {rfcavity::*[phi0]: 1e-4*ran_gauss()}, var = { }

Notice that the expression does not depend upon any variables and the variable list is empty. An
empty variable list is permissible only if all slave expressions involve ran() or ran_gauss(). With an
empty variable list, Bmad will define a variable for the ramper called null to serve as a place holder for
bookkeeping purposes.

To define an expression based controller element, two lists are needed: One list defines the slave
attributes along with the arithmetic expressions used for computing the value of the slave attributes.
The other list defines the variables within the controller element that can be varied. In the above
example, the variables are a and b, and the slave attributes are the k1 attribute of element q1 and the
tilt attribute of element q2. The arithmetic expressions used for the control are -tan(a)*b and bˆ2.

The general syntax for For a knot based group element is:
name: GROUP = {ele1[attrib1]:{y_knot_points1}, ele2[attrib2]:{y_knot_points2}, ...},

VAR = {var1}, X_KNOT = {x_knot_points}, INTERPOLATION = {type},
var1 = init_val1, old_var1 = init_val_old1, ..., GANG = logical, ...

and the general syntax for a knot based overlay element is similar:
name: OVERLAY = {ele1[attrib1]:{y_knot_points1}, ele2[attrib2]:{y_knot_points2}, ...},

VAR = {var1}, X_KNOT = {x_knot_points}, var1 = init_val1, ...,
GANG = logical, INTERPOLATION = {type}, ...
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For ramper elements, the syntax is similar to the overlay syntax except that OVERLAY is replaced by
RAMPER and there is no GANG attribute. The x_knot array is combined with a given y_knot array to give
a series of N knot points where N is the size of the x_knot and y_knot arrays. As such, the size of all
knot arrays must be the same with the additional restriction that the x_knot array must have values
that are strictly ascending. Example:

ov: overlay = {q1[k1]:{-0.12, 0.23, 0.53}, q2[k1], q3[k1], q4[k1]:{0.37, 0.12, 0.92}},
var = time, x_knot = {0.0, 0.7, 1.0}

K In this example there are three knot points for each slave parameter. For the slave parameter q4[k1]
the knot points are (0.0, 0.37), (0.7, 0.12), and (1.0, 0.92). If a y_knot_points array is not present for
a particular slave attribute, the knot array of the previous slave attribute is used. Thus, in the above
example, the y_knot array used for q2[k1] and q3[k1] are the same as the y_knot array for q1[k1].

The method used to interpolate between the knot points is determined by the setting of the interpolate
parameter which may be one of

linear ! Linear interpolation.
cubic ! Cubic spline interpolation (default).

For variable values outside of the range specified by x_knot, the slave parameter value will be ex-
trapolated using the interpolation function calculated from the three points nearest the end. That is,
extrapolation will be linear if interpolate is set to linear and will be cubic if interpolate is set to
cubic. For the cubic spline, extrapolation is only permitted over a distance outside the x_knot range
equal to the difference between the value of the x_knot end point and its neighbor point. Thus in the
above example, extrapolation will be allowed in the intervals [−0.7, 0.0] and [1.0, 1.7].

After a controller has been defined, the individual knot points may be referenced using the syntax
name[x_knot(i)] ! I^th x_knot point
name[slave(j)%y_knot(i)] ! I^th y_knot point of j^th slave.

For example:
ov: overlay = {q1[k1]:{-0.12, 0.23, 0.53}, q2[tilt]:{0.37, 0.12, 0.92}},

var = time, x_knot = {0.0, 0.7, 1.0}
ov[x_knot(3)] = 2.0 ! Changes from 1.0 to 2.0
ov[slave(2)%y_knot(2)] = 0.2 ! Changes q2[tilt] y_knot(2) from 0.12 to 0.2

If the gang attribute is True (which is the default) a controller will control all elements of a given
name. Thus, in the above example, if there are multiple elements named q1 then gr1 will control the
k1 attribute of all of them. If gang is set to False, a separate controller is created for each element in
the lattice of a given name. For example:

gr1: group = {q1[k1]:-tan(a)*b, q2[tilt]:b^2}, var = {a, b}, gang = False

In this example, suppose there are five q1 and five q2 elements in the lattice. In this case, there will be
five gr1 group elements created. The first gr1 will control the first q1 and q2 to appear in the lattice,
etc. With gang set to False, it is an error if the number of instances in the lattice for a given slave
name is different from any other slave name. In this example, it would be an error if the number of q1
elements in the lattice is different from the number of q2 elements in the lattice.

To vary coefficients in expressions, use variables in place of the coefficients and then variables can be
varied. For example:

gr1: group = {s1[k2]: 0.03+1.07*vv}, var = {vv} ! Instead of this...
gr2: group = {s1[k2]: a+b*vv}, var = {vv, a, b}, a = 0.03, b = 1.07 ! Use this.

Wild card characters can be used in element names. Example:
rf_control: overlay = {rfcavity::*[voltage]:v}, var = {v}

The syntax for specifying an attribute attrib of element ele to be controlled is ele[attrib]. The
attribute part [attrib] may be omitted and in this case the name of the attribute will be taken to be
the name of the first variable. Example:



5.4. GROUP, OVERLAY, AND RAMPER ELEMENT SYNTAX 167

ov1: overlay = {sex1:-tan(k2)^b}, var = {k2, b}
ov2: overlay = {sex1[k2]: -tan(k2)^b}, var = {k2, b} ! Equivalent to ov1.

In this example, the controlled attribute of element sex1 is k2. Except in cases where this default
attribute syntax is used, the names of the variables are arbitrary and do not have to correspond to the
name of any actual attribute. If the slave attribute name is set to “*”, multiple slaves will be generated,
one for each variable. Example:

zz1: overlay = {sb0[*]}, var = {g, e1}
zz2: overlay = {sb0[g]:g, sb0[e1]:e1}, var = {g, e1} ! Equivalent to zz1.

The arithmetic expressions used to evaluate controlled attribute value changes may be a constant. In
this case, the actual expression used is this constant times the first variable. If the expression is omitted
entirely, along with the separating “:”, the constant will be taken to be unity. Example:

gr1: group = {b1, b3:-pi}, var = {angle}
This is equivalent to

gr1: group = {b1[angle]:angle, b3[angle]:-pi*angle}, var = {angle}
The exception is when ran() or ran_gauss() functions are present in the expression. In this case, the
expression will not be modified. Example:

quake: ramper = {*[y_offset]: 1e-3*ran_gauss()}, var = { }
quake: ramper = {*[y_offset]: 1e-3*ran_gauss()}, var = {time} ! Equivalent to above

Arithmetic expressions may themselves contain element attributes. Example:
sk_q20W: overlay = {sex_20W[a1]:-sex_20W[L]}, k1

Here the sk_q20w overlay controls the a1 multipole attribute of element sex_20w and the length of
sex_20w is used as a scale factor between the overlay’s variable k1 and the controlled attribute a1. The
potential problem here is that, to keep the internal bookkeeping simple, the value of sex_20w[L] is
evaluated once during parsing of the lattice file and never reevaluated (§3.13). If it is desired to use a
variable element attribute in an expression, this may be effectively done by defining a control variable
to take its place. Thus the above overlay may be recast as:

sk_q20W: overlay = {sex_20W[L]:ll, sex_20W[a1]:ll*k1}, var = {k1, ll}
Initial values can be assigned to the variables from within the definition of the controller element.
Example:

ov1: overlay = {...}, var = {a, b}, a = 7, b = 2
Here the initial values 7 and 2 are assigned to a and b respectively. Alternatively, variables can be set
after a controller element has been defined. Example:

ov1: overlay = {...}, var = {a, b}
ov1[a] = 7
gr1[b] = 2

Note: There is an old deprecated syntax. For group elements the syntax was:
name: GROUP = {ele1[attrib1]:coef1, ele2[attrib2]:coef2, ...},

attrib = init_value ! DO NOT USE THIS SYNTAX!
and for overlay elements the old syntax was identical except that GROUP was replaced by OVERLAY:

name: OVERLAY = {ele1[attrib1]:coef1, ele2[attrib2]:coef2, ...},
attrib = init_value ! DO NOT USE THIS SYNTAX!

With this old syntax, there is only one variable. Additionally, there are no arithmetic expressions.
Rather, attribute changes are linear in the command variable with the constant of proportionality given
by a specified coefficient. For example with the old syntax

ov1: overlay = {sq1:3.7, sq2[tilt]}, k0 = 2 ! DO NOT USE THIS SYNTAX!
is equivalent, in the present syntax, to:

ov1: overlay = {sq[k0]:3.7, sq2[tilt]}, var = {k0}, k0 = 2
Note: In this old syntax the colon “:” separating the controlled attribute from the linear coefficient may
be replaced by a slash “/”. For group elements, there was an added wrinkle that, with the old syntax,
the variable’s name is fixed to be command. For example, with the old syntax

gr1: group = {sq1:3.7, sq2[tilt]}, k0 = 2 ! DO NOT USE THIS SYNTAX!
is equivalent, in the present syntax, to:

gr1: group = {sq[k0]:3.7, sq2[tilt]}, var = {command}, command = 2
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5.5 Energy and Wavelength Attributes: E_tot, P0C, and
Ref_Wavelength

The attributes that define the reference energy and momentum at an element are:
e_tot = <Real> ! Total energy in eV.
p0c = <Real> ! Momentum in eV.

The energy and momentum are defined at the exit end of the element. For ultra–relativistic particles,
and for photons, these two values are the same (§16.4.2). Except for multipass elements (§9), e_tot and
p0c are dependent attributes and, except for multipass elements, any setting of e_tot and p0c in the
lattice input file is an error. The value of e_tot and p0c for an element is calculated by Bmad to be the
same as the previous element except for e_gun, lcavity, converter, and patch elements. To set the
e_tot or p0c at the start of the lattice use the beginning or parameter statements. See §10.1. Since
the reference energy changes from the start to the end of an lcavity, converter or em_field element,
these elements have the dependent attributes

e_tot_start and
p0c_start

which are just the reference energy and momentum at the start of the element.

The beginning_ele element (§4.4) also has associated e_tot_start and p0c_start attributes as well
as e_tot and p0c. Generally, for a beginning_ele, p0c_start and p0c are the same and e_tot_start
and e_tot are the same and the values for these attributes are set in the lattice file with the appropriate
parameter (§10.1) or beginning (§10.4) statement. The exception occurs when there is an e_gun element
in the lattice (§4.15). In this case, the p0c_start and e_tot_start attributes of the beginning_ele
are set to the values as set in the lattice file and e_tot is set to

e_tot = e_tot_start + voltage
and p0c is calculated from e_tot and the mass of the particle being tracked. For example, if the lattice
file contained:

beginning[p0c] = 0
gun: e_gun, voltage = 0.5e6
injector: line = (gun, ...)

Then the following energy values will be set for the beginning beginning_ele element:
p0c_start = 0
e_tot_start = mc2
e_tot = mc2 + 0.5e6
p0c = Sqrt(e_tot - mc2^2)

where mc2 is the particle rest mass. The reason for using this convoluted convention is to allow the
setting, in the lattice file, of a zero reference momentum at the start of the lattice, while avoiding the
calculational problems that would occur if the e_gun element truly had a starting reference momentum
of zero. Specifically, the problem with zero reference momentum is that the phase space momentum
would be infinity as can be seen from Eqs. (16.27).

For lattice branches other than the root branch, the reference energy or momentum is set using the line
name of the branch (§10.4). For example:

ff: fork, to_line = line_2nd, ...
line_2nd: line = (...)
line_2nd[particle] = He+
line_2nd[p0c] = 1e9

For multipass elements, the reference energy may be set by specifying one of e_tot, p0c, as described
in §9.

For photons, the reference wavelength, ref_wavelength is also a dependent attribute calculated from
the reference energy.
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5.6 Orientation: Offset, Pitch, Tilt, and Roll Attributes

By default, an element, like a quadrupole, is aligned in space coincident with the reference orbit running
through it (§16.1.3). A quadrupole can be displaced in space using the quadrupole’s “orientational”
attributes. For a quadrupole, the orientational attributes only affect the physical element and not the
reference orbit. However, the orientational attributes of some other elements, like the fiducial element,
do affect the reference orbit. To sort all this out, lattice elements can be divided into seven classes:

1. Straight line elements (§5.6.2)
Straight line elements are elements where the reference orbit is a straight line. Examples include
quadrupoles, and sextupoles as well as zero length elements like markers.

2. Dipole bends (§5.6.3)
Dipole bends are:

sbend & rbend
3. Photon reflecting elements (§5.6.4)

The reflecting elements are
crystal
mirror
multilayer_mirror

These elements have a kink in the reference orbit at the nominal element surface.

4. Reference orbit manipulator elements (§5.6.5)
Elements that are used to manipulate the reference orbit are

fork & photon_fork
floor_shift
patch

5. Fiducial Element (§5.6.6)

6. Girder Elements (§5.6.7)

7. Control Elements
Control elements are elements that control attributes of other elements. Except for girder control
elements, these elements do not have orientational attributes. Control elements that fall into this
list are:

group
overlay
ramper

5.6.1 Global Random Misalignment of Elements

It is often convenient to randomly misalign sets of elements. This can be done using the ran and
ran_gauss functions (§3.14). For example:

quadrupole::bnd10:bnd20[y_offset] = 1.4e-6*ran_gauss(5)
The above line sets the y_offset of all the quadrupoles in the range from element BND10 to element
BND20.

When ran or ran_gauss is used in a lattice file, each time the file is read in, a new set of random
numbers are generated unless parameter[ran_seed] is set to a non-zero value in the lattice file before
ran or ran_gauss is used. To save a particular set of generated random values, write out the lattice file
(the write bmad command can be used if running Tao) after it has been read in.
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x_offset

x_pitch

z

x

Figure 5.1: Geometry of Pitch and Offset attributes

5.6.2 Straight Line Element Orientation

The straight line elements have the following orientational attributes:
x_offset = <Real>
y_offset = <Real>
z_offset = <Real>
x_pitch = <Real>
y_pitch = <Real>
tilt = <Real>

For straight line elements the orientational attributes only shift the physical element and do not affect
the reference orbit.

x_offset translates an element in the local x–direction as shown in Fig. 5.1. Similarly, y_offset and
z_offset translate an element along the local y and z–directions respectively.

The x_pitch attribute rotates an element about the element’s center such that with a positive x_pitch
the exit face of the element is displaced in the +x–direction as shown in figure 5.1. [One way to visualize
the effect of an x_pitch is to think of the element as an airplane pointing in the +z direction. A positive
x_pitch would then move the front of the plane in the +x–direction.] Anx_pitch represents a rotation
around the positive y-axis.

Similarly, the y_pitch attribute rotates an element about the element’s center using the negative x–axis
as the rotation axis so that, with a positive y_pitch the exit face of the element is displaced in the
+y–direction.

Note: the x_pitch and y_pitch rotations are about the center of the element which is in contrast to
the dtheta and dphi misalignments of MAD which rotate around the entrance point. The sense of the
rotation between Bmad and MAD is:

x_pitch (Bmad) = dtheta (MAD)
y_pitch (Bmad) = -dphi (MAD)

The tilt attribute rotates the element in the (x, y) plane as shown in figure 5.2. The rotation axis is the
positive z-axis. For example

q1: quad, l = 0.6, x_offset = 0.03, y_pitch = 0.001, tilt

Like MAD, Bmad allows the use of the tilt attribute without a value to designate a skew element. The
default tilt is π/(2(n+ 1)) where n is the order of the element:

sol_quad n = 1
quadrupole n = 1
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x

y

tilt

Figure 5.2: Geometry of a Tilt

sextupole n = 2
octupole n = 3

Note that hkick and vkick attributes are not affected by tilt except for kicker and elseparator
elements.

5.6.3 Bend Element Orientation

roll

z

x

ref_tilt

Figure 5.3: Geometry of a Bend. Like straight line elements, offsets and pitches are calculated with
respect to the coordinates at the center of the bend. The exception is the roll attribute which is a
rotation around the axis passing through the entrance and exit points. Shown here is the geometry for
a bend with ref_tilt = 0. That is, the bend is in the x− z plane.

The orientation attributes for sbend, rbend and rf_bend elements is
x_offset = <Real>
y_offset = <Real>
z_offset = <Real>
x_pitch = <Real>
y_pitch = <Real>
ref_tilt = <Real> ! Shifts and reference orbit rotation axis.
roll = <Real>

The geometry for orienting a bend is shown in Fig. 5.3. Like straight line elements, the offset and pitch
attributes are evaluated with respect to the center of the element.

Unlike the straight line elements, bends do not have a tilt attribute. Rather they have a ref_tilt
and a roll attribute. The roll attribute rotates the bend along an axis that runs through the entrance
point and exit point as shown in figure 5.3. A roll attribute, like the offset and pitch attributes does
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not affect the reference orbit. The major effect of a roll is to give a vertical kick to the beam. For
a bend with positive bend angle, a positive roll will move the outside portion (+x side) of the bend
upward and the inside portion (-x side) downward. Much like car racetracks which are typically slanted
towards the inside of a turn.

The ref_tilt attribute of a bend rotates the bend about the z axis at the upstream end of the bend as
shown in Fig. 5.3. Unlike rolls and tilts, ref_tilt also shifts the rotation axis of the reference orbit
along with the physical element. A bend with a ref_tilt of π/2 will bend a beam vertically downward
(§16.2). Note that the ref_tilt attribute of Bmad is the same as the MAD tilt attribute.

Important! Do not use ref_tilt when doing misalignment studies for a machine. Trying to misalign a
dipole by setting ref_tilt will affect the positions of all downstream elements! Rather, use the roll
parameter.

5.6.4 Photon Reflecting Element Orientation

Ref Orb In Ref Orb Out 

x

z

O

Figure 5.4: Geometry of a photon reflecting element orientation. The reference coordinates used for
defining the orientational attribute is the entrance reference coordinates.

Photon reflecting elements have the following orientational attributes:
x_offset = <Real>
y_offset = <Real>
z_offset = <Real>
x_pitch = <Real>
y_pitch = <Real>
ref_tilt = <Real> ! Shifts both element and reference orbit.
tilt = <Real>

Roughly, these elements can be viewed as zero length bends except, since there is no center position, the
orientational attributes are defined with respect to the entrance coordinates as shown in Fig. 5.4. Like
bend elements, the ref_tilt attribute rotates both the physical element and the reference coordinates.
The tilt attribute rotates just the physical element. Thus the total rotation of the physical element
about the entrance z axis is the sum tilt + ref_tilt.

Frequently, it is desired to orient reflecting elements with respect to the element’s surface. This can
be done using a girder element (§4.23) which supports the reflecting element and with the girder’s
origin_ele_ref_pt attribute set to center.

5.6.5 Reference Orbit Manipulator Element Orientation

The fork, photon_fork, floor_shift, and patch elements use the following attributes to orient their
exit edge with respect to their entrance edge:



5.6. ORIENTATION: OFFSET, PITCH, TILT, AND ROLL ATTRIBUTES 173

x_offset = <Real>
y_offset = <Real>
z_offset = <Real>
x_pitch = <Real>
y_pitch = <Real>
tilt = <Real>

Here "exit" edge for fork and photon_fork elements is defined to be the start of the line being branched
to. [Within the line containing the fork, the fork element is considered to have zero length so the exit
face in the line containing the fork is coincident with the entrance face.] The placement of the exit
edge for these elements defines the reference orbit. Thus, unlike the corresponding attributes for other
elements, the orientational attributes here directly control the reference orbit.

5.6.6 Fiducial Element Orientation

The fiducial element (§4.23) uses the following attributes to define its position:
origin_ele = <Name> ! Reference element.
origin_ele_ref_pt = <location> ! Reference pt on reference ele.
dx_origin = <Real> ! x-position offset
dy_origin = <Real> ! y-position offset
dz_origin = <Real> ! z-position offset
dtheta_origin = <Real> ! orientation angle offset.
dphi_origin = <Real> ! orientation angle offset.
dpsi_origin = <Real> ! orientation angle offset.

See Section §4.19 for more details.

5.6.7 Girder Orientation

A girder (§4.23) element uses the same attributes as a fiducial element (§4.19) to orient the reference
girder position. In addition, the following attributes are used to move the girder physically from the
reference position:

x_offset = <Real>
y_offset = <Real>
z_offset = <Real>
x_pitch = <Real>
y_pitch = <Real>
tilt = <Real>

Shifting the girder from its reference position shifts all the elements that are supported by the girder.
See Section §4.23 for more details.

If an element is supported by a girder element (§4.23), the orientational attributes of the element are
with respect to the orientation of the girder. The computed offsets, pitches and tilt with respect to the
local reference coordinates are stored in the dependent attributes

x_offset_tot
y_offset_tot
z_offset_tot
x_pitch_tot
y_pitch_tot
tilt_tot
roll_tot



174 CHAPTER 5. ELEMENT ATTRIBUTES

A *_tot attribute will only be present if the corresponding non *_tot attribute is present. For exam-
ple, only sbend and rbend elements have a roll_tot attribute since only these elements have a roll
attribute.

If an element is not supported by a girder, the values of the *_tot attributes will be the same value as
the values of the corresponding non *_tot attributes.

5.7 Hkick, Vkick, and Kick Attributes

The kick attributes that an element may have are:
kick, bl_kick = <Real> ! Used only with a Hkicker or Vkicker
hkick, bl_hkick = <Real>
vkick, bl_vkick = <Real>

kick, hkick, and vkick attributes are the integrated kick of an element in radians. kick is only used
for hkicker and vkicker elements. All other elements that can kick use hkick and vkick. The tilt
attribute will only rotate a kick for hkicker, vkicker, elseparator and kicker elements. This rule
was implemented so that, for example, the hkick attribute for a skew quadrupole would represent a
horizontal steering. The bl_kick, bl_hkick, and bl_vkick attributes are the integrated field kick in
meters-Tesla. Normally these are dependent attributes except if they appear in the lattice file (§5.1).

For an elseparator element, the hkick and vkick are appropriate for a positively charged particle.
The kick for a negatively charged particle is opposite this.

5.8 Aperture and Limit Attributes

ecollimator

rcollimator and all

other elements x

y

x2_limitx1_limit

y1_limit

y2_limit

Figure 5.5: Apertures for ecollimator and rcollimator elements. [note: positive z points up, out of the
page.] As drawn, all limits x1_limit, x2_limit, y1_limit, y2_limit are positive.

The aperture attributes are:
x1_limit = <Real> ! Horizontal, negative side, aperture limit
x2_limit = <Real> ! Horizontal, positive side, aperture limit
y1_limit = <Real> ! Vertical, negative side, aperture limit
y2_limit = <Real> ! Vertical, positive side, aperture limit
x_limit = <Real> ! Alternative to specifying x1_limit and x2_limit
y_limit = <Real> ! Alternative to specifying y1_limit and y2_limit
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aperture = <Real> ! Alternative to specifying x_limit and y_limit
aperture_at = <Switch> ! What end aperture is at. (§5.8.2)
aperture_type = <Switch> ! What type of aperture it is
offset_moves_aperture = <Logical> ! Element offsets affect aperture position (§5.8.1)

x1_limit, x2_limit, y1_limit, and y2_limit specify the half–width of the aperture of an element as
shown in figure 5.5. Note: Normally all of these will be zero or positive. A zero x1_limit, x2_limit,
y1_limit, or y2_limit is interpreted as no aperture in the appropriate plane.

For convenience, x_limit can be used to set x1_limit and x2_limit to a common value. Example:
s: sextupole, x1_limit = 0.09, x2_limit = 0.09
s: sextupole, x_limit = 0.09 ! Same as above

Similarly, y_limit can be used to set y1_limit and y2_limit. The aperture attribute can be use to
set all four x1_limit, x2_limit, y1_limit and y2_limit to a common value. Internally, the Bmad code
does not store x_limit, y_limit, or aperture. This means that using x_limit, y_limit or aperture
in arithmetic expressions is an error:

q1: quad, aperture = 0.09
q2: quad, aperture = q1[aperture] ! THIS IS AN ERROR!
q2: quad, aperture = q1[x1_limit] ! Correct

By default, apertures are assumed to be rectangular except that an ecollimator has a elliptical aperture.
This can be changed by setting the aperture_type attribute. The possible values of this attribute are:

auto ! Default for detector, mask and diffraction_plate elements
custom
elliptical ! Default for ecollimator elements.
rectangular ! Default for most elements.
wall3d ! Vacuum chamber wall (§5.12).

The custom setting is used in the case where programs have been compiled with custom, non-Bmad, code
to handle the aperture calculation. The auto setting is used for automatic calculation of a rectangular
aperture. For diffraction_plate and mask elements, the auto setting causes the four aperture limits
to be set to just cover the clear area of element (§5.12.6). For all other elements, the auto setting is only
to be used when there is an associated surface grid (§5.11.1) for the element and, in this case, Bmad to
set the four limits to just cover the surface grid.

The wall3d setting uses the vacuum chamber wall as specified by a wall attribute (§5.12). Using
the wall construct allows for complex apertures to be constructed. Note that The wall thickness and
material type are not used when calculating if a particle has hit the wall. That is, the wall is considered
to be infinitely thin. Also note that a wall must cover the entire length of the element longitudinally.
This is done in order to be able to spot errors in specifying the wall geometry.

For elliptical apertures, all four x1_limit, x2_limit, y1_limit, and y2_limit must be non-zero.

For rectangular apertures, the limits x1_limit, x2_limit, y1_limit, or y2_limit may be negative. For
example:

s: sextupole, x1_limit = -0.02, x2_limit = 0.09

In this case, particles will hit the aperture if their x-coordinate is outside the interval [0.02, 0.09]. That
is, particles at the origin will be lost.

To avoid numerical overflow and other errors in tracking, a particle will be considered to have hit an
aperture in an element, even if there are no apertures set for that element, if its orbit exceeds 1000
meters. Additionally, there are other situations where a particle will be considered lost. For example, if
a particle’s trajectory does not intersect the output face in a bend.

Examples:
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q1, quadrupole, y1_limit = 0.03
q1[y2_limit] = 0.03
q1[y_limit] = 0.03 ! equivalent to the proceeding 2 lines.
q1[aperture_at] = both_ends

5.8.1 Apertures and Element Offsets

Normally, whether a particle hits an aperture or not is evaluated independent of any element offsets
(§5.6). This is equivalent to the situation where a beam pipe containing an aperture is independent of
the placement of the physical element the beam pipe passes through. That is, the beam pipe does not
“touch” the physical element. This can be changed by setting the offset_moves_aperture attribute to
True. In this case any offsets or pitches will be considered to have shifted the aperture boundary. The
exceptions here is that the default for the following elements is for offset_moves_aperture to be True:

rcollimator,
ecollimator,
multilayer_mirror,
mirror, and
crystal

Even with offset_moves_aperture set to True, tilts will not affect the aperture calculation. This is
done, for example, so that the tilt of a skew quadrupole does not affect the aperture. The exception
here is that tilting an rcollimator or ecollimator element will tilt the aperture. Additionally, when
the aperture is at the surface (see below), any tilt will be used in the calculation.

Example:
q1: quad, l = 0.6, x1_limit = 0.045, offset_moves_aperture = T

5.8.2 Aperture Placement

By default, for most elements, the aperture is evaluated at the exit face of the element. This can be
changed by setting the aperture_at attribute. Possible settings for aperture_at are:

both_ends
continuous
entrance_end
exit_end ! Default for most elements
no_aperture
surface
wall_transition

The exit_end setting is the default for most elements except for the following elements who have a
default of surface:

crystal
detector
diffraction_plate
mask
mirror
multilayer_mirror
sample

In fact, for the following elements:
mirror,
multilayer_mirror
crystal
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The surface setting for aperture_at must be used. Additionally, due to the complicated geometry of
these elements, to keep things conceptionally simple, the rule is imposed that, for an aperture at the
surface, the offset_moves_aperture setting must be left in its default state of True. Additionally, For
entrance_end or exit_end apertures, offset_moves_aperture must be set to False.

Note: The entrance and exit ends of an element are independent of which direction particles are tracked
through an element. Thus if a particle is tracked backwards it enters an element at the “exit end” and
exits at the “entrance end”. The continuous setting indicates that the aperture is continuous along the
length of the element. This only matters when particle tracking involves stepping through an element
a little bit at a time. For example, as in Runge-Kutta tracking (§6.1). For tracking where a formula
is used to transform the particle coordinates at the entrance of an element to the coordinates at the
exit end, the aperture is only checked at the end points so, in this situation, a continuous aperture is
equivalent to the both_ends setting.

The wall_transition setting is like the continuous setting in that the aperture boundary is consid-
ered to be continuous along the element’s length. However, unlike the continuous setting, with the
wall_transition setting a particle outside the wall is considered alive and it is only when a particle
moves through the wall that it is lost. The wall_transition setting is used for things like septum
magnets where a particle may be safely outside or inside the wall. Note to programmers: By supplying
a custom wall_hit_handler_custom routine, scattering of particles through a wall may be simulated.

Examples:
q2: quad, aperture_type = elliptical, aperture_at = continuous
q1: quad, l = 0.6, x1_limit = 0.045, offset_moves_aperture = T

5.8.3 Apertures and X-Ray Generation

With X-ray simulation apertures can be used by Bmad to limit the directions in which photons are
generated. This can greatly decrease simulation times. For example, a photon passing through a
diffraction_plate element will diffract in an arbitrary direction. If a downstream element has an
aperture set, Bmad can restrict the velocity directions so that the photons will fill the downstream
aperture and the amount of time wasted tracking photons that ultimately would be collimated is minimal.

5.9 X-Rays Crystal & Compound Materials

For basic crystallographic and X-ray matter interaction cross-sections, Bmad uses the XRAYLIB[Schoon11]
library. Crystal structure parameters in XRAYLIB are mainly from R. W. G. Wyckoff[Wyckoff65] with
some structure parameters coming from NIST. The list of available structures is:

AlphaAlumina GaP KCl Platinum
AlphaQuartz GaSb KTP RbAP
Aluminum Ge LaB6 Sapphire
Be Gold LaB6_NIST Si
Beryl Graphite LiF Si_NIST
Copper InAs LiNbO3 Si2
CsCl InP Muscovite SiC
CsF InSb NaCl Titanium
Diamond Iron PET TlAP
GaAs KAP
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These names are case sensitive

Besides the above crystal list, Bmad can calculate structure factors for all the elements and the following
list of materials. Material properties are from NIST. These names are case sensitive. That is, the NIST
materials all use upper case. As noted in the table, several of the materials may be specified using the
appropriate chemical formula. For example, liquid water may be referenced using the name H2O.

A_150_TISSUE_EQUIVALENT_PLASTIC LITHIUM_TETRABORATE
ACETONE LUNG_ICRP
ACETYLENE M3_WAX
ADENINE MAGNESIUM_CARBONATE
ADIPOSE_TISSUE_ICRP MAGNESIUM_FLUORIDE
AIR_DRY_NEAR_SEA_LEVEL MAGNESIUM_OXIDE
ALANINE MAGNESIUM_TETRABORATE
ALUMINUM_OXIDE, Al2O3 MERCURIC_IODIDE
AMBER METHANE
AMMONIA, NH3 METHANOL
ANILINE MIX_D_WAX
ANTHRACENE MS20_TISSUE_SUBSTITUTE
B_100_BONE_EQUIVALENT_PLASTIC MUSCLE_SKELETAL
BAKELITE MUSCLE_STRIATED
BARIUM_FLUORIDE MUSCLE_EQUIVALENT_LIQUID_WITH_SUCROSE
BARIUM_SULFATE MUSCLE_EQUIVALENT_LIQUID_WITHOUT_SUCROSE
BENZENE, C6H6 NAPHTHALENE
BERYLLIUM_OXIDE NITROBENZENE
BISMUTH_GERMANIUM_OXIDE NITROUS_OXIDE
BLOOD_ICRP NYLON_DU_PONT_ELVAMIDE_8062
BONE_COMPACT_ICRU NYLON_TYPE_6_AND_TYPE_6_6
BONE_CORTICAL_ICRP NYLON_TYPE_6_10
BORON_CARBIDE, B4C NYLON_TYPE_11_RILSAN
BORON_OXIDE, B2O3 OCTANE_LIQUID
BRAIN_ICRP PARAFFIN_WAX
BUTANE N_PENTANE
N_BUTYL_ALCOHOL PHOTOGRAPHIC_EMULSION
C_552_AIR_EQUIVALENT_PLASTIC PLASTIC_SCINTILLATOR_VINYLTOLUENE_BASED
CADMIUM_TELLURIDE PLUTONIUM_DIOXIDE
CADMIUM_TUNGSTATE POLYACRYLONITRILE
CALCIUM_CARBONATE POLYCARBONATE_MAKROLON_LEXAN
CALCIUM_FLUORIDE POLYCHLOROSTYRENE
CALCIUM_OXIDE POLYETHYLENE
CALCIUM_SULFATE POLYETHYLENE_TEREPHTHALATE_MYLAR
CALCIUM_TUNGSTATE POLYMETHYL_METHACRALATE_LUCITE_PERSPEX
CARBON_DIOXIDE POLYOXYMETHYLENE
CARBON_TETRACHLORIDE POLYPROPYLENE
CELLULOSE_ACETATE_CELLOPHANE POLYSTYRENE
CELLULOSE_ACETATE_BUTYRATE POLYTETRAFLUOROETHYLENE_TEFLON
CELLULOSE_NITRATE POLYTRIFLUOROCHLOROETHYLENE
CERIC_SULFATE_DOSIMETER_SOLUTION POLYVINYL_ACETATE
CESIUM_FLUORIDE POLYVINYL_ALCOHOL
CESIUM_IODIDE POLYVINYL_BUTYRAL
CHLOROBENZENE POLYVINYL_CHLORIDE
CHLOROFORM POLYVINYLIDENE_CHLORIDE_SARAN
CONCRETE_PORTLAND POLYVINYLIDENE_FLUORIDE
CYCLOHEXANE POLYVINYL_PYRROLIDONE
12_DDIHLOROBENZENE POTASSIUM_IODIDE
DICHLORODIETHYL_ETHER POTASSIUM_OXIDE
12_DICHLOROETHANE PROPANE
DIETHYL_ETHER PROPANE_LIQUID
NN_DIMETHYL_FORMAMIDE N_PROPYL_ALCOHOL
DIMETHYL_SULFOXIDE PYRIDINE
ETHANE RUBBER_BUTYL
ETHYL_ALCOHOL RUBBER_NATURAL

Continued on next page
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Figure 5.6: Surface curvature geometry. The element reference frame used to describe surface curvature
has the z axis pointing towards the interior of the element, and the x axis in the plane defined by the
entrance and exit reference orbit.

ETHYL_CELLULOSE RUBBER_NEOPRENE
ETHYLENE SILICON_DIOXIDE
EYE_LENS_ICRP SILVER_BROMIDE
FERRIC_OXIDE SILVER_CHLORIDE
FERROBORIDE SILVER_HALIDES_IN_PHOTOGRAPHIC_EMULSION
FERROUS_OXIDE SILVER_IODIDE
FERROUS_SULFATE_DOSIMETER_SOLUTION SKIN_ICRP
FREON_12 SODIUM_CARBONATE
FREON_12B2 SODIUM_IODIDE
FREON_13 SODIUM_MONOXIDE
FREON_13B1 SODIUM_NITRATE
FREON_13I1 STILBENE
GADOLINIUM_OXYSULFIDE SUCROSE
GALLIUM_ARSENIDE TERPHENYL
GEL_IN_PHOTOGRAPHIC_EMULSION TESTES_ICRP
GLASS_PYREX TETRACHLOROETHYLENE
GLASS_LEAD THALLIUM_CHLORIDE
GLASS_PLATE TISSUE_SOFT_ICRP
GLUCOSE TISSUE_SOFT_ICRU_FOUR_COMPONENT
GLUTAMINE TISSUE_EQUIVALENT_GAS_METHANE_BASED
GLYCEROL TISSUE_EQUIVALENT_GAS_PROPANE_BASED
GUANINE TITANIUM_DIOXIDE
GYPSUM_PLASTER_OF_PARIS TOLUENE
N_HEPTANE TRICHLOROETHYLENE
N_HEXANE TRIETHYL_PHOSPHATE
KAPTON_POLYIMIDE_FILM TUNGSTEN_HEXAFLUORIDE
LANTHANUM_OXYBROMIDE URANIUM_DICARBIDE
LANTHANUM_OXYSULFIDE URANIUM_MONOCARBIDE
LEAD_OXIDE URANIUM_OXIDE
LITHIUM_AMIDE UREA
LITHIUM_CARBONATE VALINE
LITHIUM_FLUORIDE VITON_FLUOROELASTOMER
LITHIUM_HYDRIDE WATER_LIQUID, H2O
LITHIUM_IODIDE WATER_VAPOR
LITHIUM_OXIDE XYLENE
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5.10 X-Ray Reflectivity Tables

Reflectivity tables are used to define reflectivity probabilities as functions of incidence angle and photon
energy for crystal and mirror elements.

The general syntax is:
m: mirror, reflectivity_table = {

! A reflection table
{

polarization = <name>
angles = (<ang1 <ang2 ... <angN>),
p_reflect = {

<energy1> <P_11> <P_12> <P_13> ... <P_1N>,
<energy2> <P_21> <P_22> <P_23> ... <P_2N>,
...

}
}

}

The angles array must be before the p_reflect table. Angles are in radians and energy is in eV. Angle
and energy points do not need to be evenly spaced. Probabilities P_ij are between 0 and 1. For particles
outside the range of angles, the probability is taken to be zero. The p_reflect portion of the reflectivity
table must come last.

Possible polarization names are:
pi ! Table is for pi mode
sigma ! Table is for sigma mode
both ! Table is for both polarizations. Default.

An element needs a single table with polarization marked as both or two tables, one for sigma and
the other for pi.

For crystal elements, angles are always with respect to the Bragg angle for the energy where the Bragg
angle is calculated without any refraction corrections.

5.11 Surface Properties for X-Ray elements

The following X-ray elements have a surface which X-rays impinge upon:
crystal §4.10
detector §4.12
diffraction_plate §4.13
mask §4.33
mirror, and §4.35
multilayer_mirror §4.37
sample §4.48

[There is also the capillary element but this element specifies its surface differently.]

The coordinate system used for characterizing the curvature of a surface is the element reference frame
as shown in Fig. 5.6). This coordinate system has the z axis pointing towards the interior of the element,
and the x axis in the plane defined by the entrance and exit reference orbit. In this coordinate system, the
surface is an ellipsoid plus a fourth order polynomial in x and y plus a possible “figure error” contribution
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zoff defined by a surface grid:

−z = 1

gz

[
1−

»
1− (gx x)2 − (gy y)2

]
+ (5.1)

1

gsp

[
1−

»
1− (gsp x)2 − (gsp y)2

]
+

∑
2≤i+j≤6

cij x
i yj − zoff

zoff is discussed in section §5.11.1 and is only present when the surface grid type is set to Displacement.
In Eq. (5.1) the cij coefficients parameterize the fourth order polynomial, gsp parameterize the spherical
curvature, and gx, gy, and gz parameterize ellipsoid curvature. [In principle, the spherical curvature
is not needed since the elliptical curvature is more general. In practice, it is sometimes convenient to
be able to specify spherical curvature.] If gz is zero, the elliptical curvature is ignored. If gz or gsp is
positive, the curvature is concave towards the incoming photon. If negative, the curvature is convex.

The spherical, ellipsoid and polynomial parameters are set for an element by setting the element’s
curvature parameter. The syntax is

curvature = {
spherical = <Real>, ! g_sp
elliptical_x = <Real>, ! g_x
elliptical_y = <Real>, ! g_y
elliptical_z = <Real>, ! g_z
xMyN = <Real> ! $c_ij

The polynomial coefficients cij are set via the xMyN components where M and N are integers in the range
0 through 6 with the restriction

2 ≤ M + N ≤ 6

Example:
c2: crystal, spherical_curvature = 1/4.7, curvature = {x2y0 = 0.37, ...}

in this example, x2y0 corresponds to the c20 term in Eq. (5.1). To get the effect of a nonzero x0 y0, x1 y0,
or x0 y1 terms (since corresponding curvature xNyM are not permitted), element offsets and pitches can
be used (§5.6).

Some useful formulas: Series expansion for a sphere of radius R:
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For a torus with equation (»
x2 + (z + r +R)2 −R
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The series expansion is:
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For a curved crystal, if p is the distance from the source to the crystal, and q is the distance from
the crystal to the detector, the needed radius of curvature Rs in the sagittal (transverse) plane to give
focusing is [Rio98]:

1

p
+

1

q
=

sin θg,in + sin θg,out
Rs

(5.5)
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where θg,in and θg,out are the entrance and exit graze angles. In the tangential (meridional) plane, the
radius Rt needed for focusing is

sin2 θg,in
p

+
sin2 θg,out

q
=

sin θg,in + sin θg,out
Rt

(5.6)

The above formulas assume that the crystal is constructed so that the orientation of the Bragg planes
follows the orientation of the surface. Mirrors have similar formulas with θg,in = θg,out = θ.

Example:
t_bragg = 1.3950647
rt = 1 ! Crystal transverse radius
rs = rt*(sin(t_bragg))^2
c: crystal, crystal_type = "Si(553)", b_param = -1, curvature = {x0y2 = 1 / (2 * rs),

x0y4 = 1 / (8 * rs^3), x2y0 = 1 / (2 * rt), x4y0 = 1 / (8 * rt^3)}
c[curvature%x0y2] = 1.01 * c[curvature%x0y2] ! Put in an error

5.11.1 Displacement, H_Misalign, and Segmented Surface Grids

A surface can be broken up into a grid of rectangles. This is useful, for example, in simulating crystal
surface roughness. The case of the pixel grid for a detector element is discussed in Sec. §4.12. Here
the other three types of grids are explained. These are:

Displacement ! Mesh defines an offset from the nominal surface.
H_Misalign ! Misalignment of crystal H vector
Segmented ! Surface is a matrix of flat rectangles

All grids have the following common parameters:
active = <T/F> ! Turn on/off effect of grid. Default = True
ix_bounds = (<ix_min>, <ix_max>), ! Min/max grid index bounds in x-direction
iy_bounds = (<iy_min>, <iy_max>), ! Min/max grid index bounds in y-direction
r0 = (<x0>, <y0>), ! (x,y) coordinates at grid origin
dr = (<dx>, <dy>), ! Spacing between grid points.

Example:
ccd: crystal, h_misalign = {

r0 = (0.0, 0.01), dr = (0.005, 0.005),
ix_bounds = (1, 57), iy_bounds = (-30, 10),
pt(1,-30) = (0.001, -0.002, 0, 0),
pt(1,-29) = ...,

}

The grid is a two dimensional rectangular mesh with bounds given by the ix_bounds and iy_bounds
components. In the above example the grid is 57 pixels in x and 41 pixels in y.

The physical placement of the grid on the element is determined by the r0 and dr components. r0 is
optional and gives the (x, y) coordinates of the center of the pixel with index (0, 0). The dr component,
which must be present, gives the pixel width and height. Thus the center of the (i, j) pixel is:

(x,y) = (r0(1), r0(2)) + (i*dr(1), j*dr(2))

The different grid types are:

Displacement grid
The general syntax for a displacement grid is:
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displacement = {
active = <T/F> ! Turn on/off effect of grid. Default = True
ix_bounds = (<ix_min>, <ix_max>), ! Min/max index bounds in x-direction
iy_bounds = (<iy_min>, <iy_max>), ! Min/max index bounds in y-direction
r0 = (<x0>, <y0>), ! (x,y) coordinates at grid origin
dr = (<dx>, <dy>), ! Spacing between grid points.
pt(<i>,<j>) = (<z>), ! or
pt(<i>,<j>) = (<z>, <dz/dx>, <dz/dy>), ! or
pt(<i>,<j>) = (<z>, <dz/dx>, <dz/dy>, <d2z/dxdy>),

}
With a displacement grid, an offset zoff is added to the surface position defined in Eq. (5.1). The
z offset at a given (x, y) position is determined by a spline interpolation of the z values of the grid
of points defined by pt(<i>,<j>). For each point pt(<i>,<j>), the z value along with the dz/dx,
dz/dy, d2z/dxdy slopes can be specified or only the z value needs to be specified. With the later
option the slopes will be computed by taking finite differences of nearest neighbors.

H_Misalign grid
The general syntax for a h_misalign grid:

h_misalign = {
active = <T/F> ! Turn on/off effect of grid. Default = True
ix_bounds = (<ix_min>, <ix_max>), ! Min/max index bounds in x-direction
iy_bounds = (<iy_min>, <iy_max>), ! Min/max index bounds in y-direction
r0 = (<x0>, <y0>), ! (x,y) coordinates at grid origin
dr = (<dx>, <dy>) ! Spacing between grid points.
pt(<i>,<j>) = (<rot_y, <rot_x>, <rot_y_rms>, <rot_x_rms>) ! For Bragg diffraction
pt(<i>,<j>) = (<rot_y, <rot_z>, <rot_y_rms>, <rot_z_rms>) ! For Laue diffraction

}
An h_misalign grid is used with crystals only. With H_Misalign, the grid defines misalignment
of the H vector which is the normal to the diffracting planes of the crystal (§26.4). When us-
ing H_Misalign, each pt(i,j) component gives the angular misalignment of H for the region
around the point. for Bragg diffraction where H is oriented approximately along the −z-axis, the
misalignment of H is characterized by rotations about the y-axis and x-axis

rot_y_tot = <rot_y> + r2 * <rot_y_rms>
rot_x_tot = <rot_x> + r1 * <rot_x_rms>

where rot_x_tot and rot_y_tot are the rotational misalignment (in radians) of H around the
y-axis and x-axis respectively. The small angle approximation is used, That is, it is assumed that
both rot_x_tot and rot_y_tot are small compared to one. the quantities in brackets <...> are
components of pt, and r1 and r2 are Gaussian distributed random numbers with unit rms. These
random numbers are regenerated for each photon.
For Laure diffraction, since the H vector is approximately aligned with the −x-axis, the misalign-
ment is characterized by rotations about the y-axis and z-axis. Notice that for both Bragg and
Laue diffraction, the rotation around the y-axis misaligns (approximately) H in the plane of the
diffraction.

Segmented grid
The general syntax for a segmented grid:

segmented = {
active = <T/F> ! Turn on/off effect of grid. Default = True
ix_bounds = (<ix_min>, <ix_max>), ! Min/max index bounds in x-direction
iy_bounds = (<iy_min>, <iy_max>), ! Min/max index bounds in y-direction
r0 = (<x0>, <y0>), ! (x,y) coordinates at grid origin
dr = (<dx>, <dy>) ! Spacing between grid points.

}
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With a segmented grid the crystal surface is modeled as a grid of flat “rectangles” (the actual
shape is very close but not quite rectangular). Using a segmented surface only makes sense when
the surface is curved (see Eq. (5.1)). There is one rectangle for each grid point. Each rectangle has
an extent in the (x, y) transverse dimensions equal to the spacing between grid points. Eq. (5.1) is
used to calculate the z coordinate of the vertices of a given rectangle and then these z values are
adjusted so that

1) The rectangle is flat (the vertices all lie on a plane).
2) The rectangle contacts the unsegmented surface (Eq. (5.1)) at two diagonally

opposite vertices.
3) The other two diagonally opposite vertices will be as close as possible in the

least squares sense from the unsegmented surface.
Note: The pt component is not used here.

5.12 Walls: Vacuum Chamber, Capillary and Mask

The wall attribute for an element is used to define:
vacuum chamber wall
capillary element (§4.6) inside wall
diffraction_plate (§4.13) geometry

The topics of the following subsections are:
§5.12.1 General wall syntax.
§5.12.2 Cross-section construction.
§5.12.3 Capillary and vacuum chamber wall interpolation.
§5.12.4 Capillary wall.
§5.12.5 Vacuum chamber wall.
§5.12.6 Diffraction_plate and mask element geometries.

5.12.1 Wall Syntax

The syntax of the wall attribute is:
wall = {

superimpose = <T/F>, ! Chamber wall only
thickness = <real> ! Default thickness.
opaque_material = <material_type> ! Default opaque material.
clear_material = <material_type> ! Default clear material.
section = {

type = <section_type>, ! Chamber Mask, and Diffraction_plate only
s = <longitudinal_position>, ! Relative to beginning of element.

! Not used for mask or diffraction_plate.
r0 = (<x0>, <y0>), ! section (x,y) origin. Default = (0, 0).
absolute_vertices = <T/F>, ! Vertex relative to r0? Default = F.
material = <material_type>, ! Mask and Diffraction_plate only.
thickness = <real>, ! Mask and Diffraction_plate only.
dr_ds = <value>, ! Capillary and Chamber only
v(1) = {<x>, <y>, <radius_x>, <radius_y>, <tilt>},
v(2) = { ... },
...},

section = {
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Figure 5.7: A) The inside wall of a capillary or the vacuum chamber wall of a non-capillary element is
defined by a number of cross-sectional slices. B) Each cross-section is made up of a number of vertices.
The segments between the vertices can be either a line segment, the arc of a circle, or a section of an
ellipse.

s = <longitudinal_position>,
v(1) = {... },
... },

... }
A wall begins with “wall = {” and ends with a “}”. In between are a number of individual cross-
section structures. Each individual cross-section begins with “section = {” and ends with a “}”. The
s parameter of a cross-section gives the longitudinal position of the cross-section. Example:

this_cap: capillary,
wall = {

section = { ! cross-section with top/bottom symmetry
s = 0, v(1) = {0.02, 0.00},
v(2) = {0.00, 0.02, 0.02}, v(3) = {-0.01, 0.01} },

section = { ! Cross-section that is a tilted ellipse.
s = 0.34,
v(1) = {0.003, -0.001, 0.015, 0.008, 0.2*pi} } }

In this example an element called this_cap is a capillary whose wall is defined by two cross-sections.

5.12.2 Wall Sections

The wall is defined by a number of cross-sectional slices. For Fig. 5.7A shows the geometry for capillary
or vacuum chamber walls. Each cross-section is defined by a longitudinal position s relative to the
beginning of the element and a number of vertices. The arc between each vertex may be either a straight
line, an arc of a circle, or a section of an ellipse. For a capillary it is mandatory that a cross-section be
convex. That is, given any two points within the cross-section, all points on the line segment connecting
them must be within the cross-section.

The v(<j>) within a cross-section define the vertices for each cross-section. The vertices are defined with
respect to the section origin given by r0. Each v(<j>) has five parameters. It is mandatory to specify
the first two parameters <x> and <y>. Specifying the rest, <radius_x>, <radius_y>, and <tilt>, is
optional. The default values, if not specified, is zero. The point (<x>, <y>) defines the position of the
vertex. The parameters <radius_x>, <radius_y>, and <tilt> define the shape of the segment of the
cross-section between the given vertex and the preceding one.

<radius_x> = 0, <radius_y> = 0 --> Straight line segment.
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<radius_x> != 0, <radius_y> = 0 --> Circular arc with radius = radius_x
<radius_x> = 0, <radius_y> != 0 --> Illegal!
<radius_x> != 0, <radius_y> != 0 --> Ellipse section.

When an ellipse is specified, <radius_x>, and <radius_y> are the half width and half height of the
semi-major axes and the <tilt> parameter gives the tilt of the ellipse. <radius_x> and <radius_y>
must not be negative.

In the example above, for the first cross-section, v(2) specifies a non-zero <radius_x> and, by default,
<radius_y> is zero. Thus the segment of the cross-section between v(1) and v(2) is circular in nature
with a radius of 0.02. Since v(3) does not specify <radius_x> nor <radius_y>, the cross-section between
v(2) and v(3) is a straight line segment.

The vertex points must be arranged in a “counter clockwise manner”. For vertices <v(i)> and <v(i+1)>
connected by a line segment this translates to

0 < θi+1 − θi (mod 2π) < π (5.7)

where (rn, θn) are the polar coordinates of the nth vertex with respect to the point r0. For vertices
connected by an arc, “counter clockwise manner” means that the line segment with one end at the center
of the arc and the other end traversing the arc from <v(i)> to <v(i+1)> rotates in counter clockwise as
shown in Fig. 5.7B.

The red line segment with one end at the center of the arc and the other end traversing the arc from,
in this case, V (2) to V (3), rotates in counter clockwise manner. In general, there are two solutions for
constructing such an arc. For positive radii, the solution chosen is the one whose center is closest to
the section origin (x0, y0). If the radii are negative, the center point will be the point farthest from the
origin (the dashed line between V (2) and V (3) in the figure).

A restriction on cross-sections is that the section origin (x0, y0) must be in the interior of any cross-
section and that for any cross-section a line drawn from the origin at any given angle θ will intersect the
cross-section at exactly one point as shown in Fig. 5.7B. This is an important point in the construction
of the wall between cross-sections as explained below.

The last vertex specified, call it <v(n)>, should not have the same <x>, <y> values as the first vertex
<v(1)>. That is, there will be a segment of the cross-section connecting <v(n)> to <v(1)>. The geometry
of this segment is determined by the parameters of <v(1)>.

If there is mirror symmetry about the x or y axis for a cross-section, the “mirrored” vertices, on the
“negative” side of the mirror plane, do not have to be specified. Thus if all the vertex points of a cross-
section are in the first quadrant, that is, all <x> and <y> are zero or positive, mirror symmetry about
both the x and y axes is assumed. If all the <y> values are zero or positive and some <x> values are
positive and some are negative, mirror symmetry about the x axis is assumed. Finally, if all the <x>
values are zero or positive but some <y> values are positive and some are negative, symmetry about
the y axis is assumed. For example, for the first in the above example, since all the <y> values are
non-negative and there are positive and negative <x> values, symmetry about the x axis is assumed.

The one exception to the above rule that (<x>, <y>) is the vertex center is when a single vertex v(1)
is specified for a cross-section with a non-zero <radius_x>. In this case, (<x>, <y>) are taken to be the
center of the circle or ellipse. For example, if a single vertex is specified for a cross-section as:

section = {s = 0.3, v(1) = {0.03, -0.01, 0.15, 0.08, 0.2}}

the cross-section will be an ellipse with center at (0.03,−0.01) with a tilt of 0.2 and axes radii of 0.15
and 0.08. If a cross-section has a single vertex and <radius_x> is not specified, the cross-section is a
rectangle. For example

section = {s = 0.3, v(1) = {0.03, 0.01}}



5.12. WALLS: VACUUM CHAMBER, CAPILLARY AND MASK 187

xxx

y

y

yA)

B)

C)

s = 0

s = 0.5

s = 1

Figure 5.8: Example where convex cross-sections do not produce a convex volume. Cross-sections (A)
and (C) are ellipses with a 5 to 1 aspect ratio. Half way in between, linear interpolation produces a
convex cross-section as shown in (B).

The vertices are defined with respect to the local sector origin r0 except if absolute_vertices is set
to True in which case the vertex numbers are taken as absolute. For example, the following two cross-
sections are identical and describe a rectangle with edges at x = 1 and 5 and y = −6 and 6

section = {absolute_vertices = T, r0 = (4, 0),
v(1) = {5, 6}, v(2) = {1, 6}, v(3) = {1, -6}, v(4) = {5, -6}}

section = {r0 = (4, 0), v(1) = {2, 6}}

Notice that while r0 is not needed in the first section for positioning of the vertices, it is needed in the
first section to make Eq. (5.7) true.

5.12.3 Interpolation Between Sections

For capillary and vacuum chamber walls, the wall between cross-sections, is defined by interpolation.
At a given s position, the r, θ coordinate system in the transverse x, y plane is defined with respect to
an origin rO(s) given by a linear interpolation of the origins of the cross-sections to either side of the
given s position. Let s1 denote the position of the cross-section just before s and s2 denote the position
of the cross-section just after s. Let r01 be the (x0, y0) origin defined for the cross section at s1 and r02
be the (x0, y0) origin defined for the cross section at s2. Then

rO(s) = (1− s̃) r01 + s̃ r02 (5.8)

where
s̃ ≡ s− s1

s2 − s1
(5.9)

Let rc1(θ) and rc2(θ) be the radius of the wall as a function of θ for the cross-sections at s = s1 and
s = s2 respectively. The wall rc(θ, s) at any point s between s1 and s2 is then defined by the equation

rc(θ, s) = p1(s̃) rc1(θ) + p2(s̃) rc2(θ) (5.10)

where p1 and p2 are cubic polynomials parameterized by

p1 = 1− s̃+ a1 s̃+ a2 s̃
2 + a3 s̃

3

p2 = s̃+ b1 s̃+ b2 s̃
2 + b3 s̃

3 (5.11)

If ai = bi = 0 for all i = 1, 2, 3, the interpolation is linear and this is the default if either of the parameters
dr_ds1 and dr_ds2 are not given in the wall definition. These parameters are the slopes of the wall with
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respect to s at the end points

dr_ds1 ≡ dr

ds

∣∣∣∣
s=s1

, dr_ds2 ≡ dr

ds

∣∣∣∣
s=s2

(5.12)

where r is the average r averaged over all θ. When both dr_ds1 and dr_ds2 are specified, the ai and
bi are calculated so that the slopes of the wall match the values of dr_ds1 and dr_ds2 along with the
constraints.

p1(0) = 1 , p1(1) = 0

p2(0) = 0 , p2(1) = 1 (5.13)

M ≡ a21 + a22 + a23 + b21 + b22 + b23 is a minimum

The last constraint ensures a “smooth” transition between the two cross-sections.

To refer to a cross-section parameters after an element has been defined, the following syntax is used:
ele_name[wall%section(n)%v(j)%x] ! x value of j^th vertex of n^th cross-section

5.12.4 Capillary Wall

For a capillary, s must be zero for the first cross-section and the length of the capillary is given by
the value of s of the last cross-section.

For a capillary, in order for Bmad to quickly track photons, Bmad assumes that the volume between
the cross-sections is convex. The volume will be convex if each cross-section rc(θ, s) at any given s is
convex. Note that it is not sufficient for rc(θ, s) to be convex at the specified cross-sections as shown in
Fig. 5.8. Also note that it is perfectly fine for the total capillary volume to not be convex.

5.12.5 Vacuum Chamber Wall

The vacuum chamber wall is independent of the element apertures (§5.8). Unless a program is specifically
constructed, the presence of a vacuum chamber wall will not affect particle tracking.

The vacuum chamber wall defined for an element may be shorter or longer than the element. The
vacuum chamber wall for a particular lattice branch is the sum of all the chamber walls of the individual
elements. That is, the chamber wall at any given point is determined by interpolation of the nearest
sections upstream and downstream to the point. Thus a given lattice element need not contain a wall
component for the chamber wall to be well defined at the element.

The exception to the above rule is when a section has its type component set to either:
wall_start
wall_end

wall_start and wall_end sections must come in pairs. The next section after a wall_end section (if
this section is not the last section in the lattice) must be a wall_start section. If a section has a type
of wall_start, the region between that section and the previous section (which must be a wall_end
section) will be considered to have no wall. If the wall_start section is the first section of the lattice
branch, the region of no wall will start at the beginning of the branch. Similarly, if a section has a type
of wall_end, the region between that section and the next section (or the end of the lattice branch if
there is no next section) will not have a wall.

The chamber walls of any two elements may not overlap. The exception is when the superimpose
attribute for a wall of an element is set to True. In this case, any other wall cross-sections from any
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Figure 5.9: A) Crotch geometry: Two pipes labeled “leg1” and “leg2” merge into a single pipe called
the “trunk” pipe. Five wall sections are used to define the crotch geometry (solid lines). Dashed lines
represent sections not involved in defining the crotch. For purposes of illustration, the three trunk
sections are displaced longitudinally but in reality must have the same longitudinal coordinate. B)
Example layout of the trunk1, trunk2 and trunk wall sections. O1, O2 and O are the x0, y0 origins of
the sections.

other elements that overlap the superimposed wall are discarded. Superposition of a wall is useful, for
example, in introducing mask regions into the wall.

If a branch has a closed geometry (§10.1), wall sections that extend beyond the ends of the branch are
“wrapped” around.

If a particle is past the last wall cross-section or before the first wall cross-section, The following rules
are used: If the branch has a closed geometry, the wall will be interpolated between the last and first
cross-sections. If the branch has an open geometry, the wall is taken to have a constant cross-section in
these regions.

The chamber wall is defined with respect to the local coordinate system (§16.1.1). That is, in a bend a
wall that has a constant cross section is a section of a torus.

Patch elements (§4.41) complicate the wall geometry since the coordinate system at the end of the
patch may be arbitrarily located relative to the beginning of the patch. To avoid confusion as to what
coordinate system a wall section belongs to, patch elements are not allowed to define a wall. The wall
through a patch is determined by the closest wall sections of neighboring elements.

Each section has a type attribute. This attribute is not used for capillary elements. For a vacuum
chamber wall, the type attribute is used to describe a “crotch” geometry where two pipes merge into
one pipe. The possible values for the type attribute are:

normal ! default
leg1
leg2
trunk1
trunk2
trunk

The geometry of a crotch is shown in Fig. 5.9A. Two pipes, called “leg1” and “leg2”, merge into one pipe
called the “trunk” pipe. The trunk pipe can be either upstream or downstream of the leg pipes. To
describe this situation, five sections are needed: One section in each leg pipe which need to have their
type attribute set to leg1 and leg2, and three sections in the trunk with one having a a type attribute
of trunk1, another having a type attribute of trunk2 and the third having a type attribute of trunk.
There can be no sections between the leg sections and the trunk sections.
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Figure 5.10: A) The surface of a diffraction_plate or mask element is divided into “clear” (white)
and “opaque” (black) areas. As explained in the text, these areas are defined by five sections labeled
s1 through s5. B) All wall sections must be star shaped with respect to the section’s origin. In this
example, The section is not star shaped since a line drawn from the origin point o to the point p on the
boundary intersects the boundary twice in between. In this case the section can be made star shaped
by moving the origin to o′.

All three trunk sections must be associated with the same element and have the same s value. In the
list of sections of the element containing the trunk elements, the trunk1 and trunk2 sections must be
listed first if the leg pipes are upstream of the trunk pipe (the situation shown in the figure) and must
be listed last if the leg pipes are downstream. That is, the trunk1 and trunk2 sections are “between”
the leg sections and the trunk section. It does not matter if trunk1 is before or after trunk2.

The trunk1 and trunk2 sections must not overlap and the trunk section must be constructed so that
its area is the union of the areas of trunk1 and trunk2. An example is illustrated in Fig. 5.9B. Here
the trunk1 and trunk2 sections are squares with origins labeled O1 and O2 in the figure. By necessity,
these origins must be different since each must lie within the boundaries of their respective areas. The
trunk section is a rectangle encompassing the two squares and has an origin labeled O.

Between leg1 and trunk1 sections the wall is interpolated using these two section. Similarly for the
region between leg2 and trunk2 sections. Away from these regions interpolation is done as outlined in
§5.12.3. However, these two regions need a different interpolation scheme since, leg1 and trunk1, as
well as leg2 and trunk2 sections do not have to be parallel to each other.

5.12.6 Mask Wall For Diffraction Plate and Mask Elements

The wall attribute (§5.12) of a diffraction_plate or mask element specifies what areas of the element
will transmit or reflect particle and what areas will not. Here the “wall” defines a 2-dimensional area
where particles (or X-rays) impinge upon and not a 3-dimensional surface. As such, the s longitudinal
position parameter of wall sections is not used with mask and diffraction_plate elements.

The algorithm used to decide if a particle hitting a given point will be transmitted or not is as follows.
A wall is comprised a a ordered list of sections as discussed in §5.12.2. Sections will be labeled
s1, s2, s3, . . . with si being the ith section defined in the wall structure. Each section of the wall must
have its type attribute set to one of:

clear
opaque

A section is called “clear” or “opaque” depending upon the setting of its type attribute. The first section
s1 must be labeled clear. Each clear section has zero or more associated opaque sections that follow
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the clear section. An opaque section sj is associated with clear section si if and only if i is less than j,
and all the sections k between i and j (that is, i < k < j) are opaque sections. For example, if the wall
defines 6 sections:
s1 Clear
s2 Clear
s3 Opaque
s4 Opaque
s5 Clear
s6 Opaque

with this arrangement, clear section s1 does not have any associated opaque sections, clear section s2
has two associated opaque section s3 and s4, and clear section s5 has one associated opaque section s6.

Each section covers an area specified by the vertex list associated with the section. To decide if
a particle is transmitted, each clear section, starting from s1, is tested to see if the particle’s (x, y)
coordinates is within the section. If the particle position is not within any clear section, the particle
is considered to have hit an opaque region. If a particle is within one or more clear regions, let si be
the clear region with the smallest index i that the particle is within. The particle is transmitted if the
particle is outside of all associated opaque region of si.

When tracking photons, any clear section can be given a material and thickness. Available materials
are listed in §5.9. A photon transversing a clear area with a defined material will be attenuated and have
a phase shift. Note that material and thickness properties are not to be assigned to opaque sections.

To enable Bmad to quickly calculate whether a particle has landed on a clear or opaque section, All
sections, both clear and opaque, must be “star shaped” with respect to the (x0, y0) origin used by the
section. That is, a line drawn from the section origin to any point on the section boundary must not
pass through any boundary points of the section in between. This is illustrated in Fig. 5.10B where the
section is not star shaped since a line drawn from the origin o to the point p on the boundary passes
through two boundary points in between. In this case the section can trivially be made star shaped by
moving the origin to point o′. If it is not possible to make a section star shaped by moving the origin,
the section must be divided into multiple sections.

An example geometry is shown in Fig. 5.10A. A wall that constructs this geometry is:
z_plate: diffraction_plate, wall = {

section = { ! s1
type = clear,
v(1) = {0, 0, 0.03, 0.013},

section = { ! s2
type = opaque,
v(1) = {0, 0, 0.005},

section = { ! s3
type = opaque,
r0 = (0.02, 0.00),
v(1) = {0, 0, 0.005} }

section = { ! s4
type = clear,
v(1) = {0.04, 0}, v(2) = {0.04, 0.022},
v(3) = {0, 0.03},

section = { ! s5
type = opaque,
v(1) = {0.032, 0.016},

There are two clear sections s1 and s4. Clear section s1 has an oval shape and has two associated circular
opaque sections s2 and s3. Clear section s4 has a hexagonal shape and has one associated rectangular
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opaque section s5. Notice that because opaque section s5 is associated with clear section s4, and since
clear section s4 comes after clear section s1, opaque section s5 does not affect clear section s1 even
though s5 (completely) overlaps s1. This shows that the ordering of the clear sections is important but
the ordering of the opaque sections associated with a given clear section is not important.

5.13 Length Attributes

The length attributes are
l = <Real> !
l_chord = <Real> ! Chord length of a bend. Dependent attribute.
l_rectangle = <Real> ! Rectangular length. See §4.5

The length l is the path length of the reference particle. The one exception is for an rbend, the length
l set in the lattice file is the chord length (§4.5). internally, Bmad converts all rbends to sbends and
stores the chord length under the l_chord attribute. Example:

b: rbend, l = 0.6 ! For rbends, l will be converted to l_chord
For a girder element the length l is a dependent attribute and is set by Bmad to be the difference in
longitudinal position s of the downstream end of the last element supported relative to the upstream
end of the first element.

For wigglers, the length l is not the same as the path length for a particle with the reference energy
starting on the reference orbit. See §16.1.1.

For patch elements the l length is, by definition, equal to z_offset. For patch elements, l is a
dependent attribute and will be automatically set to z_offset by Bmad.

The length of a capillary element is a dependent variable and is given by the value of s of the last
wall cross-section (§5.12.4).

The length of a crystal is zero for Bragg diffraction and is a dependent attribute dependent upon the
crystal thickness for Laue diffraction. See §4.10 for more details.

5.14 Is_on Attribute

The is_on attribute
is_on = <Logical>

is used to turn an element off. Turning an element off essentially converts it into a drift. Example
q1: quad, l = 0.6, k1 = 0.95
q1[is_on] = False

is_on does not affect any apertures that are set. Additionally, is_on does not affect the reference orbit
(§16.1.1) or reference energy (§16.4.1). For example, turning off an lcavity will not affect the reference
energy.

The following elements cannot be “turned off:”
beginning_ele null_ele
capillary overlay
crystal hybrid
drift mirror
fiducial multilayer_mirror
floor_shift photon_init
patch sample
group
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A related parameter is multipoles_on (§5.15).

5.15 Multipole Attributes: Magnetic and Electric

Multipole formulas for are given in §17.1 and §17.2. Note that the setting of field_master (§5.2) will
determine if multipoles are interpreted as normalized or unnormalized.

A multipole (§4.36) element specifies its magnetic multipole components using normal and skew com-
ponents with a tilt

KnL = <Real> ! Normal component. n = Integer.
KnSL = <Real> ! Skew component. n = Integer.
Tn = <Real> ! Tilt. n = Integer. Default is $pi$/(2n + 2)

Where n is an integer in the range from 0 (dipole component) through 21. If Tn is given without a value,
a default of pi/(2n + 2) will be used producing a skew field. Example:

m: multipole, k1l = 0.32, t1 ! Skew quadrupole of strength 0.32
Following MAD, a non-zero dipole (K0L component will affect the reference orbit (just like a normal dipole
will). This is not true for any other element.

An ab_multipole (§4.1) specifies magnetic multipoles using normal (Bn) and skew (An) components:
An = <Real>
Bn = <Real>

Here n ranges from 0 (dipole component) through 21. Example:
q1: ab_multipole, b2 = 0.12, a20 = 1e7, field_master = T

Note that there is a factor of n-factorial difference between An, Bn and KnL, KnSL multipoles §17.1.

Elements like quadrupoles and sextupoles can have assigned to them both magnetic and electric multi-
pole fields. In this case, the magnetic fields are specified using the same convention as the ab_multipole.
For such non-multipole elements, the magnetic multipole strength is scaled via (Eq. (17.16))

an(actual) = F
rnref
0

rn0
an(input), bn(actual) = F

rnref
0

rn0
bn(input) (5.14)

where “input” denotes the input value set in the lattice file, “actual” denotes the value that is used
to compute the field, F is the strength of the element (for example F is K1 · L for a quadrupole),
and r0 is the “measurement radius” and is set by the r0_mag attribute. The default value of r0 is 0 in
which case the factor of rnref

0 /rn0 is omitted. The scaling may be turned off altogether by setting the
scale_multipoles attribute. Example:

q1: quadrupole, b2 = 0.12, a20 = 1e7, scale_multipoles = F
Electric multipoles are specified using normal (Bn_elec) and skew (An_elec) components.

An_elec = <Real>
Bn_elec = <Real>

Here n ranges from 0 (dipole component) through 21. Like the magnetic multipoles, a measurement
radius r0_elec can be used to scale the multipoles as explained in §17.2. Example:

q1: quadrupole, l = 1.2, b2_elec = 1e6, r0_elec = 0.034
See §17.2 for how electric multipoles are defined. Notice that Electric multipoles are never scaled by
the element’s field strength as they are with magnetic multipoles. If the value of r0_elec is zero (the
default) the multipoles will not be scaled.

Unlike magnetic multipoles, there are no factors of the reference momentum nor the element length in
the definition for electric multipoles. That is, electric multipole values represent the field and not the
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normalized integrated field. Thus an electric multipole associated with a zero length element will have
no effect on tracking. This being the case, Bmad does not allow electric multipole values to be specified
for multipole and ab_multipole elements. Indeed, in the limit of zero element length at constant
integrated electric field strength, the equations of motion are singular since, unlike the magnetic case,
the infinite fringe fields give rise to infinite energy shifts.

The magnetic and electric multipole kick can be toggled on or off using the multipoles_on attribute.
Example:

call, file = "lattice.bmad" ! Read in a lattice file
quadrupole::*[multipoles_on] = False ! But I want the multipoles off.
q1[k1] = 0.3 ! k1 attribute not affected.

multipoles_on only effect multipoles specified by An, Bn, An_elec, or Bn_elec. Other multipoles, like
the k2 multipole of a sextupole, are not affected. The exception is multipole and ab_multipole
elements do not have the multipoles_on attribute. Rather they can be toggles on/off using the is_on
attribute.

5.16 Field Maps

There are two general ways to specify complicated electro-magnetic field configurations that cannot be
simply modeled using multipoles. One way is to use custom fields. Specifying a custom field is done by
using custom code and linking this code with Bmad into a program. That is, custom fields are defined
outside of the Bmad software (§6.4).

The other way to specify a complicated field is to use a “field map”. There are four types of field maps:

cartesian_map ! §5.16.2
cylindrical_map ! §5.16.3
grid_field ! §5.16.4
gen_grad_map ! §5.16.5

Essentially, cylindrical_map and cartesian_map define fields using a set of functions with user defined
coefficients with the functions formulated to obey Maxwell’s equations. The grid_field type defines
the field on a grid of points and interpolation is used to evaluate the field in between the points. Finally,
the gen_grad_map type defines a set of “generalized gradients” (§17.7).

The cylindrical_map and grid_field types can be used with both RF and DC fields. The other two
types can only be used with DC fields. RF fields may only be used with the following element classes:

e_gun ! §4.15
em_field ! §4.17
lcavity ! §4.30
rfcavity ! §4.46

An element may specify multiple fields of a given type and/or may define multiple fields of different
types. In both these cases, the field in the element is taken to be the sum of the individual fields. For
example:

sb: sbend, field_calc = fieldmap, cylindrical_map = {...}, cylindrical_map = {...}

In this example an element has two cylindrical_map fields and the total field is the sum of the fields of
each one. Separating fields like this can be useful, for example, to decouple the specification of electric
from magnetic fields, or to decouple the specification of AC and DC fields.

The field of one element can overlap onto other elements. This is explained in Sec. §5.18.
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Figure 5.11: When used with a bend element, by default, field map coordinates will be Cartesian and
not curved like the reference orbit. The orientation of the field map coordinates is determined by the
setting of ele_anchor_pt. To use curvilinear coordinates instead, curved_ref_frame must be set to
True [Available in grid_field and gen_grad_map only].

Field maps are used with integration type tracking methods (§6.4). It is important to note that field
maps are ignored by bmad_standard tracking. Additionally, grid_field field maps cannot be used with
symp_lie_ptc.

Field maps may extend longitudinally beyond the ends of an element. See Sec (§5.18) for more details.

In a lattice file, once a field map is defined for an element, components of the field map may be redefined
using the notation

ele_name[fieldmap_name(index)%component_name] = value

where ele_name is the name of the element, fieldmap_name is the name of the type of field map, index is
the index of the field map which is “1” for the first field map defined for an element, etc., component_name
is the name of the component, and value is the value to set to. Example:

qq, quadrupole, grid_field = {field_scale = 0.5, ...}, ...
qq[grid_field(1)%field_scale] = 0.7 ! Change field_scale value

5.16.1 Field Map Common attributes

This section explains some of the attributes that are common to the field map types. Not all attributes
are used in all field map types. See the documentation on the individual types for a list of the attributes
pertinent to that type.

curved_ref_frame
For bends, the coordinates of the field are, by default, Cartesian and do not follow the curved bend
coordinates. The orientation of the field map coordinates with respect to the bend is determined
by the placement of the anchor point (specified by ele_anchor_pt) as shown in Fig. 5.11. In this
case, when tracking a particle, Bmad will convert particle coordinates (which are expressed in the
bend’s curvilinear coordinate system defined by the reference orbit) to the Cartesian coordinates
of the field map and will rotate the computed field from the field map coordinates back to the
particle coordinates.

For grid_field and gen_grad_map types only, this default behavior can be changed by setting
the curved_ref_frame component of the field map to True. In this case, the field grid coordinates
will follow curved bend coordinates. The curved_ref_frame parameter is only pertinent for bend
elements (sbends, rbends). The setting of curved_ref_frame is ignored for non-bend elements.

ele_anchor_pt
The ele_anchor_pt, along with r0, determines the origin of the field with respect to the lattice
element. Possible settings are:
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beginning ! Beginning of element (default).
center ! Center of element.
end ! Exit end of element.

Example:
rfc0: rfcavity, gen_grad_map = {ele_anchor_pt = center, ...}, ...

field_type
The field_type attribute sets the type of field described. Possible settings for field_type are:

electric ! Pure electric field. For DC fields only.
magnetic ! Pure magnetic field. For DC fields only.
mixed ! Mixed EM fields. Used for grid_field only.

Example:
bb: sbend, cartesian_map = {field_type = electric, ...}, ...

The cylindrical_map type does not have a field_type since it has explicit arrays for the electric
and magnetic fields.

field_scale
The field_scale attribute is used to scale the overall field magnitude. The default value is 1.
A value of -1 will reverse the field. If the master_parameter is defined, it is multiplied with the
field_scale to give the overall scale. Example:

qq, quadrupole, grid_field = {field_scale = 0.5, ...}, ...
qq[grid_field(1)%field_scale] = 0.7 ! Change value after element def.
qq[grid_field(1)%master_parameter] = k1 ! Change value after element def.

harmonic
The harmonic attribute, along with rf_frequency element attribute, sets the oscillation frequency
of the field map. The harmonic attribute is only used with cylindrical_map and grid_field
types. The default value of harmonic is 0. The harmonic number needs to be 0 for DC fields.
Example:

lc1: lcavity, rf_frequency = 500e6, grid_field = {harmonic = 2, ...}, ...
Notice that rf_frequency is set outside of any field map and is common to all field maps.

master_parameter
The master_parameter defines a “master” element attribute for scaling the field. Example:

qq: quadrupole, gen_grad_map = {master_parameter = "K1", ...}, k1 = ...
This example defines the master_parameter for the gen_grad_map to be the quadrupole strength
k1. By using the same master parameter for a set of field map instances within a given lattice
element, the sum field of the set can be controlled by a single attribute. The master_parameter
must be set to a valid element attribute. If the name is blank (""), no master parameter is used.
The master_parameter, if defined, is multiplied with the field_scale to give the value used to
scale the fields. The default master_parameter is blank ("") except for wiggler elements where,
for historical reasons, the default is polarity.

phi0_fieldmap
For AC fields, phi0_fieldmap is the phase of the field map field relative to the fundamental
mode. The phase phi0_fieldmap is relative to the fundamental frequency and not the frequency
of the field map mode. That is, the “zero crossing” point of the field map is shifted by a time
phi0_fieldmap/f0 where f0 is the fundamental mode frequency.

r0
The r0 attribute is the (x0, y0, z0) vector specifying the offset of the origin point that defines
the field relative to the anchor point defined by ele_anchor_pt. The origin position of the field
(r_origin) is determined by

r_origin = r0 + r_anchor
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where r_anchor is determined by the setting of ele_anchor_pt. In the reference coordinates
(§16.1.1) with respect to the element r_anchor is:

ele_anchor_pt r_anchor
------------- ---------
beginning (0, 0, 0) ! Default
center (0, 0, L/2)
end (0, 0, L)

with L being the length of the element.

Example:
rfc0: rfcavity, gen_grad_map = {r0 = (-0.23, ...), ...}, ...

5.16.2 Cartesian_Map Field Map

The cartesian_map is used to describe DC fields. Each term of a cartesian_map is a solution of
Laplace’s equation in cartesian coordinates. as described in Sec. §17.5.

The lattice file syntax for the cartesian_map type is:
cartesian_map = {

field_type = <String>, ! Type of field: Default = Magnetic.
field_scale = <Real>, ! Scale factor for the E & B fields.
master_parameter = <Name>, ! Master scaling parameter for E & B fields.
ele_anchor_pt = <Real>, ! Anchor position: Beginning (default), Center, or End.
r0 = (<x0>, <y0>, <z0>), ! Anchor offset. Default is 0.
term = {<A>, <k_x>, <k_y>, <k_z>, <x_0>, <y_0>, <phi_z>, <family>},
term = {....},
... more terms ...

}

The possible settings of <family> are explained in Sec. §17.5. Example:
q01: quadrupole, l = 0.6, field_calc = fieldmap,

cartesian_map = {
term = {0.03, 3.00, 4.00, 5.00, 0, 0, 0.63, y},
term = {...}, ... }

See Sec. §5.16.1 for an explanation of the attributes that are common with other field map types.

See Sec. §3.8 for the syntax of setting Cartesian map components.

To use with PTC dependent tracking methods (§6.4) there are a number of restrictions:

• There can be only one cartesian_map field map and there cannot be any other field maps of any
kind.

• cartesian_map may not be used with a bend.

• Only magnetic fields may be used.

• The transverse terms in r0 must be zero.

• Since PTC evaluates the vector potential (§25.24), and since k_z appears in the denominator of
some terms, k_z must be non-negative for all terms.
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5.16.3 Cylindrical_Map Field Map

The cylindrical_map is used to describe both DC and AC fields. Each term of a cylindrical_map is
a solution of Laplace’s equation in cylindrical coordinates. as described in Sec. §17.6.

The lattice file syntax for the cylindrical_map type is:
cylindrical_map = {

field_scale = <Real>, ! Scale factor for the E & B fields.
master_parameter = <Name>, ! Master scaling parameter for E & B fields.
ele_anchor_pt = <Real>, ! Anchor position: Beginning (default), Center, or End.
m = <Integer>, ! Azimuthal mode number
harmonic = <Integer>, ! RF frequency harmonic number
phi0_fieldmap = <Real>, ! Phase of oscillations.
theta0_azimuth = <Real>, ! Azimuthal orientation.
r0 = (<x0>, <y0>, <z0>), ! Anchor offset. Default is 0.
dz = <Real>, ! Distance between sampled field points.
e_coef_re = (<Real>, <Real>, ....), ! Real part of E.
e_coef_im = (<Real>, <Real>, ....), ! Imaginary part of E.
b_coef_re = (<Real>, <Real>, ....), ! Real part of B.
b_coef_im = (<Real>, <Real>, ....), ! Imaginary part of B.

}
See Sec. §5.16.1 for an explanation of the attributes that are common with other field map types.

For DC fields, the e coefficients specify the electric fields and the b coefficients specify the magnetic
fields. For AC fields, the e coefficients specify modes that have finite longitudinal electric fields while
the modes associated with the b coefficients do not.

To specify the RF frequency, specify the rf_frequency element attribute along with the harmonic
attribute. See the discussion of the harmonic attribute in Sec. §5.16.1.

The basic equations used for the cylindrical_map decomposition of the fields are given in Section §17.6.
A lattice element may have multiple cylindrical_map components with each cylindrical_map being
associated with a particular azimuthal mode m.

e_re and e_im give the real an imaginary part of e and b_re and b_im give the real and imaginary part
of b. All of these vectors must be present and have the same length. The exception is with an m = 0
mode either the e or b arrays can be omitted and will default to zero. The number of terms N for the e
or b vectors must be a power of 2 and all modes must have the same number of terms. The nth element
in the e or b arrays, with n running from 0 to N − 1, is associated with a wavelength kn

kn =

®
2π n
N dz 0 ≤ n < N

2
2π (n−N)
N dz

N
2 ≤ n ≤ N − 1

(5.15)

This convention produces less high frequency components then the convention of using kn = 2π n/Ndz.

The longitudinal length of the field is

Lfield =
N − 1

dz
(5.16)

this may be different from the length l specified for the element.

For AC fields, the time t in Eq. (17.46) is computed depending upon whether absolute time tracking
or relative time tracking is being used as discussed in §25.1. For rfcavity elements, the phase
factor ϕ0j in Eq. (17.46) is computed by
ϕ0j = harmonic(j) * [0.25 - (phi0 + phi0_multipass + phi0_err +

phi0_autoscale + phi0_fieldmap(j))]
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where phi0_fieldmap(j) and harmonic(j) are specific to the jth grid field while the other factors are
element parameters and so will be the same for all grid field maps of a given element. For non rfcavity
elements the phase is
ϕ0j = harmonic(j) * [phi0 + phi0_multipass + phi0_err +

phi0_autoscale + phi0_fieldmap(j)]

where phi0_fieldmap(j) and harmonic(j) are specific to the jth cylindrical field map while the other
factors are element parameters and so will be the same for all cylindrical field maps of a given element.

Example:
m1: lcavity, rf_frequency = 1e6, voltage = 2e6, cylindrical_map = {

m = 2, harmonic = 3,
r0 = (0, 0, 0.001), dz = 0.1,
theta0_azimuth = 0.3, field_scale = 0.7,
ele_anchor_pt = center, master_parameter = voltage,
e_coef_re = (...), e_coef_im = (...),
b_coef_re = (...), b_coef_im = (...)}, field_calc = fieldmap

See Sec. §3.8 for the syntax of setting Cylindrical map components.

Note: When using PTC based tracking (§6), the following restrictions apply:

• The fields must be DC.

• all the e_coef and b_coef arrays must have the same length.

• r0(1) and r0(2) (the transverse offsets) must be zero.

• The element containing the map cannot be an sbend or rbend.

• May not be combined with other field map types.

5.16.4 Grid_Field Field Map

A grid_field is grid of field points specified using the syntax:
grid_field = {

geometry = <String>, ! Geometry of the grid.
field_type = <String>, ! Type of field: Default = Mixed.
field_scale = <Real>, ! Scale factor for the E & B fields.
phi0_fieldmap = <Real>, ! Phase of oscillations.
harmonic = <Int>, ! RF frequency harmonic number
interpolation_order = <Int>, ! 1 (default) or 3 interpolation polynomial order.
master_parameter = <Name>, ! Master scaling parameter for E & B fields.
curved_ref_frame = <Logical>, ! Use a curved reference frame with bends?
r0 = (...), ! Grid origin. Syntax is geometry dependent.
dr = (...), ! Grid spacing. Syntax is geometry dependent.
ele_anchor_pt = <Position> ! BEGINNING, CENTER, or END
{ ... }, ! Field table. Syntax is geometry dependent.
pt(<Integer>, ...) = ( ... ), ! Field table point. Old style.

}

See Sec. §5.16.1 for an explanation of the attributes that are common with other field map types.

To specify the RF frequency, specify the rf_frequency element attribute along with the harmonic
attribute. See the discussion of the harmonic attribute in Sec. §5.16.1.
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For field_type set to electric or magnetic, the field is DC. That is, For field_type set to electric
or magnetic, the value of harmonic must be 0. For field_type set to mixed, the field may be DC or
AC.

For AC fields, the individual field components are complex. the syntax for specifying a complex number
is:

(<Re> <Im>)

Example:
{

0 0 -7: (0.34 -4.3) (2.37 9.34) ..., ! Complex field
0 0 -7: 0.12 -0.33 ..., ! Imaginary components are zero
...

}

The actual fields E and B are computed from the complex fields Ec and Bc via

E = ℜ
[
Ec exp (−2π i (ϕt + ϕref))

]
(5.17)

with a similar equation for B. ϕt is the part of the phase due to when the particle arrives at the cavity
and depends upon whether absolute time tracking or relative time tracking is being used as
discussed in §25.1. The phase ϕref for the jth grid field in an rfcavity element is
ϕref,j = harmonic(j) * [0.25 - (phi0 + phi0_multipass + phi0_err +

phi0_autoscale + phi0_fieldmap(j))]

where phi0_fieldmap(j) and harmonic(j) are specific to the jth grid field while the other factors are
element parameters and so will be the same for all grid field maps of a given element. For non rfcavity
elements the phase is
ϕref,j = harmonic(j) * [phi0 + phi0_multipass + phi0_err +

phi0_autoscale + phi0_fieldmap(j)]

The geometry switch sets the type of the grid and must come before the field table. The possible settings
of geometry are:

rotationally_symmetric_rz
xyz

The rotationally_symmetric_rz setting for geometry is for fields that are rotationally symmetric
around the z axis. The format for this type of grid_field is

grid_field = {
geometry = rotationally_symmetric_rz,
r0 = (<x0>, <y0>, <z0>), ! Grid origin
dr = (<dr>, <dz>), ! Grid spacing
{ ! Field table...

<ir> <iz>: <E_r> <E_phi> <E_z>, ! For field_type = Electric
<ir> <iz>: <B_r> <B_phi> <B_z>, ! For field_type = Magnetic
<ir> <iz>: <E_r> <E_phi> <E_z> <B_r> <B_phi> <B_z>,

! For field_type = Mixed.
...

}
}

where <iz> can be negative but <ir> must be non-negative. Notice that commas are only used in the
field table to demarcate between field points.

There is an old style syntax for the field table that looks like:
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pt(<ir>, <iz>) = (<E_r>, <E_phi>, <E_z>) ! For field_type = Electric
pt(<ir>, <iz>) = (<B_r>, <B_phi>, <B_z>) ! For field_type = Magnetic
pt(<ir>, <iz>) = (<E_r>, <E_phi>, <E_z>, <B_r>, <B_phi>, <B_z>)

! For field_type = Mixed.

While the old style is accepted, parsing the old syntax is almost a factor of two slower. The only possible
advantage to the old style is that expressions can be used for field values.

The xyz setting for geometry can be used for all rectangular field grids. The format for this type of
grid_field is

grid_field = {
geometry = xyz,
r0 = (<x0>, <y0>, <z0>), ! Grid origin
dr = (<dx>, <dy>, <dz>), ! Grid spacing
}

<ix> <iy> <iz>: <E_x> <E_y> <E_z>, ! For field_type = Electric
<ix> <iy> <iz>: <B_x> <B_y> <B_z>, ! For field_type = Magnetic
<ix> <iy> <iz>: <E_x> <E_y> <E_z> <B_x> <B_y> <B_z>,

! For field_type = Mixed.
...

}
}

where <ix>, <iy>, and <iz> can be negative.

The old style syntax for the xyz field table is:
pt(<ix>, <iy>, <iz>) = (<E_x>, <E_y>, <E_z>), ! For field_type = Electric
pt(<ix>, <iy>, <iz>) = (<B_x>, <B_y>, <B_z>), ! For field_type = Magnetic
pt(<ix>, <iy>, <iz>) = (<E_x>, <E_y>, <E_z>, <B_x>, <B_y>, <B_z>),

! For field_type = Mixed.

[For clarity sake, the following discusses the xyz case. Extension to other cases is straight forward.]
There is no restriction on the bounds of the indexes (ix, iy, iz) of the pt(ix, iy, iz) array. A
point (ix, iy, iz) corresponds in space to the point (x, y, z):

(x, y, z) = dr * (ix, iy, iz) + r0 + r_anchor

where z is measured from the beginning of the element and r_anchor is determined by the setting of
ele_anchor_pt:

ele_anchor_pt r_anchor
------------- ---------
beginning (0, 0, 0) ! Default
center (0, 0, L/2)
end (0, 0, L)

with L being the length of the element.

Example:
apex: e_gun, l = 0.23, field_calc = fieldmap, rf_frequency = 187e6,

grid_field = call::apex_gun_grid.bmad

with the file apex_gun_grid.bmad being:
{

geometry = rotationally_symmetric_rz,
harmonic = 1,
master_parameter = voltage,
r0 = (0, 0),



202 CHAPTER 5. ELEMENT ATTRIBUTES

dr = (0.001, 0.001),
{

0 0: (0 0) (0 0) (1 0) (0 0) (0 0) (0 0),
0 1: (0 0) (0 0) (0.99 0) (0 0) (0 0) (0 0),
...

}
}

The order of the polynomials used to interpolate the field is determined by the setting of interpolation_order.
The value of this integer may be either 1 or 3. A value of 1 is the default and gives linear interpolation.
A value of 3 will give cubic interpolation which will be better if the field values on the grid are smooth
and well behaved. However, a cubic interpolation will be slower and will magnify gird field errors so care
should be taken in choosing the interpolation order.

It is considered an error if the field of the grid is evaluated for a point that is transversely outside of
the grid. That is, a grid must extend transversely to the aperture or at least beyond the trajectory
of any particle. [Actually, to prevent problems when the aperture is set at the grid boundary, if the
distance between the particle and the grid boundary is within 1/2 of the spacing between grid points,
no error is generated and the field will be calculated using extrapolation.] On the other hand, it is
acceptable to evaluate the grid field at a point that is longitudinally outside of the grid. In this case,
the field is assumed to go to zero. This is done by effectively adding to the grid two planes of zero field
longitudinally to either side of the grid. So a particle traveling outside of the grid longitudinally will see
the field drop to zero within one longitudinal grid spacing length.

Grid fields may stored in HDF5 binary format which may then be called using an inline call (§3.19).
For example:

qq: quadrupole, grid_field = call::my_grid.h5, ...

See Sec. §3.8 for the syntax of setting grid_field components.

5.16.5 Gen_Grad_Map

The gen_grad_map characterizes DC magnetic or electric fields using “generalized gradients” (GG) as
described by Venturini and Dragt[Venturini99]. Formulas for the GG are given in Sec. §17.7.

An element can store an set of GGs. For example, a GG for the magnetic field and a GG for the electric
field. The syntax for describing a single GG is:

gen_grad_map = {
field_type = <String>, ! Type of field: Default = magnetic.
field_scale = <Real>, ! Scale factor for the E & B fields.
master_parameter = <Name>, ! Master scaling parameter for E & B fields.
curved_ref_frame = <Logical>, ! Use curved coords with bends?
ele_anchor_pt = <Real>, ! Anchor position: Beginning (default), Center, or End.
r0 = (<x0>, <y0>, <z0>), ! Anchor offset. Default is 0.
dz = <Real>, ! Distance between sampled field points.
curve = { ! Generalized gradient curve

m = <Int>, ! Azimuthal m value
kind = <Sin-or-Cos> ! Type of curve: sin or cos.
derivs = {

<z0>: <d0> <d1> <d2> ... <dN>,
<z1>: ...,
...

}



5.17. RF COUPLERS 203

},
curve = {

...
}

}

Example:
t1: sbend, k1 = 2, gen_grad_map = {

field_type = electric, ele_anchor_pt = end,
dz = 1.2, r0 = (0, 0, 2.0),
field_scale = 1.3, curved_ref_frame = False,
master_parameter = k1,

... }, field_calc = fieldmap, integrator_order = 6, num_steps = 70,
tracking_method = taylor, mat6_calc_method = taylor

See Sec. §5.16.1 for an explanation of the attributes that are common with other field map types. In
general there will be multiple curve instances. A given curve instance specifies one generalized gradient
with a given azimuthal m value and a kind which specifies if the generalized gradient is sin-like or cos-
like. Each curve has a table of derivatives given by the derivs component. Each row in the derivative
table starts with the z-position of the derivatives <z0>, <z1>, z2, ... etc. The z-positions must be in
increasing order and be multiples of dz with no gaps (that is, <z1> = <z0> + dz, etc.). Each line in the
derivs table specifies the derivatives <d0>, <d1>, etc. at the given z-position where <d0> is the zeroth
derivative (the value of the generalized gradient itself), <d1> is the first derivative, etc. For a given
curve instance, all derivative rows must have the same number of derivatives. Different curves can
have differing number of derivatives. All curves must specify the same z-positions but different curves
may have differing number of derivatives.

Like grid_fields, the edges of a gen_grad_map, can be defined to be outside of the edges of the element.
These areas will be ignored while tracking unless field overlap is defined (§5.18)).

See Sec. §3.8 for the syntax of setting gen_grad_map components.

To use with PTC dependent tracking methods (§6.4) there are a number of restrictions:

• There can be only one gen_grad_map and there cannot be any other field maps of any kind.

• Only magnetic fields may be used.

• In a bend with curved_ref_frame = False, The setting of ele_anchor_pt must be center.

The integrator_order for PTC dependent tracking can be either set to 4 or 6 with 4 being the
defaults:ptc.integ.

5.17 RF Couplers

For lcavity and rfcavity elements, the attributes that characterize the dipole transverse kick due to
a coupler port are:

coupler_at = <Switch> ! What end the coupler is at
coupler_strength = <Real> ! Normalized strength
coupler_angle = <Real> ! Polarization angle (rad/2π)
coupler_phase = <Real> ! Phase angle with respect to the RF (rad/2π)

The possible coupler_at settings are:
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entrance_end
exit_end ! default
both_ends

The kick due to the coupler is
dP_x = amp * cos(phase) * cos(angle)
dP_y = amp * cos(phase) * sin(angle)
dE = amp * (cos(angle) * x + sin(angle) * y) * sin(phase) * twopi * rf_frequency / c_light

where dP_x and dP_y are the transverse momentum kicks, dE is an energy kick, and
amp = gradient * coupler_strength
phase = twopi * (phase_particle + phase_ref + coupler_phase) ! For lcavity §4.30

= pi/2 + twopi * (phase_particle - phase_ref + coupler_phase) ! For rfcavity §4.30
angle = twopi * coupler_angle

The energy kick is needed to keep things symplectic.

Example:
rf1: lcav, l = 4.5, gradient = 1.2e6, coupler_at = both_ends,

coupler_strength = 0.037

5.18 Field Extending Beyond Element Boundary

The field_overlaps element attribute can be used to indicate that the electric or magnetic fields of
one element overlap another element. The syntax is:

<overlapping_ele>: ... field_overlaps = {<overlapped_ele1>, <overlapped_ele2>, ...}

The {} braces are optional if there is only one overlapped element.

Example:
b1: sbend, l = 2.3, field_overlaps = {q1, s2}, ...
inj_line: line = (..., s2, b1, mark3, q1, ...)

In this example, the field of element b1 extends beyond the ends of b1 and overlaps elements q1 and s2.
There is no limit to the number of elements that are overlapped by any given element and overlapped
elements do not have to be next to the overlapping element in the line. If there are multiple elements
whose name matches the name of a overlapped element, the element closest to the overlapping element
is chosen. Thus in the above example, if there are multiple elements named q1, the closest q1 to b1 is
designated as the overlapped element.

There can be multipole field_overlaps = ... constructs for an overlapping element. Thus the fol-
lowing is equivalent to the above example:

b1: sbend, l = 2.3, field_overlaps = q1, field_overlaps = s2

Note: When the field overlaps elements that are superimposed (§8), the overlapped elements must be
the super_lord elements and never the slaved elements.

The field, when field_calc (§6.4) is set to bmad_standard, never extends beyond the element boundary
and so a bmad_standard field will never overlap another element.

5.19 Automatic Phase and Amplitude Scaling of RF Fields

Elements that have accelerating fields are:
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e_gun ! §4.15
em_field ! §4.17
lcavity ! §4.30
rfcavity ! §4.46

[Notice that rfcavity elements by definition, have a constant reference energy while with all the other
elements the entrance end reference energy will, in general, be different from the exit end reference
energy.]

The problem that arises with accelerating fields is how to set the overall amplitude (and phase if the
fields are oscillating) of the field so that a particle, starting on the reference orbit and starting with the
reference energy, has the desired energy gain at the exit end of the element where the “desired” is set by
the voltage or gradient attribute of the element plus a phi0 phase attribute for AC fields.

The scaling problem is not present when bmad_standard tracking (§6.1) is used since bmad_standard
tracking uses an integrated formula that is designed to give the proper acceleration. Rather it is a
problem for Runge-Kutta and other integration methods.

The problem becomes even more complicated at non-ultra relativistic energies where the particle velocity
is not a constant. In this case, the proper amplitude and/or phase settings will depend upon what the
incoming energy of the reference particle is.

To help with the scaling problem, Bmad has the capability to automatically scale an accelerating field’s
amplitude and/or phase. The two lattice element parameters that turn on/off auto scaling are (§10.1):

autoscale_phase = <Logical> ! Automatic phase scaling.
autoscale_amplitude = <Logical> ! Automatic amplitude scaling.

The default value is True for both parameters. Example:
rf2: rfcavity, autoscale_phase = F

Scaling takes place during program execution when a lattice is initially created (that is, when the lattice
file is parsed) and when parameters in the lattice that would change the scaling are varied. The element
parameters varied when autoscaling is done are:

field_autoscale ! Amplitude scale
phi0_autoscale ! phase scale

For an rfcavity element, the field_autoscale parameter is set such that when the phase is adjusted
for maximum acceleration, the voltage gain of a particle on the zero orbit is equal to the value of the
element’s voltage parameter.

The phi0_autoscale is set so that with phi0 equal to zero, a particle on the zero orbit will not see any en-
ergy gain through the cavity. There are two values for phi0_autoscale where, with phi0 equal zero, the
energy gain of the zero orbit particle is zero. If the bmad_com global parameter rf_phase_below_transition_ref
(§11.2) is set to False (the default), phi0_autoscale will be set such that, with phi0 equal zero, the
zero orbit for a particle above transition will be at the stable zero-crossing. For a particle below transi-
tion, setting rf_phase_below_transition_ref to True, will result in phi0_autoscale being set such
that, for particles below transition, and with phi0 equal zero, a particle on the zero orbit will be at the
stable zero-crossing.

It is important to keep in mind that with a ring, the closed orbit will be the equilibrium orbit. For
example, for a ring with a single cavity, changes in phi0 will just result in variations in the closed orbit
z. The voltage kick that the closed orbit particle gets going through the cavity is independent of phi0
and will be equal to the radiation losses throughout the ring (and if radiation of off, the kick will be
zero).

It is not possible to autoscale if the voltage is very small. Bmad sets a lower limit of 10 Volts and
if the voltage is set less than this no scaling is done. If no autoscaling is done, the default setting of
field_autoscale is 1 and the default setting of phi0_autoscale is 0.
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Note: If a field map (§5.16) is used to define the cavity fields, in order for the field amplitude to vary with
changes in the value of the voltage, the master_parameter of the field map must be set to voltage
(or gradient since gradient and voltage are linked).

field_autoscale and phi0_autoscale are not needed and therefore ignored when bmad_standard
tracking is done.

5.20 Wakefields

Wakefield modeling is discussed in Chapter §19. The syntax for specifying short-range wakefields for an
element is given in Sec. §5.20.1. The syntax for specifying long-range wakefields is given in Sec. §5.20.3.

Bmad has two modes for tracking particles. One mode tracks individual particles one at a time. The other
mode tracks bunches of particles. Which mode is used for a given program is decided by the program.
wakefields are ignored when tracking individual particles and only used when tracking bunches.

5.20.1 Short-Range Wakes

The short-range wakes for a lattice element are specified via a set of “pseudo” modes. Equations for
short-range wakefields are given in Sec. §19.1. The sr_wake attribute is used to set wakefield parameters.
The general form of this attribute is:

sr_wake = {z_max = <real>, z_scale = <real>, amp_scale = <real>,
scale_with_length = <logical>,
longitudinal = {<amp>, <damp>, <k>, <phi>, <position_dependence>},
...
longitudinal = {...},
transverse = {<amp>, <damp>, <k>, <phi>, <polarization>, <particle_dependence>},
...
transverse = {...} }

The sr_wake structure has optional components z_max, z_scale, amp_scale, and scale_with_length
along with zero or more longitudinal sub-structures each one specifying a single longitudinal mode,
and zero or more transverse sub-structures each one specifying a single transverse mode. Example:

cav9: lcavity, ..., sr_wake = {z_max = 1.3e-3, scale_with_length = F,
longitudinal = {3.23e14, 1.23e3, 3.62e3, 0.123, none},
longitudinal = {6.95e13, 5.02e2, 1.90e3, -1.503, x_leading},
transverse = {4.23e14, 2.23e3, 5.62e3, 0.789, none, trailing},
transverse = {8.40e13, 5.94e2, 1.92e3, 1.455, x_axis, none} }

Note: After an element has been defined, to refer to a given component use the notation:
<element-name>[sr_wake%<component-name>]

where <element-name> is the name of the element and <component-name> is the name of the component.
For example, after the cav9 element has been defined, the z_scale component can be changed via:

cav9[sr_wake%z_scale] = 0.4 * cav9[sr_wake%z_max]
The first four components of both the longitudinal and transverse sub-structures give Ai, di, ki, and
ϕi/2π of Eq. (19.6). The units for these components are:

Monopole Dipole

A V/Coul/m V/Coul/m2

d 1/m 1/m
k 1/m 1/m
ϕ/2π Radians/2π Radians/2π
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Monopole modes are modes that are independent of transverse position and dipole modes are modes
that are linear in the transverse position.

For the longitudinal sub-structures, there is a 5th component which gives the transverse position
dependence of the wake. Possible values are:

none ! No position dependence
x_leading ! Linear in the leading particle x-position
y_leading ! Linear in the leading particle y-position
x_trailing ! Linear in the trailing particle x-position
y_trailing ! Linear in the trailing particle y-position

“x_leading”, for example, means that the wake left by a “leading” particle is linear in the x-position of
the particle while the kick to a “trailing” particle is independent of the the trailing particle’s transvrse
position. “y_trailing”, on the other hand, means that the wake left by a leading particle is independent
of the leading particle’s transverse position but that the kick felt by a trailing particle is proportional to
the trailing particle’s y-position.

For the transverse sub-structures, there is a 5th component giving the polarization and a 6th component
specifying if the kick is dependent upon the leading or trailing particle transverse position. Possible values
for the polarization are

none ! Kick in both x and y-planes
x_axis ! Kick in only the x-plane
y_axis ! Kick in only the y-plane

and possible values for the particle dependence are:
none ! No transverse dependence
leading ! Depends linearly on the leading particle position.
trailing ! Depends linearly on the trailing particle position.

The z_max component of sr_wake specifies the maximum z value at which the pseudo mode fit is valid.
The z_max component is optional and if present and positive, Bmad will check that the distance
between particles does not exceed z_max. If it does, Bmad will report an error. If z_max is not positive
it is ignored.

If scale_with_length is False (the default is True), the length factors in Equations like Eqs. (19.1) and
(19.4) are dropped. This is convenient for using zero length elements with wake simulations.

The amp_scale component is used to scale the amplitude of the modes. This corresponds to Aamp in
Eq. (19.6). The default value is 1.0.

The z_scale is used to scale the z distance in the wake equations:
z(used in equations) = z_scale * z(actual)

The default value is 1.0.

Note: In a beam chamber with circular symmetry, the linear terms in the longitudinal wake are zero
and the transverse wake has no terms independent of the transverse offsets nor terms that depend upon
the trailing particle offset.

5.20.2 Short-Range Wakes — Old Format

There is an old, deprecated, format for specifying short-range wakes where the wake data is contained
in a separate file whose name is given by the lr_wake_file attribute. Example:

abc: lcavity, sr_wake_file = "sr.wake", lr_freq_spread = 0.0023, lr_self_wake_on = F

Example file:
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! Pseudo Wake modes:
! Amp Damp K Phase Polar- Transverse_
! Longitudinal: [V/C/m] [1/m] [1/m] [rad] ization Dependence
! Transverse: [V/C/m^2] [1/m] [1/m] [rad]

&short_range_modes
longitudinal(1) = 3.23e14 1.23e3 3.62e3 0.123
longitudinal(2) = 6.95e13 5.02e2 1.90e3 -1.503
.. etc ..
transverse(1) = 4.23e14 2.23e3 5.62e3 0.789 none linear_trailing
transverse(2) = 8.40e13 5.94e2 1.92e3 1.455
.. etc ..

z_max = 1.3e-3
/

Notice that the old format uses radians and not radians/2π for the phase.

Possible settings for the polarization parameter are: parameter are:
none ! Default
x_axis
y_axis

The polarization name may be abbreviated.

The transverse_dependence parameter sets whether the wake kick is linear in the offset of the leading
or trailing particle or is independent of the transverse offset. Possible settings of this parameter are:

none ! Default for longitudinal modes
linear_leading ! Default for transverse modes
linear_trailing

The transverse_dependence parameter may be abbreviated. Note: Due to the way the wake file
is parsed, if transverse_dependence is specified for a particular mode, polarization must also be
specified.

For longitudinal modes: If the transverse_dependence is none (the default), the polarization must
also be none (other combinations do not make sense). If the transverse_dependence is not none for a
longitudinal mode, the polarization must be set to x_axis or y_axis.

5.20.3 Long-Range Wakes

The lr_wake attribute is used to set the long-range wakefield parameters for a lattice element. Equations
for long-range wakes is given in Sec. §19.2. The general form of this attribute is:

lr_wake = {time_scale = <real>, amp_scale = <real>, freq_spread = <real>,
self_wake_on = <logical>, t_ref = <real>,
mode = {<freq_in>, <R_over_Q>, <damp>, <phi>, <m_order>, <polar_angle>,

<b_sin>, <b_cos>, <a_sin>, a_cos>},
...
mode = {...} }

The lr_wake structure has optional components time_scale, amp_scale, freq_spread, self_wake_on,
and t_ref along with one or more mode sub-structures each specifying a single long-range mode. Ex-
ample:

f1 = 1.65e9; q1 = 7e4
cav9: lcavity, ..., lr_wake = {time_scale = 1.7, freq_spread = 0.001,

mode = {f1, 0.76, f1/(2*q1), 0, 1, unpolarized},
mode = {-1, 0.57, 3e4, 0, 2, 0.15} }
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The first six components of the mode sub-structure correspond to ω/2π, R/Q, d, ϕ/2π, m, and θp/2π
in §19.2. The units of R/Q are Ω/meter2m. The last four components, which are optional, correspond
to bsin, bcos, asin, and acos. These four components can be used as a convenient way to save the state of
the long-range wakes. These components will typically not be present in a lattice file except for lattice
files generated by a program that does wake simulations.

A negative frequency is used to designate wakes that are part of the fundamental accelerating mode.
That is, the frequency of such a mode is set to the value of rf_frequency for the lattice element the
wake is associated with. It is an error to have a negative frequency for a mode for elements that do not
have a rf_frequency attribute. Bmad needs to know if a wake is part of the fundamental mode due to
timing issues as discussed in §25.1.

The freq_spread component of the lr_wake structure is used to randomly vary the long-range mode
frequencies. This can be used to spread out the long-range mode frequencies among different cavities.
The default value is zero which means there is no varying the mode frequencies. The fractional difference
between of the mode frequencies used in a simulation and the input mode frequencies will have a Gaussian
distribution with an RMS given by freq_spread. For example, a value of 0.01 for freq_spread gives
a 1% variation in frequency. Note: Wake modes that are locked to the fundamental accelerating mode
(§5.20.4), are not shifted.

The self_wake_on component can be used to turn off the long-range self-wake which is the longitudinal
kick given a particle due to the wake generated by that same particle. [The transverse self wake is always
zero.] The default setting of self_wake_on is True. Turning off the self-wake, for example, can be done
to avoid double counting if both long-range and short-range wakes are defined. Also, The standard
formulas for the long–range resistive wall wake are not valid over short time scales. In this case, the
self-wake should be turned off.

The amp_scale component is used to scale the amplitude of the modes. This corresponds to Aamp in
Eq. (19.6). The default value is 1.0.

The time_scale component is used to scale the time distance in the wake equations:

t (used in equations) = time_scale * t(actual)

The default value is 1.0.

The t_ref component is the reference time used in computing the wake (Eq. (19.20)). Like the mode
components b_sin, etc., This component is typically not set when a lattice file is constructed.

After the long–range wake has been defined, components can be referenced or redefined using the notation

lr_wake%mode(n)%freq_in ! Input Frequency
lr_wake%mode(n)%freq ! Actual Frequency (set by Bmad)
lr_wake%mode(n)%r_over_q ! R/Q
lr_wake%mode(n)%damp ! d
lr_wake%mode(n)%phi ! Actually phi/2pi
lr_wake%mode(n)%polar_angle ! Polarization Angle
lr_wake%mode(n)%polarized ! Logical
lr_wake%freq_spread ! Frequency spread
lr_wake%amp_scale ! Amplitude scale
lr_wake%time_scale ! Time scale

freq_in is the input frequency set in the lr_wake structure and freq is the actual frequency set by
Bmad. Freq will only be different from freq_in if freq_spread is nonzero. Example:

cav9[lr_wake%mode(2)%freq_in] = 1.1 * cav9[lr_wake%mode(2)%freq_in] ! Raise frequency by 10%
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5.20.4 Long-Range Wakes – Old Format

There is an old, deprecated, format for specifying long-range wakes where the wake data is contained in
a separate file whose name is given by the lr_wake_file element attribute. Example:

abc: lcavity, lr_wake_file = "lr.wake", lr_freq_spread = 0.0023, lr_self_wake_on = F

The file gives the wake modes by specifying the frequency (ω/2π), R/Q, Q, and m (order number), and,
optionally, the polarization angle θp/2π for each cavity mode. The input uses Fortran90 namelist syntax:
The data begins with the string &long_range_modes and ends with a slash /. Everything outside this
is ignored. Each mode is labeled lr(i) where i is the mode index. An example input file is:

Freq R/Q Q m Polar b_sin b_cos a_sin a_cos t_ref
[Ohm/ Angle

[Hz] m^(2m)] [Rad/2pi]
&long_range_modes

lr(1) = 1.650e9 0.76 7.0e4 1 "unpol"
lr(2) = 1.699e9 11.21 5.0e4 1 "0.15"
lr(3) = -1 0.57 1.1e6 0 "unpol"

/

[Note: The quotation marks are needed with some compilers and not with others.] If the polarization
angle is set to “unpolarized” the mode is taken to be unpolarized.

Two deprecated element attributes that affect the long-range wake are lr_freq_spread and lr_self_wake_on
which correspond to lr_wake%freq_spread and lr_wake%self_wake_on (5.20.3

Notice that with the old format it is not possible to specify the phase offset ϕ.

5.21 Fringe Fields

Some lattice elements can have fringe fields at the element edges. Whether Bmad tries to model the
fringe fields using the models described below first depends upon what kind of tracking is done. Fringe
effects are not applied when an element’s tracking_method is set to:

custom
mad

Additionally, no fringe effects will be used if the tracking_method is runge_kutta or time_runge_kutta,
and the element’s field_calc (§6.4) is not bmad_standard. This is done since, for non-bmad_standard
field calculations, it is assumed that the field profile includes the fringe regions.

5.21.1 Turning On/Off Fringe Effects

For elements that have a fringe, whether fringe fields are ignored or not is determined by the setting of
the fringe_at element parameter. The possible settings are

no_end
both_ends ! Default
entrance_end
exit_end

This is particularly useful in vetoing the fringe effect in the interior of split elements. The setting of
attributes like fringe_type (see below) are ignored for boundaries where the fringe has been turned off.

When a particle’s spin is being tracked, the spin_fringe_on logical attribute of the element determines
how the spin tracking is handled through a fringe region. Example:
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q: quad, spin_fringe_on = T, fringe_at = exit_end
Here, there is no fringe effect at the entrance of the element and the fringe at the exit end of the element
will affect the spin. The default setting of spin_fringe_on is True. The spin_fringe_on attribute is
useful for examining how much fringe fields affect spin precession.

5.21.2 Fringe Types

Bmad and PTC have several fringe field models for static magnetic fields. Which fringe model is used is
set by two element attributes: fringe_type and ptc_fringe_geometry with ptc_fringe_geometry
only being used with bends and PTC dependent tracking. The fringe_type switch is used to select
how a fringe field is simulated. The possible settings of fringe_type are:

none ! No fringe effect.
soft_edge_only
hard_edge_only
full
linear_edge ! Sbend, rbend only.
basic_bend ! Sbend, rbend only.
sad_full ! Sbend, rbend, sad_mult only.

Default settings for fringe_type are
Element Type Default fringe_type

e_gun full
lcavity, rfcavity full
sbend, rbend basic_bend
All others none

Some fringe fields can be divided into two pieces. The first piece is called the hard edge fringe kick and
is the kick in the limit that the longitudinal extent of the fringe is zero. The second piece is the soft
edge fringe kick which is the fringe kick with the fringe having a finite longitudinal extent minus the
hard edge fringe kick. That is

fringe kick = hard fringe kick + soft fringe kick
The advantage of separating the fringe kick in this way is that the hard fringe can be used without
having to know anything about the longitudinal extent of the fringe (which happens when simulating
magnets that have not yet been fully designed). In many cases, this is a good enough approximation.
Note that using the soft fringe without the hard fringe is not physical but can be useful in understanding
how the soft edge component affects tracking. See §18 for details.

For bend elements the following fringe maps are used:
fringe_type Fringe model

none No fringe effect
soft_edge_only SAD dipole soft edge (§18.2)
hard_edge_only Bend Second Order (§18.1) with fint and hgap ignored.
full Exact bend
linear_edge Linear dipole hard edge (§18.4)
basic_bend Bend Second Order (§18.1)
sad_full

The basic_bend setting for bend elements, which is the default, is essentially the basic vertical focus-
ing effect that is present when there is a finite e1 or e2 face angle. With bmad_standard tracking,
basic_bend also includes second order terms (§18.1). The linear_edge setting ignores these second or-
der terms. In some cases, for instance in a chicane, basic_bend is not good enough. With fringe_type
set to full, higher order effects are taken into account.
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PTC does not have a linear_edge fringe model. With PTC tracking, basic_bend tracking is used if
linear_edge is chosen.

Additionally, for use with PTC, the ptc_fringe_geometry switch can be used to define the symmetry
of the fringe fields. Possible settings are:

x_invariant
multipole_symmetry

The difference between x_invariant and multipole_symmetry is that with multipole_symmetry the
fringe field for an nth order multipole is assumed to have the same rotational symmetry as the multipole.
With this assumption, the fringe field has n + 1st order terms. With x_invariant, the fringe field
is calculated assuming that there is translational invariance along the horizontal x axis. This differs
from multipole_symmetry by adding terms of increasing order consistent with the translational invari-
ance. See Étienne Forest’s book[Forest98] for more details. Which setting of ptc_fringe_geometry
is appropriate depends upon how the dipole under consideration is constructed. The two settings of
ptc_fringe_geometry represent two points of a continuum of possible fringe field geometries.

When using PTC tracking (§1.4), the ptc_com[max_fringe_order] (§10.1) determines the maximum
order of the calculated fringe fields.

Example:
b1: rbend, angle = pi/4, g = 0.3, fringe_type = full

The soft_edge_only, hard_edge_only and sad_full settings of fringe_type emulate the fringe field
tracking used in the SAD program[SAD]. The soft_edge_only setting only uses the linear part of the
fringe, hard_edge_only ignores the linear part of the fringe, and sad_full uses the full fringe. For an
sbend or rbend element, these SAD fringe fields are in addition to the fringe fields that occurs with a
finite e1 or e2 face angle.

Equivalent settings of SAD fringe and disfrin for sbend and rbend elements:
fringe_type fringe disfrin

soft_edge_only 1 1
hard_edge_only 0 0
basic_bend 0 1
sad_full 1 0

For quadrupole and sad_mult elements, the translation between the fringe_at and fringe_type
settings and the fringe and disfrin switches of SAD is:

fringe_at:
fringe_type no_end entrance_end exit_end both_ends∗

none [0, ̸= 0] [0, ̸= 0] [0, ̸= 0] [0, ̸= 0]
soft_edge_only [0, ̸= 0] [1, ̸= 0] [2, ̸= 0] [3, ̸= 0]
hard_edge_only∗ [0, ̸= 0] No SAD Equiv No SAD Equiv [0, = 0]
full [0, ̸= 0] [1, = 0] [2, = 0] [3, = 0]
∗Default value. [fringe, disfrin]

Each entry is the table is of the form [fringe, disfrin]. The soft_edge_only fringe kick is a kick that
is linear in the transverse (x, px, y, py) coordinates and comes from the finite width of the quadrupolar
fringe field. The width of the quadrupolar fringe field is characterized by the f1 and f2 attributes. The
sad_nonlinear_only fringe kick comes from the nonlinear part of the quadrupolar field plus the fringes
of the other multipoles.

The soft fringe quadrupole parameters fq1 and fq2 (§18.6) are related to the corresponding SAD pa-
rameters f1 and f2 via

f1 = -sign(fq1) * sqrt(24 * |fq1|)
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f2 = fq2

In the SAD documentation, the soft edge is called the “linear” fringe.

For programmers who deal with PTC directly: The translation between ptc_fringe_geometry on the
Bmad side and bendfringe on the PTC side is:

ptc_fringe_geometry bendfringe

x_invariant True
multipole_symmetry False

5.22 Instrumental Measurement Attributes

instrument, monitor, detector, and marker elements have special attributes to describe errors associ-
ated with orbit, betatron phase, dispersion and coupling measurements. These attributes are:

Attribute Symbol (See: §27.1)

tilt θt See §5.6
x_offset xoff See §5.6
y_offset yoff See §5.6
x_gain_err dgx,err Horizontal gain error
y_gain_err dgy,err Vertical gain error
crunch ψerr Crunch angle
tilt_calib θerr tilt angle calibration
x_offset_calib xcalib Horizontal offset calibration
y_offset_calib ycalib Vertical offset calibration
x_gain_calib dgx,calib Horizontal gain calibration
y_gain_calib dgy,calib Vertical gain calibration
crunch_calib ψcalib Crunch angle calibration
noise nf Noise factor
de_eta_meas dE/E Percent change in energy
x_dispersion_err ηx,err Horizontal dispersion error
y_dispersion_err ηy,err Vertical dispersion error
x_dispersion_calib ηx,calib Horizontal dispersion calibration
y_dispersion_calib ηy,calib Vertical dispersion calibration
n_sample Ns Number of sampling points
osc_amplitude Aosc Oscillation amplitude

A program can use these quantities to calculate “measured” values from the “laboratory” values. Here,
“laboratory” means as calculated from some model lattice. See §27.1 for the conversion formulas.
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Chapter 6

Tracking, Spin, and Transfer Matrix
Calculation Methods

Bmad allows for a number of methods that can be use to “track” a particle through a lattice element.
Here “track” can mean one of three things:

1) Calculate a particle’s phase space coordinates at the exit
end of the element given the coordinates at the entrance end.

2) Calculate the linear transfer map (Jacobian) through an element
about a given reference orbit.

3) Calculate the a particle’s spin orientation at the exit end
of the element given the coordinates at the beginning.

The different tracking methods that are available have different advantages and disadvantages in terms
of speed, symplecticity, etc. What tracking method is used, is selected on an element–by–element basis
using the attributes:

tracking_method = <Switch> ! phase space tracking method.
mat6_calc_method = <Switch> ! 6x6 transfer matrix calculation.
spin_tracking_method = <Switch> ! Spin tracking method.

Example:
q2: quadrupole, tracking_method = symp_lie_ptc
q2[tracking_method] = symp_lie_ptc
quadrupole::*[tracking_method] = symp_lie_ptc

The first two lines of this example have exactly the same effect in terms of setting the tracking_method.
The third line shows how to set the tracking_method for an entire class of elements.

These switches are discussed in more detail in the following sections.

6.1 Particle Tracking Methods

The tracking_method attribute of an element sets the algorithm that is used for single particle tracking
through that element. Table 6.1 gives which methods are available for each type of element. Note:
Table 6.1 pertains to charged-particle tracking only. When tracking photons, only bmad_standard and
custom tracking method are available.

215
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Figure 6.1: Dark current tracking. Example of where a time based tracker (time_runge_kutta) is
useful for simulating particles that can reverse their longitudinal velocity. Here the tracks drawn are
from a simulation of “dark current” electrons generated at the walls of an RF cavity due to the large
electromagnetic fields.

A note on terminology: Adaptive step size control used with the Runge_Kutta integrator means that in-
stead of taking fixed step sizes the integrator chooses the proper step size so that the error in the tracking
is below the maximum allowable error set by rel_tol_adaptive_tracking and abs_tol_adaptive_tracking
tolerances. The advantage of step size control is that the integrator uses a smaller step size when needed
(the fields are rapidly varying), but makes larger steps when it can. The disadvantage is that a step
is more computationally intensive since the error in a step is estimated by repeating a step using two
mini steps. Except for testing purposes, it is recommended that adaptive stepping be used over fixed
step tracking since experience has shown that adaptive stepping is almost always faster. It is also rec-
ommended that runge_kutta be used over time_runge_kutta since runge_kutta does not have the
overhead of switching between time-coordinates and z-coordinates. The exceptions are cases where
time_runge_kutta must be used like with an e_gun where the particles start with zero momentum and
in cases where particles may reverse their longitudinal direction (EG: dark current electrons).

Bmad_Standard Uses formulas for tracking. The formulas generally use the paraxial approximation.
The emphasis here is on speed. It is important to note that field maps (§5.16) are ignored by
bmad_standard tracking. The tracking is non-symplectic but the non-symplectic errors tend to be
small so that bmad_standard can be used in the vast majority of cases (§6.6).

Custom This method will call a routine track1_custom which must be supplied by the programmer
implementing the custom tracking. The default track1_custom supplied with the Bmad release
will print an error message and stop the program if it is called which probably indicates a program
linking problem. See s:custom.ele for more details.

fixed_step_runge_kutta The fixed_step_runge_kutta method is similar to runge_kutta tracking
except that fixed_step_runge_kutta does not use adaptive step size control but instead takes
steps of fixed size using the setting of ds_step or num_steps for the element being tracked through
(§6.4). Generally, using adaptive step control will be much more efficient so it is recommended that
fixed_step_runge_kutta not be used unless there is a compelling reason not to. This method is
non-symplectic (§6.6).

fixed_step_time_runge_kutta The fixed_step_time_runge_kutta method is similar to time_runge_kutta
tracking except that fixed_step_time_runge_kutta does not use adaptive step size control but
instead takes steps of fixed size using the setting of ds_step or num_steps for the element being
tracked through (§6.4). Generally, using adaptive step control will be much more efficient so it
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is recommended that fixed_step_time_runge_kutta not be used unless there is a compelling
reason not to. This method is non-symplectic (§6.6).

Linear The linear method just tracks particles using the 0th order vector with the 1st order 6x6
transfer matrix of an element. Depending upon how the transfer matrix was generated this may
or may not be symplectic. Since there would be a circular dependency to have the orbital tracking
dependent upon the transfer matrix and the transfer matrix dependent upon the determination
of the reference orbit, the calculation of the transfer matrix when the tracking_method is set to
linear will always use the zero orbit as the reference orbit.

Additionally, a linear tracking method may not be used with mat6_calc_method set to tracking
since this would also give a circular dependency. Note: setting the tracking_method to linear
does not affect PTC calculations (§1.4). In particular, Taylor maps will not be affected.

MAD This uses the MAD 2nd order transfer map. This method is not able to handle element misalign-
ments or kicks, and becomes inaccurate as the particle energy deviates from the reference energy.
MAD tracking should only be used for testing purposes. Note: Thanks to CERN and Frank
Schmidt for permission to use the MAD tracking code within Bmad.

runge_kutta This uses a 4th order Runge Kutta integration algorithm with adaptive step size control.
This is essentially the Cash-Karp formulation. This method will be slow compared to non-Runge-
Kutta methods so only use this if it is not possible to use something like bmad_standard. This
method is accurate but non-symplectic (§6.6). Warning: When using custom fields, if the fields do
not obey Maxwell’s equation, there is the possibility of the runge_kutta tracking halting mid-way
through an element. See section §6.4 for more details.

Symp_Lie_Bmad Symplectic tracking using a Hamiltonian with Lie operation techniques. This is similar
to Symp_Lie_PTC (see below) except this uses a Bmad routine. By bypassing some of the generality
inherent in PTC (§1.4), Symp_Lie_Bmad achieves about a factor of 10 improvement in speed over
Symp_Lie_PTC.

Symp_Lie_PTC Symplectic tracking using a Hamiltonian with Lie operator techniques. This uses Étienne
Forest’s PTC (§1.4) software for the calculation. This method is symplectic but can be slow.
Exceptions: The tracking is not symplectic when tracking through and element with an associated
electric field and when tracking through a taylor element.

Taylor The tracking uses a Taylor map. The map is either explicitly given in the lattice file, that is,
the element must be of type taylor (§4.52), or the Taylor map is generated from the PTC (§1.4)
package. Generating the map may take time but once you have it it should be very fast. One
possible problem with using a Taylor map is that you have to worry about the accuracy if you do
tracking at points that are far from the expansion point about which the map was made. This
method is non-symplectic away from the expansion point. Whether the Taylor map is generated
taking into account the offset an element has is governed by the taylor_map_includes_offsets
attribute (§6.8).

The order of a Taylor map is set by the parameter[taylor_order] parameter (§10.1).

Time_Runge_Kutta This method uses time as the independent variable instead of the longitudinal z
position. The advantage of this method is that it can handle particles which reverse direction
longitudinally. One use for this method is “dark current” tracking where, as illustrated in Fig. 6.1,
low energy particles generated at the vacuum chamber walls can be found traveling in all directions.
Notice that time_runge_kutta is different from using absolute time tracking as explained in
§25.1. This method is non-symplectic (§6.6).
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ab_multipole and multipole D X X X X
ac_kicker D X X X X
beambeam D X X
bends: rbend and sbend D X X X X X
converter D X
crab_cavity D X X
custom D X X X
drift D X X X X X X X
e_gun X Xb D
ecollimator and rcollimator D X X X X X X
elseparator D X X X X X X X
em_field X D X X X
fiducial D X X
floor_shift D X X
fork D X X
gkicker D X X X X
hkicker D X X X X X X
instrument, monitor, and pipe D X X X X X X
kicker D X X X X X X
lcavity and rfcavity D X X X X X X
marker D X X X X
match D X X
octupole D X X X X X X
patch D X Xc X X
photonic elements D X
quadrupole D X X X X X X X X
rf_bend X X X X
sad_mult D X X X X
sextupole D X X X X X X X
solenoid D X X X X X X X X
sol_quad D X X X X X X X
taylor X X X D
vkicker D X X X X X X
wiggler (map type) X X X X X X X
wiggler (periodic type) D X X Xd Xd Xd Dd

aIncludes fixed step versions.
bOnly if the beginning energy is non-zero.
cOnly available for non-reflection patch elements.
dSee §4.54.1 for more details.

Table 6.1: Table of valid tracking_method switches. “D” denotes the default method. “X” denotes a
valid method. Photonic elements are elements in Table 4.2 that cannot be used for charged particle
tracking (Table 4.1).
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6.2 Linear Transfer Map (Mat6) Calculation Methods

The mat6_calc_method attribute sets how the 6x6 Jacobian transfer matrix for a given element is
computed. Table 6.3 gives which methods are available for each type of element. Note: Table 6.3 is for
charged-particle tracking only. When tracking photons, transfer matrices (which are not very useful) are
not computed.

If an element’s static_linear_map parameter is set to True (the default is False), this prevents the
linear map, which consists of the transfer matrix and the zeroth order part of the map, from being
recomputed. For example, if somewhere in a lattice a steering is changed, this will shift the reference
orbit and the linear transfer map in elements where the reference orbit changes will, in general, vary.
However, having static_linear_map set to True will prevent this variation.

In addition to the mat6_calc_method switch, two element attributes that can affect the way the transfer
matrix is calculated are symplectify and taylor_map_includes_offsets. These are discussed in
sections §6.7 and §6.8 respectively.

For methods that do not necessarily produce a symplectic matrix the symplectify attribute of an
element can be set to True to solve the problem. See §24.3.

Symplectic integration is like ordinary integration of a function f(x) but what is integrated here is a
Taylor map. Truncating the map to 0th order gives the particle trajectory and truncating to 1st order
gives the transfer matrix (Jacobian). The order at which a Taylor series is truncated at is set by
taylor_order (see §10.1. Like ordinary integration there are various formulas that one can use to do
symplectic integration.

Auto With auto the mat6_calc_method appropriate for the element’s setting of tracking_method is
used. The correspondence is:

Element’s tracking_method Mat6_calc_method used

bmad_standard bmad_standard
linear bmad_standard
custom custom
mad mad
symp_lie_bmad symp_lie_bmad
symp_lie_ptc symp_lie_ptc
taylor taylor
All Runge-Kutta types tracking

Table 6.2: Actual mat6_calc_method used when when the mat6_calc_method is set to auto.

Bmad_Standard Uses formulas for the calculation. The formulas generally use the paraxial approxima-
tion. The emphasis here is on speed.

Custom This method will call a routine make_mat6_custom which must be supplied by the programmer
implementing the custom transfer matrix calculation. The default make_mat6_custom supplied
with the Bmad release will print an error message and stop the program if it is called which
probably indicates a program linking problem. See s:custom.ele for more details.

MAD This uses the MAD 2nd transfer map. This method is not able to handle element misalignments
or kicks, and becomes inaccurate as the particle energy deviates from the reference energy. MAD
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tracking is generally only used for testing purposes. Thanks must be given to CERN and Frank
Schmidt for permission to use the MAD tracking code within Bmad.

Symp_Lie_Bmad A symplectic calculation using a Hamiltonian with Lie operator techniques. This is
similar to Symp_Lie_PTC (see below) except this uses a Bmad routine. By bypassing some of the
generality inherent in PTC, Symp_Lie_Bmad achieves about a factor of 10 improvement in speed
over Symp_Lie_PTC. However, Symp_Lie_Bmad cannot generate maps above first order.

Symp_Lie_PTC Symplectic integration using a Hamiltonian and Lie operators. This uses the PTC (§1.4)
software for the calculation. This method is symplectic but can be slow. Exceptions: The tracking
is not symplectic when tracking through and element with an associated electric field and when
tracking through a taylor element.

Taylor This uses a Taylor map generated from Étienne’s PTC package. Generating the map may
take time but once you have it it should be very fast. One possible problem with using a Taylor
map is that you have to worry about the accuracy if you do a calculation at points that are far
from the expansion point about which the map was made. This method is non-symplectic away
from the expansion point. Whether the Taylor map is generated taking into account the offset an
element has is governed by the taylor_map_includes_offsets attribute (§6.8). bmad_standard
and taylor tracking methods are identical. Note: Taylor maps for match, and patch elements are
limited to first order.

The order of a Taylor map is set by the parameter[taylor_order] parameter (§10.1).

Tracking This uses the tracking method set by tracking_method to track 6 particles around the central
orbit. This method is susceptible to inaccuracies caused by nonlinearities. Furthermore this
method is almost surely slow. While non–symplectic, the advantage of this method is that it
is directly related to any tracking results. Note: a linear tracking method may not be used
with mat6_calc_method set to tracking since this would give a circular dependency. The two
parameters that affect this calculation are bmad_com%d_orb(6) (§11.2) which sets the six deltas
used for displacing the initial particle coordinates from the reference orbit.
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ab_multipole and multipole D X X X X X
ac_kicker X X X X D
beambeam D X X X
bends: rbend and sbend D X X X X X X
converter D X
crab_cavity X X D
custom D X X
drift D X X X X X X
e_gun X X D
ecollimator and rcollimator D X X X X X
elseparator D X X X X X X
em_field X X X X D
fiducial D X X X X
floor_shift D X X X X
hkicker D X X X X X
instrument, monitor, and pipe D X X X X X
kicker D X X X X X
lcavity and rfcavity D X X X X X
marker D X X X X X
match D X X X
octupole D X X X X X
patch D X X X X X
quadrupole D X X X X X X X
rf_bend D X X X
sad_mult D X X X X X
sextupole D X X X X X X
solenoid D X X X X X X X
sol_quad D X X X X X X X
taylor X X X D
vkicker D X X X X X
wiggler (map type) D X X Xa Xa Xa X
wiggler (periodic type) X X Xa Xa Da X
aSee §4.54.1 for more details

Table 6.3: Table of available mat6_calc_method switches. When tracking photons, transfer matrices
are not computed. “D” denotes the default method. “X” denotes an available method.
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6.3 Spin Tracking Methods

The spin_tracking_method attribute of an elements sets the algorithm that is used for tracking a
particle’s spin (§23.1) through that element. Table 6.4 gives which methods are available for each type
of element. Note: This table is only for charged-particle tracking since photons do not have spin.

Possible spin_tracking_method settings are:

Custom
This method will call a routine track1_spin_custom which must be supplied by the programmer
implementing the custom spin tracking calculation. See s:custom.ele for more details.

Sprint
The sprint algorithm (§25.23) uses first order transfer spin maps to track the spin through lattice
elements. This method is very fast at the cost of accuracy for particles away from the zero orbit.
The algorithm is also limited in what elements it can handle and it ignores higher order multipoles
that may be present.

Symp_Lie_PTC
Symplectic integration using a Hamiltonian and Lie operators. This uses Étienne’s PTC software
for the calculation. This method is symplectic but can be slow.

Tracking
How spin is tracked here will depend also on the setting of tracking_method. If tracking_method
is set to runge_kutta or time_runge_kutta the spin will be tracked along with the phase space par-
ticle coordinates using the local fields. For tracking_method set to symp_lie_ptc, the spin track-
ing will use PTC. For all other tracking_methods, the spin will be tracked using the “bmad_standard”
spin tracking method which involves Romberg integration of the spin rotation matrix.

The runge_kutta and time_runge_kutta spin tracking uses the same fourth order integrator as
is used for the orbital coordinates to track the spin rotation vector.

Since speed may be an issue, Bmad has an global parameter called spin_tracking_on which is part of
the bmad_com instance (§11.4) that determines whether spin is tracked or not. Note: There is also another
bmad_com parameter called spin_baier_katkov_flipping_on which can influence spin tracking.

The spin_fringe_on element attribute (§5.21.1) can be used to toggle whether the fringe fields of an
element affect the spin.

Example:
q: quadrupole, spin_tracking_method = symp_lie_ptc
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ab_multipole and multipole X D
ac_kicker X D
beambeam X D
bends: rbend and sbend X X X D
converter X D
crab_cavity X D
custom D X
drift X X X D
e_gun X D
ecollimator and rcollimator X X X D
elseparator X X D
em_field X D
fiducial X X D
floor_shift X X D
hkicker X X X D
instrument, monitor and pipe X X X D
kicker X X X D
lcavity and rfcavity X X D
marker X X D
match X D
octupole X X X D
patch X X D
quadrupole X X X D
sad_mult X D
sextupole X X X D
solenoid X X X D
sol_quad X X D
taylor D
vkicker X X X D
wiggler X X D

Table 6.4: Table of available spin_tracking_method switches. “D” denotes the default method. “X”
denotes an available method. Note: Photon tracking does not involve spin.
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6.4 Integration Methods

“Integration methods” are tracking methods that involve integrating through an element’s magnetic and
electric fields. Integration methods are split into two classes: Those that can track Taylor maps and
those that simply track a particle’s position. The Taylor map methods are

symp_lie_bmad ! Only to first order
symp_lie_ptc ! Uses PTC
taylor ! Uses PTC

See section §24.1 for more information on Taylor maps and symplectic integration. The latter two
methods involve using the PTC library (§1.4).

The methods that do not involve Taylor maps are
fixed_step_runge_kutta
fixed_step_time_runge_kutta
runge_kutta
time_runge_kutta

there are a number of element attributes that can affect the calculation. They are
ds_step = <Real> ! Integration step length (§6.5.1)
num_steps = <Integer> ! Number of integration steps. (§6.5.1)
integrator_order = <Integer> ! Integrator order (§6.5.3)
field_calc = <Switch> ! How the field is calculated (§6.5.2)

Example:
q1: quadrupole, l = 0.6, tracking_method = bmad_standard,

mat6_calc_method = symp_lie_ptc, ds_step = 0.2, field_calc = custom

6.5 CSR and Space Charge Methods

When doing beam tracking through an element (§20), Coherent Synchrotron Radiation (CSR) and Space
Charge (SC) effects can be included by setting the appropriate method switches in that element. These
switches are:

csr_method = <Switch> ! Coherent Synchrotron Radiation
space_charge_method = <Switch> ! Space charge method

Note: For CSR or SC effects to be included in tracking the bmad_com logical csr_and_space_charge_on
must be set to True (§11.2).

The possible settings for csr_method are
off ! No CSR. Default.
1_dim ! One dimensional calculation (§20.4.1).

The 1_dim setting cannot be used when space_charge_method is set to cathode_fft_3d.

The possible settings of space_charge_method are
off ! No SC. Default.
slice ! SC using slices (§20.4.2).
fft_3d ! SC using a 3D grid (§20.4.3).
cathode_fft_3d ! Same as fft_3d with cathode image charge included (§20.4.3).

The cathode_fft_3d setting can only be used with csr_method set to off. Additionally, the cathode_fft_3d
setting can only be used with the element tracking_method set to time_runge_kutta or fixed_step_time_runge_kutta.

Example:
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q1: quadrupole, l = 0.6, csr_method = 1_dim, space_charge_method = slice, ...

Also see the space_charge_com structure (§11.5) which contains parameters used in space charge and
CSR calculations.

Note: There is also high energy space charge calculation that can be used with single particle tracking
and is discussed in §20.5.

6.5.1 ds_step and num_steps Parameters

One way to create a transfer map through an element is to divide the element up into slices and
then to propagate the transfer map slice by slice. There are several ways to do this integration. The
runge_kutta type methods integrate the equations of motion to give the 0th order Taylor map which
just represents a particle’s orbit. Symplectic integration using Lie algebraic techniques, on the other
hand, can generate Taylor maps to any order. The ds_step attribute determines the slice thickness.
Alternatively, num_steps attribute can be used in place of ds_step to specify the number of slices. This
is applicable to symp_lie_bmad and symp_lie_ptc integration. Example:

q: quadrupole, l = 0.6, ds_step = 0.1 ! 10 cm step size.
sbend::*[ds_step] = 0.2 ! Set the step_size for all sbend elements.

When tracking using maps or element-by-element with PTC there are a few points to keep in mind.
First is that PTC tracks through a lattice element step by step. This is true for both map creation and
symplectic integration. This means that the setting of the element parameter integrator_order (§6.5.3)
or num_steps (or ds_step) for each element will affect the accuracy and speed of the computations.
Bmad tries to choose reasonable default settings for the integrator order and number of steps however
the calculation is not perfect. To make sure that the integrator order and number of steps is set properly,
vary both and choose values (which can be different for different elements) such that the number of steps
and integrator order is minimal (to minimize computation time) while at the same time is large enough
so that results do not change significantly if the number of steps or is varied. Generally it is much better
to use a large integrator order and a small step size rather than vice versa with the proviso that for
elements with a longitudinally varying field (think wigglers or undulators), the step size must be small
compared to the typical longitudinal length scale over which the field is varying (this length scale is the
pole period length with with wigglers and undulators).

The default value for ds_step for a given element is calculated based upon the element’s field strength.
One should consider the default as more of a guesstimate.

The runge_kutta and time_runge_kutta tracking uses adaptive step control independent of the setting
of the elements ds_step parameter. These methods use three bmad_com parameters §11.4) namely:

bmad_com[rel_tol_adaptive_tracking]
bmad_com[abs_to_adaptive_tracking]
bmad_com[max_num_runge_kutta_step]

The estimated error of the integration is then bounded by
error < abs_tol + |orbit| * rel_tol

lowering the error bounds makes for greater accuracy (as long as round-off doesn’t hurt) but for slower
tracking.

6.5.2 Field_calc Parameter

The runge_kutta type tracking methods all use as input the electric and magnetic fields of an element.
How the EM fields are calculated is determined by the field_calc attribute for an element. For all
lattice elements, except wigglers and undulators, possible values for field_calc are:
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bmad_standard ! This is the default except for custom elements
custom ! Default for custom elements.
fieldmap

For wigglers and undulators, possible values for field_calc are:
planar_model
helical_model
custom
fieldmap

For historical reasons, the default setting for field_calc for wigglers and undulators is planar_model
except if there is a field map present (§5.16) in which case the default is fieldmap. Note that with
bmad_standard tracking, the setting of field_calc is ignored except in the case of wigglers and
undulators where field_calc must be set to either planar_model or helical_model.

Custom means that the field calculations are done outside of the Bmad software. A program doing custom
field calculations will need the appropriate custom routine (§37.2). Elements that set field_calc to
fieldmap need to have a field map defined (§5.16).

Warning: When tracking a particle through a custom field using runge_kutta, it is important that the
field obey Maxwell’s equations. Fields that do not obey Maxwell’s Equations may cause the runge_kutta
adaptive step size control algorithm to take smaller and smaller steps until the step size becomes so small
the tracking will stop. What happens is that the step size control algorithm takes a step and then takes
two half steps over the same region and from this estimates the error in the calculation. If the error is
larger than the allowed tolerance the control algorithm shortens the step and tries again. A field that
does not obey Maxwell’s equations can fool the control algorithm into thinking that the error is always
larger than the allowed tolerance for any finite step size. A typical situation is where the field has an
unphysical step across some boundary.

6.5.3 PTC Integration

The integrator_order element attribute is the order of the integration formula for Symp_Lie_PTC and
is used for constructing Taylor maps. Possible values are

integrator_order = 2, 4, 6, or 8
Essentially, an integrator order of n means that the error in an integration step scales as dzn+1 where
dz is the slice thickness. For a given number of steps a higher order will give more accurate results but
a higher order integrator will take more time per step. It turns out that for wigglers, after adjusting
ds_step for a given accuracy, the order 2 integrator is the fastest. This is not surprising given the highly
nonlinear nature of a wiggler. Note that symp_lie_bmad always uses an order 2 integrator independent
of the setting of integrator_order. The setting of 8 is not implemented for all elements. If 8 is set for
a given element type that does not support it, a value of 6 will be used instead.

When tracking uses the PTC library (§1.4), there are two global parameters that can be set in the lattice
file that affect the calculation. These are:

ptc_com[exact_model] = <Logical> ! "exact" tracking? Default: False
ptc_com[exact_misalign] = <Logical> ! "exactly" misalign elements? Default: True

The default for exact_model is True and the default for exact_misalign is True.

The exact_model parameter sets whether PTC uses an “exact” model for tracking. Essentially this
means that the paraxial approximation (§25.3) is made for exact_model set to False and is not made
if set to True. This can be important, for example, for bend tracking when the bend radius is small.

In PTC, exact modeling can be set on an element-by-element basis. Currently Bmad does not support
specifying element-by-element setting of exact modeling. However, PTC does not have a non-exact
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tracking option for elements that have an electric field. In this case, PTC tracking will always be exact
independent of the setting of exact_model. Additionally, for elements with an electric field, tracking
will not be symplectic.

The exact_misalign parameter determines whether misalignments are handled exactly or whether
approximations are made that will speed up the calculation.

In addition to the above parameters, how the Hamiltonian is split when tracking with PTC can be set
for individual elements using the ptc_integration_type parameter. Possible settings of this parameter
are

drift_kick ! See Eq. (125) of [Forest06]
matrix_kick ! See Eq. (132) of [Forest06]. Default
ripken_kick ! See Eq. (130) of [Forest06]

Example:

q2: quad, l = 0.6, k1 = 0.34, ptc_integration_type = drift_kick

A discussion of the different types of integration schemes is given by Forest[Forest06]. The equation
that shows the appropriate splitting of the Hamiltonian for each integration type is referenced in the
above list. The ripken_kick type is for benchmarking with the SixTrack program and is not otherwise
generally useful. The difference between drift_kick and matrix_kick is that with drift_kick the
quadrupolar part of the magnetic multipole is is included in the applied kick between drifts while in the
matrix_kick method the quadrupolar component is used for the “matrix” tracking between kicks. With
the matrix_kick method the tune of a machine tends to be insensitive to how many integration steps
(set by ds_step or n_steps) are used.

PTC does not implement matrix_kick tracking for elements with an electric field. In this case, the
setting of ptc_integration_type is ignored and tracking will be drift_kick. Thus, if an electric field
is introduced into an element, more integration steps may be required to get the correct tune.

6.6 Symplectic Versus Non-Symplectic Tracking

When selecting tracking methods for lattice elements, there are several factors to consider, including
symplecticity. Despite its emphasis in accelerator textbooks, symplecity (or the lack therof) is typically
only relevant for long-term tracking when there is minimal radiation emission over many turns. That
is, the potential problem with non-symplectic tracking is the buildup of errors over many turns. Thus,
computations that involve only tracking through the lattice from beginning to end – like calculating
Twiss functions or tracking through a linac – generally do not benefit from symplectic tracking. More
important in these cases is the speed of the calculation, which can be obtained with the cost of non-
symplecticity.

The motion of particles that radiate is not symplectic. Thus, symplectic tracking for the non-radiative
part of the motion may not be needed if radiation is large enough. For example, for simulations of the
Cornell CESR ring with electron and positron beam energies of order 1 GeV to 10 GeV and with damping
times on the order of 10,000 turns, the bmad_standard tracking has proved quite adequate. However
in other cases with radiation, the symplectic error may cause an extra damping or anti-damping effect,
giving equilibrium beam sizes that are an under/overestimate of the actual beam sizes. When opting for
speed versus symplecticity in long term tracking over many turns, care should be taken to ensure that
the effects of the non-symplecticity are minimal.
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6.7 Symplectify Attribute

The symplectify attribute
symplectify = <Logical>

is used to make the transfer matrix for an element symplectic. The linear transport matrix may be non–
symplectic for a number of reasons. For example, the linear matrix that comes from expanding a Taylor
Map around any point that is not the origin of the map is generally not symplectic. The transfer matrix
for an element can be symplectified by setting the symplectify attribute to True. See section §24.3
for details on how a matrix is symplectified. The default value of symplectify, if it is not present, is
False. If it is present without a value then it defaults to true. Examples:

s1: sextupole, l = 0.34 ! symplectify = False
s1: sextupole, symplectify = True, l = 0.34 ! symplectify = True
s1: sextupole, symplectify, l = 0.34 ! symplectify = True

Note that for elements like an lcavity where the reference momentum at the downstream end of
the element is different from the upstream end, the transfer matrix is never symplectic. In this case,
“symplectification” involves first transforming the transfer matrix so that the reference momentum is the
same upstream and downstream, then performing symplectification, and finally back transforming the
reference momentum to their original values.

6.8 taylor_map_include_offsets Attribute

The taylor_map_includes_offsets attribute sets whether the Taylor map generated for an element
includes the affect due to the elements (mis)orientation in space. That is, the affect of any pitches,
offsets or tilt (§5.6). The default is True which means that the Taylor map will include such effects.

How taylor_map_includes_offsets is set will not affect the results of tracking or the Jacobian matrix
calculation. What is affected is the speed of the calculations. With taylor_map_includes_offsets set
to True the Taylor map will have to be recalculated each time an element is reoriented in space. On
the other hand, with taylor_map_includes_offsets set to False each tracking and Jacobian matrix
calculation will include the extra computation involving the effect of the orientation. Thus if an element’s
orientation is fixed it is faster to set taylor_map_includes_offsets to True and if the orientation is
varying it is faster to set taylor_map_includes_offsets to False.

If the global parameter bmad_com%conserve_taylor_maps (§11.4) is set to True (the default), then,
if an element is offset within a program, and if taylor_map_include_offsets is set to True for that
element, Bmad will toggle taylor_map_include_offsets to False to conserve the map.
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Beam Lines and Replacement Lists

This chapter describes how to define the ordered list of elements that make up a lattice branch (§2.2).
In a lattice, branches may be connected together using fork or photon fork elements (s:fork), or by
using multipass (§9).

7.1 Branch Construction Overview

A lattice branch (§2.2) is defined in a lattice file using what are called beam lines (§7.2) and replacement
lists (§7.6). The beam lines are divided into two types - lines with (§7.5) and lines without (§7.2)
replacement arguments. This essentially corresponds to the MAD definition of lines and lists. There
can be multiple beam lines and replacement lists defined in a lattice file and lines and lists can be
nested inside other lines and lists.

Since lines can be nested within other lines, The same element name may be repeated multiple times in
a branch. To distinguish between multiple elements of the same name, lines and lists may be tagged
(§7.8) to produce unique element names.

A marker element named END will, by default, be placed at the ends of all the branches unless a
parameter[no_end_marker] statement (§10.1) is used to suppress the insertion. Additionally, if an
ending marker named END is already present in the lattice file, no extra marker will be created.

Branches are ordered in an array (§2.3) and each branch is assigned an index number starting with
index 0. When there are multiple branches in a lattice, the reference orbit (§16.1.1) of a branch must
not depend upon details of branches later on in the array. Bmad depends upon this and calculates the
reference orbits of the branches one at a time starting with the first branch.

7.2 Beam Lines and Lattice Expansion

A beam line without arguments has the format
label: line = (member1, member2, ...)

where member1, member2, etc. are either elements, other beam lines or replacement lists, or sublines
enclosed in parentheses. Example:

line1: line = (a, b, c)
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line2: line = (d, line1, e)
use, line2

The use statement is explained in Section §7.7. This example shows how a beam line member can refer
to another beam line. This is helpful if the same sequence of elements appears repeatedly in the lattice.

The process of constructing the ordered sequences of elements that comprise the branches of the lattice
is called lattice expansion. In the example above, when line2 is expanded to form the lattice (in
this case there is only one branch so lattice and branch can be considered synonymous), the definition
of line1 will be inserted in to produce the following lattice:

beginning, d, a, b, c, e, end

The beginning and end marker elements are automatically inserted at the beginning and end of the
lattice. The beginning element will always exist but insertion of the end element can be suppressed by
inserting into the lattice:
parameter[no_end_marker] = T ! See: §10.1

Lattice expansion occurs either at the end after the lattice file has been parsed, or, during parsing, at
the point where an expand_lattice statement (§3.24) is found.

Each element is assigned an element index number starting from 0 for the beginning element, 1 for
the next element, etc.

In the expanded lattice, any null_Ele type elements (§4.38) will be discarded. For example, if element
b in the above example is a null_Ele then the actual expanded lattice will be:

beginning, d, a, c, e, end

A member that is a line or list can be “reflected” (elements taken in reverse order) if a negative sign is
put in front of it. For example:

line1: line = (a, b, c)
line2: line = (d, -line1, e)

line2 when expanded gives
d, c, b, a, e

It is important to keep in mind that line reflection is not the same as going backwards through elements.
For example, if an sbend or rbend element (§4.5) is reflected, the face angle of the upstream edge
(§16.1.3) is still specified by the e1 attribute and not the e2 attribute. True element reversal can be
accomplished as discussed in Sec. §7.4.

Reflecting a subline will also reflect any sublines of the subline. For example:
line0: line = (y, z)
line1: line = (line0, b, c)
line2: line = (d, -line1, e)

line2 when expanded gives
d, c, b, z, y, e

A repetition count, which is an integer followed by an asterisk, means that the member is repeated. For
example

line1: line = (a, b, c)
line2: line = (d, 2*line1, e)

line2 when expanded gives
d, a, b, c, a, b, c, e

Repetition count can be combined with reflection. For example
line1: line = (a, b, c)
line2: line = (d, -2*line1, e)

line2 when expanded gives
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d, c, b, a, c, b, a, e

Instead of the name of a line, subline members can also be given as an explicit list using parentheses.
For example, the previous example could be rewritten as

line2: line = (d, -2*(a, b, c), e)

Lines can be defined in any order in the lattice file so a subline does not have to come before a line that
references it. Additionally, element definitions can come before or after any lines that reference them.

A line can have the multipass attribute. This is covered in §9.

7.3 Line Slices

A line “slice” is a section of a line from some starting element to some ending element. A line slice
can be used to construct a new line similar to how an unsliced line is used to construct a new line. An
example will make this clear:

line1: line = (a, b, c, d, e)
line2: line = (z1, line1[b:d], z2)

The line slice line1[b:d] that is used to construct line2 consists of the elements in line1 from element
b to element d but not elements a or e. When line2 is expanded, it will have the elements:

z1, b, c, d, z2

The general form for line slices is
line_name[element1:element2]

where line_name is the name of the line and element1 and element2 delimit the beginning and ending
positions of the slice. The beginning and ending element names may be omitted and, if not present,
the default is the beginning element and ending element of the line respectively. Thus, for example,
“line4[:q1]” represents the list of elements from the start of line4 up to, and including the element
q1.

If there are multiple elements of the same name, the double hash ## symbol (§3.6) can be use to denote
the Nth element of a given name. If double hash is not used, the first instance of a given element name
is assumed. That is, something like “q1” is equivalent to “q1##1”.

Wild card characters and class::element_name syntax (§3.6) are not allowed with slice element names.

Line slicing of a given line occurs after the line has been expanded (all sublines and line slices substituted
in). Thus, the following makes sense:

line1: line = (a, b, c, d, e)
line2: line = (z1, line1, z2)
line3: line = (line2[z1:c])

7.4 Element Orientation Reversal

An element’s orientation is reversed if particles traveling through it enter at the “exit” end and leave at
the “entrance” end. Being able to reverse elements is useful, for example, in describing the interaction
region of a pair of rings where particles of one ring are going in the opposite direction relative to the
particles in the other ring.

Element reversal is indicated by using a double negative sign “−−” prefix. The double negative sign
prefix can be applied to individual elements or to a line. If it is applied to a line, the line is both reflected
(same as if a single negative sign is used) and each element is reversed. For example:
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line1: line = (a, b, --c)
line2: line = (--line1)
line3: line = (c, --b, --a)

In this example, line2 and line3 are identical. Notice that the reversal of a reversed element makes
the element unreversed.

Another example involving element reversal is given in Section §13.6.

Reversed elements, unlike other elements, have their local z-axis pointing in the opposite direction
to the local s-axis (§16.1.3). This means that there must be a reflection patch (§16.2.6) between
reversed and unreversed elements. Since this complicates matters, it is generally only useful to employ
element reversal in cases where there are multiple intersecting lines with particle beams going in opposite
directions through some elements (for example, colliding beam interaction regions). In this case, element
reversal is typically used with multipass (§9) and the lattice will contain a branch of unreversed elements
for simulating particles going in one direction along with a branch of reversed elements to simulate particle
going in the other direction.

Where reversed elements are not needed, it is simple to define elements that are effectively reversed. For
example:

b00: bend, angle = 0.023, e1 = ...
b00_rev: b00, angle = -b00[angle], e1 = -b00[e2], e2 = -b00[e1]

and b00_rev serves as a reversed version of b00.

Internally, Bmad associates an orientation attribute with each element. This attribute is set to -1 for
reversed elements and 1 for unreversed elements.

7.5 Beam Lines with Replaceable Arguments

Beam lines can have an argument list using the following syntax
line_name(dummy_arg1, dummy_arg2, ...): LINE = (member1, member2, ...)

The dummy arguments are replaced by the actual arguments when the line is used elsewhere. For
example:

line1(DA1, DA2): line = (a, DA2, b, DA1)
line2: line = (h, line1(y, z), g)

When line2 is expanded the actual arguments of line1, in this case (y, z), replaces the dummy
arguments (DA1, DA2) to give for line2

h, a, z, b, y, g

Unlike MAD, beam line actual arguments can only be elements or beam lines. Thus the following is
not allowed

line2: line = (h, line1(2*y, z), g) ! NO: 2*y NOT allowed as an argument.

7.6 Lists

When a lattice is expanded, all the lattice members that correspond to a name of a list are replaced
successively, by the members in the list. The general syntax is

label: LIST = (member1, member2, ...)

For example:
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my_list1 list = (a, b, c)
line1: line = (z1, my_list, z2, my_list, z3, my_list, z4, my_list)
use, line1

When the lattice is expanded the first instance of my_list in line1 is replaced by a (which is the first
element of my_list), the second instance of my_list is replaced by b, etc. If there are more instances
of my_list in the lattice then members of my_list, the replacement starts at the beginning of my_list
after the last member of my_list is used. In this case the lattice would be:

z1, a, z2, b, z3, c, z4, a

members of a replacement list can only be simple elements and not other lines or lists. For example,
the following is not allowed:

line1: line = (a, b)
my_list: list = (2*line1) ! Lines cannot be list members.

A repetition count is permitted
my_list1: list = (2*a, b)
my_list2: list = (a, a, b) ! Equivalent to my_list1

7.7 Use Statement

The particular line or lines that defines the root branches (§2.3) to be used in the lattice is selected by
the use statement. The general syntax is

use, line1, line2 ...

For example, line1 may correspond to one ring and line2 may correspond to the other ring of a dual
ring colliding beam machine. In this case, multipass (§9) will be needed to describe the common
elements of the two rings. Example

use, e_ring, p_ring

would pick the lines e_ring and p_ring for analysis. These will be the root branches.

use statements can come anywhere in the lattice, even before the definition of the lines they refer to.
Additionally, there can be multiple use statements. The last use statement in the file defines which
line to use.

The total number of branches in the lattice is equal to the number of lines that appear on the use
statement plus the number of fork and photon_fork elements that branch to a new branch.

To set such things as the geometry of a branch, beginning Twiss parameters, etc., see Section s:beginning.

7.8 Tagging Lines and Lists

When a lattice has repeating lines, it can be desirable to differentiate between repeated elements. This
can be done by tagging lines with a tag. An example will make this clear:

line1: line = (a, b)
line2: line = (line1, line1)
use, line2

When expanded the lattice would be:
a, b, a, b

The first and third elements have the same name “a” and the second and fourth elements have the same
name “b”. Using tags the lattice elements can be given unique names. lines or lists are tagged using the
at (@) sign. The general syntax is:
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tag_name@line_name ! Syntax for lines
tag_name@list_name ! Syntax for lists
tag_name@replacement_line(arg1, arg2, ...) ! Syntax for replacement lines.

Thus to differentiate the lattice elements in the above example line2 needs to be modified using tags:
line1: line = (a, b)
line2: line = (t1@line1, t2@line1)
use, line2

In this case the lattice elements will have names of the form:
tag_name.element_name

In this particular example, the lattice with tagging will be:
t1.a, t1.b, t2.a, t2.b

Of course with this simple example one could have just as easily not used tags:
t1.a: a; t2.a: a
t1.b: b; t2.b: b
line1: line = (t1.a, t1.b, t2.a, t2.b)
use, line2

But in more complicated situations tagging can make for compact lattice files.

When lines are nested, the name of an element is formed by concatenating the tags together with dots
in between in the form:

tag_name1.tag_name2. ... tag_name_n.element_name

An example will make this clear:
list1 = (g, h)
line1(y, z) = (a, b)
line2: line = (t1@line1(a, b))
line3: line = (line2, hh@list1)
line4: line = (z1@line3, z2@line3)
use, line4

The lattice elements in this case are:
z1.t1.a, z1.t1.b, z1.hh.g, z2.t1.a, z2.t1.b, z1.hh.h

To modify a particular tagged element the lattice must be expanded first (§3.24). For example:
line1: line = (a, b)
line2: line = (t1@line1, t2@line1)
use, line2
expand_lattice
t1.b[k1] = 1.37
b[k1] = 0.63 ! This statement generates an error

After the lattice has been expanded there is no connection between the original a and b elements and
the elements in the lattice like t1.b. Thus the last line in the example where the k1 attribute ofb is
modified generates an error since there are no elements named b in the lattice.
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Superposition

This chapter covers the concept of superposition. Superposition is used when elements overlap
spatially. With superposition, lord and slave elements (§2.4) are constructed by Bmad to hold the
necessary information. The lord elements will represent the “physical” element while the slave elements
will embody the “beam path”.

8.1 Superposition Fundamentals

In practice the field at a particular point in the lattice may be due to more than one physical element.
One example of this is a quadrupole magnet inside a larger solenoid magnet as shown in Fig. 8.1A. Bmad
has a mechanism to handle this using what is called “superposition”. A simple example shows how this
works (also see section §2.4):

Q: quad, l = 4
D: drift, l = 12
S: solenoid, l = 8, superimpose, ref = Q, ele_origin = beginning
M: marker, superimpose, ref = S, offset = 1
lat: line = (Q, D)
use, lat

A) Physical layout: B) “Standard” superposition.

S
Q

M

Lord 
elements:

Slave 
elements:

M

S#1 S#2Q\SQ#1

C) With jumbo super_slaves:

Lord 
elements:

Slave 
elements:

M

S#1Q\S

SQSQ

lord_pad1
lord_pad2

Figure 8.1: Superposition example. A) The physical layout involves a quadrupole partially inside a
solenoid. B) The standard superposition procedure involves creating super_slave elements whose edges
are at the boundaries where the physical elements overlap. C) When jumbo super_slaves are created,
the super_slaves span the entire space where elements overlap.
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Offset

Reference 
element Superimposed 

element

s

reference
origin

element
origin

Figure 8.2: The superposition offset is the distance along the local reference orbit from the origin point
of the reference element to the origin point of the element being superimposed.

The superimpose attribute of element S superimposes S over the lattice (Q, D). The placement of S is
such that the beginning of S is coincident with the center of Q (this is is explained in more detail below).
Additionally, a marker M is superimposed at a distance of +1 meter from the center of S. The tracking
part of the lattice (§2.4) looks like:

Element Key Length Total
1) Q#1 Quadrupole 2 2
2) Q\S Sol_quad 2 4
3) S#1 Solenoid 3 7
4) M Marker 0
4) S#2 Solenoid 3 10
5) D#2 Drift 4 14

What Bmad has done is to split the original elements (Q, D) at the edges of S and then S was split
where M is inserted. The first element in the lattice, Q#1, is the part of Q that is outside of S. Since this
is only part of Q, Bmad has put a #1 in the name so that there will be no confusion. (a single # has no
special meaning other than the fact that Bmad uses it for mangling names. This is opposed to a double
## which is used to denote the N th instance of an element (§3.6). The next element, Q\S, is the part of
Q that is inside S. Q\S is a combination solenoid/quadrupole element as one would expect. S#1 is the
part of S that is outside Q but before M. This element is just a solenoid. Next comes M, S#1, and finally
D#2 is the rest of the drift outside S.

In the above example, Q and S will be super_lord elements (s:lord.slave) and four elements in the
tracking part of the lattice will be super_slave elements. This is illustrated in Fig. 8.1B.

Notice that the name chosen for the sol_quad element Q\S is dependent upon what is being superimposed
upon what. If Q had been superimposed upon S then the name would have been S\Q.

When Bmad sets the element class for elements created from superpositions, Bmad will set the class of
the element to something other than an em_field element (§4.17) if possible. If no other possibilities
exist, Bmad will use em_field. For example, a quadrupole superimposed with a solenoid will produce
a sol_quad super_slave element but a solenoid superimposed with a rfcavity element will produce
an em_field element since there is no other class of element that can simultaneously handle solenoid and
RF fields. An em_field super_slave element will also be created if any of the superimposing elements
have a non-zero orientation (§5.6) since it is not, in general, possible to construct a slave element that
properly mimics the effect of a non-zero orientation.

With the lattice broken up like this Bmad has constructed something that can be easily analyzed.
However, the original elements Q and S still exist within the lord section of the lattice. Bmad has
bookkeeping routines so that if a change is made to the Q or S elements then these changes can get
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propagated to the corresponding slaves. It does not matter which element is superimposed. Thus, in
the above example, S could have been put in the Beam Line (with a drift before it) and Q could then
have been superimposed on top and the result would have been the same (except that the split elements
could have different names).

If an element has zero length (for example, a marker element), is superimposed, or is superimposed
upon, then the element will remain in the tracking part of the lattice and there will be no corresponding
lord element. See Fig. 8.1.

Superimpose syntax:
Q: quad, superimpose, ... ! Superimpose element Q.
Q: quad, superimpose = T, ... ! Same as above.
Q: quad, ... ! First define element Q ...
Q[superimpose] = T ! ... and then superimpose.
Q[superimpose] = F ! Suppress superposition.

Superposition happens at the end of parsing so the last set of the superimpose for an element will
override previous settings.

It is also possible to superimpose an element using the superimpose command which has the syntax:
superimpose, element = <ele-name>, ...

With the same optional superposition parameters (ref, offset, etc.) given below. Example:
superimpose, element = Q1, ref = B12, offset = 1.3,

ele_origin = beginning, ref_origin = end
Note: Superposition using the superimpose statement allows superimposing the same element with multi-
ple reference elements and/or multiple offsets. The drawback is that superposition using the superimpose
statement may not be switched off later in the lattice file.

The placement of a superimposed element is illustrated in Fig. 8.2. The placement of a superimposed
element is determined by three factors: An origin point on the superimposed element, an origin point
on the reference element, and an offset between the points. The attributes that determine these three
quantities are:

create_jumbo_slave = <Logical> ! See §8.3
wrap_superimpose = <Logical> ! Wrap if element extends past lattice ends?
ref = <lattice_element>
offset = <length> ! default = 0
ele_origin = <origin_location> ! Origin pt on element.
ref_origin = <origin_location> ! Origin pt on ref element.

ref sets the reference element. If ref is not present then the start of the lattice is used (more precisely,
the start of branch 0 (§2.2)). Wild card characters (§3.6 can be used with ref. If ref matches to
multiple elements (which may also happen without wild card characters if there are multiple elements
with the name given by ref) in the lattice a superposition will be done, one for each match.

The location of the origin points are determined by the setting of ele_origin and ref_origin. The
possible settings for these parameters are

beginning ! Beginning (upstream) edge of element
center ! Center of element. Default.
end ! End (downstream) edge of element

center is the default setting. Offset is the longitudinal offset of the origin of the element being
superimposed relative to the origin of the reference element. The default offset is zero. A positive offset
moves the element being superimposed in the downstream direction if the reference element has a normal
longitudinal orientation (§7.4) and vice versa for the reference element has a reversed longitudinal
orientation.

Note: There is an old syntax, deprecated but still supported for now, where the origin points were
specified by the appearance of:
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ele_beginning ! Old syntax. Do not use.
ele_center ! Old syntax. Do not use.
ele_end ! Old syntax. Do not use.
ref_beginning ! Old syntax. Do not use.
ref_center ! Old syntax. Do not use.
ref_end ! Old syntax. Do not use.

For example, “ele_origin = beginning” in the old syntax would be “ele_beginning”.

The element begin superimposed may be any type of element except drift, group, overlay, and girder
control elements. The reference element used to position a superimposed element may be a group or
overlay element as long as the group or overlay controls the attributes of exactly one element. In this
case, the controlled element is used as the reference element.

By default, a superimposed element that extends beyond either end of the lattice will be wrapped around
so part of the element will be at the beginning of the lattice and part of the element will be at the end.
For consistency’s sake, this is done even if the geometry is set to open (for example, it is sometimes
convenient to treat a circular lattice as linear). Example:

d: drift, l = 10
q: quad, l = 4, superimpose, offset = 1
machine: line = (d)
use, machine

The lattice will have five elements in the tracking section:
Element Key Length

0) BEGINNING Beginning_ele 0
1) Q#2 Quadrupole 3 ! Slave representing beginning of Q element
2) D#1 Drift 6
3) Q#1 Quadrupole 1 ! Slave representing end of Q element
4) END Marker 0

And the lord section of the lattice will have the element Q.

To not wrap an element that is being superimposed, set the wrap_superimpose logical to False. Fol-
lowing the above example, if the definition ofq is extended by adding wrap_superimpose:

q: quad, l = 4, superimpose, offset = 1, wrap_superimpose = F
In this instance there are four elements in the tracking section:

Element Key Length
0) BEGINNING Beginning_ele 0
1) Q Quadrupole 4
2) D#1 Drift 7
4) END Marker 0

And the lord section of the lattice will not have any elements.

To superimpose a zero length element “S” next to a zero length element “Z”, and to make sure that S
will be on the correct side of Z, set the ref_origin appropriately. For example:

S1: marker, superimpose, ref = Z, ref_origin = beginning
S2: marker, superimpose, ref = Z, ref_origin = end
Z: marker

The order of the elements in the lattice will be
S1, Z, S2

If ref_origin is not present or set to center, the ordering of the elements will be arbitrary.

If a zero length element is being superimposed at a spot where there are other zero length elements, the
general rule is that the element will be placed as close as possible to the reference element. For example:
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S1: marker, superimpose, offset = 1
S2: marker, superimpose, offset = 1

In this case, after S1 is superimposed at s = 1 meter, the superposition of S2 will place it as close to
the reference element, which in this case is the BEGINNING elements at s = 0, as possible. Thus the final
order of the superimposed elements is:

S2, S1
To switch the order while still superimposing S2 second one possibility is to use:

S1: marker, superimpose, offset = 1
S2: marker, superimpose, ref = S1, ref_origin = end

If a superposition uses a reference element, and there are N elements in the lattice with the reference
element name, there will be N superpositions. For example, the following will split in two all the
quadrupoles in a lattice:

M: null_ele, superimpose, ref = quadrupole::*
A null_ele (§4.38) element is used here so that there is no intervening element between split quadrupole
halves as there would be if a marker element was used.

When a superposition is made that overlaps a drift, the drift, not being a "real" element, vanishes. That
is, it does not get put in the lord section of the lattice. Note that if aperture limits (§5.8) have been
assigned to a drift, the aperture limits can “disappear” when the superposition is done. Explicitly, if
the exit end of a drift has been assigned aperture limits, the limits will disappear if the superimposed
element overlays the exit end of the drift. A similar situation applies to the entrance end of a drift. If
this is not desired, use a pipe element instead.

To simplify bookkeeping, a drift element may not be superimposed. Additionally, since drifts can
disappear during superposition, to avoid unexpected behavior the superposition reference element may
not be the N th instance of a drift with a given name. For example, if there are a number of drift elements
in the lattice named a_drft, the following is not allowed:

my_oct: octupole, ..., superimpose, ref = a_drft##2 ! This is an error
When the attributes of a super_slave are computed from the attributes of its super_lords, some types
of attributes may be “missing”. For example, it is, in general, not possible to set appropriate aperture
attributes (§5.8) of a super_slave if the lords of the slave have differing aperture settings. When doing
calculations, Bmad will use the corresponding attributes stored in the lord elements to correctly calculate
things.

When superposition is done in a line where there is element reversal (§7.4), the calculation of the
placement of a superimposed element is also “reversed” to make the relative placement of elements
independent of any element reversal. An example will make this clear:

d1: drift, l = 1
d2: d1
q1: quad, l = 0.1, superimpose, ref = d1, offset = 0.2,

ref_origin = beginning, ele_origin = beginning
q2: q1, ref = d2
p: patch, x_pitch = pi ! Needed to separate reversed and unreversed.
this_line: line = (d1, p, --d2)
use, this_line

Since the reference element of the q2 superposition, that is d2, is a reversed element, q2 will be reversed
and the sense of offset, ref_origin, and ele_origin will be reversed so that the position of q2 with
respect to d2 will be the mirror image of the position of q1 with respect to d1. The tracking part of the
lattice will be:

Element: d1#1 q1 d1#2 d2#2 q2 d2#1
Length: 0.2 0.1 0.7 0.7 0.1 0.3
Reversed element?: No No No Yes Yes Yes



240 CHAPTER 8. SUPERPOSITION

Superposition with line reflection (§7.2) works the same way as line reversal.

The no_superposition statement (§3.21) can be used to turn off superpositioning

8.2 Superposition and Sub-Lines

Sometimes it is convenient to do simulations with only part of a lattice. The rule for how superpositions
are handled in this case is illustrated in the following example. Consider a lattice file which defines a
line called full which is defined by two sublines called sub1 and sub2:

sub1: line = ..., ele1, ...
sub2: line = ...
full: line = sub1, sub2
m1: marker, superimpose, ref = ele1, offset = 3.7
use, full

Now suppose you want to do a simulation using only the sub2 line. Rather than edit the original file,
one way to do this would be to create a second file which overrides the used line:

call, file = "full.bmad"
use, sub2

where full.bmad is the name of the original file. What happens to the superposition of m1 in this case?
Since m1 uses a reference element, ele1, that is not in sub1, Bmad will ignore the superposition. Even
though Bmad will ignore the superposition of m1 here, Bmad will check that ele1 has been defined.
If ele1 has not been defined, Bmad will assume that there is a typographic error and issue an error
message.

Notice that in this case it is important for the superposition to have an explicit reference element since
without an explicit reference element the superposition is referenced to the beginning of the lattice.
Thus, in the above example, if the superposition were written like:

m1: marker, superimpose, offset = 11.3
then when the full line is used, the superposition of m1 is referenced to the beginning of full (which is
the same as the beginning of sub1) but when the sub2 line is used, the superposition of m1 is referenced
to the beginning of sub2 which is not the same as the beginning of full.

8.3 Jumbo Super_Slaves

The problem with the way super_slave elements are created as discussed above is that edge effects
will not be dealt with properly when elements with non-zero fields are misaligned. When this is impor-
tant, especially at low energy, a possible remedy is to instruct Bmad to construct “jumbo” super_slave
elements. The general idea is to create one large super_slave for any set of overlapping elements.
Returning to the superposition example at the start of Section §8, If the superposition of solenoid S is
modified to be

S: solenoid, l = 8, superimpose, ref = Q, ele_origin = beginning,
create_jumbo_slave = T

The result is shown in Fig. 8.1C. The tracking part of the lattice will be
Element Key Length Total

1) Q\S Sol_quad 2 4
2) M Marker 0
3) S#2 Solenoid 3 10
4) D#2 Drift 4 14
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Q and part of S have been combined into a jumbo super_slave named Q\S. Since the super_lord
elements of a jumbo super_slave may not completely span the slave two attributes of each lord will be
set to show the position of the lord within the slave. These two attributes are

lord_pad1 ! offset at upstream end
lord_pad2 ! offset at downstream end

lord_pad1 is the distance between the upstream edge of the jumbo super_slave and a super_lord.
lord_pad2 is the distance between the downstream edge of a super_lord and the downstream edge of
the jumbo super_slave. With the present example, the lords have the following padding:

lord_pad1 lord_pad2
Q 0 3
S 2 0

The following rule holds for all super lords with and without jumbo slaves:
Sum of all slave lengths = lord length + lord_pad1 + lord_pad2

One major drawback of jumbo super_slave elements is that the tracking_method (§6.1) will, by
necessity, have to be runge_kutta, or time_runge_kutta and the mat6_calc_method (§6.2) will be set
to tracking.

Notice that the problem with edge effects for non-jumbo super_slave elements only occurs when el-
ements with nonzero fields are superimposed on top of one another. Thus, for example, one does not
need to use jumbo elements when superimposing a marker element.

Another possible way to handle overlapping fields is to use the field_overlaps element attribute as
discussed in §5.18.

8.4 Changing Element Lengths when there is Superposition

When a program is running, if group (§4.25) or overlay (§4.40) elements are used to vary the length of
elements that are involved in superimposition, the results are different from what would have resulted
if instead the lengths of the elements where changed in the lattice file. There are two reasons for this.
First, once the lattice file has been parsed, lattices can be “mangled” by adding or removing elements
in a myriad of ways. This means that it is not possible to devise a general algorithm for adjusting
superimposed element lengths that mirrors what the effect of changing the lengths in the lattice file.

Second, even if a lattice has not been mangled, an algorithm for varying lengths that is based on the
superimpose information in the lattice file could lead to unexpected results. To see this consider the first
example in Section §8. If the length of S is varied in the lattice file, the upstream edge of S will remain
fixed at the center of Q which means that the length of the super_slave element Q#1 will be invariant.
On the other hand, if element S is defined by

S: solenoid, l = 8, superimpose, offset = 6

This new definition of S produces exactly the same lattice as before. However, now varying the length of
S will result in the center of S remaining fixed and the length of Q#1 will not be invariant with changes
of the length of S. This variation in behavior could be very confusing since, while running a program,
one could not tell by inspection of the element positions what should happen if a length were changed.

To avoid confusion, Bmad uses a simple algorithm for varying the lengths of elements involved in su-
perposition: The rule is that the length of the most downstream super_slave is varied. With the first
example in Section §8, the group G varying the length of Q defined by:

G: group = {Q}, var = {l}

would vary the length of Q\S which would result in an equal variation of the length of S. To keep the
length of S invariant while varying Q the individual super_slave lengths can be varied. Example:
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G2: group = {Q#1, S#1:-1}, var = {l}

The definition of G2 must be placed in the lattice file after the superpositions so that the super slaves
referred to by G2 have been created.

In the above example there is another, cleaner, way of achieving the same result by varying the down-
stream edge of Q:

G3: group = {Q}, var = {end_edge}



Chapter 9

Multipass

This chapter covers the concept of multipass. Multipass is used when an element is “shared” between
branches such as the interaction region shared by two storage rings, or when a beam goes through the
same physical element in a branch multiple times as in an energy recovery linac. With multipass,
lord and slave elements (§2.4) are constructed by Bmad to hold the necessary information. The lord
elements will represent the “physical” element while the slave elements will embody the “beam path”.

9.1 Multipass Fundamentals

Multipass lines are a way to handle the bookkeeping when different elements being tracked through
represent the same physical element. For example, consider the case where dual ring colliding beam
machine is to be simulated. In this case the lattice file might look like:

ring1: line = (..., IR_region, ...)
ring2: line = (..., --IR_region, ...)
IR_region: line = (Q1, ....)
use, ring1, ring2

[The “–” construct means go through the line backwards (§7.4)] In this case, the Q1 element in ring1
represents the same physical element in ring2. Thus the parameters of both the Q1s should be varied in
tandem. This can be done automatically using multipass. The use of multipass simplifies lattice and
program development since the bookkeeping details are left to the Bmad bookkeeping routines.

To illustrate how multipass works, consider the example of an Energy Recovery Linac (ERL) where
the beam will recirculate back through the LINAC section to recover the energy in the beam before it is
dumped. In Bmad, this situation can simulated by designating the LINAC section as multipass. The
lattice file might look like:

RF1: lcavity
linac: line[multipass] = (RF1, ...)
erl: line = (linac, ..., linac)
use, erl
expand_lattice
RF1\2[phi0_multipass] = 0.5

The line called linac is designated as multipass. This linac line appears twice in the line erl and
erl is the root line for lattice expansion. The lattice constructed from erl will have two RF1 elements
in the tracking part of the lattice:

RF1\1, ..., RF1\2, ...
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Since the two elements are derived from a multipass line, they are given unique names by adding
a \n suffix. These types of elements are known as multipass_slave elements. In addition, to the
multipass_slave elements, there is a multipass_lord element (that doesn’t get tracked through)
called RF1 in the lord part of the lattice (§2.4). Changes to attributes of the lord RF1 element will be
passed to the slave elements by Bmad’s bookkeeping routines. Assuming that the phase of RF1\1 gives
acceleration, to make RF1\2 decelerate the phi0_multipass attribute of RF1\2 is set to 0.5. This is
the one attribute that Bmad’s bookkeeping routines will not touch when transferring attribute values
from RF1 to its slaves. Notice that the phi0_multipass attribute had to be set after expand_lattice
(§3.24) is used to expand the lattice. This is true since Bmad does immediate evaluation and RF1\2 does
not exist before the lattice is expanded. Phi0_multipass is useful with relative time tracking §25.1.
However, phi0_multipass is “unphysical” and is just a convenient way to shift the phase pass-to-pass
through a given cavity. To “correctly” simulate the recirculating beam, absolute time tracking should be
used and the length of the lattice from a cavity back to itself needs to be properly adjusted to get the
desired phase advance. See the discussion in section §25.1.

“Intrinsic” attributes are attributes that must, to make sense physically, be the same for all slaves of a
given multipass lord. The element length is one such example. The following non-intrinsic attributes
can be set in a multipass slave and will not affect the corresponding attributes in the lord or the other
slaves of the lord:

csr_ds_step num_steps
csr_method ptc_integration_type
ds_step spin_tracking_method
field_calc space_charge_method
integrator_order tracking_method
mat6_calc_method

Multiple elements of the same name in a multipass line are considered physically distinct. Example:
m_line: line[multipass] = (A, A, B)
u_line: line = (m_line, m_line)
use, u_line

In this example the tracking part of the lattice is
A\1, A\1, B\1, A\2, A\2, B\2

In the control section of the lattice there will be two multipass lords called A and one called B. [That
is, Bmad considers the lattice to have three physically distinct elements.] The first A lord controls the
1st and 4th elements in the tracking part of the lattice and the second A lord controls the 2nd and 5th
elements. If m_line was not marked multipass, the tracking part of the lattice would have four A and
two B elements and there would be no lord elements.

Sublines contained in a multipass line that are themselves not marked multipass act the same as if the
elements of the subline where substituted directly in place of the subline in the containing line. For
example:

a_line: line = (A)
m_line: line[multipass] = (a_line, a_line, B)
u_line: line = (m_line, m_line)
use, u_line

In this example, a_line, which is a subline of the multipass m_line, is not designated multipass and
the result is the same as the previous example where m_line was defined to be (A, A, B). That is,
there will be three physical elements represented by three multipass lords.

Multipass lines do not have to be at the same “level” in terms of nesting of lines within lines. Additionally,
multipass can be used with line reversal (§7.4). Example:

m_line: line[multipass] = (A, B)
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m2_line: line = (m_line)
P: patch, ...
arc: line = (..., P)
u_line: line = (m_line, arc, --m2_line)
use, u_line

Here the tracking part of the lattice is
A\1, B\1, ..., B\2 (r), A\2 (r)

The “(r)” here just denotes that the element is reversed and is not part of the name. The lattice will have
a multipass lord A that controls the two A\n elements and similarly with B. This lattice represents the
case where a particle goes through the m_line in the “forward” direction, gets turned around in the arc
line, and then passes back through m_line in the reverse direction. While it is possible to use reflection
“−” (§7.2) instead of reversal “−−” (§7.4), reflection here does not make physical sense. Needed here is
a reflection patch P (§4.41) between reversed and unreversed elements.

The procedure for how to group lattice elements into multipass slave groups which represent the same
physical element is as follows. For any given element in the lattice, this element has some line it came
from. Call this line L0. The L0 line in turn may have been contained in some other line L1, etc. The
chain of lines L0, L1, ..., Ln ends at some point and the last (top) line Ln will be one of the root lines
listed in the use statement (§7.7) in the lattice file. For any given element in the lattice, starting with
L0 and proceeding upwards through the chain, let Lm be the first line in the chain that is marked as
multipass. If no such line exists for a given element, that element will not be a multipass slave. For
elements that have an associated Lm multipass line, all elements that have a common Lm line and have
the same element index when Lm is expanded are put into a multipass slave group (for a given line the
element index with respect to that line is 1 for the first element in the expanded line, the second element
has index 2, etc.). For example, using the example above, the first element of the lattice, A\1, has the
chain:

m_line, u_line
The last element in the lattice, (A\2), has the chain

m_line, m2_line, u_line
For both elements the Lm line is m_line and both elements are derived from the element with index 1
with respect to m_line. Therefore, the two elements will be slaved together.

As a final example, consider the case where a subline of a multipass line is also marked multipass:
a_line: line[multipass] = (A)
m_line: line[multipass] = (a_line, a_line, B)
u_line: line = (m_line, m_line)
use, u_line

In this case the tracking part of the lattice will be:
A\1, A\2, B\1, A\3, A\4, B\2

There will be two lord elements representing the two physically distinct elements A and B. The A lord
element will will control the four A\n elements in the tracking part of the lattice. The B lord will control
the two B\n elements in the tracking part of the lattice.

To simplify the constructed lattice, if the set of lattice elements to slave together only contains one
element, a multipass lord is not constructed. For example:

m_line: line[multipass] = (A, A, B)
u_line: line = (m_line)
use, u_line

In this example no multipass lords are constructed and the lattice is simply
A, A, B

It is important to note that the global coordinates (§16.2) of the slaves of a given multipass lord are
not constrained by Bmad to be the same. It is up to the lattice designer to make sure that the physical
positions of the slaves makes sense (that is, are the same).
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9.2 The Reference Energy in a Multipass Line

Consider the lattice where the tracking elements are
A\1, C, A\2

where A\1 and A\2 are multipass slaves of element A and C is a lcavity element with some finite voltage.
In this case, the reference energy calculation (§5.5) where the reference energy of an element is inherited
from the previous element, assigns differing reference energies to A\1 and A\2. In such a situation, what
should be the assigned reference energy for the multipass lord element A? Bmad calculates the lord
reference energy in one of two ways. If, in the lattice file, e_tot or p0c is set for the multipass lord
element, that setting will be used. Exception: For em_field, lcavity, and custom elements where the
reference energy may change, set e_tot_start or p0c_start instead of e_tot or p0c. If the reference
energy (or reference momentum) is not set in the lattice file, the reference energy of the lord is set equal
to the reference energy of the first pass slave element.

It is important to keep this convention in mind if the normalized field strength (k1, for a quadrupole,
etc.) for the lord element is set in the lattice file. To be physical, the unnormalized strength (the actual
field) has to be the same for all slave elements. Bmad therefore calculates the unnormalized strength for
the lord and sets the slave unnormalized strengths to be equal to the lord unnormalized strength. After
this, the normalized strength for the slaves is calculated. Notice that the normalized strengths for the
slaves will differ from each other. For sbend and rbend elements the calculation is a bit trickier. Here
the g bending strength must be the same for all slaves since the setting of g determines the reference
geometry. In this case, dg for each slave is adjusted accordingly so that the total normalized field, g +
dg, gives the same unnormalized field for all slaves. Note that since the normalized field is calculated
from the unnormalized field for the slaves, the setting of field_master (§5.2) is set to True for all the
slaves independent of the setting of field_master for the lord.

To keep track of how the reference energy has been calculated for an element, Bmad sets an internal
element switch called multipass_ref_energy which is set to “user_set” if the energy is explicitly set
in the lattice file and is set to “first_pass” if the reference energy is calculated from the standard
reference energy calculation of the first pass slave element.

Note: Historically, there was an element parameter n_ref_pass that could be set to control the reference
energy. This parameter may be seen in old lattice files but will be ignored.

An example of an ERL lattice with multipass can be found in Section §13.3.



Chapter 10

Lattice File Global Parameters

This chapter deals with statements that can be used to set “global” parameter values. That is, parameter
values that are associated with the lattice as a whole and not simply associated with a single element.

Discussed elsewhere are the global structures (§11.1) bmad_com and ptc_com (§11.4).

10.1 Parameter Statements

Parameter statements are used to set a number of global variables. If multiple branches are present
(§2.2), these variables pertain to the root branch. The variables that can be set by parameter are

parameter[custom_attributeN] = <string> ! Defining custom attributes (§3.9).
parameter[default_tracking_species] = <Switch> ! Default type of tracked particle.

! Default is ref_particle.
parameter[e_tot] = <Real> ! Reference total Energy.

! Default: 1000 * rest_energy.
parameter[electric_dipole_moment] = <Real> ! Particle electric dipole moment.
parameter[live_branch] = <Logical> ! Is branch fit for tracking?
parameter[geometry] = <Switch> ! Open or closed
parameter[lattice] = <String> ! Lattice name.
parameter[machine] = <String> ! Machine name.
parameter[n_part] = <Real> ! Number of particles in a bunch.
parameter[no_end_marker] = <Logical> ! Default: False.
parameter[p0c] = <Real> ! Reference momentum.
parameter[particle] = <speciesID> ! Reference species: positron, proton, etc.
parameter[photon_type] = <Switch> ! Incoherent or coherent photons?
parameter[ran_seed] = <Integer> ! Random number generator init.
parameter[taylor_order] = <Integer> ! Default: 3

Examples
parameter[lattice] = "L9A19C501.FD93S_4S_15KG"
parameter[geometry] = closed
parameter[taylor_order] = 5
parameter[E_tot] = 5.6e9 ! eV

parameter[custom_attributeN]
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Here N is an integer between 1 and 40. For more information on defining custom attributes, see
§3.9. Name of the machine the lattice simulates. Example: "LHC".

parameter[live_branch]
Setting live_branch to False (default is True) indicates to a program that no tracking or other
analysis of the root branch should be done. This can be useful if the lattice has multiple branches
and analysis of the root branch is not necessary. Other branches can also be marked as alive/dead
using line parameter statements (§10.4). Note that the Bmad library itself ignores the setting of
live_branch and it is up to the program being run to decide if this parameter is ignored or not.
In particular, the Tao program (§1.2) will respect the setting of live_branch.

parameter[default_tracking_species]
The parameter[default_tracking_species] switch establishes the default type of particles to
be tracked. See §3.11 for the syntax for naming particle species. In addition, this switch can be
set to:

ref_particle ! default
anti_ref_particle

By default, default_tracking_species is set to ref_particle so that the particle being tracked
is the same as the reference particle set by param[particle]. In the case, for example, where there
are particles going one way and antiparticles going the another, default_tracking_species can
be used to switch between tracking the particles or antiparticles.

parameter[e_tot], parameter[p0c]
The parameter[e_tot] and parameter[p0c] are the reference total energy and momentum at the
start of the lattice. Each element in a lattice has an individual reference e_tot and p0c attributes
which are dependent parameters. The reference energy and momentum will only change between
LCavity or Patch elements. The starting reference energy, if not set, will be set to 1000 time
the particle rest energy. Note: beginning[e_tot] and beginning[p0c] (§10.4) are equivalent to
parameter[e_tot] and parameter[p0c].

parameter[electric_dipole_moment]
The electric_dipole_moment sets the electric dipole moment value η for use when tracking with
spin (§23.1).

parameter[geometry]
Valid geometry settings are

closed ! Default w/o LCavity element present.
open ! Default if LCavity elements present.

A machine with a closed geometry is something like a storage ring where the particle beam
recirculates through the machine. A machine with an open geometry is something like a linac. In
this case, if the reference particle is not a photon, the initial Twiss parameters need to be specified
in the lattice file using the beginning statement (§10.4). If the geometry is not specified, closed
is the default. The exception is that if there is an Lcavity element present or the reference particle
is a photon, open will be the default.

Notice that by specifying a closed geometry it does not mean that the downstream end of the
last element of the lattice has the same global coordinates (§16.2) as the global coordinates at
the beginning. Setting the geometry to closed simply signals to a program to compute closed
orbits and periodic Twiss parameters as opposed to calculating orbits and Twiss parameters based
upon initial orbit and Twiss parameters at the beginning of the lattice. Indeed, it is sometimes
convenient to treat lattices as closed even though there is no closure in the global coordinate sense.
For example, when a machine has a number of repeating “periods”, it may be convenient to only
use one period in a simulation. Since Bmad ignores closure in the global coordinate sense, it is up
to the lattice designer to ensure that a lattice is truly geometrically closed if that is desired.
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parameter[lattice]
Used to set the lattice name. The lattice name is stored by Bmad for use by a program but it
does not otherwise effect any Bmad routines.

parameter[n_part]
The parameter[n_part] is the number of particle in a bunch. This parameter is used in a number
of calculations, for example, with intrabeam scattering and to calculate the change in energy
through an Lcavity (§4.30). Historically, this parameter has been used to set the number of
strong beam particle with BeamBeam elements but it is strongly recommended to use the beambeam
element’s n_particle parameter instead.

parameter[no_end_marker]
Setting parameter[no_end_marker] to True will suppress the automatic inclusion of a marker
named END at the end of the lattice (§7.1).

parameter[p0c]
See parameter[e_tot].

parameter[particle]
The parameter[particle] switch sets the reference species. See §3.11 for the syntax for naming
particle species.

The setting of the reference particle is used, for example, to determine the direction of the field
in a magnet and given the normalized field strength (EG: k1 for a quadrupole). Generally, the
particles that by default are tracked through a lattice are the same as the reference particle. This
default behavior can be altered by setting parameter[default_tracking_species].

parameter[photon_type]
The photon_type switch is used to set the type of photons that are used in tracking. Possible
settings are:

incoherent ! Default
coherent

The general rule is use incoherent tracking except when there is a diffraction_plate element in
the lattice.

parameter[ran_seed]
For more information on parameter[ran_seed] see §3.14.

parameter[taylor_order]
The Taylor order (§24.1) is set by parameter[taylor_order] and is the maximum order for a
Taylor map.

10.2 Particle_Start Statements

particle_start statements are used, among other things to set the starting coordinates for particle
tracking. If multiple branches are present (§2.2), these variables pertain to the root branch.

particle_start[x] = <Real> ! Horizontal position.
particle_start[px] = <Real> ! Horizontal momentum.
particle_start[y] = <Real> ! Vertical position.
particle_start[py] = <Real> ! Vertical momentum.
particle_start[z] = <Real> ! Longitudinal position.
particle_start[pz] = <Real> ! Momentum deviation. Only for non-photons.
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particle_start[direction] = +/-1 ! Longitudinal direction of travel.
particle_start[E_photon] = <Real> ! Energy (eV). Only used for photons.
particle_start[emittance_a] = <Real> ! A-mode emittance
particle_start[emittance_b] = <Real> ! B-mode emittance
particle_start[emittance_z] = <Real> ! Z-mode emittance
particle_start[sig_z] = <Real> ! Beam sigma in z-direction
particle_start[sig_pz] = <Real> ! Beam Sigma pz
particle_start[field_x] = <Real> ! Photon beam field along x-axis
particle_start[field_y] = <Real> ! Photon beam field along y-axis
particle_start[phase_x] = <Real> ! Photon beam phase along x-axis
particle_start[phase_y] = <Real> ! Photon beam phase along y-axis
particle_start[t] = <Real> ! Absolute time
particle_start[spin_x] = <Real> ! Spin polarization x-coordinate
particle_start[spin_y] = <Real> ! Spin polarization y-coordinate
particle_start[spin_z] = <Real> ! Spin polarization z-coordinate

Normally the absolute time, set by particle_start[t], is a dependent parameter set by solving
Eq. (16.28) for t. The exception is when the initial velocity is zero. (This can happen if there is
an e_gun (§4.15) element in the lattice). In this case, z must be zero and t is an independent parameter
that can be set.

The longitudinal direction of travel is set by particle_start[direction]. This can be set to +1 (travel
in the +s direction) or -1 for the reverse. +1 is the default. Generally particle_start[direction]
should not be set to -1 since most programs will not be constructed to handle this situation. To track a
particle in the reverse direction see §13.6.

For particles with spin, the spin can be specified using Cartesian coordinates with spin_x, spin_y, and
spin_z.

For photons, px, py, and pz are the normalized velocity components (Cf. Eq. (16.38)). For photons pz
is a dependent parameter which will be set so that Eq. (16.39) is obeyed.

Note: particle_start used to be called beam_start. Since this was confusing (beam initialization
parameters are stored in a separate beam_init_struct structure (§12.1)), the name was changed. Cur-
rently the use of the beam_start name is deprecated but still supported for backwards compatibility.

Example

particle_start[y] = 2 * particle_start[x]

10.3 Beam Statement

The beam statement is provided for compatibility with MAD. The syntax is

beam, energy = GeV, pc = GeV, particle = <Switch>, n_part = <Real>

For example

beam, energy = 5.6 ! Note: GeV to be compatible with MAD
beam, particle = electron, n_part = 1.6e10

Setting the reference energy using the energy attribute is the same as using parameter[e_tot]. Sim-
ilarly, setting pc is equivalent to setting parameter[p0c]. Valid particle switches are the same as
parameter[particle].
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10.4 Beginning and Line Parameter Statements

For non–circular lattices, the beginning statement can be used to set the Twiss parameters and beam
energy at the beginning of the first lattice branch.

beginning[alpha_a] = <Real> ! "a" mode alpha
beginning[alpha_b] = <Real> ! "b" mode alpha
beginning[beta_a] = <Real> ! "a" mode beta
beginning[beta_b] = <Real> ! "b" mode beta
beginning[cmat_ij] = <Real> ! C coupling matrix. i, j = {‘‘1’’, or ‘‘2’’}
beginning[mode_flip] = <logic> ! Set the mode flip status (§22.1). Default is False.
beginning[e_tot] = <Real> ! Reference total energy in eV.
beginning[eta_x] = <Real> ! x-axis dispersion
beginning[eta_y] = <Real> ! y-axis dispersion
beginning[etap_x] = <Real> ! x-axis momentum dispersion.
beginning[etap_y] = <Real> ! y-axis momentum dispersion.
beginning[deta_x_ds] = <Real> ! x-axis dispersion derivative.
beginning[deta_y_ds] = <Real> ! y-axis dispersion derivative.
beginning[p0c] = <Real> ! Reference momentum in eV.
beginning[phi_a] = <Real> ! "a" mode phase.
beginning[phi_b] = <Real> ! "b" mode phase.
beginning[ref_time] = <Real> ! Starting reference time.
beginning[s] = <Real> ! Longitudinal starting position.
beginning[spin_dn_dpz_x] = <Real> ! Spin dn/dpz x-coordinate
beginning[spin_dn_dpz_y] = <Real> ! Spin dn/dpz y-coordinate
beginning[spin_dn_dpz_z] = <Real> ! Spin dn/dpz z-coordinate

The gamma_a, gamma_b, and gamma_c (the coupling gamma factor) will be kept consistent with the values
set. If not set the default values are all zero. beginning[e_tot] and parameter[e_tot] are equivalent
and one or the other may be set but not both. Similarly, beginning[p0c] and parameter[p0c] are
equivalent.

Setting either momentum dispersion etap_x or etap_y also sets the corresponding dispersion derivative
deta_x_ds or deta_y_ds (§22.4). If a momentum dispersion is set in the lattice file, or during program
running the dispersion derivatives are “slaved” to the momentum dispersion. That is, if the reference
phase space momentum pz changes, the momentum dispersions will be keept constant and the dispersion
derivatives will be calculated from Eq. (22.38). Similarly, if a dispersion derivative is set in the lattice file
or during program running, the momentum dispersions are slaved to the dispersion derivative. Which
is slaved to which is determined by the last derivative set. If no derivatives are set, the dispersion
derivatives are slaved to the momentum dispersions.

For any lattice the beginning statement can be used to set the starting floor position of the first lattice
branch (see §16.2). The syntax is

beginning[x_position] = <Real> ! X position
beginning[y_position] = <Real> ! Y position
beginning[z_position] = <Real> ! Z position
beginning[theta_position] = <Real> ! Angle on floor
beginning[phi_position] = <Real> ! Angle of attack
beginning[psi_position] = <Real> ! Roll angle

If the floor position is not specified, the default is to place beginning element at the origin with all angles
set to zero.

The beginning statement is useful in situations where only parameters for the first branch need be
specified. If this is not the case, the parameters for any branch can be specified using a statement of the
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form
line_name[parameter] = <Value>

This construct is called a line parameter statement Here line_name is the name of a line and parameter
is the name of a parameter. The parameters that can be set here are the same parameters that can be
set with the beginning statement with the additional parameters from the parameter statement:

default_tracking_species
geometry
high_energy_space_charge_on
live_branch
particle
inherit_from_fork

Example:
x_ray_fork: fork, to_line = x_ray
x_ray: line = (...)
x_ray[E_tot] = 100

The inherit_from_fork logical is used to determine if the reference energy and Twiss parameters as
calculated from the fork element defining the branch is used to set the beginning element of the branch.
This parameter is ignored if the fork element does not fork to the beginning element of the branch. The
default is True. If any reference energy or momentum or any Twiss parameter is set, inherit_from_fork
is implicitly set to False.

Rules:

1. The floor position of a line can only be set if the line is used for a root branch.

2. Line parameters statements must come after the associated line. This rule is similar to the rule
that element attribute redefinitions must come after the definition of the element.



Chapter 11

Parameter Structures

11.1 What is a Structure?

A “structure” is a collection of parameters. Bmad has various structures which can be used for various
tasks. For example, the beam_init_struct structure (§12.1) is used to set parameters used to initialize
particle beams.

A given program may give the user access to some of these structures so, in order to allow intelligent
parameter setting, this chapter gives an in-depth description of the most common ones.

Each structure has a “structure name” (also called a “type name”) which identifies the list of parame-
ters (also called “components”) in the structure. Associated with a structure there will be an “instance”
of this structure and this instance will have an “instance name” which is what the user uses to set pa-
rameters. It is possible to have multiple instances of a structure. For example, in the situation where
a program is simulating multiple particle beams, there could be multiple beam_init_struct (§12.1)
instances with one for each beam.

Bmad defines uses some structures to hold global parameters. That is, parameters that shared by all
code. Each of these structures has a single associated instance. These are:

Structure Instance

bmad_common_stuct bmad_com
space_charge_common_stuct space_charge_com

All other structures will have instance names that are program specific. That is, see the program
documentation for the instance name(s) used.

For historical reasons, There are two syntaxes used for setting structure components. The syntax when
setting in a lattice file uses square brackets:

instance_name[parameter_name] = value

When setting a component in a program initialization file the syntax uses the percent “%” character:
instance_name%parameter_name = value

Examples:
bmad_com[max_aperture_limit] = 10 ! Lattice file syntax.
bmad_com%max_aperture_limit = 10 ! Program initialization file syntax.

253
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this sets the max_aperture_limit parameter of bmad_com which is an instance name of the bmad_common_struct.
Note: A program is free to set the instance name for any structure. This should be documented in the
program manual.

Note: Thought must be given to setting bmad_com and other global parameters in a lattice file (§11.4)
since that will affect every program that uses the lattice.

11.2 Bmad_Common_Struct

The bmad_common_struct structure contains a set of global parameters. There is only one global instance
(§11) of this structure and this instance has the name bmad_com. The components of this structure along
with the default values are:

type bmad_common_struct
max_aperture_limit = 1e3 ! Max Aperture.
d_orb(6) = 1e-5 ! for the make_mat6_tracking routine.
default_ds_step = 0.2 ! Integration step size.
significant_length = 1e-10 ! meter
rel_tol_tracking = 1e-8 ! Closed orbit relative tolerance.
abs_tol_tracking = 1e-11 ! Closed orbit absolute tolerance.
rel_tol_adaptive_tracking = 1e-8 ! Runge-Kutta tracking relative tolerance.
abs_tol_adaptive_tracking = 1e-10 ! Runge-Kutta tracking absolute tolerance.
init_ds_adaptive_tracking = 1e-3 ! Initial step size.
min_ds_adaptive_tracking = 0 ! Minimum step size to use.
fatal_ds_adaptive_tracking = 1e-8 ! Threshold for loosing particles.
autoscale_amp_abs_tol = 0.1_rp ! Autoscale absolute amplitude tolerance (eV).
autoscale_amp_rel_tol = 1d-6 ! Autoscale relative amplitude tolerance
autoscale_phase_tol = 1d-5 ! Autoscale phase tolerance.
electric_dipole_moment = 0 ! Particle’s EDM.
synch_rad_scale = 1.0 ! Synch radiation kick scale. 1 => normal
ptc_cut_factor = 0.006 ! Cut factor for PTC tracking
sad_eps_scale = 5.0d-3 ! Used in sad_mult step length calc.
sad_amp_max = 5.0d-2 ! Used in sad_mult step length calc.
sad_n_div_max = 1000 ! Used in sad_mult step length calc.
taylor_order = 3 ! 3rd order is default
default_integ_order = 2 ! PTC integration order
ptc_max_fringe_order = 2 ! PTC max fringe order (2 => Quadrupole !).
max_num_runge_kutta_step = 10000 ! Max num RK steps before particle is lost.
rf_phase_below_transition_ref = F ! Autoscale around phase phi0 = 0.5
sr_wakes_on = T ! Short range wakefields?
lr_wakes_on = T ! Long range wakefields
ptc_use_orientation_patches = T ! Ele orientation translated to PTC patches?
auto_bookkeeper = T ! Automatic bookkeeping?
high_energy_space_charge_on = F ! High energy space charge calc toggle.
csr_and_space_charge_on = F ! CSR and space charge (separate from HE SC).
spin_tracking_on = F ! spin tracking?
spin_sokolov_ternov_flipping_on = F ! Spin flipping during radiation emission?
radiation_damping_on = F ! Radiation damping toggle.
radiation_fluctuations_on = F ! Radiation fluctuations toggle.
radiation_zero_average = F ! Shift so that average radiation kick is zero?
conserve_taylor_maps = T ! Enable bookkeeper to set
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! ele%taylor_map_includes_offsets = F?
absolute_time_tracking = F ! Set absolute or relative time tracking.
absolute_time_ref_shift = T ! Absolute time referenced to element ref time?
aperture_limit_on = T ! Use aperture limits in tracking.
debug = F ! Used for code debugging.

end type

Parameter description:

abs_tol_adaptive_tracking
Absolute tolerance to use in adaptive tracking. This is used in runge-kutta and time_runge_kutta
tracking (§6.4).

abs_tol_tracking
Absolute tolerance to use in tracking. Specifically, Tolerance to use when finding the closed orbit.

absolute_time_tracking
The absolute_time_tracking switch1 sets whether the clock for the lcavity and rfcavity
elements is tied to the reference particle or to uses the absolute time (§25.1). A value of False
(the default) mandates relative time and a value of True mandates absolute time. The exception
is that for an e_gun element (§4.15), absolute time tracking is always used in order to be able to
avoid problems with a zero reference momentum at the beginning of the element.

absolute_time_ref_shift
When absolute time tracking is used (§25.1), if absolute_time_ref_shift is True (the default),
then the value of the time used to calculate RF phases and other time dependent parameters is
shifted by the reference time of the lattice element under consideration. If set to False, no time
shift is done. The advantage of absolute_time_ref_shift set to True is that (at least on the first
turn of tracking) there is no phase shift between relative time and absolute time tracking. The
advantage of absolute_time_ref_shift set to False is that when trying to compare tracking in
Bmad with tracking in programs that use absolute time tracking but do not implement a reference
shift (for example, the IMPACT and GPT programs), it is convenient not to have to worry about
the reference shift.

aperture_limit_on]
Aperture limits may be set for elements in the lattice (§5.8). Setting aperture_limit_on to False
will disable all set apertures. True is the default.

auto_bookkeeper
Toggles automatic or intelligent bookkeeping. See section §32.6 for more details.

autoscale_amp_abs_tol
Used when Bmad autoscales (§5.19) an elements field amplitude. This parameter sets the absolute
tolerance for the autoscale amplitude parameter.

autoscale_amp_rel_tol
Used when Bmad autoscales (§5.19) an elements field amplitude. This parameter sets the relative
tolerance for the autoscale amplitude parameter. Used when Bmad autoscales (§5.19) an elements
AC phase. This parameter sets the absolute tolerance for the autoscale parameter.

autoscale_phase_tol

1An old, deprecated notation for this switch is parameter[absolute_time_tracking].
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init_ds_adaptive_tracking
Initial step to use for adaptive tracking. This is used in runge-kutta and time_runge_kutta
tracking (§6.4).

conserve_taylor_maps
Toggle to determine if the Taylor map for an element include any element “misalignments”. See
Section §6.8 for more details.

csr_and_space_charge_on
Turn on or off the coherent synchrotron radiation and space charge calculations. (§20.4). The
space charge calculation here is not to be confused with the high energy space charge calculation
(§20.5)

d_orb
Sets the orbit displacement used in the routine that calculates the transfer matrix through an
element via tracking. That is, when the mat6_calc_method (§6.2) is set to tracking. d_orb needs
to be large enough to avoid significant round-off errors but not so large that nonlinearities will
affect the results. The default value is 10−5.

debug
Used for communication between program units for debugging purposes.

default_ds_step
Step size for tracking code §6 that uses a fixed step size. For example, symp_lie_ptc tracking.

default_integ_order
Order of the integrator used by Étienne Forest’s PTC code (§29.2). The order of the PTC integrator
is like the order of a Newton-Cotes method. Higher order means the error term involves a higher
order derivative of the field.

electric_dipole_moment
The electric dipole moment value used in tracking a particle’s spin (§23.1).

fatal_ds_adaptive_tracking
This is used in runge-kutta and time_runge_kutta tracking (§6.4). If the step size falls below the
value set for fatal_ds_adaptive_tracking, a particle is considered lost. This prevents a program
from “hanging” due to taking a large number of extremely small steps. The most common cause
of small step size is an “unphysical” magnetic or electric field.

high_energy_space_charge_on
Toggle to turn on or off the ultra-relativistic space charge effect in particle tracking (§20.5). Compu-
tationally, this is separate from the lower energy space charge and CSR calculation (§20.4). Default
is False. Notice that including the high energy space charge can be done on a branch-by-branch
basis (§10.4).

lr_wakes_on
Toggle for turning on or off long-range higher order mode wakefield effects.

max_aperture_limit
Sets the maximum amplitude a particle can have during tracking. If this amplitude is exceeded,
the particle is lost even if there is no element aperture set. Having a maximum aperture limit helps
prevent numerical overflow in the tracking calculations.

max_num_runge_kutta_step
The maximum number of steps to take through an element with runge_kutta or time_runge_kutta
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tracking. The default value is 10,000. If the number of steps reaches this value, the particle being
tracked is marked as lost and a warning message is issued. Under “normal” circumstances, a par-
ticle will take far fewer steps to track through an element. If a particle is not through an element
after 10,000 steps, it generally indicates that there is a problem with how the field is defined. That
is, the field does not obey Maxwell’s Equations. Especially: discontinuities in the field can cause
problems.

min_ds_adaptive_tracking
This is used in runge-kutta and time_runge_kutta tracking (§6.4). Minimum step size to use for
adaptive tracking. If To be useful, min_ds_adaptive_tracking must be set larger than the value
of fatal_ds_adaptive_tracking. In this case, particles are never lost due to taking too small a
step.

ptc_use_orientation_patches
With Bmad, there is no distinction whether an element’s orientation attributes (offsets, pitches,
or tilt (§5.6)) is deliberate (part of the “design” of the machine) or an error (a “misalignment”).
With PTC this is not true. If the ptc_use_orientation_patches switch is set to True (the
default), when a Bmad element is translated to PTC, the element’s orientation attributes are stored
as patches. That is, “design” values. If set to False, these parameters are stored as misalignments.
This will generally not make any difference to a calculation. The exception comes with PTC centric
programs that vary machine parameters.2

ptc_max_fringe_order
Maximum order for computing fringe field effects in PTC.

rf_phase_below_transition_ref
Used when Bmad autoscales (§5.19) an rfcavity and when Bmad calculates the reference time
through a cavity (which affects calculation of phase space z via Eq. (16.28)). If True, the reference
phase will be taken to be at phi0 = 0.5 which is appropriate for a ring below transition. Default
is False in which case autoscaling will be around the phase phi0 = 0.

radiation_damping_on
Toggle to turn on or off effects due to radiation damping in particle tracking (§21.1). The default
is False. Note: The standard Bmad emittance calculation, which involves calculating synchrotron
radiation integrals (§21.3) can be done without a problem when radiation_damping_on is set to
False. However, since the closed orbit will be affected by whether radiation_damping_on is set
or not, the calculated emittances will depend upon the setting of radiation_damping_on.

radiation_fluctuations_on
Toggle to turn on or off effects due to radiation fluctuations in particle tracking (§21.1). The default
is False. Note: The standard Bmad emittance calculation, which involves calculating synchrotron
radiation integrals (§21.3) can be done without a problem when radiation_damping_on is set to
False. And since the calculation of the closed orbit ignores the fluctuating part of the radiation, the
setting of radiation_damping_on, unlike the setting of radiation_damping_on, will not affect
the emittance calculation.

radiation_zero_average
As discussed in Section §21.1, it is sometimes convenient to shift the emitted radiation spectrum so
that the average energy emitted along the closed orbit is zero. This gets rid of the “sawtooth” effect.
To shift the average emitted energy to zero, set radiation_zero_average to True. The default
is False. Currently, the shifting of the spectrum only works for non PTC dependent tracking.
That is, the shifting is not applicable to tracking with Taylor maps and with symp_lie_ptc (§6.1)
tracking.

2None of the programs that come bundled with Bmad (a Bmad Distribution) are PTC centric.
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rel_tol_adaptive_tracking
Relative tolerance to use in adaptive tracking. This is used in runge_kutta and time_runge_kutta
tracking (§6.4).

rel_tol_tracking
Relative tolerance to use in tracking. Specifically, Tolerance to use when finding the closed orbit.

significant_length
Sets the scale to decide if two length values are significantly different. For example, The superpo-
sition code will not create any super_slave elements that have a length less then this.

sr_wakes_on
Toggle for turning on or off short-range higher order mode wakefield effects.

spin_sokolov_ternov_flipping_on
This determines if the Sokolov-Ternov effect is included in a simulation. The Sokolov-Ternov
effect[Barber99] is the self-polarization of charged particle beams due to asymmetric flipping of a
particle’s spin when the particle is bent in a magnetic field. Also, spin flipping will not be done if
spin tracking is off or both radiation damping and excitation are off.

spin_tracking_on
Determines if spin tracking is performed or not.

synch_rad_scale
This parameter is a multiplier for the kick given particles when radiation damping or excitation
is turned on. This parameter is useful for artificially speeding up (or slowing down) the effect of
radiation. The default value is one. Values greater than one will give larger kicks and will reduce
the equilibrium settling time.

taylor_order
Cutoff Taylor order of maps produced by sym_lie_ptc.

11.3 PTC_Common_Struct

The ptc_common_struct structure contains a set of global parameters that effect tracking when PTC
is involved. There is only one global instance (§11) of this structure and this instance has the name
ptc_com. The components of this structure along with the default values are:

type ptc_common_struct
max_fringe_order = 2 ! 2 => Quadrupole.
complex_ptc_used = True ! Complex PTC code in use?
use_totalpath = False ! phase space z = time instead of time - ref_time?
old_integrator = True ! PTC OLD_INTEGRATOR.
exact_model = True ! PTC EXACT_MODEL.
exact_misalign = True ! PTC ALWAYS_EXACTMIS.
translate_patch_drift_time = True

end type
Note: To set the Taylor map order for PTC, set the taylor_order parameter of bmad_com.

parameter[ptc_exact_model]
Deprecated. Replaced by ptc_com[exact_model] (§11.4).
The ptc_exact_model and ptc_exact_misalign switches affect tracking using the PTC library.
See §6.4 for more details.
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ptc_com[max_fringe_order]
When using PTC tracking (§1.4), the parameter[ptc_max_fringe_order] determines the maxi-
mum order of the calculated fringe fields. The default is 2 which means that fringe fields due to a
quadrupolar field. These fields are 3rd order in the transverse coordinates.

ptc_com[translate_patch_drift_time]
If translate_patch_drift_time is set True (the default) the patch in PTC that is setup to
correspond to a Bmad patch is given a reference time offset equal to the Bmad reference time
through the patch. This is generally what is wanted but for a PTC expert who knows what they
are doing and really wants no time offset, translate_patch_drift_time can be set False.

11.4 Bmad_Com

The parameters of the bmad_com instance of the bmad_common_struct structure (§11.2) can be set in
the lattice file using the syntax

bmad_com[parm-name] = value

where parm-name is the name of a component of bmad_common_struct. For example:
bmad_com[rel_tol_tracking] = 1e-7

A similar situation holds for the ptc_com instance of the ptc_common_struct structure.

Be aware that setting either a bmad_com or ptc_com parameter value in a lattice file will affect all
computations of a program even if the program reads in additional lattice files. That is, setting of
bmad_com or ptc_com components is “sticky” and persists even when other lattice files are read in. There
are two exceptions: A program is always free to override settings of these parameters. Additionally, a
second lattice file can also override the setting made in a prior lattice file.

11.5 Space_Charge_Common_Struct

The space_charge_common_struct structure holds parameters for space charge (including CSR (§20.4))
calculations.3 The setting of the csr_method and space_charge_method element parameters (§6.5) will
also affect space charge calculations as well as the setting of the bmad_com logical csr_and_space_charge_on
(§11.2).

Besides the parameters discussed below, the csr_and_space_charge_on parameter of bmad_com (§11.4)
must be set True to enable the space charge/CSR calculations. Additionally, tracking with CSR will only
be done through elements where the element parameter csr_method (§6.4) has been set to something
other than off and tracking with space charge will only be done through elements where the element
parameter space_charge_method is set to something other than off. This is done so that the compu-
tationally intensive space charge and CSR calculations can be restricted to places where the effects are
significant.

The space charge / CSR parameter structure has a type name of space_charge_common_struct and
an instance name of space_charge_com. This structure has components

type space_charge_common_struct
ds_track_step = 0 ! Tracking step size
dt_track_step = 0 ! Time based space charge step

3This structure was formally called the csr_parameter_struct. The name was changed to reflect the fact that the
structure has parameters for space charge calculations that do not involve CSR.
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beam_chamber_height = 0 ! Used in shielding calculation.
cathode_strength_cutoff = 0.01 ! Cutoff for the cathode field calc.
rel_tol_tracking = 1d-8
abs_tol_tracking = 1d-10
lsc_sigma_cutoff = 0.1 ! Cutoff for the lsc calc. If a bin sigma

! is < cutoff * sigma_ave then ignore.
particle_sigma_cutoff = -1 ! Veto particles that are far from the bench with 3D SC.
n_bin = 0 ! Number of bins used
particle_bin_span = 2 ! Longitudinal particle length / dz_bin
n_shield_images = 0 ! Chamber wall shielding. 0 = no shielding.
sc_min_in_bin = 10 ! Min number of particle needed to compute sigmas.
space_charge_mesh_size = [32,32,64] ! Mesh size with fft_3d space charge calc.
csr_3d_mesh_size = [32,32,64] ! Mesh size for 3D CSR calc.
print_taylor_warning = T ! Print Taylor element warning?
diagnostic_output_file = "" ! Wake file name

end type

The values for the various quantities shown above are their default values.

ds_track_step
The ds_track_step parameter sets the nominal longitudinal distance traveled by the bunch be-
tween CSR kicks if the lattice element in which the bunch is being tracked has not set element’s
csr_ds_track parameter. The actual distance between kicks within a lattice element is adjusted
so that there is an integer number of steps from the element entrance to the element exit. Either
ds_track_step or the element’s csr_track_step must be set to something positive otherwise
an error will result when doing CSR or space charge tracking. Larger values will speed up the
calculation at the expense of accuracy.

dt_track_step
The dt_track_step parameter is used when the tracking_method of the lattice element the bunch
is passing through is set to time_runge_kutta or fixed_step_time_runge_kutta.

beam_chamber_height
beam_chamber_height is the height of the beam chamber in meters. This parameter is used when
shielding is taken into account. See also the description of the parameter n_shield_images.

cathode_strength_cutoff
When tracking through an element whose space_charge_method is set to cathode_fft_3d (§6.5,
The value of cathode_strength_cutoff is used to determine at how far from the cathode the
cathode image field is included. If the image field is less than cathode_strength_cutoff * bunch
field, the image field will be ignored.

lsc_sigma_cutoff
lsc_sigma_cutoff is used in the longitudinal space charge (LSC) calculation and is used to prevent
bins with only a few particles in them to give a large contribution to the kick when the computed
transverse sigmas are abnormally low.

n_bin
n_bin is the number of bins used. The bind width is dynamically adjusted at each kick point
so that the bins will span the bunch length. This parameter must be set to something positive.
Larger values will slow the calculation while smaller values will lead to inaccuracies and loss of
resolution. n_bin should also not be set so large that the average number of particles in a bin is
too small. “Typical” values are in the range 100 — 1000.
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particle_bin_span
The particle_bin_span parameter is the width of a particle’s triangular density distribution
(cf. §20.4) in multiples of the bin width. A larger span will give better smoothing of the computed
particle density with an attendant loss in resolution.

particle_sigma_cutoff
The 3D space charge calculation uses a particle-in-cell algorithm. If there are halo particles far
from the bunch center the grid spacing for the particle-in-cell may become too course. To help
remedy this, particles far from the bunch center may be vetoed by setting particle_sigma_cutoff
to a positive value. When set positive, particles will be ignored in the space charge calc when

max
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,
|dy|
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,
|dz|
σz

ã
> particle_sigma_cutoff (11.1)

where dx, dy, and dz are the distances along the x, y, and z axis of the particle from the bunch
centroid, and σx, σy, and σz are the bunch beam sizes.

%space_charge_mesh_size
The %space_charge_mesh_size sets the size of the grid used when an element’s space_charge_method
is set to fft_3d (§6.5). The value of this parameter is a 3-element array (nx, ny, nz) giving the
mesh size in the x, y, and z directions respectively. Default values are (32, 32, 64).

%csr3d_mesh_size
The %csr3d_mesh_size sets the size of the grid used when an element’s csr_method is set to
steady_state_3d (§6.5). The value of this parameter is a 3-element array (nx, ny, nz) giving the
mesh size in the x, y, and z directions respectively. Default values are (32, 32, 64).

n_shield_images
n_shield_images is the number of shielding current layers used in the shielding calculation. A
value of zero results in no shielding. See also the description of the parameter beam_chamber_height.
The proper setting of this parameter depends upon how strong the shielding is. Larger values give
better accuracy at the expense of computation speed. “Typical” values are in the range 0 — 5.

sc_min_in_bin
the sc_min_in_bin parameter sets the minimum number of particle in a bin needed to compute
the transverse beam sigmas for that bin. If the number of particles is less than this number, the
beam sigmas are taken to be equal to the beam sigmas of a nearby bin where there are enough
particle to compute the sigma. The beam sigmas are needed for the CS calculation but not need
for the CSR calculation.

diagnostic_output_file
If set non blank, an output file of this name is created that contains a table of the CSR wake at
each track step (the track step size is set by ds_track_step). If tracking is done through multiple
lattice elements, the wake tables for the elements are appended to the file. This file is useful for
visualization of the wake.

Note: Taylor map elements (§4.52) that have a finite length cannot be subdivided for the CSR calcu-
lation. Bmad will ignore any taylor elements present in the lattice but will print a warning that it is
doing so. To suppress the warning, print_taylor_warning should be set to False.

11.6 Opti_DE_Param_Struct

The Differential Evolution (DE) optimizer is used in nonlinear optimization problems. This optimizer
is based upon the work of Storn and Price[Storn96]. There are a number of parameters that can be



262 CHAPTER 11. PARAMETER STRUCTURES

varied to vary how the optimizer works. These parameters are are contained in a structure named
opti_de_param_struct. the instance name is opti_de_param. This structure has components

Default
type opti_de_param_struct

CR = 0.8 ! Crossover Probability.
F = 0.8 !
l_best = 0.0 ! Percentage of best solution used.
binomial_cross = False ! IE: Default = Exponential.
use_2nd_diff = False ! use F * (x_4 - x_5) term
randomize_F = False !
minimize_merit = True ! F => maximize the Merit func.

end type

The "perturbed vector" is v = x_1 + l_best * (x_best - x_1) + F * (x_2 - x_3) + F * (x_4 - x_5)
The last term F * (x_4 - x_5) is only used if use_2nd_diff = T.

The crossover can be either "Exponential" or "Binary". Exponential crossover is what is described in the
paper. With Exponential crossover the crossover parameters from a contiguous block and the average
number of crossover parameters is approximately average crossovers ∼ min(D, CR / (1 - CR)) where D
is the total number of parameters. With Binary crossover the probability of crossover of a parameter
is uncorrelated with the probability of crossover of any other parameter and the average number of
crossovers is average crossovers = D * CR

randomize_F = True means that the F that is used for a given generation is randomly chosen to be
within the range [0, 2*F] with average F.

11.7 Dynamic Aperture Simulations: Aperture_Param_Struct

The dynamic_aperture_struct is used for dynamic aperture calculations. This structure has compo-
nents:

type aperture_param_struct
min_angle = 0
max_angle = pi
n_angle = 9
n_turn = 100 ! Number of turns a particle must survive
x_init = 1e-3 ! Initial estimate for horizontal aperture
y_init = 1e-3 ! Initial estimate for vertical aperture
accuracy = 1e-5 ! Resolution of bracketed aperture.

end type



Chapter 12

Beam Initialization

Some Bmad based programs track beams of particles instead of tracking individual particles one-by-one.
This can be useful for several reasons. For example, tracking beams is useful when inter-bunch or intra-
bunch effects are to be simulated. Also tracking beams can simplify the bookkeeping a program needs
to do to calculate such quantities such as the bunch size.

A Bmad based program has two standard ways to specify the initial distribution of a beam. One is using
a beam_init_struct structure (§11.1) which holds parameters (for example, the beam emittances)
from which a distribution of particles can be constructed. The beam_init_struct structure is explained
in Section §12.1. The other way is to specify the initial beam distribution via a file that has the individual
particle positions. This is covered in Section §12.2.

12.1 Beam_Init_Struct Structure

The beam_init_struct structure (§11.1) holds parameters which are used to initialize a beam. The
parameters of this structure, shown with their default values, are:

type beam_init_struct
character(200) :: position_file = "" ! Initialization file name.
character distribution_type(3) ! "ELLIPSE", "KV", "GRID", "" (default).
type (ellipse_beam_init_struct) ellipse(3) ! For ellipse beam distribution
type (kv_beam_init_struct) KV ! For KV beam distribution
type (grid_beam_init_struct) grid(3) ! For grid beam distribution
logical use_particle_start = F ! Use particle_start instead of %center and %spin?
character random_engine ! "pseudo" (default) or "quasi".
character random_gauss_converter ! "exact" (default) or "quick".
real center(6) = 0 ! Bench phase space center offset.
real t_offset = 0 ! Time offset.
real center_jitter(6) = 0 ! Bunch center rms jitter
real emit_jitter(2) = 0 ! %RMS a and b-mode emittance jitter
real sig_z_jitter = 0 ! bunch length RMS jitter
real sig_pz_jitter = 0 ! pz energy spread RMS jitter
real random_sigma_cutoff = -1 ! -1 => no cutoff used.
integer n_particle = 0 ! Number of simulated particles per bunch.
logical renorm_center = T ! Renormalize centroid?
logical renorm_sigma = T ! Renormalize sigma?

263
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real spin(3) = 0, 0, 0 ! Spin (x, y, z)
real a_norm_emit = 0 ! a-mode normalized emittance (= β γ ϵunnorm)
real b_norm_emit = 0 ! b-mode normalized emittance (= β γ ϵunnorm)
real a_emit = 0 ! a-mode unnormalized emittance (= ϵnorm/βγ)
real b_emit = 0 ! b-mode unnormalized emittance (= ϵnorm/βγ)
real dpz_dz = 0 ! Correlation of pz with longitudinal position.
real dt_bunch = 0 ! Time between bunches.
real sig_z = 0 ! Z sigma in m.
real sig_pz = 0 ! pz sigma.
real bunch_charge = 0 ! Charge in a bunch.
integer n_bunch = 0 ! Number of bunches.
integer ix_turn = 0 ! Turn index.
character species = "" ! Species. Default is reference particle.
logical full_6D_coupling_calc = F ! Use 6x6 1-turn matrix to match distribution?
logical use_t_coords = F ! If true, the distributions will be

! calculated using time coordinates (§16.4.3).
logical use_z_as_t = F ! Only used if use_t_coords = T:

! If True, the z coordinate stores the time.
! If False, the z coordinate stores the s-position.

end type

Note: The z coordinate value given to particles of a bunch is with respect to the nominal center of
the bunch. Therefore, if there are multiple bunches, and there is an RF cavity whose frequency is not
commensurate with the spacing between bunches, absolute time tracking (§25.1) must be used.

%position_file
%position_file sets the name of the file to be read in containing the particle coordinates. Input
from a file is triggered if not-blank. The format of the file is discussed in Section §12.2.

%a_emit, %b_emit, %a_norm_emit, %b_norm_emit
Normalized and unnormalized emittances. Either a_norm_emit or a_emit may be set but not
both. similarly, either b_norm_emit or b_emit may be set but not both.

When simulating a ring, if any of these parameters is set negative, and if the Bmad based program
being run has enabled it, the value of the parameter will be set the value as calculated from the
lattice using synchrotron radiation integral formulas (§21.3).

%bunch_charge
The %bunch_charge paramter sets the charge of a bunch. If reading from a file, the bunch charge
will be set to the value of %bunch_charge except if %bunch_charge has a value of zero in which
case the bunch charge as specified in the file is used.

%center(6)
The %center parameter is used to offset the center position of a bunch. Exception: When
%use_particle_start is set to True, the particle_start orbital values are used instead for
the center position offset. See the description of %use_particle_start below for more details.

%center_jitter, %emit_jitter, %sig_z_jitter, %sig_pz_jitter
These components can be used to provide a bunch-to-bunch random variation in the emittance
and bunch center.

%distribution_type(3)
The %distribution_type(:) array determines what algorithms are used to generate the particle
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distribution for a bunch. Note: If %position_file is not blank, the beam distribution will be
read from the appropriate file and %distribution_type will be ignored.

%distributeion_type(1) sets the distribution type for the (x, px) 2D phase space, etc. Possibil-
ities for %distributeion_type(:) are:

"", or "RAN_GAUSS" ! Random distribution (default).
"ELLIPSE" ! Ellipse distribution (§20.1.1)
"KV" ! Kapchinsky-Vladimirsky distribution (§20.1.2)
"GRID" ! Uniform distribution.

Since the Kapchinsky-Vladimirsky distribution is for a 4D phase space, if the Kapchinsky-Vladimirsky
distribution is used, "KV" must appear exactly twice in the %distributeion_type(:) array.

Unlike all other distribution types, the GRID distribution is independent of the Twiss parameters
at the point of generation. For the non-GRID distributions, the distributions are adjusted if there
is local x-y coupling (§22.1). For lattices with a closed geometry, if full_6D_coupling_calc is
set to True, the full 6-dimensional coupling matrix is used. If False, which is the default, The
4-dimensional V matrix of Eq. (22.5) is used.

Note: The total number particles generated is the product of the individual distributions. For
example:

type (beam_init_struct) bi
bi%distribution_type = ELLIPSE", "ELLIPSE", "GRID"
bi%ellipse(1)%n_ellipse = 4
bi%ellipse(1)%part_per_ellipse = 8
bi%ellipse(2)%n_ellipse = 3
bi%ellipse(2)%part_per_ellipse = 100
bi%grid(3)%n_x = 20
bi%grid(3)%n_px = 30

The total number of particles per bunch will be 32 × 300 × 600. The exception is that when
RAN_GAUSS is mixed with other distributions, the random distribution is overlaid with the other
distributions instead of multiplying. For example:

type (beam_init_struct) bi
bi%distribution_type = RAN_GAUSS", "ELLIPSE", "GRID"
bi%ellipse(2)%n_ellipse = 3
bi%ellipse(2)%part_per_ellipse = 100
bi%grid(3)%n_x = 20
bi%grid(3)%n_px = 30

Here the number of particle is 300 × 600. Notice that when RAN_GAUSS is mixed with other
distributions, the value of beam_init%n_particle is ignored.

%dPz_dz
Correlation between pz and z phase space coordinates.

%dt_bunch
Time between bunches

%ellipse(3)
The %ellipse(:) array sets the parameters for the ellipse distribution (§20.1.1). Each compo-
nent of this array looks like

type ellipse_beam_init_struct
integer part_per_ellipse ! number of particles per ellipse.
integer n_ellipse ! number of ellipses.
real sigma_cutoff ! sigma cutoff of the representation.

end type
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%full_6D_coupling_calc
If set True, coupling between the transverse and longitudinal modes is taken into account when
calculating the beam distribution. The default False decouples the transverse and longitudinal
calculations.

%grid(3)
The %grid component of the beam_init_struct sets the parameters for a uniformly spaced grid
of particles. The components of %grid are:

type grid_beam_init_struct
integer n_x ! number of columns.
integer n_px ! number of rows.
real x_min ! Lower x limit.
real x_max ! Upper x limit.
real px_min ! Lower px limit.
real px_max ! Upper px limit.

end type
%ix_turn

Turn index. This affects how particle time is calculated. Particle time is calculated from phase
space z and t0 via Eq. (16.28). t0 is the reference time at the lattice element that the beam is
initialized at (§16.4.1). For simulations where the beam is circulating in a ring over many turns,
it may be desired to initialize the beam appropriate for some turn after the first turn. That is,
set the particle time with the reference time t0n associated with the nth (set by ix_turn) turn at
which the beam is being initialized at

t0n = t0 + n trev (12.1)

where trev is the revolution time.

%KV
The %kv component of the beam_init_struct sets the parameters for the Kapchinsky-Vladimirsky
distribution (§20.1.2). The components of %KV are:

type kv_beam_init_struct
integer part_per_phi(2) ! number of particles per angle variable.
integer n_I2 ! number of I2
real A ! A = I1/e

end type
%n_bunch

The number of bunches in the beam is set by n_bunch. If reading the distribution from a file,
if %n_bunch is zero, the number of bunches created is the number of defined in the file and if
%n_bunch is not zero, the number created is %n_bunch. It is an error if %n_bunch is greater than
the number of bunches defined in the file. If not reading from a file, if %n_bunch is zero, one bunch
is created.

%n_particle
Number of particles generated when the %distribution_type is "RAN_GAUSS". Ignored for other
distribution types. When reading the distribution from a file, if %n_particle is zero, the number
of particles in a bunch will be the number of particles defined in the file. If %n_particle is non-zero
when reading from a file, the number of particles in a bunch will be %n_particle. It is an error if
%n_particle is non-zero and the number of particles defined in the file is less than %n_particle.

%random_engine
This component sets the algorithm to use in generating a uniform distribution of random numbers
in the interval [0, 1]. "pseudo" is a pseudo random number generator and "quasi" is a quasi random
generator. "quasi random" is a misnomer in that the distribution generated is fairly uniform.
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%random_gauss_converter, %random_sigma_cutoff
To generate Gaussian random numbers, a conversion algorithm from the flat distribution generated
according to %random_engine is needed. %random_gauss_converter selects the algorithm. The
"exact" conversion uses an exact conversion. The "quick" method is somewhat faster than the
"exact" method but not as accurate. With either conversion method, if %random_sigma_cutoff
is set to a positive number, this limits the maximum sigma generated.

%renorm_center, %renorm_sigma
If set to True, these components will ensure that the actual beam center and sigmas will correspond
to the input values. Otherwise, there will be fluctuations due to the finite number of particles
generated.

%sig_pz, %sig_z
Longitudinal sigmas. %sig_pz is the fractional energy spread dE/E. This, along with %dPz_dz
determine the longitudinal profile.

When simulating a ring, if any of these parameters is set negative, and if the Bmad based program
being run has enabled it, the value of the parameter will be set the value as calculated from the
lattice using synchrotron radiation integral formulas (§21.3).

%species
Name of the species tracked. If not set then the default tracking particle type is used.

%spin
Particle spin in Cartesian (x, y, z) coordinates. Only used when not reading in particle posi-
tions from a file. Also: When %use_particle_start is set to True, and not reading in particle
positions form a file, the particle_start spin values are used instead. See the description of
%use_particle_start below for more details.

%use_particle_start
If %use_particle_start is set to False (the default) the center of the bunch is determined by
the setting of the %center component. If set to True, the center is determined by the setting of:

particle_start[x], particle_start[px],
particle_start[y], particle_start[py],
particle_start[z], particle_start[pz]

If not reading from from a particle position file, %use_particle_start will affect the setting of
the spin. If %use_particle_start is set to False, the initial spin orientation is determined by
the setting of the %spin component. If set to True, the spin is determined by:

particle_start[spin_x], particle_start[spin_y], particle_start[spin_z]
See §10.2 for details about the particle_start structure. Using the particle_start structure
allows setting center and spin values in the lattice file rather than the setting of %center and
%spin in the beam_init_struct. In this case, %center is a dependent parameter and will be set
to the value of particle_start.

%use_t_coords, %use_z_as_t
The problem with handling particle distributions at low energies is that when a particle’s velocity
is zero, the phase space z-coordinate is zero. What is needed here is to generate distributions in
time and or in longitudinal s-position. To do this, two switches, use_to_coords and use_z_as_t,
are used.

If use_t_coords is True (default is False), the values in the distributions are taken as describing
particles using “time coordinates” (§16.4.3).

The use_z_as_t parameter is only used if use_t_coords is set to True. When use_t_coords is
True, if use_z_as_t is also True, the value of the time (in seconds) assigned to a particle will be
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set equal to the z-coordinate (in meters) and a new z-coordinate will be calculated based upon
Eq. (16.28). This is useful for describing the situation, for example, where particles may originate
at a cathode at the same s-position, but different times. If use_z_as_t is False (the default), the z
coordinate is taken to describe the s-coordinate. This is useful for modeling particles that have the
same time but different s positions. In this case, particles are “born” inside the lattice element at
the location of the particle’s s-coordinate. To properly track the particles, the bunch will need to
be tracked through the element where they are born with a tracking method that can handle inside
particles. Currently the only such tracking method is time_runge_kutta. When the particles get
to the end of the element, the particle positions are converted to standard s-coordinates.

Since HDF5 beam files store complete information about a particle, use_to_coords and use_z_as_t
are not needed and are ignored.

12.2 File Based Beam Initialization

A beam initialization file specifies the coordinates of all the particles in a beam. If a Bmad based program
uses a beam_init_struct (§12.2) for inputting initialization parameters, the file name for file based beam
initialization can be set using the %position_file component of the structure. Also the bunch charge,
bunch number, and number of particles per bunch can be set in the beam_init_struct. Additionally,
the bunch centroid can be offset by setting beam_init%center and beam_init%center_jitter.

There are two formats for the beam initialization file: ASCII and binary. The binary file format for
beam position storage is based on the HDF5 standard. More information is in chapter §42.

The new ASCII format describes a particle bunch with a header section followed by a table of particle
parameters. Multiple bunches that comprise a beam can be specified by multiple header section / particle
parameter table pairs, one pair for each bunch. An example header section:
# The header field lines all start with a pound "#" sign.
# Any line in the header field that does not start with a recognized parameter or
# does not have an equal sign is ignored.
# my_param = 1.23 ! Custom parameters can be defined and will be ignored by Bmad.
# species = proton ! This parameter will be read by Bmad.
# spin = 1, 0, 0 ! and this one too.
# The last line in the header field starts with "#!" and defines the table columns.
#! index x px y py ... etc...

The header section lines all start with a pound “#” sign. The last line in the header section must start
with “#!” and this line defines the particle parameter table columns. With the exception of the last
line, all header lines will be ignored except ones that begin with a recognized parameter followed by an
equal sign. Recognized parameters are the components of the coord_struct, as documented in §36.1,
that describes individual particles. In addition, the following parameters are recognized:

charge_tot ! Total bunch charge (including dead particles).
s_position ! Longitudinal position of bunch. Can be used in place of "s".
time ! Time particles of bunch are at. Can be used in place of "t".

These parameters, if present, will be used to set the corresponding particle parameter in all the particles
of the corresponding bunch. Possible location and state parameter settings are documented in §36.1.
The string equivalent to any setting is obtained by removing the trailing “$” from the variable name.
For example, the variable alive$ which is a possible state setting becomes the string alive. Note:
charge_tot (total bunch charge) will superceed charge (the charge per particle).

The particle parameter table follows the header section. Each row gives the parameters for one particle.
Not all particle parameters must be specified. If a particular parameter is not present, its default value
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will be used or, if present, the value given in the header section. Column order is irrelavent and what
determines what particle parameter is associated with a given column is the last line of the header
section which starts with the characters #!. Except for vector parameters, column names correspond
to coord_struct parameters the same as in the header section. For parameters that are vectors, the
mapping from column name to parameter is:

Column Name Corresponding coord_struct components
---------------------- -----------------------------------------
x, px, y, py, z, pz vec(1), ..., vec(6)
spin_x, spin_y, spin_z spin(1), spin(2), spin(3)
field_x, field_y field(1), field(2)
phase_x, phase_y phase(1), phase(2)

Additionally, there can be (but is not required) an index column giving the particle index in the array
of particles of a bunch. This column is ignored so, for example, values in the first line of the table will
always be used to set the particle with index 1 independent of the value given in the index column. This
behavior is implemented so that a beam file can be edited to add or remove particles without worrying
about reindexing.

Note: Example beam files (both ASCII and HDF5) can be generated using the program in the Bmad
Distribution code_examples/beam_track_example.

Note: Beam files can be converted between ASCII and HDF5 binary using the program in the Bmad
Distribution util_programs/beam_file_translate_format.

12.2.1 Old Beam ASCII Format

There is an old ASCII format that is still accepted by Bmad but is deprecated and should be avoided.
The format is:

<ix_ele> ! Lattice element index. This is ignored.
<n_bunch> ! Number of bunches.
<n_particle> ! Number of particles per bunch to use
[bunch loop: ib = 1 to n_bunch]

BEGIN_BUNCH ! Marker to mark the beginning of a bunch specification block.
<species_name> ! Species of particle
<charge_tot> ! Total charge of bunch (alive + dead). 0 => Use <macro_charge>.
<z_center> ! z position at center of bunch.
<t_center> ! t position at center of bunch.
[particle loop: Stop when END_BUNCH marker found]

<x> <px> <y> <py> <z> <pz> <macro_charge> <state> <spin_x> <spin_y> <spin_z>
[end particle loop]
END_BUNCH ! Marker to mark the end of the bunch specification block

[end bunch loop]

Example:
0 ! ix_ele
1 ! n_bunch
25000 ! n_particle
BEGIN_BUNCH

POSITRON
3.2E-9 ! charge_tot
0.0 ! z_center
0.0 ! t_center
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-6.5E-3 9.6E-3 -1.9E-2 8.8E-3 2.2E-2 -2.4E-2 1.2E-13 1 1.0 0.0 0.0
8.5E-3 5.5E-3 4.0E-2 -1.9E-2 -4.9E-3 2.1E-2 1.2E-13 1 1.0 0.0 0.0
1.1E-2 -1.9E-2 -2.5E-2 1.0E-2 -1.8E-2 -7.1E-3 1.2E-13 1 1.0 0.0 0.0

-3.4E-2 -2.7E-3 -4.1E-3 1.3E-2 1.3E-2 1.0E-2 1.2E-13 1 1.0 0.0 0.0
6.8E-3 -4.5E-3 2.5E-3 1.4E-2 -2.3E-3 7.3E-2 1.2E-13 1 1.0 0.0 0.0
1.2E-2 -9.8E-3 1.7E-3 6.4E-3 -9.8E-3 -7.2E-2 1.2E-13 1 1.0 0.0 0.0
1.1E-2 -3.5E-4 1.2E-2 1.8E-2 5.4E-3 1.4E-2 1.2E-13 1 1.0 0.0 0.0

... etc. ...
END_BUNCH

The first line of the file gives <ix_ele>, the index of the lattice element at which the distribution was
created. This is ignored when the file is Read.

The second line gives <n_bunch>, the number of bunches. This can be overridden by a non-zero setting
of beam_init%n_bunch.

The third line gives <n_particle> the number of particles in a bunch. The actual number rows specifying
particle coordinates may be more then <n_particle>. In this case, particles will be discarded so that
the beam has <n_particle> particles. The setting of <n_particle> can be overridden by a non-zero
setting of beam_init%n_particle.

After this, there are <n_bunch> blocks of data, one for each bunch. Each one of these blocks starts with a
BEGIN_BUNCH line to mark the beginning of the block and ends with a END_BUNCH marker line. In between,
the first four lines give the <species_name> name, <charge_tot>, <z_center>, and <t_center> values.
The <species_name> name may be one of:

positron ! default
electron
proton
antiproton
muon
antimuon
photon

The lines following the <t_center> line specify particle coordinates. One line for each particle. Only
the first six numbers, which are the phase space coordinates, need to be specified for each particle. If
the <macro_charge> column is not present, or is zero, it defaults to <charge_tot>/<n_particle>.

The <state> parameter indicates whether a particle is alive or dead. Values are
1 ! Alive
2-7 ! Dead
8 ! Pre-born

The pre-born state indicates that the particle is waiting to be emitted from the cathode of an electron
gun (§20.4.3).

The particle spin is specified by x, y and z components.

Each particle has an associated <macro_charge>. If <charge_tot> is set to a non-zero value, the charge
of all the particles will be scaled by a factor to make the total macro charge equal to <charge_tot>.
The macro charge is ignored in tracking. The charge of the particle used in tracking is the charge as
calculated for the particle species. On the other hand, the macro charge is used to calculate such things
as the total charge in a particular region or the field produced by a particle. That is, the macro charge
acts as a weighting factor for a particle when the particle’s field or the particle’s effect on other particles
is calculated.

When the particle coordinates are read in the centroid will be shifted by the setting of beam_init%center
(unless beam_init%use_particle_start is set True) and beam_init%center_jitter.



Chapter 13

Lattice Examples

This chapter gives some examples of how lattice files can be constructed to describe various machine
geometries.

13.1 Example: Injection Line

An injection line is illustrated in Fig. 13.1. In this example, The path of an injected particle after it
leaves the last element X of the injection line (dashed blue line) partially goes through the field of the
dipole BND in the storage ring. One way to simulate this is:

INJ_L: line = (..., X, P, BND2, BR)
RING_L: line = (..., BND, M, ...)
P: patch, x_offset = -0.5, x_pitch = 0.15, z_offset = 0.3
BND: sbend, l = 6.2, g = 1/52
BND2: BND, l = 4.7, tracking_method = runge_kutta,

field_calc = fieldmap, grid_field = {...}
BR: fork, to_line = RING_L, to_element = M
M: marker
use, INJ_L

In order to properly track particles through the fringe field of the dipole BND, a partial section of BND,
called BND2, is placed in the injection line INJ_L. The tracking_method for BND2 is set to runge_kutta
since the default bmad_standard tracking is not able to handle these fringe fields. Additionally, the

INJ_L

BND

BR
RING_L

X P

M
BND2

Figure 13.1: Injection line into a dipole magnet.
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field_calc parameter of BND2 is set to field map so that the actual field profile of this particular
magnet can be used in the tracking. The field is specified in the grid_field parameter (§5.16).

After traversing element X in the injection line, the particle goes through the patch P which offsets the
reference trajectory so that the following element, BND2, is properly positioned. The beginning of BND2
is marked by a black dashed line in the figure. At the end of BND2 the fork element BR connects INJ_L
with the marker M in RING_L.

13.2 Example: Chicane

A chicane is a series of bending magnets that shifts the beam trajectory in the transverse plane while
keeping the starting and ending trajectories constant. Chicanes are useful for doing things like bunch
compression or as a variable bunch time delay. An example four bend chicane is illustrated in Fig. 13.2A.
The lattice file for this is:

parameter[geometry] = open
beginning[beta_a] = 20
beginning[beta_b] = 20
parameter[p0c] = 1e7

bnd1: rbend, l = 2
bnd2: rbend, l = 2
d1: drift, l = 3
d2: drift, l = 2

chicane: overlay = bnd1[dg]:-ge, bnd2[dg]:ge, var = ge, ge = 2e-3

c_line: line = (bnd1, d1, bnd2, d2, bnd2, d1, bnd1)
use, c_line

The chicane is controlled by an overlay (§4.40) called chicane. This overlay controls the dg attribute of
the bends (alternatively the hkick or b0 attributes could have been used).

It is important to note that using g instead of dg to control the chicane strength would be a mistake.
[Or, alternatively, b_field instead of db_field if controlling the unnormalized field.] This is illustrated
in Fig. 13.2B where the chicane overlay was replaced by:

chicane: overlay = bnd1[g]:-ge, bnd2[g]:ge, var = ge, ge = 1e-1
The problem here is that g sets the reference orbit so varying g will vary the physical layout of the
machine which is not what is wanted. Since the actual normalized field is g + dg, it is dg that should

A) B)

Figure 13.2: Four bend chicane. A) Correctly implemented chicane. The red line is the beam orbit
magnified by a factor of 100. B) Incorrectly implemented chicane where the g parameter of the bends is
used to control the chicane strength instead of dg.
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be varied. Notice that in the case where g is varied, the bends are no longer rectangular. This is true
since rbend elements, when read in from the lattice file, are converted to sbend elements. In this case
the converted bends have e1 and e2 face angles of zero. When the chicane overlay varies g, the face
angle remain zero. That is, the bends will always be pure sector bends. [In a situation where, indeed, g
is to be varied and it is desired to keep bends rectangular, the appropriate variation of the e1 and e2
can be put in the controlling overlay.]

13.3 Example: Energy Recovery Linac

An Energy Recovery Linac (ERL) is illustrated in Fig. 13.3A. The ERL starts with an injection line that
feeds a linac which accelerates the beam to some energy. The beam then transverses a return arc which
reinjects the bunches into the linac. The length of the return arc is such that, on the second pass, the
beam is decelerated giving its energy back to the RF cavities. Finally, the decelerated beam is steered
through a dump line where, at the end, an absorber stops the beam.

A lattice file for modeling this ERL:
parameter[geometry] = open
bmad_com[absolute_time_tracking] = T

BEND_L1: sbend, angle = -25*pi/180, l = 0.2, ...
BEND_L2: BEND_L1

A_PATCH: patch, flexible = T
D_PATCH: patch, x_offset = 0.034, x_pitch = asin(0.32)
INJECT: line = (...)
LINAC: line[multipass] = (BEND_L1, ..., BEND_L2)
ARC: line = (..., BEND_A7)
DUMP: line = (...)

ERL: line = (INJECT, LINAC, ARC, A_PATCH, LINAC, D_PATCH, DUMP)

Fig. 13.3B shows the injector and arc merging into the beginning of the linac. The first element of the
linac is a bend named BEND_L1. The bending angle for BEND_L1 has been set at the appropriate value
for injection from the injector. To get the correct geometry for injection from the arc, a patch element,
named A_PATCH, is placed in the ERL line between the arc and the linac. A_PATCH is a flexible patch
which means that the exit edge of A_PATCH will automatically be aligned with the entrance edge of the
next element which is BEND_L1.

Note that this use of a flexible patch works since the orientation of BEND_L1 has been determined before
the orientation of A_PATCH is determined. The orientation of elements is determined in order starting
from the first element in the line (the exception to this rule is if there is a floor_position element) and
the orientation of BEND_L1 is thus determined right after the injector section on the first pass through
the linac.

Fig. 13.3C shows the end of the linac splitting off into the dump and arc sections. The D_PATCH is
used to orient the reference trajectory so that the dump is correctly positioned. Here it is not possible
to make the D_PATCH flexible since the position of the dump is unknown when the orientation of the
D_PATCH is calculated. However, the D_PATCH could be made flexible if a floor_position element is
used in the dump line (Bmad will work both forward and backwards from a floor_position element
so that a floor_position element may be placed anywhere in the dump line).
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Linac

Injector

Arc

Dump

BND_A7

A_PATCH

D_PATCH
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Injector

Linac
BND_L1

Dum
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Figure 13.3: Example Energy Recovery Linac. A) The ERL consists of an injection line, accelerating
linac, return arc, deceleration linac, and finally a beam dump. B) Close up of the section where the end
of the injector and the end of the arc inject into the beginning of the linac. C) Close up of the end of
the linac which injects into the dump and the beginning of the arc.

13.4 Example: Colliding Beam Storage Rings

The idealized layout of a pair of storage rings used for colliding counter rotating beams of electrons and
gold is shown in Fig. 13.4. Rings A and B intersect at two interaction regions labeled ir1 and ir2 where
the beams collide. The basic lattice description is:

IR

AB

z

x

Patch
Regions

Figure 13.4: Dual ring colliding beam machine. The beam in the A ring rotates clockwise and in the B
ring counterclockwise.
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ir: line[multipass] = (...)
pa_in; patch, ... ; pa_out; patch, ...
pb_in; patch, ... ; pb_out; patch, ...
m: marker
fid: fiducial, origin_ele = m
...
A: line = (arc_a, pa_in, ir, m, pa_out)
A[particle] = electron
B_rev: line = (arc_b, pb_in, ir, fid, pb_out)
B: line = (--B_rev)
B[particle] = Au+79
use, A, B

Lines ir is the interaction region line which is declared multipass since they are shared by the two
rings. Line A represents ring A. In ring A where the electron beam which, by definition, travels in the
same direction as increasing s, rotates clockwise. Line B_rev is a “reversed” line of ring B and, like a,
represents a beam rotating clockwise. Line B, which represents ring B, is the reverse of B_rev and here
the gold beam rotates counterclockwise. In this construction, all elements of B are reversed. While this
is not mandatory (only the interaction regions must be reversed in B), having all of B reversed simplifies
the geometry since this means that the local coordinate systems of both lines A and b will be “aligned”
with the x-axis pointing to the outside of the ring and the y-axis pointing up, out of the page. Having
non-aligned coordinate systems is possible but potentially very confusing.

The two rings are physically aligned using a marker m in A and a fiducial element fid in B that aligns
with m. Each ring has two rigid patch elements, pa_in and pa_out for the A ring, and pb_in and bp_out
for the B ring, on either side of the interaction region. The dashed, green rectangles in the figure show
the regions where the patches are.

The finished lattice will have two branches, The first branch (with index 0) will be derived from line A
(and hence will be named “A”) and the second branch (with index 1) will be derived from line B (and
hence will be named “B”). The multipass lords representing the physical IR elements will be in the “lord
section” of branch 0.



276 CHAPTER 13. LATTICE EXAMPLES

Crystal

φ

Source

Detector

z

x
2θ

B,in
−φ

2φ

R

Y 
(m

m
)

Y 
(m

m
)

X (mm) X (mm)

A) B) C)

2θ
B,out

−φ

Global
Coordinants

Figure 13.5: Rowland circle spectrometer: A) X-rays scattered from a sample (labeled source in the
figure) illuminates a crystal with X-rays. Some of the X-rays are reflected from the crystal onto the
detector. Note: For clarity’s sake the center of the global coordinate system as shown is shifted from
the true center at the Source element. B) The detector image when the radius of curvature of the bent
crystal is “perfect”. That is, twice the radius of the Rowland circle. C) The detector image when the
radius of curvature of the crystal is shifted 1% from perfect.

13.5 Example: Rowland Circle X-Ray Spectrometer

This example shows how Bmad can be used to simulate X-rays. In this case, the present example is
taken from a case study where simulations were done in order to understand how imperfections in a
Rowland circle spectrometer would affect measurements.

A Rowland circle spectrometer is illustrated in Fig. 13.5A. The source was a sample that is illuminated
with X-rays. Some of the X-rays scatter from the sample and are reflected from the crystal to the
detector. To properly focus the X-rays onto the detector, the source, crystal and detector lie on
a circle, called the Rowland circle. The crystal is bent and the radius of curvature of the crystal is 2R
where R is the radius of the Rowland circle.

The angle from the source to the Rowland circle center to the crystal is 2θB,in − ϕ where θB,in is the
entrance Bragg angle for photons whose energy matches the given reference energy and ϕ is an angle
that will be varied when doing an energy scan of the scattered X-ray spectrum. Similarly, the angle
from the crystal to the Rowland circle center to the detector is 2θB,out − ϕ where θB,out is the exit
Bragg angle at the given reference energy.

The lattice for this simulation is:
beginning[e_tot] = 8.955e3 ! Reference photon energy
parameter[particle] = photon

phi = 0
err = 0
r_rowland = 0.5 ! Rowland circle radius

source: photon_init, sig_x = 5e-5, sig_y = 5e-5, spatial_distribution = uniform,
E_center_relative_to_ref = T, sig_E = 2, energy_distribution = gaussian,
velocity_distribution = spherical
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drift1: drift

cryst: crystal, crystal_type = "Si(553)", b_param = -1, aperture = 0.050,
curvature = {spherical = (1+err) / (2 * r_rowland)}, aperture_type = elliptical

drift2: drift

det: detector, pixel = {ix_bounds = (-97, 97),
iy_bounds = (-243, 243), dr = (172e-6, 172e-6)}

daves_line: line = (source, drift1, cryst, drift2, det)
use, daves_line

!------------------

expand_lattice ! Calculates the Bragg angles needed below.

theta_in = cryst[bragg_angle_in] ! 78.2759 * pi / 180
theta_out = cryst[bragg_angle_out] ! 78.2759 * pi / 180

cryst[graze_angle_in] = theta_in - phi/2
cryst[graze_angle_out] = theta_out - phi/2
drift1[L] = 2 * r_rowland * sin(theta_in-phi/2)
drift2[L] = 2 * r_rowland * sin(theta_out-phi/2)

beginning[theta_position] = theta_in + phi/2
det[x_pitch] = pi/2 - theta_out + phi/2

The reference photon energy is 8.995 KeV and the Rowland circle radius is 0.5 m. The simulation uses
a photon_init element (§4.42) for the source having a Gaussian energy spread with a sigma of 2 eV.
The initial velocity distribution of the photons, set by the velocity_distribution parameter, is taken
to be uniform in all directions (“spherical” distribution). Since the element that is downstream from
the source (which is the crystal element) has a defined aperture, Bmad is able to use this to not generate
photons that will be lost at the crystal. This reduces the simulation time.

The crystal is Silicon 553 crystal which is symmetrically cut (b_param = -1) so that in this example
the entrance Bragg angle is equal to the exit Bragg angle. The detector has a segmented surface with
pixels spaced 172µm apart. Along the x-axis, which is the coordinate along the detector surface in the
plane of Fig. 13.5A, the pixel index is in the range [−97, 97]. Along the y-axis, which is the out of plane
coordinate, the pixel index is in the range [−243, 243].

The expand_lattice command (§3.23) is used to command Bmad to construct the lattice which includes
calculating the Bragg angles. After lattice expansion, the variables theta_in and theta_out are set
to the Bragg angle entrance and exit Bragg angles respectively. The entrance and exit graze angles of
the crystal, which are used to determine the reference trajectory (§16.2.3), can be set to theta_in -
phi and theta_out - phi respectively. Note that if these graze angles had not been explicitly set, the
graze angles would be automatically set to the Bragg angles which is not what is wanted when doing an
energy scan with finite phi.

In the actual experimental setup that this example is modeled on, the source and Rowland circle were
fixed in the global coordinate system (§16.2) while the crystal and detector move with changing phi
(see Fig. 13.5A). To mimic this, the beginning[theta_position] (§10.4) is set to give the desired
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orientation of the beginning reference trajectory within the global coordinate system. This does not
affect photon tracking since changing the initial orientation of the reference trajectory just shifts all the
lattice elements as one rigid body. Additionally, the detector orientation is fixed so that the detector
surface normal always points towards the Rowland circle center. To get the correct orientation for the
detector, the detector’s x_pitch attribute, which rotates the detector (§5.6), is set appropriately.

The effect of varying the crystal curvature is shown in Fig. 13.5B and Fig. 13.5C. A Bmad based
program called Lux was used for the simulation. The Lux program generates a set of photons and
records the statistics at the detector. In Fig. 13.5B the crystal is correctly bent with the parameter
err in the lattice set to zero. This produces a well focused spot on the detector. In Fig. 13.5C the
crystal curvature is shifted by 1% by setting err equal to 0.01. This error degrades the focusing and
leads to a spot that is enlarged along the x-axis.

13.6 Example: Backward Tracking Through a Lattice

By creating a reversed lattice, one can track a particles backwards through the lattice. For exam-
ple, assume that you have a lattice file called original_lattice.bmad which defines a line called
original_line tracking electrons. To create a reversed lattice, create a new file with the following:

call, file = original_lattice.bmad
reversed_line: line = (--original_line)
parameter[default_tracking_species] = positron
use, reversed_line

The “−−” reverses the line and reverses the elements (§7.4). Tracking through reversed_line is equiv-
alent to tracking backwards through original_line.

The default for the type of particle tracked is set by parameter[default_tracking_species] (§10.1).
[A Bmad based program can always override this default but it will be assumed here that this is not
the case.] In this case, the default species to use for tracking is set to the antiparticle of the reference
particle species. If the original_line lattice had just static magnetic fields and no electric fields, by
tracking with the anti-particle in the reversed lattice, the anti-particle will follow the same path (but
backward) as the particle in the original lattice. For this to work, the anti-particle must be started
with the appropriate phase space coordinates. If (x, px, y, py, z, pz) is the phase space coordinates of
the particle at the end of the original lattice, the anti-particle must be initialized with phase space
coordinates of (x,−px, y,−py, immaterial, pz).

It should be keept in mind that tracking backwards in the lattice is not exactly the same as tracking
backwards in time. In particular, the two are different if there are electric fields or if radiation damping
and/or excitation is turned on.



Chapter 14

Lattice File Conversion

A Bmad Distribution (§1.2) contains a number of translation programs between Bmad and other formats.

14.1 MAD Conversion

14.1.1 Convert MAD to Bmad

Python scripts to convert from MAD8 and MADX are available at:
util_programs/mad_to_bmad

Due to differences in language definitions, conversions must be done with some care. The following
differences should be noted:

• Bmad, unlike MAD, does not have any “action” commands. An action command is a command
that makes a calculation. Examples include MAD’s SURVEY and TWISS commands.

• In Bmad all variables must be defined before being used (§3.13) while MAD will simply take a
variable’s value to be zero if it is not defined.

• Bmad, unlike MAD, does not allow variable values to be redefined.

14.1.2 Convert Bmad to MAD

To convert to MAD8 or MADX, the Tao program can be used. Additionally, there is the program
util_programs/bmad_to_mad_sad_elegant

Since MAD does not have a wiggler or a sol_quad element, this conversion routine makes “equivalent”
substitution. For a sol_quad, the equivalent substitution will be a drift-matrix-drift series of elements.
For a wiggler, a series of bend and drift elements will be used (the program can also use a drift-
matrix-drift model here but that is not as accurate). The bends and drifts for the wiggler model are
constructed so that the global geometry of the lattice does not change. Additionally the bends and drifts
are constructed to most nearly match the wiggler’s

Transfer matrix
$I_2$ and $I_3$ synchrotron radiation integrals (§21.3)

Note that the resulting model will not have the vertical cubic nonlinearity that the actual wiggler has.

279
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14.2 Convert to PTC

A PTC “flatfile” can be constructed using the Tao program with the following commands:
Tao> ptc init
Tao> write ptc

14.3 SAD Conversion

Conversion from SAD[SAD] to Bmad is accomplished using the Python script
util_programs/sad_to_bmad/sad_to_bmad.py

Currently, the following restrictions on SAD lattices apply:

• SAD mult elements cannot have an associated RF field

• Misalignments in a sol element with geo = 1 cannot be handled.

Bmad to SAD to conversion can be done with the Tao program or the program
util_programs/bmad_to_mad_sad_elegant

14.4 Elegant Conversion

Conversion from Elegant[Elegant] to Bmad is accomplished using the Python script
util_programs/elegant_to_bmad/elegant_to_bmad.py

Bmad to Elegant to conversion can be done with the Tao program or the program
util_programs/bmad_to_mad_sad_elegant

14.5 Astra, Blender, CSRTrack, GPT, and Merlin Conversion

Conversion programs to Astra, Blender, CSRTrack, GPT, and Merlin exist in the util_programs direc-
tory. Some conversion code is still in beta development so if you encounter problems please contact a
Bmad maintainer.
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List of Element Attributes

Alphabetical list of element attributes for each type of element.

Note for programmers: The program that generates a file of attributes indexed by the internal reference
number is:

util_programs/element_attributes.f90

15.1 !PTC_Com Element Attributes

exact_misalign max_fringe_order vertical_kick
exact_model old_integrator

15.2 !Space_Charge_Com Element Attributes

15.3 AB_multipole Element Attributes

a0 - a20, b0 - b20 is_on spin_tracking_method x_offset [m]
alias l [m] superimpose x_offset_tot [m]
aperture [m] mat6_calc_method tilt [rad] y1_limit [m]
aperture_at multipoles_on tilt_tot [rad] y2_limit [m]
aperture_type offset [m] tracking_method y_limit [m]
create_jumbo_slave offset_moves_aperture type y_offset [m]
delta_ref_time [sec] p0c [eV] wall y_offset_tot [m]
descrip ptc_integration_type wrap_superimpose z_offset [m]
e_tot [eV] ref_origin x1_limit [m] z_offset_tot [m]
ele_origin ref_time_start [sec] x2_limit [m]
field_master reference x_limit [m]

281



282 CHAPTER 15. LIST OF ELEMENT ATTRIBUTES

15.4 AC_Kicker Element Attributes

a0 - a20, b0 - b20 frequencies p0c [eV] tracking_method
alias fringe_at phi0_multipass [rad/2pi] type
amp_vs_time fringe_type ptc_integration_type vkick
aperture [m] gen_grad_map r0_elec [m] wall
aperture_at grid_field r0_mag [m] wrap_superimpose
aperture_type hkick ref_origin x1_limit [m]
bl_hkick [T*m] integrator_order ref_time_start [sec] x2_limit [m]
bl_vkick [T*m] interpolation reference x_limit [m]
cartesian_map is_on scale_multipoles x_offset [m]
create_jumbo_slave l [m] space_charge_method x_offset_tot [m]
csr_ds_step [m] lord_pad1 [m] spin_fringe_on x_pitch [rad]
csr_method lord_pad2 [m] spin_tracking_method x_pitch_tot [rad]
cylindrical_map lr_freq_spread [Hz] sr_wake y1_limit [m]
delta_ref_time [sec] lr_self_wake_on sr_wake_file y2_limit [m]
descrip lr_wake static_linear_map y_limit [m]
ds_step [m] lr_wake_file superimpose y_offset [m]
e_tot [eV] mat6_calc_method symplectify y_offset_tot [m]
ele_origin multipoles_on t_offset [sec] y_pitch [rad]
field_calc num_steps taylor_map_includes_offsets y_pitch_tot [rad]
field_master offset [m] tilt [rad] z_offset [m]
field_overlaps offset_moves_aperture tilt_tot [rad] z_offset_tot [m]

15.5 BeamBeam Element Attributes

alias crab_x4 [1/m3] ref_origin x2_limit [m]
alpha_a_strong crab_x5 [1/m4] ref_time_start [sec] x_limit [m]
alpha_b_strong create_jumbo_slave reference x_offset [m]
aperture [m] delta_ref_time [sec] repetition_frequency [Hz] x_offset_tot [m]
aperture_at descrip s_twiss_ref [m] x_pitch [rad]
aperture_type e_tot [eV] sig_x [m] x_pitch_tot [rad]
bbi_constant e_tot_strong [eV] sig_y [m] y1_limit [m]
beta_a_strong [m] ele_origin sig_z [m] y2_limit [m]
beta_b_strong [m] field_calc species_strong y_limit [m]
bs_field [T] is_on spin_tracking_method y_offset [m]
charge ks [1/m] superimpose y_offset_tot [m]
cmat_11 l [m] symplectify y_pitch [rad]
cmat_12 mat6_calc_method tilt [rad] y_pitch_tot [rad]
cmat_21 n_particle tilt_tot [rad] z_crossing [m]
cmat_22 n_slice tracking_method z_offset [m]
crab_tilt [rad] offset [m] type z_offset_tot [m]
crab_x1 offset_moves_aperture wall
crab_x2 [1/m] p0c [eV] wrap_superimpose
crab_x3 [1/m2] ptc_integration_type x1_limit [m]
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15.6 Beginning Statement Attributes

alpha_a e_tot [eV] mode_flip s [m]
alpha_b e_tot_start [eV] p0c [eV] spin_dn_dpz_x
beta_a [m] eta_x [m] p0c_start [eV] spin_dn_dpz_y
beta_b [m] eta_y [m] phi_a [rad] spin_dn_dpz_z
cmat_11 eta_z [m] phi_b [rad] theta_position [rad]
cmat_12 etap_x phi_position [rad] x_position [m]
cmat_21 etap_y psi_position [rad] y_position [m]
cmat_22 inherit_from_fork ref_time [sec] z_position [m]

15.7 Bends: Rbend and Sbend Element Attributes

a0 - a20, b0 - b20 field_calc lr_wake static_linear_map
alias field_master lr_wake_file superimpose
angle [rad] field_overlaps mat6_calc_method symplectify
aperture [m] fint multipoles_on taylor_map_includes_offsets
aperture_at fintx num_steps tracking_method
aperture_type fringe_at offset [m] type
b1_gradient [T/m] fringe_type offset_moves_aperture vkick
b2_gradient [T/m2] g [1/m] p0c [eV] wall
b_field [T] g_tot [1/m] ptc_canonical_coords wrap_superimpose
b_field_tot [T] gen_grad_map ptc_field_geometry x1_limit [m]
bl_hkick [T*m] grid_field ptc_fringe_geometry x2_limit [m]
bl_vkick [T*m] h1 [1/m] ptc_integration_type x_limit [m]
cartesian_map h2 [1/m] r0_elec [m] x_offset [m]
create_jumbo_slave hgap [m] r0_mag [m] x_offset_tot [m]
csr_ds_step [m] hgapx [m] ref_origin x_pitch [rad]
csr_method hkick ref_tilt [rad] x_pitch_tot [rad]
cylindrical_map integrator_order ref_tilt_tot [rad] y1_limit [m]
db_field [T] is_on ref_time_start [sec] y2_limit [m]
delta_ref_time [sec] k1 [1/m2] reference y_limit [m]
descrip k2 [1/m3] rho [m] y_offset [m]
dg [1/m] l [m] roll [rad] y_offset_tot [m]
ds_step [m] l_chord [m] roll_tot [rad] y_pitch [rad]
e1 [rad] l_rectangle [m] scale_multipoles y_pitch_tot [rad]
e2 [rad] l_sagitta [m] space_charge_method z_offset [m]
e_tot [eV] lord_pad1 [m] spin_fringe_on z_offset_tot [m]
ele_origin lord_pad2 [m] spin_tracking_method
exact_multipoles lr_freq_spread [Hz] sr_wake
fiducial_pt lr_self_wake_on sr_wake_file

15.8 Bmad_Com Statement Attributes
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15.9 Capillary Element Attributes

alias mat6_calc_method tilt [rad] x_pitch [rad]
aperture [m] n_slice_spline tilt_tot [rad] x_pitch_tot [rad]
aperture_at offset [m] tracking_method y1_limit [m]
aperture_type offset_moves_aperture type y2_limit [m]
create_jumbo_slave p0c [eV] wall y_limit [m]
critical_angle_factor [rad*eV] ptc_integration_type wrap_superimpose y_offset [m]
delta_ref_time [sec] ref_origin x1_limit [m] y_offset_tot [m]
descrip ref_time_start [sec] x2_limit [m] y_pitch [rad]
e_tot [eV] reference x_limit [m] y_pitch_tot [rad]
ele_origin spin_tracking_method x_offset [m] z_offset [m]
l [m] superimpose x_offset_tot [m] z_offset_tot [m]

15.10 Collimators: Ecollimator and Rcollimator Element At-
tributes

alias is_on ref_origin x2_limit [m]
aperture [m] l [m] ref_time_start [sec] x_limit [m]
aperture_at lord_pad1 [m] reference x_offset [m]
aperture_type lord_pad2 [m] space_charge_method x_offset_tot [m]
bl_hkick [T*m] lr_freq_spread [Hz] spin_fringe_on x_pitch [rad]
bl_vkick [T*m] lr_self_wake_on spin_tracking_method x_pitch_tot [rad]
create_jumbo_slave lr_wake sr_wake y1_limit [m]
csr_ds_step [m] lr_wake_file sr_wake_file y2_limit [m]
csr_method mat6_calc_method static_linear_map y_limit [m]
delta_ref_time [sec] num_steps superimpose y_offset [m]
descrip offset [m] symplectify y_offset_tot [m]
ds_step [m] offset_moves_aperture taylor_map_includes_offsets y_pitch [rad]
e_tot [eV] p0c [eV] tilt [rad] y_pitch_tot [rad]
ele_origin ptc_integration_type tilt_tot [rad] z_aperture_center [m]
field_calc px_aperture_center tracking_method z_aperture_width2 [m]
field_overlaps px_aperture_width2 type z_offset [m]
fringe_at py_aperture_center vkick z_offset_tot [m]
fringe_type py_aperture_width2 wall
hkick pz_aperture_center wrap_superimpose
integrator_order pz_aperture_width2 x1_limit [m]
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15.11 Converter Element Attributes

alias l [m] spin_tracking_method x_pitch [rad]
angle_out_max [rad] mat6_calc_method superimpose x_pitch_tot [rad]
aperture [m] offset [m] tilt [rad] y1_limit [m]
aperture_at offset_moves_aperture tilt_tot [rad] y2_limit [m]
aperture_type p0c [eV] tracking_method y_limit [m]
create_jumbo_slave p0c_start [eV] type y_offset [m]
delta_ref_time [sec] pc_out_max [eV] wall y_offset_tot [m]
descrip pc_out_min [eV] wrap_superimpose y_pitch [rad]
distribution ptc_integration_type x1_limit [m] y_pitch_tot [rad]
e_tot [eV] ref_origin x2_limit [m] z_offset [m]
e_tot_start [eV] ref_time_start [sec] x_limit [m] z_offset_tot [m]
ele_origin reference x_offset [m]
is_on species_out x_offset_tot [m]

15.12 Crab_Cavity Element Attributes

alias gradient [eV/m] phi0_multipass [rad/2pi] voltage [Volt]
aperture [m] grid_field ptc_integration_type wall
aperture_at harmon ref_origin wrap_superimpose
aperture_type harmon_master ref_time_start [sec] x1_limit [m]
bl_hkick [T*m] hkick reference x2_limit [m]
bl_vkick [T*m] integrator_order rf_frequency [Hz] x_limit [m]
cartesian_map is_on rf_wavelength [m] x_offset [m]
create_jumbo_slave l [m] space_charge_method x_offset_tot [m]
csr_ds_step [m] lord_pad1 [m] spin_tracking_method x_pitch [rad]
csr_method lord_pad2 [m] sr_wake x_pitch_tot [rad]
cylindrical_map lr_freq_spread [Hz] sr_wake_file y1_limit [m]
delta_ref_time [sec] lr_self_wake_on static_linear_map y2_limit [m]
descrip lr_wake superimpose y_limit [m]
ds_step [m] lr_wake_file symplectify y_offset [m]
e_tot [eV] mat6_calc_method taylor_map_includes_offsets y_offset_tot [m]
ele_origin num_steps tilt [rad] y_pitch [rad]
field_calc offset [m] tilt_tot [rad] y_pitch_tot [rad]
field_master offset_moves_aperture tracking_method z_offset [m]
field_overlaps p0c [eV] type z_offset_tot [m]
gen_grad_map phi0 [rad/2pi] vkick
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15.13 Crystal Element Attributes

alias ele_origin ref_cap_gamma wall
alpha_angle elliptical_curvature_x [1/m] ref_orbit_follows wrap_superimpose
aperture [m] elliptical_curvature_y [1/m] ref_origin x1_limit [m]
aperture_at elliptical_curvature_z [1/m] ref_tilt [rad] x2_limit [m]
aperture_type graze_angle_in [rad] ref_tilt_tot [rad] x_limit [m]
b_param graze_angle_out [rad] ref_time_start [sec] x_offset [m]
bragg_angle [rad] h_misalign ref_wavelength [m] x_offset_tot [m]
bragg_angle_in [rad] is_mosaic reference x_pitch [rad]
bragg_angle_out [rad] l [m] reflectivity_table x_pitch_tot [rad]
create_jumbo_slave mat6_calc_method segmented y1_limit [m]
crystal_type mosaic_angle_rms_in_plane [rad] spherical_curvature [1/m] y2_limit [m]
curvature mosaic_angle_rms_out_plane [rad] spin_tracking_method y_limit [m]
curvature_x0_y2 [1/m] mosaic_diffraction_num superimpose y_offset [m]
d_spacing [m] mosaic_thickness [m] thickness [m] y_offset_tot [m]
darwin_width_pi [rad] offset [m] tilt [rad] y_pitch [rad]
darwin_width_sigma [rad] offset_moves_aperture tilt_corr [rad] y_pitch_tot [rad]
dbragg_angle_de [rad/eV] p0c [eV] tilt_tot [rad] z_offset [m]
delta_ref_time [sec] pendellosung_period_pi [m] tracking_method z_offset_tot [m]
descrip pendellosung_period_sigma [m] type
displacement psi_angle [rad] use_reflectivity_table
e_tot [eV] ptc_integration_type v_unitcell [m3]

15.14 Custom Element Attributes

alias lord_pad1 [m] static_linear_map wall
aperture [m] lord_pad2 [m] superimpose wrap_superimpose
aperture_at lr_freq_spread [Hz] symplectify x1_limit [m]
aperture_type lr_self_wake_on taylor_map_includes_offsets x2_limit [m]
create_jumbo_slave lr_wake tilt [rad] x_limit [m]
csr_ds_step [m] lr_wake_file tilt_tot [rad] x_offset [m]
csr_method mat6_calc_method tracking_method x_offset_tot [m]
delta_e_ref [eV] num_steps type x_pitch [rad]
delta_ref_time [sec] offset [m] val1 x_pitch_tot [rad]
descrip offset_moves_aperture val10 y1_limit [m]
ds_step [m] p0c [eV] val11 y2_limit [m]
e_tot [eV] p0c_start [eV] val12 y_limit [m]
e_tot_start [eV] ptc_integration_type val2 y_offset [m]
ele_origin ref_origin val3 y_offset_tot [m]
field_calc ref_time_start [sec] val4 y_pitch [rad]
field_master reference val5 y_pitch_tot [rad]
field_overlaps space_charge_method val6 z_offset [m]
integrator_order spin_tracking_method val7 z_offset_tot [m]
is_on sr_wake val8
l [m] sr_wake_file val9
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15.15 Detector Element Attributes

alias is_on tilt [rad] x_pitch_tot [rad]
aperture [m] l [m] tilt_calib [rad] y1_limit [m]
aperture_at mat6_calc_method tilt_tot [rad] y2_limit [m]
aperture_type n_sample tracking_method y_dispersion_calib [m]
create_jumbo_slave noise type y_dispersion_err [m]
crunch [rad] offset [m] wall y_gain_calib [m]
crunch_calib [rad] offset_moves_aperture wrap_superimpose y_gain_err [m]
curvature osc_amplitude [m] x1_limit [m] y_limit [m]
curvature_x0_y2 [1/m] p0c [eV] x2_limit [m] y_offset [m]
de_eta_meas pixel x_dispersion_calib [m] y_offset_calib [m]
delta_ref_time [sec] ptc_integration_type x_dispersion_err [m] y_offset_tot [m]
descrip ref_origin x_gain_calib [m] y_pitch [rad]
displacement ref_time_start [sec] x_gain_err [m] y_pitch_tot [rad]
e_tot [eV] reference x_limit [m] z_offset [m]
ele_origin segmented x_offset [m] z_offset_tot [m]
elliptical_curvature_x [1/m] spherical_curvature [1/m] x_offset_calib [m]
elliptical_curvature_y [1/m] spin_tracking_method x_offset_tot [m]
elliptical_curvature_z [1/m] superimpose x_pitch [rad]

15.16 Diffraction_Plate Element Attributes

alias elliptical_curvature_z [1/m] spherical_curvature [1/m] x_pitch [rad]
aperture [m] field_scale_factor spin_tracking_method x_pitch_tot [rad]
aperture_at is_on superimpose y1_limit [m]
aperture_type mat6_calc_method tilt [rad] y2_limit [m]
create_jumbo_slave mode tilt_tot [rad] y_limit [m]
curvature offset [m] tracking_method y_offset [m]
curvature_x0_y2 [1/m] offset_moves_aperture type y_offset_tot [m]
delta_ref_time [sec] p0c [eV] wall y_pitch [rad]
descrip ptc_integration_type wrap_superimpose y_pitch_tot [rad]
displacement ref_origin x1_limit [m] z_offset [m]
e_tot [eV] ref_time_start [sec] x2_limit [m] z_offset_tot [m]
ele_origin ref_wavelength [m] x_limit [m]
elliptical_curvature_x [1/m] reference x_offset [m]
elliptical_curvature_y [1/m] segmented x_offset_tot [m]
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15.17 Drift Element Attributes

alias l [m] static_linear_map x_offset_tot [m]
aperture [m] lord_pad1 [m] superimpose x_pitch [rad]
aperture_at lord_pad2 [m] symplectify x_pitch_tot [rad]
aperture_type mat6_calc_method taylor_map_includes_offsets y1_limit [m]
create_jumbo_slave num_steps tilt [rad] y2_limit [m]
csr_ds_step [m] offset [m] tilt_tot [rad] y_limit [m]
csr_method offset_moves_aperture tracking_method y_offset [m]
delta_ref_time [sec] p0c [eV] type y_offset_tot [m]
descrip ptc_integration_type wall y_pitch [rad]
ds_step [m] ref_origin wrap_superimpose y_pitch_tot [rad]
e_tot [eV] ref_time_start [sec] x1_limit [m] z_offset [m]
ele_origin reference x2_limit [m] z_offset_tot [m]
field_calc space_charge_method x_limit [m]
integrator_order spin_tracking_method x_offset [m]

15.18 ELSeparator Element Attributes

a0 - a20, b0 - b20 gap r0_elec [m] wall
alias gen_grad_map r0_mag [m] wrap_superimpose
aperture [m] grid_field ref_origin x1_limit [m]
aperture_at hkick ref_time_start [sec] x2_limit [m]
aperture_type integrator_order reference x_limit [m]
cartesian_map is_on scale_multipoles x_offset [m]
create_jumbo_slave l [m] space_charge_method x_offset_tot [m]
csr_ds_step [m] lord_pad1 [m] spin_fringe_on x_pitch [rad]
csr_method lord_pad2 [m] spin_tracking_method x_pitch_tot [rad]
cylindrical_map lr_freq_spread [Hz] sr_wake y1_limit [m]
delta_ref_time [sec] lr_self_wake_on sr_wake_file y2_limit [m]
descrip lr_wake static_linear_map y_limit [m]
ds_step [m] lr_wake_file superimpose y_offset [m]
e_field [V/m] mat6_calc_method symplectify y_offset_tot [m]
e_tot [eV] multipoles_on taylor_map_includes_offsets y_pitch [rad]
ele_origin num_steps tilt [rad] y_pitch_tot [rad]
field_calc offset [m] tilt_tot [rad] z_offset [m]
field_master offset_moves_aperture tracking_method z_offset_tot [m]
field_overlaps p0c [eV] type
fringe_at ptc_canonical_coords vkick
fringe_type ptc_integration_type voltage [Volt]
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15.19 EM_Field Element Attributes

alias fringe_at phi0_err [rad/2pi] type
aperture [m] fringe_type polarity wall
aperture_at gen_grad_map ptc_canonical_coords wrap_superimpose
aperture_type grid_field ptc_integration_type x1_limit [m]
autoscale_amplitude integrator_order ref_origin x2_limit [m]
autoscale_phase is_on ref_time_start [sec] x_limit [m]
cartesian_map l [m] reference x_offset [m]
constant_ref_energy lord_pad1 [m] rf_frequency [Hz] x_offset_tot [m]
create_jumbo_slave lord_pad2 [m] rf_wavelength [m] x_pitch [rad]
csr_ds_step [m] lr_freq_spread [Hz] space_charge_method x_pitch_tot [rad]
csr_method lr_self_wake_on spin_fringe_on y1_limit [m]
cylindrical_map lr_wake spin_tracking_method y2_limit [m]
delta_ref_time [sec] lr_wake_file sr_wake y_limit [m]
descrip mat6_calc_method sr_wake_file y_offset [m]
ds_step [m] num_steps static_linear_map y_offset_tot [m]
e_tot [eV] offset [m] superimpose y_pitch [rad]
e_tot_start [eV] offset_moves_aperture symplectify y_pitch_tot [rad]
ele_origin p0c [eV] taylor_map_includes_offsets z_offset [m]
field_autoscale p0c_start [eV] tilt [rad] z_offset_tot [m]
field_calc phi0 [rad/2pi] tilt_tot [rad]
field_overlaps phi0_autoscale [rad/2pi] tracking_method

15.20 E_Gun Element Attributes

alias fringe_type phi0_err [rad/2pi] voltage_tot [Volt]
aperture [m] gen_grad_map ptc_integration_type wall
aperture_at gradient [eV/m] ref_origin wrap_superimpose
aperture_type gradient_err [eV/m] ref_time_start [sec] x1_limit [m]
autoscale_amplitude gradient_tot [eV/m] reference x2_limit [m]
autoscale_phase grid_field rf_frequency [Hz] x_limit [m]
cartesian_map integrator_order rf_wavelength [m] x_offset [m]
create_jumbo_slave is_on space_charge_method x_offset_tot [m]
csr_ds_step [m] l [m] spin_fringe_on x_pitch [rad]
csr_method lord_pad1 [m] spin_tracking_method x_pitch_tot [rad]
cylindrical_map lord_pad2 [m] sr_wake y1_limit [m]
delta_ref_time [sec] lr_freq_spread [Hz] sr_wake_file y2_limit [m]
descrip lr_self_wake_on static_linear_map y_limit [m]
ds_step [m] lr_wake superimpose y_offset [m]
dt_max [sec] lr_wake_file symplectify y_offset_tot [m]
e_tot [eV] mat6_calc_method taylor_map_includes_offsets y_pitch [rad]
ele_origin num_steps tilt [rad] y_pitch_tot [rad]
emit_fraction offset [m] tilt_tot [rad] z_offset [m]
field_autoscale offset_moves_aperture tracking_method z_offset_tot [m]
field_calc p0c [eV] type
field_overlaps phi0 [rad/2pi] voltage [Volt]
fringe_at phi0_autoscale [rad/2pi] voltage_err [Volt]
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15.21 Feedback Element Attributes

alias input_ele type
descrip output_ele

15.22 Fiducial Element Attributes

alias dy_origin [m] origin_ele spin_tracking_method
delta_ref_time [sec] dz_origin [m] origin_ele_ref_pt superimpose
descrip e_tot [eV] p0c [eV] tracking_method
dphi_origin [rad] ele_origin ptc_integration_type type
dpsi_origin [rad] l [m] ref_origin wrap_superimpose
dtheta_origin [rad] mat6_calc_method ref_time_start [sec]
dx_origin [m] offset [m] reference

15.23 Floor_Shift Element Attributes

alias l [m] reference x2_limit [m]
aperture [m] mat6_calc_method spin_tracking_method x_limit [m]
aperture_at offset [m] superimpose x_offset [m]
aperture_type offset_moves_aperture tilt [rad] x_pitch [rad]
create_jumbo_slave origin_ele tracking_method y1_limit [m]
delta_ref_time [sec] origin_ele_ref_pt type y2_limit [m]
descrip p0c [eV] upstream_ele_dir y_limit [m]
downstream_ele_dir ptc_integration_type wall y_offset [m]
e_tot [eV] ref_origin wrap_superimpose y_pitch [rad]
ele_origin ref_time_start [sec] x1_limit [m] z_offset [m]
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15.24 Foil Element Attributes

alias final_charge scatter_test x_offset_tot [m]
aperture [m] is_on spin_tracking_method x_pitch [rad]
aperture_at l [m] superimpose x_pitch_tot [rad]
aperture_type mat6_calc_method thickness [m] y1_edge [m]
area_density [kg/m2] material_type tilt [rad] y1_limit [m]
area_density_used [kg/m2] num_steps tilt_tot [rad] y2_edge [m]
atomic_weight [???] offset [m] tracking_method y2_limit [m]
create_jumbo_slave offset_moves_aperture type y_limit [m]
delta_ref_time [sec] p0c [eV] wall y_offset [m]
density [kg/m3] ptc_integration_type wrap_superimpose y_offset_tot [m]
density_used [kg/m3] radiation_length [kg/m2] x1_edge [m] y_pitch [rad]
descrip radiation_length_used [kg/m2] x1_limit [m] y_pitch_tot [rad]
dthickness_dx [???] ref_origin x2_edge [m] z_offset [m]
e_tot [eV] ref_time_start [sec] x2_limit [m] z_offset_tot [m]
ele_origin reference x_limit [m]
f_factor [???] scatter_method x_offset [m]

15.25 Fork and Photon_Fork Element Attributes

alias is_on ref_origin wrap_superimpose
aperture [m] ix_to_branch ref_species x1_limit [m]
aperture_at ix_to_element ref_time_start [sec] x2_limit [m]
aperture_type l [m] reference x_limit [m]
create_jumbo_slave mat6_calc_method spin_tracking_method y1_limit [m]
delta_ref_time [sec] new_branch superimpose y2_limit [m]
descrip offset [m] to_element y_limit [m]
direction offset_moves_aperture to_line
e_tot [eV] p0c [eV] tracking_method
ele_origin ptc_integration_type type

15.26 GKicker Element Attributes

alias mat6_calc_method ref_time_start [sec] x_kick [m]
aperture [m] offset [m] reference x_limit [m]
aperture_at offset_moves_aperture spin_tracking_method y1_limit [m]
aperture_type p0c [eV] superimpose y2_limit [m]
create_jumbo_slave ptc_integration_type tracking_method y_kick [m]
delta_ref_time [sec] px_kick type y_limit [m]
descrip py_kick wrap_superimpose z_kick [m]
e_tot [eV] pz_kick x1_limit [m]
ele_origin ref_origin x2_limit [m]
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15.27 Girder Element Attributes

alias dz_origin [m] tilt [rad] y_offset [m]
descrip is_on tilt_tot [rad] y_offset_tot [m]
dphi_origin [rad] l [m] type y_pitch [rad]
dpsi_origin [rad] origin_ele x_offset [m] y_pitch_tot [rad]
dtheta_origin [rad] origin_ele_ref_pt x_offset_tot [m] z_offset [m]
dx_origin [m] ref_tilt [rad] x_pitch [rad] z_offset_tot [m]
dy_origin [m] ref_tilt_tot [rad] x_pitch_tot [rad]

15.28 Group Element Attributes

accordion_edge [m] gang slave x_knot
alias interpolation start_edge y_knot
descrip is_on type
end_edge [m] s_position [m] var

15.29 Hybrid Element Attributes

alias e_tot [eV] ref_origin x1_limit [m]
aperture [m] ele_origin ref_time_start [sec] x2_limit [m]
aperture_at l [m] reference x_limit [m]
aperture_type mat6_calc_method spin_tracking_method y1_limit [m]
create_jumbo_slave offset [m] superimpose y2_limit [m]
delta_e_ref [eV] offset_moves_aperture tracking_method y_limit [m]
delta_ref_time [sec] p0c [eV] type
descrip ptc_integration_type wrap_superimpose
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15.30 Instrument, Monitor, and Pipe Element Attributes

alias integrator_order spin_fringe_on x_limit [m]
aperture [m] is_on spin_tracking_method x_offset [m]
aperture_at l [m] sr_wake x_offset_calib [m]
aperture_type lord_pad1 [m] sr_wake_file x_offset_tot [m]
bl_hkick [T*m] lord_pad2 [m] static_linear_map x_pitch [rad]
bl_vkick [T*m] lr_freq_spread [Hz] superimpose x_pitch_tot [rad]
create_jumbo_slave lr_self_wake_on symplectify y1_limit [m]
crunch [rad] lr_wake taylor_map_includes_offsets y2_limit [m]
crunch_calib [rad] lr_wake_file tilt [rad] y_dispersion_calib [m]
csr_ds_step [m] mat6_calc_method tilt_calib [rad] y_dispersion_err [m]
csr_method n_sample tilt_tot [rad] y_gain_calib [m]
de_eta_meas noise tracking_method y_gain_err [m]
delta_ref_time [sec] num_steps type y_limit [m]
descrip offset [m] vkick y_offset [m]
ds_step [m] offset_moves_aperture wall y_offset_calib [m]
e_tot [eV] osc_amplitude [m] wrap_superimpose y_offset_tot [m]
ele_origin p0c [eV] x1_limit [m] y_pitch [rad]
field_calc ptc_integration_type x2_limit [m] y_pitch_tot [rad]
field_overlaps ref_origin x_dispersion_calib [m] z_offset [m]
fringe_at ref_time_start [sec] x_dispersion_err [m] z_offset_tot [m]
fringe_type reference x_gain_calib [m]
hkick space_charge_method x_gain_err [m]

15.31 Kicker Element Attributes

a0 - a20, b0 - b20 fringe_type ptc_integration_type vkick
alias gen_grad_map r0_elec [m] wall
aperture [m] grid_field r0_mag [m] wrap_superimpose
aperture_at h_displace [m] ref_origin x1_limit [m]
aperture_type hkick ref_time_start [sec] x2_limit [m]
bl_hkick [T*m] integrator_order reference x_limit [m]
bl_vkick [T*m] is_on scale_multipoles x_offset [m]
cartesian_map l [m] space_charge_method x_offset_tot [m]
create_jumbo_slave lord_pad1 [m] spin_fringe_on x_pitch [rad]
csr_ds_step [m] lord_pad2 [m] spin_tracking_method x_pitch_tot [rad]
csr_method lr_freq_spread [Hz] sr_wake y1_limit [m]
cylindrical_map lr_self_wake_on sr_wake_file y2_limit [m]
delta_ref_time [sec] lr_wake static_linear_map y_limit [m]
descrip lr_wake_file superimpose y_offset [m]
ds_step [m] mat6_calc_method symplectify y_offset_tot [m]
e_tot [eV] multipoles_on taylor_map_includes_offsets y_pitch [rad]
ele_origin num_steps tilt [rad] y_pitch_tot [rad]
field_calc offset [m] tilt_tot [rad] z_offset [m]
field_master offset_moves_aperture tracking_method z_offset_tot [m]
field_overlaps p0c [eV] type
fringe_at ptc_canonical_coords v_displace [m3]
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15.32 Kickers: Hkicker and Vkicker Element Attributes

a0 - a20, b0 - b20 fringe_at p0c [eV] type
alias fringe_type ptc_canonical_coords wall
aperture [m] gen_grad_map ptc_integration_type wrap_superimpose
aperture_at grid_field ref_origin x1_limit [m]
aperture_type integrator_order ref_time_start [sec] x2_limit [m]
bl_kick [T*m] is_on reference x_limit [m]
cartesian_map kick scale_multipoles x_offset [m]
create_jumbo_slave l [m] space_charge_method x_offset_tot [m]
csr_ds_step [m] lord_pad1 [m] spin_fringe_on x_pitch [rad]
csr_method lord_pad2 [m] spin_tracking_method x_pitch_tot [rad]
cylindrical_map lr_freq_spread [Hz] sr_wake y1_limit [m]
delta_ref_time [sec] lr_self_wake_on sr_wake_file y2_limit [m]
descrip lr_wake static_linear_map y_limit [m]
ds_step [m] lr_wake_file superimpose y_offset [m]
e_tot [eV] mat6_calc_method symplectify y_offset_tot [m]
ele_origin multipoles_on taylor_map_includes_offsets y_pitch [rad]
field_calc num_steps tilt [rad] y_pitch_tot [rad]
field_master offset [m] tilt_tot [rad] z_offset [m]
field_overlaps offset_moves_aperture tracking_method z_offset_tot [m]
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15.33 Lcavity Element Attributes

alias field_autoscale num_steps tilt_tot [rad]
aperture [m] field_calc offset [m] tracking_method
aperture_at field_master offset_moves_aperture type
aperture_type field_overlaps p0c [eV] vkick
autoscale_amplitude fringe_at p0c_start [eV] voltage [Volt]
autoscale_phase fringe_type phi0 [rad/2pi] voltage_err [Volt]
bl_hkick [T*m] gen_grad_map phi0_autoscale [rad/2pi] voltage_tot [Volt]
bl_vkick [T*m] gradient [eV/m] phi0_err [rad/2pi] wall
cartesian_map gradient_err [eV/m] phi0_multipass [rad/2pi] wrap_superimpose
cavity_type gradient_tot [eV/m] ptc_integration_type x1_limit [m]
coupler_angle [rad] grid_field ref_origin x2_limit [m]
coupler_at hkick ref_time_start [sec] x_limit [m]
coupler_phase [rad/2pi] integrator_order reference x_offset [m]
coupler_strength is_on rf_frequency [Hz] x_offset_tot [m]
create_jumbo_slave l [m] rf_wavelength [m] x_pitch [rad]
csr_ds_step [m] l_active [m] space_charge_method x_pitch_tot [rad]
csr_method longitudinal_mode spin_fringe_on y1_limit [m]
cylindrical_map lord_pad1 [m] spin_tracking_method y2_limit [m]
delta_ref_time [sec] lord_pad2 [m] sr_wake y_limit [m]
descrip lr_freq_spread [Hz] sr_wake_file y_offset [m]
ds_step [m] lr_self_wake_on static_linear_map y_offset_tot [m]
e_loss [eV] lr_wake superimpose y_pitch [rad]
e_tot [eV] lr_wake_file symplectify y_pitch_tot [rad]
e_tot_start [eV] mat6_calc_method taylor_map_includes_offsets z_offset [m]
ele_origin n_cell tilt [rad] z_offset_tot [m]

15.34 Lens Element Attributes

alias mat6_calc_method tilt [rad] x_pitch [rad]
aperture [m] offset [m] tilt_tot [rad] x_pitch_tot [rad]
aperture_at offset_moves_aperture tracking_method y1_limit [m]
aperture_type p0c [eV] type y2_limit [m]
create_jumbo_slave ptc_integration_type wall y_limit [m]
delta_ref_time [sec] radius [m] wrap_superimpose y_offset [m]
descrip ref_origin x1_limit [m] y_offset_tot [m]
e_tot [eV] ref_time_start [sec] x2_limit [m] y_pitch [rad]
ele_origin reference x_limit [m] y_pitch_tot [rad]
focal_strength [1/m] spin_tracking_method x_offset [m] z_offset [m]
l [m] superimpose x_offset_tot [m] z_offset_tot [m]
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15.35 Line Statement Attributes

alpha_a e_tot_start [eV] mode_flip spin_dn_dpz_x
alpha_b eta_x [m] p0c [eV] spin_dn_dpz_y
beta_a [m] eta_y [m] p0c_start [eV] spin_dn_dpz_z
beta_b [m] eta_z [m] particle theta_position [rad]
cmat_11 etap_x phi_a [rad] x_position [m]
cmat_12 etap_y phi_b [rad] y_position [m]
cmat_21 geometry phi_position [rad] z_position [m]
cmat_22 high_energy_space_charge_on psi_position [rad]
default_tracking_species inherit_from_fork ref_time [sec]
e_tot [eV] live_branch s [m]

15.36 Marker Element Attributes

alias lr_wake_file tilt [rad] x_pitch [rad]
aperture [m] mat6_calc_method tilt_calib [rad] x_pitch_tot [rad]
aperture_at n_sample tilt_tot [rad] y1_limit [m]
aperture_type noise tracking_method y2_limit [m]
create_jumbo_slave offset [m] type y_dispersion_calib [m]
crunch [rad] offset_moves_aperture wall y_dispersion_err [m]
crunch_calib [rad] osc_amplitude [m] wrap_superimpose y_gain_calib [m]
de_eta_meas p0c [eV] x1_limit [m] y_gain_err [m]
delta_ref_time [sec] ptc_integration_type x2_limit [m] y_limit [m]
descrip ref_origin x_dispersion_calib [m] y_offset [m]
e_tot [eV] ref_species x_dispersion_err [m] y_offset_calib [m]
ele_origin ref_time_start [sec] x_gain_calib [m] y_offset_tot [m]
is_on reference x_gain_err [m] y_pitch [rad]
l [m] spin_tracking_method x_limit [m] y_pitch_tot [rad]
lr_freq_spread [Hz] sr_wake x_offset [m] z_offset [m]
lr_self_wake_on sr_wake_file x_offset_calib [m] z_offset_tot [m]
lr_wake superimpose x_offset_tot [m]

15.37 Mask Element Attributes

alias mode tilt_tot [rad] y1_limit [m]
aperture [m] offset [m] tracking_method y2_limit [m]
aperture_at offset_moves_aperture type y_limit [m]
aperture_type p0c [eV] wall y_offset [m]
create_jumbo_slave ptc_integration_type wrap_superimpose y_offset_tot [m]
delta_ref_time [sec] ref_origin x1_limit [m] y_pitch [rad]
descrip ref_time_start [sec] x2_limit [m] y_pitch_tot [rad]
e_tot [eV] ref_wavelength [m] x_limit [m] z_offset [m]
ele_origin reference x_offset [m] z_offset_tot [m]
field_scale_factor spin_tracking_method x_offset_tot [m]
is_on superimpose x_pitch [rad]
mat6_calc_method tilt [rad] x_pitch_tot [rad]
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15.38 Match Element Attributes

alias c22_mat1 l [m] spin_tracking_method
alpha_a0 create_jumbo_slave mat6_calc_method spin_tracking_model
alpha_a1 delta_ref_time [sec] matrix superimpose
alpha_b0 delta_time [sec] mode_flip0 tracking_method
alpha_b1 descrip mode_flip1 type
aperture [m] dphi_a [rad] offset [m] wrap_superimpose
aperture_at dphi_b [rad] offset_moves_aperture x0 [m]
aperture_type e_tot [eV] p0c [eV] x1 [m]
beta_a0 [m] ele_origin ptc_integration_type x1_limit [m]
beta_a1 [m] eta_x0 [m] px0 x2_limit [m]
beta_b0 [m] eta_x1 [m] px1 x_limit [m]
beta_b1 [m] eta_y0 [m] py0 y0 [m]
c11_mat0 eta_y1 [m] py1 y1 [m]
c11_mat1 etap_x0 pz0 y1_limit [m]
c12_mat0 [m] etap_x1 pz1 y2_limit [m]
c12_mat1 [m] etap_y0 recalc y_limit [m]
c21_mat0 [1/m] etap_y1 ref_origin z0 [m]
c21_mat1 [1/m] is_on ref_time_start [sec] z1 [m]
c22_mat0 kick0 reference

15.39 Mirror Element Attributes

alias elliptical_curvature_z [1/m] segmented x_offset_tot [m]
aperture [m] graze_angle [rad] spherical_curvature [1/m] x_pitch [rad]
aperture_at l [m] spin_tracking_method x_pitch_tot [rad]
aperture_type mat6_calc_method superimpose y1_limit [m]
create_jumbo_slave offset [m] tilt [rad] y2_limit [m]
critical_angle [rad] offset_moves_aperture tilt_tot [rad] y_limit [m]
curvature p0c [eV] tracking_method y_offset [m]
curvature_x0_y2 [1/m] ptc_integration_type type y_offset_tot [m]
delta_ref_time [sec] ref_origin use_reflectivity_table y_pitch [rad]
descrip ref_tilt [rad] wall y_pitch_tot [rad]
displacement ref_tilt_tot [rad] wrap_superimpose z_offset [m]
e_tot [eV] ref_time_start [sec] x1_limit [m] z_offset_tot [m]
ele_origin ref_wavelength [m] x2_limit [m]
elliptical_curvature_x [1/m] reference x_limit [m]
elliptical_curvature_y [1/m] reflectivity_table x_offset [m]
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15.40 Multilayer_Mirror Element Attributes

alias elliptical_curvature_y [1/m] ref_wavelength [m] x2_limit [m]
aperture [m] elliptical_curvature_z [1/m] reference x_limit [m]
aperture_at graze_angle [rad] segmented x_offset [m]
aperture_type l [m] spherical_curvature [1/m] x_offset_tot [m]
create_jumbo_slave mat6_calc_method spin_tracking_method x_pitch [rad]
curvature material_type superimpose x_pitch_tot [rad]
curvature_x0_y2 [1/m] n_cell tilt [rad] y1_limit [m]
d1_thickness [m] offset [m] tilt_tot [rad] y2_limit [m]
d2_thickness [m] offset_moves_aperture tracking_method y_limit [m]
delta_ref_time [sec] p0c [eV] type y_offset [m]
descrip ptc_integration_type v1_unitcell [m3] y_offset_tot [m]
displacement ref_origin v2_unitcell [m3] y_pitch [rad]
e_tot [eV] ref_tilt [rad] wall y_pitch_tot [rad]
ele_origin ref_tilt_tot [rad] wrap_superimpose z_offset [m]
elliptical_curvature_x [1/m] ref_time_start [sec] x1_limit [m] z_offset_tot [m]

15.41 Multipole Element Attributes

alias k0l - k20l, t0 - t20 superimpose x_offset_tot [m]
aperture [m] l [m] tilt [rad] y1_limit [m]
aperture_at mat6_calc_method tilt_tot [rad] y2_limit [m]
aperture_type offset [m] tracking_method y_limit [m]
create_jumbo_slave offset_moves_aperture type y_offset [m]
delta_ref_time [sec] p0c [eV] wall y_offset_tot [m]
descrip ptc_integration_type wrap_superimpose z_offset [m]
e_tot [eV] ref_origin x1_limit [m] z_offset_tot [m]
ele_origin ref_time_start [sec] x2_limit [m]
field_master reference x_limit [m]
is_on spin_tracking_method x_offset [m]
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15.42 Octupole Element Attributes

a0 - a20, b0 - b20 fringe_at ptc_canonical_coords vkick
alias fringe_type ptc_integration_type wall
aperture [m] gen_grad_map r0_elec [m] wrap_superimpose
aperture_at grid_field r0_mag [m] x1_limit [m]
aperture_type hkick ref_origin x2_limit [m]
b3_gradient [T/m3] integrator_order ref_time_start [sec] x_limit [m]
bl_hkick [T*m] is_on reference x_offset [m]
bl_vkick [T*m] k3 [1/m4] scale_multipoles x_offset_tot [m]
cartesian_map l [m] space_charge_method x_pitch [rad]
create_jumbo_slave lord_pad1 [m] spin_fringe_on x_pitch_tot [rad]
csr_ds_step [m] lord_pad2 [m] spin_tracking_method y1_limit [m]
csr_method lr_freq_spread [Hz] sr_wake y2_limit [m]
cylindrical_map lr_self_wake_on sr_wake_file y_limit [m]
delta_ref_time [sec] lr_wake static_linear_map y_offset [m]
descrip lr_wake_file superimpose y_offset_tot [m]
ds_step [m] mat6_calc_method symplectify y_pitch [rad]
e_tot [eV] multipoles_on taylor_map_includes_offsets y_pitch_tot [rad]
ele_origin num_steps tilt [rad] z_offset [m]
field_calc offset [m] tilt_tot [rad] z_offset_tot [m]
field_master offset_moves_aperture tracking_method
field_overlaps p0c [eV] type

15.43 Overlay Element Attributes

alias interpolation type y_knot
descrip is_on var
gang slave x_knot

15.44 Parameter Statement Attributes

absolute_time_tracking high_energy_space_charge_on n_part ptc_exact_misalign
default_tracking_species lattice no_end_marker ptc_exact_model
e_tot [eV] lattice_type p0c [eV] ran_seed
electric_dipole_moment live_branch particle taylor_order
geometry machine photon_type
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15.45 Particle_Start Statement Attributes

e_photon [eV] field_y pz spin_z
emittance_a [m*rad] phase_x [rad] sig_pz t [sec]
emittance_b [m*rad] phase_y [rad] sig_z [m] x [m]
emittance_z [m*rad] px spin_x y [m]
field_x py spin_y z [m]

15.46 Patch Element Attributes

alias e_tot_start [eV] ref_origin wrap_superimpose
aperture [m] ele_origin ref_time_start [sec] x1_limit [m]
aperture_at field_calc reference x2_limit [m]
aperture_type flexible space_charge_method x_limit [m]
create_jumbo_slave l [m] spin_tracking_method x_offset [m]
csr_ds_step [m] mat6_calc_method superimpose x_pitch [rad]
csr_method offset [m] t_offset [sec] y1_limit [m]
delta_ref_time [sec] offset_moves_aperture tilt [rad] y2_limit [m]
descrip p0c [eV] tracking_method y_limit [m]
downstream_ele_dir p0c_set [eV] type y_offset [m]
e_tot [eV] p0c_start [eV] upstream_ele_dir y_pitch [rad]
e_tot_offset [eV] ptc_integration_type user_sets_length z_offset [m]
e_tot_set [eV] ref_coords wall

15.47 Photon_Init Element Attributes

alias energy_distribution sig_vx [m/s] x1_limit [m]
aperture [m] energy_probability_curve sig_vy [m/s] x2_limit [m]
aperture_at l [m] sig_x [m] x_limit [m]
aperture_type mat6_calc_method sig_y [m] x_offset [m]
create_jumbo_slave offset [m] sig_z [m] x_offset_tot [m]
delta_ref_time [sec] offset_moves_aperture spatial_distribution x_pitch [rad]
descrip p0c [eV] spin_tracking_method x_pitch_tot [rad]
ds_slice [m] physical_source superimpose y1_limit [m]
e2_center [eV] ptc_integration_type tilt [rad] y2_limit [m]
e2_probability ref_origin tilt_tot [rad] y_limit [m]
e_center [eV] ref_time_start [sec] tracking_method y_offset [m]
e_center_relative_to_ref ref_wavelength [m] transverse_sigma_cut y_offset_tot [m]
e_field_x [V/m] reference type y_pitch [rad]
e_field_y [V/m] scale_field_to_one velocity_distribution y_pitch_tot [rad]
e_tot [eV] sig_e [eV] wall z_offset [m]
ele_origin sig_e2 [eV] wrap_superimpose z_offset_tot [m]



15.48. PICKUP ELEMENT ATTRIBUTES 301

15.48 Pickup Element Attributes

alias mat6_calc_method tilt_tot [rad] y1_limit [m]
aperture [m] num_steps tracking_method y2_limit [m]
aperture_at offset [m] type y_limit [m]
aperture_type offset_moves_aperture wall y_offset [m]
create_jumbo_slave p0c [eV] wrap_superimpose y_offset_tot [m]
delta_ref_time [sec] ptc_integration_type x1_limit [m] y_pitch [rad]
descrip ref_origin x2_limit [m] y_pitch_tot [rad]
ds_step [m] ref_time_start [sec] x_limit [m] z_offset [m]
e_tot [eV] reference x_offset [m] z_offset_tot [m]
ele_origin spin_tracking_method x_offset_tot [m]
is_on superimpose x_pitch [rad]
l [m] tilt [rad] x_pitch_tot [rad]

15.49 Quadrupole Element Attributes

a0 - a20, b0 - b20 fq1 [m] offset_moves_aperture tracking_method
alias fq2 [m] p0c [eV] type
aperture [m] fringe_at ptc_canonical_coords vkick
aperture_at fringe_type ptc_integration_type wall
aperture_type gen_grad_map r0_elec [m] wrap_superimpose
b1_gradient [T/m] grid_field r0_mag [m] x1_limit [m]
bl_hkick [T*m] hkick ref_origin x2_limit [m]
bl_vkick [T*m] integrator_order ref_time_start [sec] x_limit [m]
cartesian_map is_on reference x_offset [m]
create_jumbo_slave k1 [1/m2] scale_multipoles x_offset_tot [m]
csr_ds_step [m] l [m] space_charge_method x_pitch [rad]
csr_method lord_pad1 [m] spin_fringe_on x_pitch_tot [rad]
cylindrical_map lord_pad2 [m] spin_tracking_method y1_limit [m]
delta_ref_time [sec] lr_freq_spread [Hz] sr_wake y2_limit [m]
descrip lr_self_wake_on sr_wake_file y_limit [m]
ds_step [m] lr_wake static_linear_map y_offset [m]
e_tot [eV] lr_wake_file superimpose y_offset_tot [m]
ele_origin mat6_calc_method symplectify y_pitch [rad]
field_calc multipoles_on taylor_map_includes_offsets y_pitch_tot [rad]
field_master num_steps tilt [rad] z_offset [m]
field_overlaps offset [m] tilt_tot [rad] z_offset_tot [m]
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15.50 RFCavity Element Attributes

alias field_calc offset [m] type
aperture [m] field_overlaps offset_moves_aperture vkick
aperture_at fringe_at p0c [eV] voltage [Volt]
aperture_type fringe_type phi0 [rad/2pi] wall
autoscale_amplitude gen_grad_map phi0_autoscale [rad/2pi] wrap_superimpose
autoscale_phase gradient [eV/m] phi0_multipass [rad/2pi] x1_limit [m]
bl_hkick [T*m] grid_field ptc_integration_type x2_limit [m]
bl_vkick [T*m] harmon ref_origin x_limit [m]
cartesian_map harmon_master ref_time_start [sec] x_offset [m]
cavity_type hkick reference x_offset_tot [m]
coupler_angle [rad] integrator_order rf_frequency [Hz] x_pitch [rad]
coupler_at is_on rf_wavelength [m] x_pitch_tot [rad]
coupler_phase [rad/2pi] l [m] space_charge_method y1_limit [m]
coupler_strength l_active [m] spin_fringe_on y2_limit [m]
create_jumbo_slave longitudinal_mode spin_tracking_method y_limit [m]
csr_ds_step [m] lord_pad1 [m] sr_wake y_offset [m]
csr_method lord_pad2 [m] sr_wake_file y_offset_tot [m]
cylindrical_map lr_freq_spread [Hz] static_linear_map y_pitch [rad]
delta_ref_time [sec] lr_self_wake_on superimpose y_pitch_tot [rad]
descrip lr_wake symplectify z_offset [m]
ds_step [m] lr_wake_file taylor_map_includes_offsets z_offset_tot [m]
e_tot [eV] mat6_calc_method tilt [rad]
ele_origin n_cell tilt_tot [rad]
field_autoscale num_steps tracking_method
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15.51 RF_Bend Element Attributes

alias g [1/m] phi0 [rad/2pi] tracking_method
angle [rad] grid_field phi0_multipass [rad/2pi] type
aperture [m] harmon ptc_integration_type vkick
aperture_at harmon_master ref_origin wall
aperture_type hkick ref_tilt [rad] wrap_superimpose
b_field [T] integrator_order ref_tilt_tot [rad] x1_limit [m]
bl_hkick [T*m] is_on ref_time_start [sec] x2_limit [m]
bl_vkick [T*m] l [m] reference x_limit [m]
create_jumbo_slave l_chord [m] rf_frequency [Hz] x_offset [m]
csr_ds_step [m] l_rectangle [m] rf_wavelength [m] x_offset_tot [m]
csr_method l_sagitta [m] rho [m] x_pitch [rad]
delta_ref_time [sec] lord_pad1 [m] roll [rad] x_pitch_tot [rad]
descrip lord_pad2 [m] roll_tot [rad] y1_limit [m]
ds_step [m] lr_freq_spread [Hz] space_charge_method y2_limit [m]
e_tot [eV] lr_self_wake_on spin_fringe_on y_limit [m]
ele_origin lr_wake spin_tracking_method y_offset [m]
fiducial_pt lr_wake_file sr_wake y_offset_tot [m]
field_calc mat6_calc_method sr_wake_file y_pitch [rad]
field_master num_steps static_linear_map y_pitch_tot [rad]
field_overlaps offset [m] superimpose z_offset [m]
fringe_at offset_moves_aperture symplectify z_offset_tot [m]
fringe_type p0c [eV] taylor_map_includes_offsets

15.52 Ramper Element Attributes

alias is_on var
descrip slave x_knot
interpolation type y_knot
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15.53 Sad_Mult Element Attributes

a0 - a20, b0 - b20 fb2 [m] ref_origin x2_limit [m]
alias field_calc ref_time_start [sec] x_limit [m]
aperture [m] fq1 [m] reference x_offset [m]
aperture_at fq2 [m] rho [m] x_offset_mult [m]
aperture_type fringe_at space_charge_method x_offset_tot [m]
bs_field [T] fringe_type spin_fringe_on x_pitch [rad]
create_jumbo_slave integrator_order spin_tracking_method x_pitch_tot [rad]
csr_ds_step [m] is_on static_linear_map y1_limit [m]
csr_method ks [1/m] superimpose y2_limit [m]
delta_ref_time [sec] l [m] symplectify y_limit [m]
descrip lord_pad1 [m] taylor_map_includes_offsets y_offset [m]
ds_step [m] lord_pad2 [m] tilt [rad] y_offset_mult [m]
e1 [rad] mat6_calc_method tilt_tot [rad] y_offset_tot [m]
e2 [rad] num_steps tracking_method y_pitch [rad]
e_tot [eV] offset [m] type y_pitch_tot [rad]
ele_origin offset_moves_aperture wall z_offset [m]
eps_step_scale [m] p0c [eV] wrap_superimpose z_offset_tot [m]
fb1 [m] ptc_integration_type x1_limit [m]

15.54 Sample Element Attributes

alias elliptical_curvature_y [1/m] segmented x_offset [m]
aperture [m] elliptical_curvature_z [1/m] spherical_curvature [1/m] x_offset_tot [m]
aperture_at l [m] spin_tracking_method x_pitch [rad]
aperture_type mat6_calc_method superimpose x_pitch_tot [rad]
create_jumbo_slave material_type tilt [rad] y1_limit [m]
curvature mode tilt_tot [rad] y2_limit [m]
curvature_x0_y2 [1/m] offset [m] tracking_method y_limit [m]
delta_ref_time [sec] offset_moves_aperture type y_offset [m]
descrip p0c [eV] wall y_offset_tot [m]
displacement ptc_integration_type wrap_superimpose y_pitch [rad]
e_tot [eV] ref_origin x1_limit [m] y_pitch_tot [rad]
ele_origin ref_time_start [sec] x2_limit [m] z_offset [m]
elliptical_curvature_x [1/m] reference x_limit [m] z_offset_tot [m]
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15.55 Sextupole Element Attributes

a0 - a20, b0 - b20 fringe_at ptc_canonical_coords vkick
alias fringe_type ptc_integration_type wall
aperture [m] gen_grad_map r0_elec [m] wrap_superimpose
aperture_at grid_field r0_mag [m] x1_limit [m]
aperture_type hkick ref_origin x2_limit [m]
b2_gradient [T/m2] integrator_order ref_time_start [sec] x_limit [m]
bl_hkick [T*m] is_on reference x_offset [m]
bl_vkick [T*m] k2 [1/m3] scale_multipoles x_offset_tot [m]
cartesian_map l [m] space_charge_method x_pitch [rad]
create_jumbo_slave lord_pad1 [m] spin_fringe_on x_pitch_tot [rad]
csr_ds_step [m] lord_pad2 [m] spin_tracking_method y1_limit [m]
csr_method lr_freq_spread [Hz] sr_wake y2_limit [m]
cylindrical_map lr_self_wake_on sr_wake_file y_limit [m]
delta_ref_time [sec] lr_wake static_linear_map y_offset [m]
descrip lr_wake_file superimpose y_offset_tot [m]
ds_step [m] mat6_calc_method symplectify y_pitch [rad]
e_tot [eV] multipoles_on taylor_map_includes_offsets y_pitch_tot [rad]
ele_origin num_steps tilt [rad] z_offset [m]
field_calc offset [m] tilt_tot [rad] z_offset_tot [m]
field_master offset_moves_aperture tracking_method
field_overlaps p0c [eV] type

15.56 Sol_Quad Element Attributes

a0 - a20, b0 - b20 field_overlaps offset_moves_aperture tracking_method
alias fringe_at p0c [eV] type
aperture [m] fringe_type ptc_canonical_coords vkick
aperture_at gen_grad_map ptc_integration_type wall
aperture_type grid_field r0_elec [m] wrap_superimpose
b1_gradient [T/m] hkick r0_mag [m] x1_limit [m]
bl_hkick [T*m] integrator_order ref_origin x2_limit [m]
bl_vkick [T*m] is_on ref_time_start [sec] x_limit [m]
bs_field [T] k1 [1/m2] reference x_offset [m]
cartesian_map ks [1/m] scale_multipoles x_offset_tot [m]
create_jumbo_slave l [m] space_charge_method x_pitch [rad]
csr_ds_step [m] lord_pad1 [m] spin_fringe_on x_pitch_tot [rad]
csr_method lord_pad2 [m] spin_tracking_method y1_limit [m]
cylindrical_map lr_freq_spread [Hz] sr_wake y2_limit [m]
delta_ref_time [sec] lr_self_wake_on sr_wake_file y_limit [m]
descrip lr_wake static_linear_map y_offset [m]
ds_step [m] lr_wake_file superimpose y_offset_tot [m]
e_tot [eV] mat6_calc_method symplectify y_pitch [rad]
ele_origin multipoles_on taylor_map_includes_offsets y_pitch_tot [rad]
field_calc num_steps tilt [rad] z_offset [m]
field_master offset [m] tilt_tot [rad] z_offset_tot [m]
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15.57 Solenoid Element Attributes

a0 - a20, b0 - b20 fringe_at p0c [eV] tracking_method
alias fringe_type ptc_canonical_coords type
aperture [m] gen_grad_map ptc_integration_type vkick
aperture_at grid_field r0_elec [m] wall
aperture_type hkick r0_mag [m] wrap_superimpose
bl_hkick [T*m] integrator_order r_solenoid [m] x1_limit [m]
bl_vkick [T*m] is_on ref_origin x2_limit [m]
bs_field [T] ks [1/m] ref_time_start [sec] x_limit [m]
cartesian_map l [m] reference x_offset [m]
create_jumbo_slave l_soft_edge [m] scale_multipoles x_offset_tot [m]
csr_ds_step [m] lord_pad1 [m] space_charge_method x_pitch [rad]
csr_method lord_pad2 [m] spin_fringe_on x_pitch_tot [rad]
cylindrical_map lr_freq_spread [Hz] spin_tracking_method y1_limit [m]
delta_ref_time [sec] lr_self_wake_on sr_wake y2_limit [m]
descrip lr_wake sr_wake_file y_limit [m]
ds_step [m] lr_wake_file static_linear_map y_offset [m]
e_tot [eV] mat6_calc_method superimpose y_offset_tot [m]
ele_origin multipoles_on symplectify y_pitch [rad]
field_calc num_steps taylor_map_includes_offsets y_pitch_tot [rad]
field_master offset [m] tilt [rad] z_offset [m]
field_overlaps offset_moves_aperture tilt_tot [rad] z_offset_tot [m]

15.58 Taylor Element Attributes

alias mat6_calc_method symplectify x_pitch [rad]
aperture [m] offset [m] taylor_map_includes_offsets x_pitch_tot [rad]
aperture_at offset_moves_aperture tilt [rad] x_ref [m]
aperture_type p0c [eV] tilt_tot [rad] y1_limit [m]
create_jumbo_slave ptc_integration_type tracking_method y2_limit [m]
delta_e_ref [eV] px_ref tt<out><n1><n2>... y_limit [m]
delta_ref_time [sec] py_ref type y_offset [m]
descrip pz_ref wall y_offset_tot [m]
e_tot [eV] ref_orbit wrap_superimpose y_pitch [rad]
ele_origin ref_origin x1_limit [m] y_pitch_tot [rad]
is_on ref_time_start [sec] x2_limit [m] y_ref [m]
l [m] reference x_limit [m] z_offset [m]
lord_pad1 [m] spin_tracking_method x_offset [m] z_offset_tot [m]
lord_pad2 [m] superimpose x_offset_tot [m] z_ref [m]
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15.59 Thick_Multipole Element Attributes

a0 - a20, b0 - b20 fringe_at ptc_canonical_coords wall
alias fringe_type ptc_integration_type wrap_superimpose
aperture [m] gen_grad_map ref_origin x1_limit [m]
aperture_at grid_field ref_time_start [sec] x2_limit [m]
aperture_type hkick reference x_limit [m]
bl_hkick [T*m] integrator_order scale_multipoles x_offset [m]
bl_vkick [T*m] is_on space_charge_method x_offset_tot [m]
cartesian_map l [m] spin_fringe_on x_pitch [rad]
create_jumbo_slave lord_pad1 [m] spin_tracking_method x_pitch_tot [rad]
csr_ds_step [m] lord_pad2 [m] sr_wake y1_limit [m]
csr_method lr_freq_spread [Hz] sr_wake_file y2_limit [m]
cylindrical_map lr_self_wake_on static_linear_map y_limit [m]
delta_ref_time [sec] lr_wake superimpose y_offset [m]
descrip lr_wake_file symplectify y_offset_tot [m]
ds_step [m] mat6_calc_method taylor_map_includes_offsets y_pitch [rad]
e_tot [eV] multipoles_on tilt [rad] y_pitch_tot [rad]
ele_origin num_steps tilt_tot [rad] z_offset [m]
field_calc offset [m] tracking_method z_offset_tot [m]
field_master offset_moves_aperture type
field_overlaps p0c [eV] vkick

15.60 Wiggler and Undulator Element Attributes

a0 - a20, b0 - b20 g_max [1/m] osc_amplitude [m] tracking_method
alias gen_grad_map p0c [eV] type
aperture [m] grid_field polarity vkick
aperture_at hkick ptc_canonical_coords wall
aperture_type integrator_order ptc_integration_type wrap_superimpose
b_max [T] is_on r0_elec [m] x1_limit [m]
bl_hkick [T*m] k1x [1/m2] r0_mag [m] x2_limit [m]
bl_vkick [T*m] k1y [1/m2] ref_origin x_limit [m]
cartesian_map kx [1/m] ref_time_start [sec] x_offset [m]
create_jumbo_slave l [m] reference x_offset_tot [m]
csr_ds_step [m] l_period [m] scale_multipoles x_pitch [rad]
csr_method lord_pad1 [m] space_charge_method x_pitch_tot [rad]
cylindrical_map lord_pad2 [m] spin_fringe_on y1_limit [m]
delta_ref_time [sec] lr_freq_spread [Hz] spin_tracking_method y2_limit [m]
descrip lr_self_wake_on sr_wake y_limit [m]
ds_step [m] lr_wake sr_wake_file y_offset [m]
e_tot [eV] lr_wake_file static_linear_map y_offset_tot [m]
ele_origin mat6_calc_method superimpose y_pitch [rad]
field_calc multipoles_on symplectify y_pitch_tot [rad]
field_master n_period taylor_map_includes_offsets z_offset [m]
field_overlaps num_steps term z_offset_tot [m]
fringe_at offset [m] tilt [rad]
fringe_type offset_moves_aperture tilt_tot [rad]
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Chapter 16

Coordinates
Bmad uses three coordinate systems as illustrated in Fig. 16.1. First, the global (also called “floor”)
coordinates are independent of the accelerator. Thus such things as the building the accelerator is in
may be described using global coordinates.

It is not convenient to describe the position of the beam using the global coordinate system so a “local”
coordinate system is used (§16.1). This curvilinear coordinate system defines the nominal position of
the lattice elements. The relationship between the local and global coordinate systems is described
in §16.2.

The “nominal” position of a lattice element is the position of the element without what are called
“misalignments” (that is, position and orientation shifts). Each lattice element has “element body”
coordinates which are attached to the physical element. That is, the electric and magnetic fields of an
element are described with respect to element coordinates. If there are no misalignments, the element
coordinates are aligned with the local coordinates. The transformation between local and element
coordinates is given in §16.3.

When discussing local vs element coordinates, it can be less confusing to use the name “laboratory”
cordinates instead of local coordinates. The x = y = 0 curved line of the laboratory coordinate system
is known as the “reference orbit”.

s

x
X

Z

Global (”floor”) coordinates

Local coordinate system
a.k.a. The laboratory coords

x

z

Nominal element
position

Element body
coordinates

Actual element
position

Reference orbit

Figure 16.1: The three coordinate systems used by Bmad: The global (or “floor”) coordinate system
is independent of the accelerator. The local curvilinear coordinate system follows the bends of the
accelerator. Each lattice element has element body coordinates which, if the element is not “misaligned”
is the same as the local coordinates. The x = y = 0 curved line of the laboratory coordinate system is
known as the “reference orbit”.
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16.1 Laboratory Coordinates and Reference Orbit

16.1.1 The Reference Orbit

The local reference orbit is the curved path used to define a coordinate system for describing a
particle’s position as shown in Fig. 16.2. The reference orbit is also used for orientating lattice elements
in space. At a given time t, a particle’s position can be described by a point O on the reference orbit a
distance s relative to the reference orbit’s zero position plus a transverse (x, y) offset. The point O on
the reference orbit is used as the origin of the local (x, y, z) coordinate system with the z–axis tangent
to the reference orbit. The z–axis will generally be pointing in the direction of increasing s (Fig. 16.2A)
but, as discussed below, will point counter to s for elements that are reversed (Fig. 16.2B). The x and
y–axes are perpendicular to the reference orbit and, by construction, the particle is always at z = 0.
The coordinate system so constructed is called the “local coordinate system” or sometimes the
“laboratory coordinate system” when there is need to distinguish it from the “element coordinate
system” (§16) which is attached to the physical element. There is a separate reference orbit for each
branch (§2.2) of a lattice.

Notice that, in a wiggler, the reference orbit, which is a straight line, does not correspond to the orbit
that any actual particle could travel. Typically the physical element is centered with respect to the
reference curve. However, by specifying offsets, pitches or a tilt (See §5.6), the physical element may
be arbitrarily shifted with respect to its reference curve. Shifting a physical magnet with respect to its
reference curve generally means that the reference curve does not correspond to the orbit that any actual
particle could travel.

Do not confuse this reference orbit (which defines the local coordinate system) with the reference orbit
about which the transfer maps are calculated (§35.2). The former is fixed by the lattice while the latter
can be any arbitrary orbit.

Reference
Orbit

Actual
Orbit

Center of
Curvature

x

y
z

s

|g| = 1/ρ

s = 0

Particle

Reference
Particle

A) Normal B) Reversed

Reference
Orbit

Actual
Orbit Center of

Curvature

x

y
z

s

|g| = 1/ρ

s = 0

Particle

Reference
Particle

O O

Figure 16.2: The local reference coordinate system. By construction, a particle’s z coordinate is zero.
This is not to be confused with the phase space z coordinate (§16.4.2). The curvature vector g lies in
the x-y plane and has a magnitude of 1/ρ where ρ is the bending radius. A) The z-axis will normally
be parallel to the s-axis. B) For reversed elements it will be antiparallel. In both cases, the particle
and reference particle are traveling in the direction of greater s.
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Figure 16.3: Lattice elements can be imagined as “LEGO blocks” which fit together to form the reference
orbit along with the laboratory coordinate system. How elements join together is determined in part by
their entrance and exit coordinate frames. A) For straight line elements the entrance and exit frames are
colinear. B) For bends elements, the two frames are rotated with respect to each other. C) For patch
and floor_shift elements the exit frame may be arbitrarily positioned with respect to the entrance
frame.

16.1.2 Element Entrance and Exit Coordinates

One way of thinking about the reference orbit and the laboratory coordinates is to imagine that each
element is like a LEGO block with an “entrance” and an “exit” coordinate frame as illustrated in
Fig. 16.31. These coordinate frames are attached to the element. that is, things like electric and
magnetic fields, apertures, etc., are described with respect to the entrance and exit coordinates. Thus,
for example, the e1 edge of a bend (§4.5) is always at the entrance face and the e2 is always at the
exit face. Most elements have a “straight” geometry as shown in Fig. 16.3A. That is, the reference
orbit through the element is a straight line segment with the x and y axes always pointing in the same
direction. For a bend element (§4.5), the reference orbit is a segment of a circular arc as shown in
Fig. 16.3B. With the ref_tilt parameter of a bend set to zero, the rotation axis between the entrance
and exit frames is parallel to the y-axis (§16.2). For patch (§4.41), and floor_shift (§4.20) elements,
the exit face can can arbitrarily oriented with respect to the entrance end. In this case, the reference
orbit between the entrance and exit faces is not defined.

16.1.3 Reference Orbit and Laboratory Coordinates Construction

Assuming for the moment that there are no fiducial elements present, the construction of the reference
orbit starts at the beginning_ele element (§4.4) at the start of a branch. If the branch is a root branch
(§2.3), The orientation of the beginning element within the global coordinate system (§16) can be set
via the appropriate positioning statements (§10.4). If the branch is not a root branch, the position of
the beginning element is determined by the position of the fork or photon_fork element from which
the branch forks from. Unless set otherwise in the lattice file, s = 0 at the beginning_ele element.

If there are fiducial elements, the laboratory coordinates are constructed beginning at these elements.

Once the beginning element in a branch is positioned, succeeding elements are concatenated together to
form the laboratory coordinates. All elements have an “upstream” and a “downstream” end as shown
in Fig. 16.4A. The downstream end of an element is always farther (at greater s) from the beginning
element than the upstream end of the element. Particles travel in the +s direction, so particles will
enter an element at the upstream end and exit at the downstream end.

1Thanks to Dan Abell for this analogy.
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Figure 16.4: A) The laboratory coordinates are constructed by connecting the downstream reference
frame of one element with the upstream reference frame of the next element in the branch. Coordinates
shown is for the mating of element A to element B. B) Example with drift element dft followed by a
bend bnd. Both elements are unreversed. C) Similar to (B) but in this case element bnd is reversed.
D) Similar to (C) but in this case a reflection patch has been added in between dft and bnd. In (B),
(C), and (D) the (x, z) coordinates are drawn at the entrance end of the elements. The y coordinate is
always out of the page.

Normally, the upstream end is the element’s entrance end (Fig. 16.3) and the downstream end is the
element’s exit exit. This corresponds to particles entering at the entrance end and exiting the element
at the exit end. However, if an element is reversed (§7.4), the element’s exit end will be upstream end
and the element’s entrance end will be the downstream end. That is, for a reversed element, particles
will enter at the element’s exit end and will exit at the entrance end.

The procedure to connect elements together to form the laboratory coordinates is to mate the down-
stream reference frame of the element with the upstream reference frame of the next element in the
branch so that, without misalignments, the (x, y, z) axes coincide2. This is illustrated in Fig. 16.4.
Fig. 16.4A shows the general situation with the downstream frame of element A mated to the upstream
frame of element B. Figures 16.4B-C show branches constructed from the following lattice file:

DFT: drift, l = 2
BND: sbend, l = 2, g = pi/12
P: patch, x_pitch = pi ! Reflection patch.
B_line: line = (DFT, BND) ! No reversal.
C_line: line = (DFT, --BND) ! Illegal. Do not use!
D_line: line = (DFT, P, --BND) ! Valid.

The (x, z) coordinates are drawn at the entrance end of the elements and z will always point towards
the element’s exit end. Fig. 16.4B shows the branch constructed from B_line containing an unreversed
drift named dft connected to an unreversed bend named bnd. Fig. 16.4C shows the branch constructed
from C_line. This is like B_line except here element bnd is reversed. This gives an unphysical situation
since a particle traveling through dft will “fall off” when it gets to the end. Fig. 16.4D shows the
branch constructed from D_line. Here a “reflection” patch P (§16.2.6) has been added to get a
plausible geometry. The patch rotates the coordinate system around the y-axis by 180◦(leaving the
y-axis invariant). It is always the case that a reflection patch is needed between reversed and unreversed
elements

2If there are misalignments, the entrance and exit frames will move with the element. However, the upstream and
downstream frames, along with the reference orbit and laboratory coordinates, will not move.
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Figure 16.5: The local reference coordinates in a patch element. The patch element, shown schematically
as an irregular quadrilateral, is sandwiched between elements ele_a and ele_b. L is the length of the
patch. In this example, the patch has a finite x_pitch.

Notes:

• If the first element after the beginning_ele element at the start of a branch is reversed, the
beginning_ele element will be marked as reversed so that a reflection patch is not needed in this
circumstance.

• Irrespective of whether elements are reversed or not, the laboratory (x, y, z) coordinate system at
all s-positions will always be a right-handed coordinate system.

• Care must be take when using reversed elements. For example, if the field of the bnd element in
B_line is appropriate for, say, electrons, that is, electrons will be bent in a clockwise fashion going
through bnd, then an electron going through D_line will be lost in the bend (the y-axis and hence
the field is in the same direction for both cases so electrons will still be bent in a clockwise fashion
but with D_line a particle needs to be bent counterclockwise to get through the bend). To get a
particle through the bend, positrons must be used.

• A reflection patch that rotated the coordinates, for example, around the x-axis by 180◦(by setting
y_pitch to pi) would also produce a plausible geometry.

16.1.4 Patch Element Local Coordinates

Generally, if a particle is reasonably near the reference orbit, there is a one-to-one mapping between
the particle’s position and (x, y, s) coordinates. A patch (§4.41) elements with a non-zero x_pitch or
non-zero y_pitch breaks the one-to-one mapping. This is illustrated in Fig. 16.5. The patch element,
shown schematically as an, irregular quadrilateral, is sandwiched between elements ele_a and ele_b.
The local coordinate system with origin at α are the coordinates at the end of ele_a. The coordinates at
the end of the patch has its origin labeled γ. By convention, the length of the patch L is taken to be the
longitudinal distance from α to γ with the patch’s exit coordinates defining the longitudinal direction.
The “beginning” point of the patch on the reference orbit a distance L from point γ is labeled β in the
figure.
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In the local (x, y, s) coordinate system a particle at α will have some value s = s0. A particle at point
β will have the same value s = s0 and a particle at γ will have s = s1 = s0 + L. A particle at point ra
in Fig. 16.5 illustrates the problem of assigning (x, y, s) coordinates to a given position. If the particle
is considered to be within the region of ele_a, the particle’s s position will be sa2 which is greater
than the value s0 at the exit end of the element. This contradicts the expectation that particles within
ele_a will have s ≤ s0. If, on the other hand, the particle is considered to be within the patch region,
the particle’s s position will be sa1 which is less than the value s0 at the entrance to the patch. This
contradicts the expectation that a particles within the patch will have s ≥ s0.

To resolve this problem, Bmad considers a particle at position ra to be within the patch region. This
means that there is, in theory, no lower limit to the s-position that a particle in the patch region can
have. This also implies that there is a discontinuity in the s-position of a particle crossing the exit face
of ele1. Typically, when particles are translated from the exit face of one element to the exit face of the
next, this patch problem does not appear. It only appears when the track between faces is considered.

Notice that a particle at position rb in Fig. 16.5 can simultaneously be considered to be in either ele_a
or the patch. While this creates an ambiguity it does not complicate tracking.

16.2 Global Coordinates

The Cartesian global coordinate system, also called the ‘floor” coordinate system, is the coordinate
system “attached to the earth” that is used to describe the local coordinate system. Following the
MAD convention, the global coordinate axis are labeled (X,Y, Z). Conventionally, Y is the “vertical”
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Figure 16.6: The local (reference) coordinate system (purple), which is a function of s along the reference
orbit, is described in the global coordinate system (black) by a position (X(s), Y (s), Z(s)) and and by
angles θ(s), ϕ(s), and ψ(s).
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coordinate and (X,Z) are the “horizontal” coordinates. To describe how the local coordinate system is
oriented within the global coordinate system, each point on the s-axis of the local coordinate system
is characterized by its (X,Y, Z) position and by three angles θ(s), ϕ(s), and ψ(s) that describe the
orientation of the local coordinate axes as shown in Fig. 16.6. These three angles are defined as follows:

θ(s) Azimuth (yaw) angle: Angle in the (X,Z) plane between the Z–axis and the projection of the
z–axis onto the (X,Z) plane. Corresponds to the x_pitch element attribute (§5.6). A positive
angle of θ = π/2 corresponds to the projected z–axis pointing in the positive X direction.

ϕ(s) Pitch (elevation) angle: Angle between the z–axis and the (X,Z) plane. Corresponds to the
y_pitch element attribute (§5.6). A positive angle of ϕ = π/2 corresponds to the z–axis pointing
in the positive Y direction.

ψ(s) Roll angle: Angle of the x–axis with respect to the line formed by the intersection of the (X,Z)
plane with the (x, y) plane. Corresponds to the tilt element attribute (§5.6). A positive ψ forms
a right–handed screw with the z–axis.

By default, at s = 0, the reference orbit’s origin coincides with the (X,Y, Z) origin and the x, y, and z
axes correspond to the X, Y , and Z axes respectively. If the lattice has no vertical bends (the ref_tilt
parameter (§4.5) of all bends are zero), the y–axis will always be in the vertical Y direction and the
x–axis will lie in the horizontal (X,Z) plane. In this case, θ decreases as one follows the reference orbit
when going through a horizontal bend with a positive bending angle. This corresponds to x pointing
radially outward. Without any vertical bends, the Y and y axes will coincide, and ϕ and ψ will both be
zero. The beginning statement (§10.4) in a lattice file can be use to override these defaults.

Following MAD, the global position of an element is characterized by a vector V

V =

Ñ
X
Y
Z

é
(16.1)

The orientation of an element is described by a unitary rotation matrix W. The column vectors of W
are the unit vectors spanning the local coordinate axes in the order (x, y, z). W can be expressed in
terms of the orientation angles θ, ϕ, and ψ via the formula

W = Ry(θ) R−x(ϕ) Rz(ψ) (16.2)

=

Ñ
cos θ cosψ − sin θ sinϕ sinψ − cos θ sinψ − sin θ sinϕ cosψ sin θ cosϕ

cosϕ sinψ cosϕ cosψ sinϕ
− cos θ sinϕ sinψ − sin θ cosψ sin θ sinψ − cos θ sinϕ cosψ cos θ cosϕ

é
where

Ry(θ) =

Ñ
cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

é
, R−x(ϕ) =

Ñ
1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

é
, Rz(ψ) =

Ñ
cosψ − sinψ 0
sinψ cosψ 0
0 0 1

é
(16.3)

Notice that R−x(ϕ), for positive ϕ, represents a rotation around the negative x-axis. Also notice that
these are Tait-Bryan angles and not Euler angles.

An alternative representation of the W matrix (or any other rotation matrix) is to specify the axis u
(normalized to 1) and angle of rotation β

W =

Ñ
cosβ + u2x (1− cosβ) ux uy (1− cosβ)− uz sinβ ux uz (1− cosβ) + uy sinβ

uy ux (1− cosβ) + uz sinβ cosβ + u2y (1− cosβ) uy uz (1− cosβ)− ux sinβ
uz ux (1− cosβ)− uy sinβ uz uy (1− cosβ) + ux sinβ cosβ + u2z (1− cosβ)

é
(16.4)
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Figure 16.7: A) Rotation axes (bold arrows) for four different ref_tilt angles of θt = 0, ±π/2, and π.
(x0, y0, z0) are the local coordinates at the entrance end of the bend with the z0 axis being directed into
the page. Any rotation axis will be displaced by a distance of the bend radius rho from the origin. B)
The (x, y, z) coordinates at the exit end of the bend for the same four ref_tilt angles. In this case the
bend angle is taken to be π/2.

16.2.1 Lattice Element Positioning

Bmad, again following MAD, computes V and W by starting at the first element of the lattice and
iteratively using the equations

Vi = Wi−1 Li +Vi−1, (16.5)
Wi = Wi−1 Si (16.6)

Li is the displacement vector for the ith element and matrix Si is the rotation of the local reference system
of the exit end with respect to the entrance end. For clarity, the subscript i in the equations below will
be dripped. For all elements whose reference orbit through them is a straight line, the corresponding L
and S are

L =

Ñ
0
0
L

é
, S =

Ñ
1 0 0
0 1 0
0 0 1

é
, (16.7)

Where L is the length of the element.

For a bend, the axis of rotation is dependent upon the bend’s ref_tilt angle (§5.6) as shown in
Fig. 16.7A. The axis of rotation points in the negative y0 direction for ref_tilt = 0 and is offset by
the bend radius rho. Here (x0, y0, z0) are the local coordinates at the entrance end of the bend with
the z0 axis being directed into the page in the figure. For a non-zero ref_tilt, the rotation axis is
itself rotated about the z0 axis by the value of ref_tilt. Fig. 16.7B shows the exit coordinates for four
different values of ref_tilt and for a bend angle angle of π/2. Notice that for a bend in the horizontal
X − Z plane, a positive bend angle will result in a decreasing azimuth angle θ.

For a bend, S is given using Eq. (16.4) with

u = (− sin θt,− cos θt, 0)

β = αb (16.8)

where θt is the ref_tilt angle. The L vector for a bend is given by

L = Rz(θt) L̃, L̃ =

Ñ
ρ(cosαb − 1)

0
ρ sinαb

é
(16.9)
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Figure 16.8: Mirror and crystal geometry. The geometry shown here is appropriate for a ref_tilt angle
of θt = 0. θg is the bend angle of the incoming (entrance) ray, and αb is the total bend angle of the
reference trajectory. A) Geometry for a mirror or a Bragg crystal. Point O is the origin of both the local
coordinates just before and just after the reflection/diffraction. B) Geometry for a Laue crystal. Point
Oout is the origin of the coordinates just after diffraction is displaced from the origin Oin just before
diffraction due to the finite thickness of the crystal. here the bend angles are measured with respect to
the line that is in the plane of the entrance and exit coordinates and perpendicular to the surface. For
Laue diffraction, the user has the option of using the undiffracted beam (shown in red) as the reference
trajectory.

where αb is the bend angle (§4.5) and ρ being the bend radius (rho). Notice that since u is perpendicular
to z, the curvilinear reference coordinate system has no “torsion”. That is, it is a Frenet-Serret coordinate
system.

Note: An alternative equation for S for a bend is

S = Rz(θt) Ry(−αb) Rz(−θt) (16.10)

The bend transformation above is so constructed that the transformation is equivalent to rotating the
local coordinate system around an axis that is perpendicular to the plane of the bend. This rotation
axis is invariant under the bend transformation. For example, for θt = 0 (or π) the y-axis is the rotation
axis and the y-axis of the local coordinates before the bend will be parallel to the y-axis of the local
coordinates after the bend as shown in Fig. 16.7. That is, a lattice with only bends with θt = 0 or π will
lie in the horizontal plane (this assuming that the y-axis starts out pointing along the Y -axis as it does
by default). For θt = ±π/2, the bend axis is the x-axis. A value of θt = +π/2 represents a downward
pointing bend.

16.2.2 Position Transformation When Transforming Coordinates

A point Qg = (X,Y, Z) defined in the global coordinate system, when expressed in the coordinate system
defined by (V,W) is

QVW = W−1 (Qg −V) (16.11)

This is essentially the inverse of Eq. (16.5). That is, vectors propagate inversely to the propagation of
the coordinate system.

Using Eq. (16.11) with Eqs. (16.5), and (16.6), the transformation of a particle’s position q = (x, y, z)
and momentum P = (Px, Py, Pz) when the coordinate frame is transformed from frame (Vi−1,Wi−1)
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to frame (Vi,Wi) is

qi = S−1
i (qi−1 − Li) , (16.12)

Pi = S−1
i Pi−1 (16.13)

Notice that since S (and W) is the product of orthogonal rotation matrices, S is itself orthogonal and
its inverse is just the transpose

S−1 = ST (16.14)

16.2.3 Crystal and Mirror Element Coordinate Transformation

A crystal element (§4.35) diffracts photons and a mirror element (§4.35) reflects them. For a crystal
setup for Bragg diffraction, and for a mirror, the reference orbit is modeled as a zero length bend with
L̃ = (0, 0, 0), as shown in Fig. 16.8A. Shown in the figure is the geometry appropriate for a ref_tilt
angle of θt = 0 (the rotation axis is here the y-axis). Since the mirror or crystal element is modeled to
be of zero length, the origin points (marked O in the figure) of the entrance and exit local coordinates
are the same. For Laue diffraction, the only difference is that L̃ is non-zero due to the finite thickness of
the crystal as shown in Fig. 16.8B. This results in a separation between the entrance coordinate origin
Oin and the exit coordinate origin Oout.

In all cases, the total bending angle is

αb = bragg_angle_in + bragg_angle_out ! Crystal, graze_angle_in = 0

αb = graze_angle_in + graze_angle_out ! Crystal, graze_angle_in ̸= 0

αb = 2 graze_angle ! Mirror (16.15)

With a mirror or Bragg diffraction, the bend angles are measured with respect to the surface plane. With
Laue diffraction the bend angles are measured with respect to the line in the bend plane perpendicular
to the surface.

For Laue diffraction, the user has the option of using the undiffracted beam (shown in red) as the
reference trajectory.

The orientation of the exit coordinates (the local coordinates after the reflection) are only affected by
the element’s ref_tilt and bend angle parameters and is independent of all other parameters such as
the radius of curvature of the surface, etc. The local z-axis of the entrance coordinates along with the
z-axis of the exit coordinates define a plane which is called the element’s bend plane. For a mirror,
the graze angle is a parameter supplied by the user. For a crystal, the Bragg angles are calculated so
that the reference trajectory is in the middle of the Darwin curve. Calculation of the Bragg angles for
a crystal is given in Section §26.4.1.

16.2.4 Patch and Floor_Shift Elements Entrance to Exit Transformation

For patch (§4.41) and floor_shift (§4.20) elements, the shift in the exit end reference coordinates is
given by Eqs. (16.5) and (16.6) with

L =

Ñ
x_offset
y_offset
z_offset

é
S = Ry(x_pitch) R−x(y_pitch) Rz(tilt) (16.16)
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The difference here between patch and floor_shift elements is that, with a patch element, the shift is
relative to the exit end of the previous element while, for a floor_shift element, the shift is relative to
the reference point on the origin element specified by the origin_ele parameter of the floor_shift.

16.2.5 Fiducial and Girder Elements Origin Shift Transformation

For fiducial and girder elements, the alignment of the reference coordinates with respect to “origin”
coordinates is analogous to Eqs. (16.16). Explicitly:

L =

Ñ
dx_origin
dy_origin
dz_origin

é
S = Ry(dtheta_origin) R−x(dphi_origin) Rz(dpsi_origin) (16.17)

16.2.6 Reflection Patch

A Patch (or a series of patches) that reflects the direction of the z-axis is called a reflection patch.
By “reflected direction” it is meant that the dot product z1 · z2 is negative where z1 is the z-axis vector
at the entrance face and z2 is the z-axis vector at the exit face. This condition is equivalent to the
condition that the associated S matrix (see Eq. (16.16)) satisfy:

S(3, 3) < 0 (16.18)

Using Eq. (16.16) gives, after some simple algebra, this condition is equivalent to

cos(x_pitch) cos(y_pitch) < 0 (16.19)

When there are a series of patches, The transformations of all the patches are concatenated together to
form an effective S which can then be used with Eq. (16.18).

16.3 Transformation Between Laboratory and Element Body Co-
ordinates

The element body coordinates are the coordinate system attached to an element. Without any misalign-
ments, where “misalignments” are here defined to be any offset, pitch or tilt (§5.6), the laboratory
coordinates (§16.1.1) and element body coordinates are the same. With misalignments, the transfor-
mation between laboratory and element body coordinates depends upon whether the local coordinate
system is straight (§16.3.1) or bent (§16.3.2).

When tracking a particle through an element, the particle starts at the nominal (§16) upstream end of
the element with the particle’s position expressed in laboratory coordinates. Tracking from the nominal
upstream end to the actual upstream face of the element involves first transforming to element body
coordinates (with s = 0 in the equations below) and then propagating the particle as in a field free drift
space from the particle’s starting position to the actual element face. Depending upon the element’s
orientation, this tracking may involve tracking backwards. Similarly, after a particle has been tracked
through the physical element to the actual downstream face, the tracking to the nominal downstream
end involves transforming to laboratory coordinates (using s = L in the equations below) and then
propagating the particle as in a field free drift space to the nominal downstream edge.
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16.3.1 Straight Element Misalignment Transformation

For straight line elements, given a laboratory coordinate frame Λs with origin a distance s from the
beginning of the element, misalignments will shift the coordinates to a new reference frame denoted Es.
Since misalignments are defined with respect to the middle of the element, the transformation between
Λs and Es is a three step process:

Λs −→ Λmid −→ Emid −→ Es (16.20)

where Λmid and Emid are the laboratory and element reference frames at the center of the element.

The first and last transformations from Λs to Λmid and from Emid to Es use Eqs. (16.5), (16.6), and
(16.7) with the replacement L → L/2 − s for the first transformation and L → s − L/2 for the third
transformation. The middle transformation, by definition of the offset, pitch and tilt parameters is

L =

Ñ
x_offset
y_offset
z_offset

é
S = Ry(x_pitch) R−x(y_pitch) Rz(tilt) (16.21)

Notice that with this definition of how elements are misaligned, the position of the center of a non-bend
misaligned element depends only on the offsets, and is independent of the pitches and tilt.

16.3.2 Bend Element Misalignment Transformation

For rbend and sbend elements there is no tilt attribute. Rather, there is the roll attribute and a
ref_tilt attribute. The latter affects both the reference orbit and the bend position (§5.6.3). Further-
more, ref_tilt is calculated with respect to the coordinates at the beginning of the bend while, like
straight elements, roll, offsets, and pitches are calculated with respect to the center of the bend. The
different reference frame used for ref_tilt versus everything else means that five transformations are
needed to get from the laboratory frame to the element body frame (see Eq. (16.20)). Symbolically:

Λs −→ Λmid −→ Ωmid −→ Ω0 −→ E0 −→ Es (16.22)

The first transformation, Λs to Λmid, from laboratory coordinates at a distance s from the beginning of
the element to laboratory coordinates at the center the bend is a rotation around the center of curvature
of the bend and is given by Eqs. (16.5) and (16.6) with Eqs. (16.8) and (16.9) with the substitution
αb → (L/2− s)/ρ.

The second transformation Λmid to Ωmid at the center of the element adds in the misalignments (Note
that the coordinate frame Ωmid is neither a laboratory frame or an element frame so hence the use of a
different symbol Ω). Explicitly, the Λmid −→ Ωmid transformation is

L = Loff + [Rz(roll)− 1] Rz(θt) Ry(αb/2) Lc

S = Ry(x_pitch) R−x(y_pitch) Rz(roll) (16.23)

where

Lc =

Ñ
ρ(cos(αb/2)− 1)

0
ρ sin(αb/2)

é
, Loff =

Ñ
x_offset
y_offset
z_offset

é
(16.24)

The reason why L has a different form from straight line elements is due to the fact that the axis of
rotation for a roll is displaced from the z-axis of the coordinate system at the center of the bend (see
Fig. 5.3).
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The third transformation from Ωmid to Ω0 is like the first transformation and rotates from the center of
the bend to the beginning. Again Eqs. (16.8) and (16.9) are used with the substitution αb → −L/2ρ.

The fourth transformation Ω0 to E0 tilts the reference frame by an amount ref_tilt:

L = 0, S = Rz(θt) (16.25)

The fifth and final transformation, E0 to Es, like the first and third, rotates around the center of the
bend but in this case, since we are dealing with element coordinates, the ref_tilt is ignored. That is,
Eqs. (16.8) and (16.9) are used with the substitutions θt → 0 and αb → L/ρ.

Notice that with this definition of how elements are misaligned, the position of the center of a misaligned
element depends only on the offsets and roll, and is independent of the pitches and tilt. Also the
orientation of an element depends only on the pitches roll, and ref_tilt, and is independent of the
offsets.

16.4 Phase Space Coordinates

16.4.1 Reference Particle, Reference Energy, and Reference Time

The reference energy and reference time are needed in evaluating the phase space coordinates of
charged particles (§16.4.2).

All lattice elements, except for controller elements, have an associated reference energy energy. The
reference energy at the start of a lattice’s root branch (§2.2) is set in the lattice file by setting the
reference momentum (p0c) or total energy (E_tot) using a parameter (§10.1) or beginning (§10.4)
statement. For other branches, the energy at the start of the branch is set using the appropriate line
parameter (§10.4) statement.

Note that the reference momentum p0c is actually the reference momentum times the speed of light so
that the reference momentum has the same unit (eV) as the reference energy.

For most elements, the reference energy is the same as the reference energy of the proceeding element.
The following elements are exceptions:

custom
em_field
hybrid
lcavity
patch

The reference energy of these elements is determined by tracking a particle (the “reference particle”)
through the element with the particle starting on the reference orbit and whose energy is equal to
the reference energy. The energy of the particle at the downstream end is the reference energy of the
element. Note: Tracking through an element to determine the reference energy is always done with
the element turned on independent of the setting of the element’s is_on (§5.14) parameter. Reference
energy tracking is also done ignoring any orientation attributes (§5.6) and errors like voltage_err.

Besides the reference energy, lattice elements have an associated reference time which is computed,
for most elements, by the time-of-flight of the reference particle assuming that the reference particle
is following the reference orbit. Exceptions are wiggler elements which uses the time-of-flight of the
actual undulating trajectory. [Actually what is used in the computation of the z phase space coordinate
(Eq. (16.28)) is the sum of reference time deltas of the elements that a particle has passed through. It
is not possible to assign a unique reference time to an element when particles are recirculating through
elements as in a storage ring.]
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Figure 16.9: Interpreting phase space z at constant velocity: A) The change in z going through an
element of length L0 is L0 − Lp. B) At constant time, z is the longitudinal distance between the
reference particle and the particle.

16.4.2 Charged Particle Phase Space Coordinates

For charged particles (more correctly, for everything but photons (§16.4.4)), Bmad uses the canonical
phase space coordinates

r(s) = (x, px, y, py, z, pz) (16.26)

The longitudinal position s is the independent variable instead of the time. x and y, are the transverse
coordinates of the particle as shown in Fig. 16.2A. Note that x and y are independent of the position of
the reference particle.

The phase space momenta px and py are normalized by the reference (sometimes called the design)
momentum P0

px =
Px
P0
, py =

Py
P0

(16.27)

where Px and Py are respectively the x and y momentums.

The phase space z coordinate is

z(s) = −β(s) c (t(s)− t0(s))
≡ −β(s) c∆t(s) (16.28)

t(s) is the time at which the particle is at position s, t0(s) is the time at which the reference particle is at
position s, and β is v/c with v being the particle velocity (and not the reference velocity). The reference
particle is, by definition, “synchronized” with elements whose fields are oscillating and therefore the
actual fields a particle will see when traveling through such an element will depend upon the particle’s
phase space z. For example, the energy change of a particle traveling through an lcavity (§4.30) or
rfcavity (§4.46) element is z dependent. Exception: With absolute time tracking (§25.1) fields are tied
to the absolute time and not z.

If the particle’s velocity is constant, and is the same as the velocity of the reference particle (for example,
at high energy where β = 1 for all particles), then β c t is just the path length. In this case, the change
in z going through an element is

∆z = L0 − Lp (16.29)

where, as shown in Fig. 16.9A, L0 is the path length of the reference particle (which is just the length
of the element) and Lp is the path length of the particle in traversing the element. Another way of
interpreting phase space z is that, at constant β, and constant time, z is the longitudinal distance
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between the particle and the reference particle as shown in Fig. 16.9B. with positive z indicating that
the particle is ahead of the reference particle.

Do not confuse the phase space z with the z that is the particle’s longitudinal coordinate in the local
reference frame as shown in Fig. 16.2. By construction, this latter z is always zero.

Notice that if a particle gets an instantaneous longitudinal kick so that β is discontinuous then, from
Eq. (16.28), phase space z is discontinuous even though the particle itself does not move in space. In
general, from Eq. (16.28), The value of z for a particle at s2 is related to the value of z for the particle
at s1 by

z2 =
β2
β1
z1 − β2 c (∆t2 −∆t1) (16.30)

∆t2 − ∆t1 can be interpreted as the difference in transit time, between the particle and the reference
particle, in going from s1 to s2.

The longitudinal phase space momentum pz is given by

pz =
∆P

P0
≡ P − P0

P0
(16.31)

where P is the momentum of the particle. For ultra–relativistic particles pz can be approximated by

pz =
∆E

E0
(16.32)

where E0 is the reference energy (energy here always refers to the total energy) and ∆E = E − E0

is the deviation of the particle’s energy from the reference energy. For an Lcavity element (§4.30) the
reference momentum is not constant so the tracking for an Lcavity is not canonical.

MAD uses a different coordinate system where (z, pz) is replaced by (−c∆t, pt) where pt ≡ ∆E/P0c.
For highly relativistic particles the two coordinate systems are identical.

The relationship, between the phase space momenta and the slopes x′ ≡ dx/ds and y′ ≡ dy/ds is

x′ =
px»

(1 + pz)2 − p2x − p2y
(1 + gx) (16.33)

y′ =
py»

(1 + pz)2 − p2x − p2y
(1 + gx) (16.34)

g = 1/ρ is the curvature function with ρ being the radius of curvature of the reference orbit and it has
been assumed that the bending is in the x–z plane.

With the paraxial approximation, and in the relativistic limit, the change in z with position is

dz

ds
= −g x− 1

2
(x′2 + y′2) (16.35)

This shows that in a linac, without any bends, the z of a particle always decreases.

A particle can also have a spin. The spin is characterized by the spinor Ψ = (ψ1, ψ2)
T where ψ1,2 are

complex numbers (§23.1).

16.4.3 Time-based Phase Space Coordinates

Some specialized routines (for example, time Runge Kutta tracking) use the time t as the independent
variable for charged particle tracking. This is useful when particles can reverse direction since the normal
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z based tracking cannot handle this. Direction reversal can happen, for example, with low energy “dark
current” electrons that are generated at the walls of the vacuum chamber.

When the tracking is time based the phase space coordinates are:

(x, c px, y, c py, z, c ps) (16.36)

The positions x, y, and z are the same as with phase space coordinates (§16.4.2). The momenta are
defined as

cpx ≡ mc2γβx
cpy ≡ mc2γβy (16.37)

cps ≡ mc2γβs,

and internally are stored in units of eV.

16.4.4 Photon Phase Space Coordinates

The phase space coordinates discussed above implicitly assume that particles are traveling longitudinally
in only one direction. That is, the sign of the s component of the momentum cannot be determined from
the phase space coordinates. This is generally fine for tracking high energy beams of charged particles
but for photon tracking this would oftentimes be problematical. For photons, therefore, a different phase
space is used:

(x, βx, y, βy, z, βz) (16.38)

Here (βx, βy, βz) is the normalized photon velocity with

β2
x + β2

y + β2
z = 1 (16.39)

and (x, y, z) are the reference orbit coordinates with z being the distance from the start of the lattice
element the photon is in.

In Bmad, the information associated with a photon include its phase space coordinates and time along
with the photon energy and four parameters Ex, ϕx, and Ey, ϕy specifying the intensity and phase of
the field along the x and y axes transverse to the direction of propagation. the field in the vicinity of
the photon is

Ex(r, t) ∼ Ex ei(k (z−z0)−ω (t−tref)+ϕx)

Ey(r, t) ∼ Ey ei(k (z−z0)−ω (t−tref)+ϕy) (16.40)

where z0 is the photon z position and and tref is the reference time.

The normalization between field and intensity is dependent upon the particular parameters of any given
simulation and so must be determined by the program using Bmad.
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Electromagnetic Fields

17.1 Magnetostatic Multipole Fields

Start with the assumption that the local magnetic field has no longitudinal component (obviously this
assumption does not work with, say, a solenoid). Following MAD, ignoring skew fields for the moment,
the vertical magnetic field along the y = 0 axis is expanded in a Taylor series

By(x, 0) =
∑
n

Bn
xn

n!
(17.1)

Assuming that the reference orbit is locally straight (there are correction terms if the reference orbit is
curved (§17.3)), the field is

Bx = B1y + B2 xy +
1

6
B3(3x

2y − y3) + . . .

By = B0 + B1x+
1

2
B2(x

2 − y2) + 1

6
B3(x

3 − 3xy2) + . . . (17.2)

The relation between the field Bn and the normalized field Kn is:

Kn ≡
q Bn
P0

(17.3)

where q is the charge of the reference particle (in units of the elementary charge), and P0 is the reference
momentum (in units of eV/c). Note that P0/q is sometimes written as Bρ. This is just an old notation
where ρ is the bending radius of a particle with the reference energy in a field of strength B. Notice that
P0 is the local reference momentum at the element which may not be the same as the reference energy
at the beginning of the lattice if there are lcavity elements (§4.30) present.

The kicks ∆px and ∆py that a particle experiences going through a multipole field is

∆px =
−q LBy
P0

(17.4)

= −K0L − K1Lx +
1

2
K2L(y

2 − x2) + 1

6
K3L(3xy

2 − x3) + . . .

∆py =
q LBx
P0

(17.5)

= K1Ly + K2Lxy +
1

6
K3L(3x

2y − y3) + . . .

327
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A positive K1L quadrupole component gives horizontal focusing and vertical defocusing. The general
form is

∆px =

∞∑
n=0

KnL

n!

2m≤n∑
m=0

Å
n
2m

ã
(−1)m+1 xn−2m y2m (17.6)

∆py =

∞∑
n=0

KnL

n!

2m≤n−1∑
m=0

Å
n

2m+ 1

ã
(−1)m xn−2m−1 y2m+1 (17.7)

where
(
a
b

)
(“a choose b”) denotes a binomial coefficient.

The above equations are for fields with a normal component only. If a given multipole field of order n
has normal Bn and skew Sn components and is rotated in the (x, y) plane by an angle Tn, the magnetic
field at a point (x, y) can be expressed in complex notation as

By(x, y) + iBx(x, y) =
1

n!
(Bn + iSn) e

−i(n+1)Tn einθ rn (17.8)

where (r, θ) are the polar coordinates of the point (x, y).

Note that, for compatibility with MAD, theK0L component of a Multipole element rotates the reference
orbit essentially acting as a zero length bend. This is not true for multipoles of any other type of element.

Instead of using magnitude Kn and rotation angle θn, Another representation is using normal ‹Kn and
skew S̃n. The conversion between the two are‹Kn = Kn cos((n+ 1)Tn)

S̃n = Kn sin((n+ 1)Tn) (17.9)

Another representation of the magnetic field used by Bmad divides the fields into normal bn and skew
an components. In terms of these components the magnetic field for the nth order multipole is

q L

P0
(By + iBx) = (bn + ian) (x+ iy)n (17.10)

The an, bn representation of multipole fields can be used in elements such as quadrupoles, sextupoles,
etc. to allow “error” fields to be represented. The conversion between (an, bn) and (KnL, SnL, Tn) is

bn + ian =
1

n!
(KnL+ i SnL) e

−i(n+1)Tn (17.11)

In the case where SnL = 0

KnL = n!
√
a2n + b2n (17.12)

tan[(n+ 1)Tn] =
−an
bn

(17.13)

To convert a normal magnet (a magnet with no skew component) into a skew magnet (a magnet with
no normal component) the magnet should be rotated about its longitudinal axis with a rotation angle of

(n+ 1)Tn =
π

2
(17.14)

For example, a normal quadrupole rotated by 45◦ becomes a skew quadrupole.

The multipole fields can be “reference energy” scaled and/or “element strength” scaled. Scaling
here means that the an and bn values used in tracking are scaled from the input values given in the
lattice file.
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Reference energy scaling is applied if the field_master attribute (§5.2) is True for an element so that
the multipole values specified in the lattice file are not reference energy normalized[

an, bn
]
−→

[
an, bn

]
· q
P0

(17.15)

Element strength scaling is applied when the multipoles are associated with a non AB_Multipole
element and if the scale_multipoles attribute (§5.15) is True. This scaling uses a measurement radius
r0 and a scale factor F : [

an, bn
]
−→

[
an, bn

]
· F · r

nref
0

rn0
(17.16)

r0 is set by the r0_mag attribute of an element. F and nref are set automatically depending upon the
type of element as shown in Table 17.1. The γp term is

Element F nref

Elseparator
√
Hkick2 + Vkick2 0

Hkicker Kick 0
Kicker,AC_Kicker

√
Hkick2 + Vkick2 0

Rbend G * L 0
Sbend G * L 0
Vkicker Kick 0

Wiggler 2 c L_poleBmax
π p0c 0

Quadrupole K1 * L 1
Sol_Quad K1 * L 1
Solenoid KS * L 1
Sextupole K2 * L 2
Octupole K3 * L 3

Table 17.1: F and nref for various elements.

17.2 Electrostatic Multipole Fields

Except for the elseparator element, Bmad specifies DC electric fields using normal ben and skew aen
components (§5.15). The potential ϕn for the nth order multipole is

ϕn = −Re

ï
ben − iaen
n+ 1

(x+ iy)n+1

rn0

ò
(17.17)

where r0 is a “measurement radius” set by the r0_elec attribute of an element (§5.15).

The electric field for the nth order multipole is

Ex − iEy = (ben − iaen)
(x+ iy)n

rn0
(17.18)

Notice that the magnetic multipole components an and bn are normalized by the element length, reference
charge, and reference momentum (Eq. (17.10)) while their electric counterparts are not.

Using the paraxial approximation, The kick given a particle due to the electric field is

dpx
ds

=
q Ex
β P0 c

,
dpy
ds

=
q Ey
β P0 c

(17.19)



330 CHAPTER 17. ELECTROMAGNETIC FIELDS

Where β is the normalized velocity.

17.3 Exact Multipole Fields in a Bend

For static magnetic and electric multipole fields in a bend, the spacial dependence of the field is different
from multipole fields in an element with a straight geometry as given by Eqs. (17.10) and (17.18). The
analysis of the multipole fields in a bend here follows McMillan[McMill75].

In the rest of this section, normalized coordinates r̃ = r/ρ, x̃/ = x/ρ, and ỹ = y/ρ will be used where
ρ is the bending radius of the reference coordinate system, r is the distance, in the plane of the bend,
from the bend center to the observation point, x is the distance in the plane of the from the reference
coordinates to the observation point and y is the distance out-of-plane. With this convention r̃ = 1+ x̃.

An electric or magnetic multipole can be characterized by a scalar potential ϕ with the field given by
−∇ϕ. The potential is a solution to Laplace’s equation

1

r̃

∂

∂ r̃

Å
r̃
∂ ϕ

∂ r̃

ã
+
∂2ϕ

∂ ỹ2
= 0 (17.20)

As McMillian shows, it is also possible to calculate the magnetic field by constructing the appropriate
vector potential. However, from a practical point of view, it is simpler to use the scalar potential for
both the magnetic and electric fields.

Solutions to Laplace’s equation can be found in form

ϕrn =
−1

1 + n

2p≤n+1∑
p=0

Å
n+ 1
2 p

ã
(−1)p Fn+1−2p(r̃) ỹ

2p (17.21)

and in the form

ϕin =
−1

1 + n

2p≤n∑
p=0

Å
n+ 1
2p+ 1

ã
(−1)p Fn−2p(r̃) ỹ

2p+1 (17.22)

where
(
a
b

)
(“a choose b”) denotes a binomial coefficient, and n is the order number which can range from

0 to infinity.1

In Eq. (17.22) the Fp(r̃) are related by

Fp+2 = (p+ 1) (p+ 2)

∫ r̃

1

dr̃

r̃

ñ∫ r̃

1

dr̃ r̃ Fp

ô
(17.23)

with the “boundary condition”:

F0(r̃) = 1

F1(r̃) = ln r̃ (17.24)

This condition ensures that the number of terms in the sums in Eqs. (17.21) and (17.22) are finite. With

1Notice that here n is related to m in McMillian’s paper by m = n + 1. Also note that the ϕr and ϕi here have a
normalization factor that is different from McMillian.
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this condition, all the Fp can be constructed:

F1 = ln r̃ = x̃− 1

2
x̃2 +

1

3
x̃3 − . . .

F2 =
1

2
(r̃2 − 1)− ln r̃ = x̃2 − 1

3
x̃3 +

1

4
x̃4 − . . .

F3 =
3

2
[−(r̃2 − 1) + (r̃2 + 1) ln r̃] = x̃3 − 1

2
x̃4 +

7

20
x̃5 − . . . (17.25)

F4 = 3[
1

8
(r̃4 − 1) +

1

2
(r̃2 − 1)− (r̃2 +

1

2
) ln r̃] = x̃4 − 2

5
x̃5 +

3

10
x̃6 − . . .

Etc...

Evaluating these functions near x̃ = 0 using the exact r̃-dependent functions can be problematical due
to round off error. For example, Evaluating F4(r̃) at x̃ = 10−4 results in a complete loss of accuracy (no
significant digits!) when using double precision numbers. In practice, Bmad uses a Padé approximant
for x̃ small enough and then switches to the r̃-dependent formulas for x̃ away from zero.

For magnetic fields, the “real” ϕrn solutions will correspond to skew fields and the “imaginary” ϕin solutions
will correspond to normal fields

B = − P0

q L

∞∑
n=0

ρn
î
an ‹∇ϕrn + bn ‹∇ϕinó (17.26)

where the gradient derivatives of ‹∇ are with respect to the normalized coordinates. In the limit of
infinite bending radius ρ, the above equations converge to the straight line solution given in Eq. (17.10).

For electric fields, the “real” solutions will correspond to normal fields and the “imaginary” solutions are
used for skew fields

E = −
∞∑
n=0

ρn
î
aen ‹∇ϕin + ben ‹∇ϕrnó (17.27)

And this will converge to Eq. (17.18) in the straight line limit.

In the vertical plane, with x̃ = 0, the solutions ϕrn and ϕin have the same variation in ỹ as the multipole
fields with a straight geometry. For example, the field strength of an n = 1 (quadrupole) multipole
will be linear in ỹ for x̃ = 0. However, in the horizontal direction, with ỹ = 0, the multipole field will
vary like dF2/dx̃ which has terms of all orders in x̃. In light of this, the solutions ϕrn and ϕin are called
“vertically pure” solutions.

It is possible to construct “horizontally pure” solutions as well. That is, it is possible to construct
solutions that in the horizontal plane, with ỹ = 0, behave the same as the corresponding multipole fields
with a straight geometry. A straight forward way to do this, for some given multipole of order n, is
to construct the horizontally pure solutions, ψrn and ψin, as linear superpositions of the vertically pure
solutions

ψrn =

∞∑
k=n

Cnk ϕ
r
k, ψin =

∞∑
k=n

Dnk ϕ
i
k (17.28)

with the normalizations Cnn = Dnn = 1. The Cnk and Dnk are chosen, order by order, so that ψrn and
ψin are horizontally pure. For the real potentials, the Cnk, are obtained from a matrix M where Mij

is the coefficient of the x̃j term of (dFi/dx̃)/i when Fi is expressed as an expansion in x̃ (Eq. (17.25)).
Cnk, k = 0, . . . ,∞ are the row vectors of the inverse matrix M−1. For the imaginary potentials, the Dnk

are constructed similarly but in this case the rows of M are the coefficients in x̃ for the functions Fi. To
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convert between field strength coefficients, Eqs. (17.26) and (17.27) and Eqs. (17.28) are combined

an =

∞∑
k=n

1

ρk−n
Cnk αk, aen =

∞∑
k=n

1

ρk−n
Dnk αek,

bn =

∞∑
k=n

1

ρk−n
Dnk βk, ben =

∞∑
k=n

1

ρk−n
Dnk βek (17.29)

where αk, βk, αek, and βek are the corresponding coefficients for the horizontally pure solutions.

When expressed as a function of r̃ and ỹ, the vertically pure solutions ϕn have a finite number of terms
(Eqs. (17.21) and (17.22)). On the other hand, the horizontally pure solutions ψn have an infinite number
of terms.

The vertically pure solutions form a complete set. That is, any given field that satisfies Maxwell’s
equations and is independent of z can be expressed as a linear combination of ϕrn and ϕin. Similarly, the
horizontally pure solutions form a complete set. [It is, of course, possible to construct other complete
sets in which the basis functions are neither horizontally pure nor vertically pure.]

This brings up an important point. To properly simulate a machine, one must first of all understand
whether the multipole values that have been handed to you are for horizontally pure multipoles, vertically,
pure multipoles, or perhaps the values do not correspond to either horizontally pure nor vertically pure
solutions! Failure to understand this point can lead to differing results. For example, the chromaticity
induced by a horizontally pure quadrupole field will be different from the chromaticity of a vertically
pure quadrupole field of the same strength. With Bmad, the exact_multipoles (§4.5) attribute of a
bend is used to set whether multipole values are for vertically or horizontally pure solutions. [Note to
programmers: PTC always assumes coefficients correspond to horizontally pure solutions. The Bmad
PTC interface will convert coefficients as needed.]

17.4 Map Decomposition of Magnetic and Electric Fields

Electric and magnetic fields can be parameterized as the sum over a number of functions with each
function satisfying Maxwell’s equations. These functions are also referred to as “maps”, “modes”, or
“terms”. Bmad has three parameterizations:

Cartesian Map ! §17.5.
Cylindrical Map ! §17.6
Generalized Gradient Map ! §17.7

These parameterizations are three of the four field map parameterizations that Bmad defines §5.16.

The Cartesian map decomposition involves a set of terms, each term a solution the Laplace equation
solved using separation of variables in Cartesian coordinates. This decomposition can be used for DC but
not AC fields. See §17.5. for more details. The syntax for specifying the Cartesian map decomposition
is discussed in §5.16.2.

The cylindrical map decomposition can be used for both DC and AC fields. See §17.6 for more details.
The syntax for specifying the cylindrical map decomposition is discussed in §5.16.3.

The generalized gradient map start with the cylindrical map decomposition but then express the
field using coefficients derived from an expansion of the scalar potential in powers of the radius (§17.7).



17.5. CARTESIAN MAP FIELD DECOMPOSITION 333

17.5 Cartesian Map Field Decomposition

Electric and magnetic fields can be parameterized as the sum over a number of functions with each
function satisfying Maxwell’s equations. These functions are also referred to as “maps”, “modes”, or
“terms”. Bmad has two types. The “Cartesian” decomposition is explained here. The other type is the
cylindrical decomposition (§17.6).

The Cartesian decomposition implemented by Bmad involves a set of terms, each term a solution the
Laplace equation solved using separation of variables in Cartesian coordinates. This decomposition is
for DC electric or magnetic fields. No AC Cartesian Map decomposition is implemented by Bmad. In a
lattice file, a Cartesian map is specified using the cartesian_map attribute as explained in Sec. §5.16.2.

The Cartesian decomposition is modeled using an extension of the method of Sagan, Crittenden, and
Rubin[Sagan03]. In this decomposition, the magnetic(or electric field is written as a sum of terms Bi
(For concreteness the symbol Bi is used but the equations below pertain equally well to both electric
and magnetic fields) with:

B(x, y, z) =
∑
i

Bi(x, y, z;A, kx, ky, kz, x0, y0, ϕz, family) (17.30)

Each term Bi is specified using seven numbers (A, kx, ky, kz, x0, y0, ϕz) and a switch called family which
can be one of:

x, qu
y, sq

Roughly, taking the offsets x0 and y0 to be zero (see the equations below), the x family gives a field
on-axis where the y component of the field is zero. that is, the x family is useful for simulating, say,
magnetic vertical bend dipoles. The y family has a field that on-axis has no x component. The qu
family has a magnetic quadrupole like (which for electric fields is skew quadrupole like) field on-axis
and the sq family has a magnetic skew quadrupole like field on-axis. Additionally, assuming that the
x0 and y0 offsets are zero, the sq family, unlike the other three families, has a nonzero on-axis z field
component.

Each family has three possible forms These are designated as “hyper-y”, “hyper-xy”, and “hyper-x”.

For the x family the hyper-y form is:

Bx = A
kx
ky

cos(kx(x+ x0)) cosh(ky(y + y0)) cos(kzz + ϕz)

By = A sin(kx(x+ x0)) sinh(ky(y + y0)) cos(kzz + ϕz)

Bs = −A
kz
ky

sin(kx(x+ x0)) cosh(ky(y + y0)) sin(kzz + ϕz) (17.31)

with k2y = k2x + k2z

The x family hyper-xy form is:

Bx = A
kx
kz

cosh(kx(x+ x0)) cosh(ky(y + y0)) cos(kzz + ϕz)

By = A
ky
kz

sinh(kx(x+ x0)) sinh(ky(y + y0)) cos(kzz + ϕz)

Bs = −A sinh(kx(x+ x0)) cosh(ky(y + y0)) sin(kzz + ϕz) (17.32)

with k2z = k2x + k2y
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And the x family hyper-x form is:

Bx = A cosh(kx(x+ x0)) cos(ky(y + y0)) cos(kzz + ϕz)

By = −A ky
kx

sinh(kx(x+ x0)) sin(ky(y + y0)) cos(kzz + ϕz)

Bs = −A
kz
kx

sinh(kx(x+ x0)) cos(ky(y + y0)) sin(kzz + ϕz) (17.33)

with k2x = k2y + k2z

The relationship between kx, ky, and kz ensures that Maxwell’s equations are satisfied. Notice that
which form hyper-y, hyper-xy, and hyper-x a particular Bi belongs to can be computed by Bmad by
looking at the values of kx, ky, and kz.

Using a compact notation where Ch ≡ cosh, subscript x is kx(x+ x0), subscript z is kzz + ϕz, etc., the
y family of forms is:

Form hyper-y hyper-xy hyper-x

Bx −A kx
ky

Sx Shy Cz A
kx
kz

Shx Shy Cz A Shx Sy Cz

By A Cx Chy Cz A
ky
kz

Chx Chy Cz A
ky
kx

Chx Cy Cz (17.34)

Bz −A kz
ky

Cx Shy Sz −A Chx Shy Sz −A kz
kx

Chx Sy Sz

with k2y = k2x + k2z k2z = k2x + k2y k2x = k2y + k2z

the qu family of forms is:

Form hyper-y hyper-xy hyper-x

Bx A
kx
ky

Cx Shy Cz A
kx
kz

Chx Shy Cz A Chx Sy Cz

By A Sx Chy Cz A
ky
kz

Shx Chy Cz A
ky
kx

Shx Cy Cz (17.35)

Bz −A kz
ky

Sx Shy Sz −A Shx Shy Sz −A kz
kx

Shx Sy Sz

with k2y = k2x + k2z k2z = k2x + k2y k2x = k2y + k2z

the sq family of forms is:

Form hyper-y hyper-xy hyper-x

Bx −A kx
ky

Sx Chy Cz A
kx
kz

Shx Chy Cz −A Shx Cy Cz

By A Cx Shy Cz A
ky
kz

Chx Shy Cz A
ky
kx

Chx Sy Cz (17.36)

Bz −A kz
ky

Cx Chy Sz −A Chx Chy Sz A
kz
kx

Chx Cy Sz

with k2y = k2x + k2z k2z = k2x + k2y k2x = k2y + k2z

The singular case where kx = ky = kz = 0 is not allowed. If a uniform field is needed, a term with
very small kx, ky, and kz can be used. Notice that since ky must be non-zero for the hyper-y forms
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(remember, k2y = k2x + k2z for these forms and not all k’s can be zero), and kz must be non-zero for
the hyper-xy forms, and kx must be nonzero for the hyper-x forms. The magnetic field is always well
defined even if one of the k’s is zero.

Note: The vector potential for these fields is given in §25.24.

17.6 Cylindrical Map Decomposition

Electric and magnetic fields can be parameterized as the sum over a number of functions with each
function satisfying Maxwell’s equations. These functions are also referred to as “maps”, “modes”, or
“terms”. Bmad has two types. The “cylindrical” decomposition is explained here. The other type is
the Cartesian decomposition (§17.6).

In a lattice file, a cylindrical map is specified using the cylindrical_map attribute as explained in
Sec. §5.16.3.

The cylindrical decomposition takes one of two forms depending upon whether the fields are time
varying or not. The DC decomposition is explained in Sec. §17.6.1 while the RF decomposition is
explained in Sec. §17.6.2.

17.6.1 DC Cylindrical Map Decomposition

The DC cylindrical parametrization used by Bmad essentially follows Venturini et al.[Venturini98].
See Section §5.16 for details on the syntax used to cylindrical maps in Bmad. The electric and magnetic
fields are both described by a scalar potential2

B = −∇ψB , E = −∇ψE (17.37)

The scalar potentials both satisfy the Laplace equation ∇2 ψ = 0. The scalar potentials are decomposed
as a sum of modes indexed by an integer m

ψB = Re

[ ∞∑
m=0

ψBm

]
(17.38)

[Here and below, only equations for the magnetic field will be shown. The equations for the electric
fields are similar.] The ψBm are decomposed in z using a discrete Fourier sum.3 Expressed in cylindrical
coordinates the decomposition of ψBm is

ψBm =

N/2−1∑
n=−N/2

ψBmn =

N/2−1∑
n=−N/2

−1
kn

ei kn z cos(mθ − θ0m) bm(n) Im(kn ρ) (17.39)

where Im is a modified Bessel function of the first kind, and the bm(n) are complex coefficients. [For
electric fields, em(n) is substituted for bm(n)] In Eq. (17.39) kn is given by

kn =
2π n

N dz
(17.40)

2Notice the negative sign here and in Eq. (17.39) compared to Venturini et al.[Venturini98]. This is to keep the definition
of the electric scalar potential ψE consistent with the normal definition.

3Venturini uses a continuous Fourier transformation but Bmad uses a discrete transformation so that only a finite
number of coefficients are needed.
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where N is the number of “sample points”, and dz is the longitudinal “distance between points”. That
is, the above equations will only be accurate over a longitudinal length (N − 1) dz. Note: Typically the
sum in Eq. (17.39) and other equations below runs from 0 to N −1. Using a sum from −N/2 to N/2−1
gives exactly the same field at the sample points (z = 0, dz, 2 ds, . . .) and has the virtue that the field is
smoother in between.

The field associated with ψBm is for m = 0:

Bρ = Re

 N/2−1∑
n=−N/2

ei kn z b0(n) I1(kn ρ)


Bθ = 0 (17.41)

Bz = Re

 N/2−1∑
n=−N/2

i ei kn z b0(n) I0(kn ρ)



And for m ̸= 0:

Bρ = Re

 N/2−1∑
n=−N/2

1

2
ei kn z cos(mθ − θ0m) bm(n)

[
Im−1(kn ρ) + Im+1(kn ρ)

]
Bθ = Re

 N/2−1∑
n=−N/2

−1
2
ei kn z sin(mθ − θ0m) bm(n)

[
Im−1(kn ρ)− Im+1(kn ρ)

] (17.42)

Bz = Re

 N/2−1∑
n=−N/2

i ei kn z cos(mθ − θ0m) bm(n) Im(kn ρ)



While technically ψBm0 is not well defined due to the 1/kn factor that is present, the field itself is well
behaved. Mathematically, Eq. (17.39) can be corrected if, for n = 0, the term Im(kn ρ)/kn is replaced
by

Im(k0 ρ)

k0
→


ρ if m = 0

ρ/2 if m = 1

0 otherwise
(17.43)

The magnetic vector potential for m = 0 is constructed such that only Aθ is non-zero

Aρ = 0

Aθ = Re

 N/2−1∑
n=−N/2

i

kn
ei kn z b0(n) I1(kn ρ)

 (17.44)

Az = 0
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For m ̸= 0, the vector potential is chosen so that Aθ is zero.

Aρ = Re

 N/2−1∑
n=−N/2

−i ρ
2m

ei kn z cos(mθ − θ0m) bm(n)
[
Im−1(kn ρ)− Im+1(kn ρ)

]
Aθ = 0 (17.45)

Az = Re

 N/2−1∑
n=−N/2

−i ρ
m

ei kn z cos(mθ − θ0m) bm(n) Im(kn ρ)


Note: The description of the field using “generalized gradients”[Newton99] is similar to the above
equations. The difference is that, with the generalized gradient formalism, terms in θ and ρ are expanded
in a Taylor series in x and y.

17.6.2 AC Cylindrical Map Decomposition

For RF fields, the cylindrical mode parametrization used by Bmad essentially follows Abell[Abell06].
The electric field is the real part of the complex field

E(r) =

M∑
j=1

Ej(r) exp[−2πi (fj t+ ϕ0j)] (17.46)

where M is the number of modes. Each mode satisfies the vector Helmholtz equation

∇2Ej + k2tj Ej = 0 (17.47)

where ktj = 2π fj/c with fj being the mode frequency.

The individual modes vary azimuthally as cos(mθ − θ0) where m is a non-negative integer. [in this
and in subsequent equations, the mode index j has been dropped.] For the m = 0 modes, there is an
accelerating mode whose electric field is in the form

Eρ(r) =

N/2−1∑
n=−N/2

−ei kn z i kn e0(n) Ĩ1(κn, ρ)

Eθ(r) = 0 (17.48)

Ez(r) =

N/2−1∑
n=−N/2

ei kn z e0(n) Ĩ0(κn, ρ)

where Ĩm is

Ĩm(κn, ρ) ≡
Im(κn ρ)

κmn
(17.49)

with Im being a modified Bessel function first kind, and κn is given by

κn =
»
k2n − k2t =

®√
k2n − k2t |kn| > kt

−i
√
k2t − k2n kt > |kn|

(17.50)

with
kn =

2π n

N dz
(17.51)
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N is the number of points where Ezc is evaluated, and dz is the distance between points. The length of
the field region is (N − 1) dz. When κn is imaginary, Im(κn ρ) can be evaluated through the relation

Im(−i x) = i−m Jm(x) (17.52)

where Jm is a Bessel function of the first kind. The e0 coefficients can be obtained given knowledge of
the field at some radius R via

e0(n) =
1

Ĩ0(κn, R)

1

N

N−1∑
p=0

e−2πinp/N Ez(R, p dz) (17.53)

The non-accelerating m = 0 mode has an electric field in the form

Eρ(r) = Ez(r) = 0

Eθ(r) =

N/2−1∑
n=−N/2

eiknz b0(n) Ĩ1(κn, ρ) (17.54)

where the b0 coefficients can be obtained given knowledge of the field at some radius R via

b0(n) =
1

Ĩ1(κn, R)

1

N

N−1∑
p=0

e−2πi n p/N Eθ(R, p dz) (17.55)

For positive m, the electric field is in the form

Eρ(r) =

N/2−1∑
n=−N/2

−i ei kn z
ñ
kn em(n) Ĩm+1(κn, ρ) + bm(n)

Ĩm(κn, ρ)

ρ

ô
cos(mθ − θ0m)

Eθ(r) =

N/2−1∑
n=−N/2

−i ei kn z
î
kn em(n) Ĩm+1(κn, ρ)+ (17.56)

bm(n)

Ç
Ĩm(κn, ρ)

ρ
− 1

m
Ĩm−1(κn, ρ)

åô
sin(mθ − θ0m)

Ez(r) =

N/2−1∑
n=−N/2

ei kn z em(n) Ĩm(κn, ρ) cos(mθ − θ0m)

The e_m and b_m coefficients can be obtained given knowledge of the field at some radius R via

em(n) =
1

Ĩm(κn, R)

1

N

N−1∑
p=0

e−2π i n p/N Ezc(R, p dz)

bm(n) =
R

Ĩm(κn, R)

[
1

N

N−1∑
p=0

i e−2π i n p/N Eρc(R, p dz)− kn em(n) Ĩm+1(κn, R)

]
(17.57)

where Eρc, Eθs, and Ezc are defined by

Eρ(R, θ, z) = Eρc(R, z) cos(mθ − θ0m)

Eθ(R, θ, z) = Eθs(R, z) sin(mθ − θ0m) (17.58)
Ez(R, θ, z) = Ezc(R, z) cos(mθ − θ0m)
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The above mode decomposition was done in the gauge where the scalar potential ψ is zero. The electric
and magnetic fields are thus related to the vector potential A via

E = −∂tA, B = ∇×A (17.59)

Using Eq. (17.46), the vector potential can be obtained from the electric field via

Aj =
−iEj
2π fj

(17.60)

Symplectic tracking through the RF field is discussed in Section §25.4. For the fundamental accelerating
mode, the vector potential can be analytically integrated using the identity∫

dx
x I1(a

√
x2 + y2)√

x2 + y2
=

1

a
I0(a

√
x2 + y2) (17.61)

17.7 Generalized Gradient Map Field Modeling

Bmad has a number of field map models that can be used to model electric or magnetic fields (§5.16).
One model involves what are called generalized gradients[Venturini99]. This model is restricted to
modeling DC magnetic or electric fields. In a lattice file, the generalized gradient field model is specified
using the gen_grad_map attribute as explained in Sec. §5.16.5.

The electric and magnetic fields are both described by a scalar potential4

B = −∇ψB , E = −∇ψE (17.62)

The scalar potential is then decomposed into azimuthal components

ψ =

∞∑
m=1

ψm,s sin(mθ) +

∞∑
m=0

ψm,c cos(mθ) (17.63)

where the ψm,α (α = c, s) are characterized by a using functions Cm,α(z) which are functions along the
longitudinal z-axis.

ψm,α =

∞∑
n=0

(−1)n+1m!

4n n! (n+m)!
ρ2n+m C [2n]

m,α(z) (17.64)

The notation [2n] indicates the 2nth derivative of Cm,α(z).

From Eq. (17.64) the field is given by

Bρ =

∞∑
m=1

∞∑
n=0

(−1)nm! (2n+m)

4n n! (n+m)!
ρ2n+m−1

î
C [2n]
m,s (z) sinmθ + C [2n]

m,c (z) cosmθ
ó
+

∞∑
n=1

(−1)n 2n
4nn!n!

ρ2n−1 C
[2n]
0,c (z)

Bθ =

∞∑
m=1

∞∑
n=0

(−1)nm!m

4n n! (n+m)!
ρ2n+m−1

î
C [2n]
m,s (z) cosmθ − C [2n]

m,c (z) sinmθ
ó

(17.65)

Bz =

∞∑
m=0

∞∑
n=0

(−1)nm!

4n n! (n+m)!
ρ2n+m

î
C [2n+1]
m,s (z) sinmθ + C [2n+1]

m,c (z) cosmθ
ó

4Notice the negative sign here and in Eq. (17.64) compared to Venturini et al.[Venturini99]. This is to keep the definition
of the electric scalar potential ψE consistent with the normal definition.
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Even though the scalar potential only involves even derivatives of Cm,α, the field is dependent upon the
odd derivatives as well. The multipole index m is such that m = 0 is for solenoidal fields, m = 1 is for
dipole fields, m = 2 is for quadrupolar fields, etc. The sin–like generalized gradients represent normal
(non-skew) fields and the cos–like one represent skew fields. The on-axis fields at x = y = 0 are given
by:

(Bx, By, Bz) = (C1,c, C1,s,−C [1]
0,c) (17.66)

The magnetic vector potential for m = 0 is constructed such that only Aθ is non-zero

Aρ = 0

Aθ =

∞∑
n=1

(−1)n+1 2n

4n n!n!
ρ2n−1 C

[2n−1]
0,c (17.67)

Az = 0

For m ̸= 0, the vector potential is chosen so that Aθ is zero.

Aρ =

∞∑
m=1

∞∑
n=0

(−1)n (m− 1)!

4n n! (n+m)!
ρ2n+m+1

î
C [2n+1]
m,s cos(mθ)− C [2n+1]

m,c sin(mθ)
ó

Aθ = 0 (17.68)

Az =

∞∑
m=1

∞∑
n=0

(−1)n (m− 1)! (2n+m)

4n n! (n+m)!
ρ2n+m

î
−C [2n]

m,s cos(mθ) + C [2n]
m,c sin(mθ)

ó
The functions Cm,α(z) are characterized by specifying Cm,α(zi) and derivatives at equally spaced points
zi, up to some maximum derivative order Nm,α chosen by the user. Interpolation is done by constructing
an interpolating polynomial (“non-smoothing spline”) for each GG of order 2Nm,α + 1 for each interval
[zi, zi+1] which has the correct derivatives from 0 to Nm,α at points zi and zi+1. The coefficients of the
interpolating polynomial are easily calculated by inverting the appropriate matrix equation.

The advantages of a generalized gradient map over a cylindrical or Cartesian map decomposition come
from the fact that with generalized gradients the field at some point (x, y, z) is only dependent upon
the value of Cm,α(z) and derivatives at points zi and zi+1 where z is in the interval [zi, zi+1]. This is
in contrast to the cylindrical or Cartesian map decomposition where the field at any point is dependent
upon all of the terms that characterize the field. This “locality” property of generalized gradients
means that calculating coefficients is easier (the calculation of Cm,α(z) at zi can be done using only
the field near zi independent of other regions) and it is easier to ensure that the field goes to zero at
the longitudinal ends of the element. Additionally, the evaluation is faster since only coefficients to
either side of the evaluation point contribute. The disadvantage of generalized gradients is that since the
derivatives are truncated at some order Nm,α, the resulting field does not satisfy Maxwell’s equations
with the error as a function of radius scaling with the power ρm+Nm,α .

It is sometimes convenient to express the fields in terms of Cartesian coordinates. For sine like even
derivatives C [2n]

m,s the conversion is

(Bx, By) = (cos θ Bρ − sin θ Bθ, sin θ Bρ + cos θ Bθ)

=
(−1)nm!

4nn! (n+m)!
C [2n]
m,s

[
(n+m) (x2 + y2)n (Sxy(m− 1), Cxy(m− 1)) + (17.69)

n (x2 + y2)n−1 (Sxy(m+ 1), −Cxy(m+ 1))
]
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and for the sine like odd derivatives C [2n+1]
m,s

Bz =
(−1)nm!

4nn! (n+m)!
(x2 + y2)n C [2n+1]

m,s (z)Sxy(m) (17.70)

where the last term in Eq. (17.69) is only present for n > 0.

Sxy(m) ≡ ρm sinmθ =

2r≤m−1∑
r=0

(−1)r
Å

m
2r + 1

ã
xm−2r−1 y2r+1

Cxy(m) ≡ ρm cosmθ =

2r≤m∑
r=0

(−1)r
Å
m
2r

ã
xm−2r y2r (17.71)

The conversion for the cosine like derivatives is:

(Bx, By) =
(−1)nm!

4nn! (n+m)!
C [2n]
m,c

[
(n+m) (x2 + y2)n (Cxy(m− 1), −Sxy(m− 1)) +

n (x2 + y2)n−1 (Cxy(m+ 1), Sxy(m+ 1))
]

(17.72)

Bz =
(−1)nm!

4nn! (n+m)!
(x2 + y2)n C [2n+1]

m,c (z)Cxy(m)

17.8 RF fields

The following describes the how RF fields are calculated when the field_calc attribute of an RF
element is set to bmad_standard.5 Also see Section §18.9 for how fringe fields are calculated.

With cavity_type set to traveling_wave, the setting of longitudinal_mode is ignored and the field
is given by

Es(r, ϕ, s, t) = G cos
(
ω t− k s+ 2π ϕ

)
Er(r, ϕ, s, t) = −

r

2
Gk sin

(
ω t− k s+ 2π ϕ

)
(17.73)

Bϕ(r, ϕ, s, t) = −
r

2 c
Gk sin

(
ω t− k s+ 2π ϕ

)
where G is the accelerating gradient, k = ω/c is the wave number with ω being the RF frequency.

For standing wave cavities, with cavity_type set to standing_wave, the RF fields are modeled as N
half-wave cells, each having a length of λ/2 where λ = 2π/k is the wavelength. If the length of the
RF element is not equal to the length of N cells, the “active region” is centered in the element and the
regions to either side are treated as field free.

The field in the standing wave cell is modeled either with a p = 0 or p = 1 longitudinal mode (set by the
longitudinal_mode element parameter). The p = 1 longitudinal mode models the fields as a pillbox
with the transverse wall at infinity as detailed in Chapter 3, Section VI of reference [Lee99]

Es(r, ϕ, s, t) = 2G cos(k s) cos(ω t+ 2π ϕ)

Er(r, ϕ, s, t) = r Gk sin(k s) cos(ω t+ 2π ϕ) (17.74)

Bϕ(r, ϕ, s, t) = −
r

c
Gk cos(k s) sin(ω t+ 2π ϕ)

5Notice that the equations here are only relavent with the tracking_method for an RF element set to a method like
runge_kutta where tracking through the field of an element is done. For bmad_standard tracking, Equations for lcavity
tracking are shown in §25.14 and rfcavity tracking in §25.18.
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The overall factor of 2 in the equation is present to ensure that an ultra-relativistic particle entering
with ϕ = 0 will experience an average gradient equal to G.

For the p = 0 longitudinal mode (which is the default), a “pseudo TM010” mode is used that has the
correct symmetry:

Es(r, ϕ, s, t) = 2G sin(k s) sin(ω t+ 2π ϕ)

Er(r, ϕ, s, t) = −r Gk cos(k s) sin(ω t+ 2π ϕ) (17.75)

Bϕ(r, ϕ, s, t) =
r

c
Gk sin(k s) cos(ω t+ 2π ϕ)



Chapter 18

Fringe Fields

It can be convient to divide the fringe field kick into two pieces. The first piece is called the hard edge
fringe kick and is the kick in the limit that the longitudinal extent of the fringe is zero. The second piece
is the soft edge fringe kick which is the fringe kick with the fringe having a finite longitudinal extent
minus the hard edge fringe kick. That is

Total fringe kick = hard fringe kick + soft fringe kick

The advantage of separating the fringe kick in this way is that the hard fringe can be used without
having to know anything about the longitudinal extent of the fringe field. In many cases, this is a good
enough approximation.

Discussion of the fringe parameters of an element are detailed in Sec. §5.21.

18.1 Bend Second Order Fringe Map

The bend fringe kick is a combination of the equations developed by Hwang and Lee[Hwang15] modified
to include quadrupole terms as given in Section 5.3.1 of Iselin[Iselin94]. The Lie map generator ΩM
given by Hwang and Lee in Eqs. (35) and (36) is used under the conditions that

K0h = K1h = K3h = K4h = K5h = K6h = 0 (18.1)

Here the subscript “h” has been added so as to not confuse these parameters with the magnetic multipole
coefficients K1, K2, etc. Note: Hwang and Lee do not present an equation for the change in the
longitudinal phase space z coordinate in their paper.

The generator used by Bmad for the entrance fringe is:

ΩM1 =
(x2 − y2) gtot tan(e1)

2
+
y2 g2tot sec3(e1) [1 + sin2(e1)] fint hgap

(1 + pz)

+
x3 [4K1 tan(e1)− g2tot tan3(e1)]

12 (1 + pz)
+
x y2 [−4K1 tan(e1) + g2tot tan(e1) sec

2(e1)]

4 (1 + pz)
(18.2)

+
(x2 px − 2x y py) gtot tan2(e1)

2 (1 + pz)
− y2 px gtot sec2(e1)

2 (1 + pz)

where gtot is the total bending strength (design + error) and K1 is the quadrupole moment of the bend.

343
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The generator for the exit fringe is

ΩM2 =
(x2 − y2) gtot tan(e2)

2
+
y2 g2tot sec3(e2) [1 + sin2(e2)] fint hgap

(1 + pz)

+
x3 [4K1 tan(e2)− g2tot tan3(e2)]

12 (1 + pz)
+
x y2 [−4K1 tan(e2) + g2tot tan(e2) sec

2(e2)]

4 (1 + pz)
(18.3)

− (x2 px − 2x y py) gtot tan
2(e2)

2 (1 + pz)
+
y2 px gtot sec2(e2)

2 (1 + pz)

The map M is obtained from the equation M = exp[ : ΩM : ]. To second order in the transverse
coordinates the map can be obtained by expanding the exponential to second order

M≃ 1+: ΩM : +
1

2
: ΩM : : ΩM : (18.4)

The transport for the entrance fringe is then

∆x =
gtot

2 (1 + pz)

[
−x2 tan2(e1) + y2 sec2(e1)

]
∆px = x gtot tan(e1) +

y2 g2tot [tan(e1) + 2 tan3(e1)]

2 (1 + pz)

+
(x2 − y2)K1 tan(e1)

1 + pz
+

(x px − y py) gtot tan2(e1)

1 + pz

∆y =
x y gtot tan2(e1)

1 + pz
(18.5)

∆py = y

ñ
−gtot tan(e1) +

2 g2tot [1 + sin2(e1)] sec
3(e1)

1 + pz
fint hgap

ô
− (x py gtot tan2(e1)

1 + pz
− y px gtot [1 + tan2(e1)]

1 + pz
− 2x yK1 tan(e1)

(1 + pz)

∆z =
ΩM1 − (x2 − y2) gtot tan(e1)/2

1 + pz

The transport for the exit fringe is

∆x =
gtot

2 (1 + pz)

[
x2 tan2(e2)− y2 sec2(e2)

]
∆px = x gtot tan(e2)−

(x2 + y2) g2tot tan3(e2)

2 (1 + pz)

+
(x2 − y2)K1 tan(e2)

1 + pz
+

(−x px + y py) gtot tan2(e2)

1 + pz

∆y = −x y gtot tan2(e2)

1 + pz
(18.6)

∆py = y

ñ
−gtot tan(e2) +

2 g2tot [1 + sin2(e2)] sec
3(e2)

1 + pz
fint hgap

ô
+
x y g2tot sec2(e2) tan(e2)

1 + pz

+
(x py gtot tan2(e2)

1 + pz
+
y px gtot [1 + tan2(e2)]

1 + pz
− 2x yK1 tan(e2)

(1 + pz)

∆z =
ΩM2 − (x2 − y2) gtot tan(e2)/2

1 + pz
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18.2 SAD Dipole Soft Edge Fringe Map

The SAD dipole soft edge fringe model is adapted from the SAD program[SAD]. This model is only used
for sbend, rbend, and sad_mult elements. For sbend and rbend elements, the fringe map is defined in
terms of the fint and hgap for the entrance end and fintx and hgapx at the exit end (§4.5). The field
integral FH1 for the entrance end given is given by (see Eq. (4.9))

FH1 ≡ FintHgap =

∫
pole

ds
By(s) (By0 −By(s))

2B2
y0

(18.7)

With a similar equation for FH2 for the exit end.

For a sad_mult element the corresponding parameters are fb1 and fb2. the conversion between the
bend and sad_mult parameters is

fb1 = 12FH1, fb2 = 12FH2 (18.8)

The map itself is

x2 = x1 + c1 pz

py2 = py1 + c2 y1 − c3 y31 (18.9)

z2 = z1 +
1

1 + pz1

Å
c1 px1 +

1

2
c2 y

2
1 −

1

4
c3 y

4
1

ã
For the entrance face the map parameters are:

c1 =
gtot fb12

24 (1 + pz)
=

6 gtot F
2
H1

1 + pz
, c2 =

g2tot fb1
6 (1 + pz)

=
2 g2tot FH1

1 + pz
,

c3 =
2 g2tot

3 fb1 (1 + pz)
=

g2tot
18FH1 (1 + pz)

(18.10)

And for the exit face, the appropriate equations can be derived using the substitution

FH1 → FH2

gtot → −gtot (18.11)

In the above equations, for a bend, g_tot is the total bending strength

gtot = g + dg (18.12)

g being the reference bend strength and dg being bend the difference between the actual and reference
bend strengths (§4.5). For a sad_mult element g_tot is calculated from the equation

gtot =
»
a20 + b20 (18.13)

The SAD dipole soft edge map is “incomplete” and for a realistic fringe map the SAD dipole soft edge
fring map must be combined with a “hard edge” map (§5.21).

It might seem strange that c3 diverges to infinity as FH goes to zero since naively one would expect the
soft edge kick to vanish in the hard edge limit where the fringe has no longitudinal extent. However, in
the hard edge limit, the field does not obey Maxwell’s equations. The limiting map, as FH goes to zero,
has fields that diverge to infinity and this explains why the full (hard + soft) limiting map is not the
same as the hard edge map at the limit of zero longitudinal extent.
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18.3 Sad_Mult Dipole Hard Edge Fringe Map

For sad_mult elements, the hard dipole edge kick is adapted from SAD. The dipole normalized field
g =

√
a02 + b02 is calculated from the a0 and b0 multipoles. Before the fringe kick is applied, the

particle position is rotated in the (x, y) plane so that the dipole kick is in the horizontal direction. The
dipole edge kick is then given by

∆x = g y2 (1− fyg)
1 + p2z
2 p3zy

∆py = −g px y
1− 2fyg
pzy

(18.14)

∆z = −g y2 px (1− fyg)
1 + pz
2 p3zy

where

fyg =
y2 g2

12
, and pzy =

»
(1 + pz)2 − p2x (18.15)

This is used in place of the dipole hard edge fringe kick given in §18.1.

18.4 Linear Dipole Hard Edge Fringe Map

The linear dipole hard edge fringe model is adapted from MAD[Grote96] and only includes linear terms.
The fringe transport is

∆px = gtot tan(e) · x

∆py = −gtot tan

Ç
e− 2 fint hgap gtot (1 + sin2(e))

cos(e)

å
· y (18.16)

where gtot = g + dg is the actual field and e is e1 if the particle is entering the dipole and e2 if the
particle is exiting the dipole.

18.5 Exact Dipole Hard Edge Fringe Map

The exact dipole hard edge fringe is the exact transport in the wedge region of a dipole when there is
a finite e1 or e2 as shown in Fig. 4.1b. This model assumes that there are no higher order multipole
fields. The transport is done in two stages. For a particle entering the dipole the propagation is

1. Drift (propagate in a straight line) the particle from the sector edge to the actual bend edge. The
propagation may be forward or backwards depending upon on the geometry.

2. Propagate the particle as if it were in the dipole field from the actual bend edge to the sector edge.

The body of the dipole is treated as a sector bend. At the exit end, the propagation through the wedge
is the reverse of the above.
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18.6 Quadrupole Soft Edge Fringe Map

The quadrupole soft edge fringe model is adapted from SAD[SAD]. This fringe is only used with
sad_mult and quadrupole elements. The fringe map is:

x2 = x1 e
g1 + g2 px1

px2 = px1e
−g1

y2 = y1 e
−g1 − g2 py1 (18.17)

py2 = py1e
g1

z2 = z1 −
[
g1 x1 px1 + g2

(
1 +

g1
2

)
e−g1 p2x1

]
+
[
g1 y1 py1 + g2

(
1− g1

2

)
eg1 p2y1

]
where

g1 =
K1 fq1
1 + pz

, g2 =
K1 fq2
1 + pz

(18.18)

K1 is the quadrupole strength, and fq1 and fq2 are the fringe quadrupole parameters. These parameters
are related to the field integral In via

fq1 = I1 −
1

2
I20 , fq2 = I2 −

1

3
I30 (18.19)

where In is defined by

In =
1

K1

∫ ∞

−∞
(K1(s)−H(s− s0)K1) (s− s0)n ds (18.20)

and H(s) is the step function

H(s) =

®
1 s > 0

0 s < 0
(18.21)

and it is assumed that the quadrupole edge is at s0 and the interior is in the region s > s0.

See Sec. §5.21 for the relation between fq1 / fq2 and the corresponding f1 and f2 parameters of SAD.

18.7 Magnetic Multipole Hard Edge Fringe Map

The magnetic multipole hard edge fringe field is modeled using the method shown in Forest[Forest98].
For the mth order multipole the Lee transform is (Forest Eq. (13.29)):

f± = ∓ℜ
ï
(bm + i am) (x+ i y)m+1

4 (m+ 2) (1 + δ)

ß
x px + y py + i

m+ 3

m+ 1
(x px − y py)

™ò
≡ px f

x + py f
y

1 + δ
(18.22)

The multipole strengths am and bm are given by (17.8) and the second equation defines fx and fy. On
the right had side of the first equation, the minus sign is appropriate for particles entering the magnet
and the plus sign is for particle leaving the magnet. Notice that here the multipole order m is equivalent
to n− 1 in Forest’s notation.
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With this, the implicit multipole map is (Forest Eq. (13.31))

xf = x− fx

1 + δ

px = pfx −
pfx ∂xf

x + pfy ∂xf
y

1 + δ

yf = y − fy
1 + δ

(18.23)

py = pfy −
pfx ∂yf

x + pfy ∂yf
y

1 + δ

δf = δ

zf =
pfx f

x + pfy f
y

(1 + δ)2

18.8 Electrostatic Multipole Hard Edge Fringe Map

The electric multipole hard edge fringe field, to lowest order, consists of just a longitudinal field. The
integrated longitudinal field at constant (x, y) for the nth order multipole is simply obtained by requiring
that the curl of the field is zero. This gives:∫

Es(x, y) ds = ϕn(x, y) (18.24)

where ϕn is given in Eq. (17.17). [For a magnetic multipole there is an analogous equation.]

The effect on the spin when tracking through the fringe field of a multipole field tends to be weak. As
such, this hard edge model is sufficient. and the spin is tracked using the T-BMT equation (Eq. (23.1)).

18.9 RF Fringe Fields

Assuming cylindrical symmetry, the radial and azimuthal fields near the axis can be related to the
longitudinal electric field via Maxwell’s equations[Hartman93]

Er = −
r

2

∂Ez
∂z

, Bϕ =
r

2 c

∂Ez
∂t

(18.25)

Assuming the particle velocity is c, these equations can be combined with the force equation

Fr = q (Er − cBϕ) (18.26)

to give[Rosen94]

Fr = −
q r

2

dEz
dz

(18.27)

where the total derivative is used here1. From Eq. (18.27), the fringe field kick in the horizontal plane at
the entrance end, valid for both traveling wave and standing wave cavities, is (cf. Rosenzweig[Rosen94]
Eq (10))

∆px = − q “Ez
2 c P0

x (18.28)

1Hartman[Hartman93] Eq (16) is not valid for a forward propagating wave component of the field. Thus Hartman
Eq (17) is only valid for a backward propagating wave component. Eq. (18.27), on the other hand, is valid for all wave
components.
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with a similar equation in the vertical. Here “Ez is the longitudinal electric field just inside the fringe,
and P0 is the reference momentum. At the exit end, the kick is the negative of Eq. (18.28). This fringe
kick is built into xxpc.

The integrated fringe fields, needed to calculate the spin precession, are at the entrance end∫
Er ds = −

r

4
“Ez∫

Bϕ ds =
r

4 c
“Ez (18.29)

The integrated fields at the exit end are obtained by negating the RHS of these equations.



350 CHAPTER 18. FRINGE FIELDS



Chapter 19

Wakefields

Wakefield effects are divided into short–range (within a bunch) and long–range (between bunches).
Short–range wakes are described in Sec. §19.1 and long–range wakes are described in Sec. §19.2. The
syntax for describing wakes in a lattice file is given in Sec. §5.20.

19.1 Short–Range Wakes

The syntax for assigning short–range wakes to a lattice element is described in Sec. §5.20.1. Only the
monopole and dipole wakefields are modeled.

Short–range wakes are divided into three classes: Those that are dependent linearly upon transverse
offset of the leading particle (but independent of the position of the trailing particle), those that are
dependent linearly upon the transverse offset of the trailing particle (but independent of the position of
the leading particle, and those wakes that are independent of the offset.

The longitudinal monopole energy kick dE for the ith (trailing) macroparticle due to the wake from the
jth (leading) macroparticle, assuming the kick is independent of the transverse positions, is computed
from the equation

∆pz(i) =
−eL
v P0

(1
2
WSR

∥ (0) |qi|+
∑
j ̸=i

WSR
∥ (dzij) |qj |

)
(19.1)

where v is the particle velocity, e is the charge on an electron, q is the macroparticle charge, L is the
cavity length, dzij is the longitudinal distance between the ith and jth macroparticles, WSR

∥ is the
short–range longitudinal wakefield function.

If the beam chamber has azimuthal symmetry the energy kick will be independent of the transverse
positions. If this is not true, there can be some dependence. There are four cases that Bmad simulates:
Linear in the x or y-position of the leading particle, or linear in the x or y-position of the trailing particle.
For example, if the kick is linear in the x-position of the leading particle the kick is

∆pz(i) =
−eLxi
v P0

(1
2
WSR

∥ (0) |qi|+
∑
j ̸=i

WSR
∥ (dzij) |qj |

)
(19.2)

And if the kick is linear in the y-position of the trailing particle the kick is

∆pz(i) =
−eL
v P0

(1
2
WSR

∥ (0) |qi| yi +
∑
j ̸=i

WSR
∥ (dzij) |qj | yj

)
(19.3)
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The kick ∆px(i) due to the transverse wake for the ith particle is modeled with the equation

∆px(i) =
−eL

∑
j |qj |xWSR

⊥ (dzij)

v P0
(19.4)

Where WSR
⊥ is the transverse short–range wake function and x is the horizontal displacement of the

leading or trailing particle as appropriate. There is a similar equation for ∆py(i). If the beam chamber
has azimuthal symmetry, the only wakes present are those that are dependent upon the offset of the
leading particle. If the transverse wake is modeled as being independent of position the above equation
is modified:

∆px(i) =
−eL

∑
j |qj |WSR

⊥ (dzij)

v P0
(19.5)

With either the longitudinal wake WSR
∥ or the transverse WSR

⊥ wake, the wake can be approximated as
a sum of what are called “pseudo” modes Wi(z), i = 1 . . .M :

W (z) = Aa

M∑
i=1

Wi(z) = Aa

M∑
i=1

Ai e
diz sin(ki z + ϕi) (19.6)

This is similar to approximating any function as a sum of Fourier terms. The parameters (Ai, di, ki, ϕi)
are chosen by the person constructing the lattice to fit the calculated wake potential. Since z is negative
for trailing particles, di should be positive to get the wake to decay exponentially with distance. The
dimensionless overall amplitude scale Aa is introduced as a convenient way to scale the overall wake.
The reason why the pseudo mode approach is used in Bmad is due to the fact that, with pseudo modes,
the calculation time scales as the number of particles N while a calculation based upon a table of wake
vs z would scale as N2. [The disadvantage is that initially must perform a fit to the wake potential to
generate the mode parameter values.]

19.2 Long–Range Wakes

The lattice syntax for defining long-range wakes is discussed in Sec. §5.20.3.

Following Chao[Chao93] Eq. 2.88, the long–range wakefields are characterized by a set of cavity modes.
The wake function Wi for the ith mode is

Wi(t) = −cAa
Å
R

Q

ã
i

exp(−di t) sin(ωi t+ ϕi) (19.7)

The order of the mode mi does not come into this equation but will appear in equations below. The
dimensionless overall amplitude scale Aa is introduced as a convenient way to scale the amplitude of all
the wakes with just one parameter. Normally, for a wake that has a well defined mode, The phase factor
ϕi is zero. Finite ϕi is used for simulations of such things as the long-range resistive wall wake. In this
case, the resistive wall wake needs to be modeled as the sum of a number of modes since the resistive
wall wake is not well modeled by a single damped sinusoid.

The mode strength (R/Q)i in the above equation has units of Ohms/meter2mi . Notice that R/Q is
defined so that it includes the cavity length. Thus the long–range wake equations, as opposed to the
short–range ones, do not have any explicit dependence on L. To make life more interesting, different
people define R/Q differently. A common practice is to define an R/Q “at the beam pipe radius”. In
this case the above equations must be modified to include factors of the beam pipe radius. Another
convention uses a “linac definition” which makes R/Q twice as large and adds a factor of 2 in Eq. (19.7)
to compensate.
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Note: Originally, Bmad characterized the damping factor di using the quality factor Qi via the relation-
ship

di =
ωi
2Qi

(19.8)

This proved to be inconvenient when modeling such things as the resistive wall wake (where it is conve-
nient to have modes where ωi = 0) so the lattice file syntax was modified to use di directly.

Assuming that the macroparticle generating the wake is offset a distance rw along the x–axis, a trailing
macroparticle at transverse position (r, θ) will see a kick

∆p⊥ = −C ImW (t)mrm−1
Ä
r̂ cosmθ − θ̂ sinmθ

ä
(19.9)

= −C ImW (t)mrm−1 (x̂ cos[(m− 1)θ]− ŷ sin[(m− 1)θ])

∆pz = −C ImW ′(t) rm cosmθ (19.10)

where in this, and other equations below, the subscript i has been dropped. C is given by

C =
e

c P0
(19.11)

and
Im = qw r

m
w (19.12)

with qw being the magnitude of the charge on the particle. Generalizing the above, a macroparticle at
(rw, θw) will generate a wake

−∆px + i∆py = C ImW (t)mrm−1 e−imθw ei(m−1)θ (19.13)
∆pz = C ImW

′(t) rm cos[m(θ − θw)] (19.14)

Comparing Eq. (19.13) to (17.8), and using the relationship between kick and field as given by (17.4)
and (17.5), shows that the form of the wakefield transverse kick is the same as for a multipole of order
n = m− 1.

The wakefield felt by a particle is due to the wakefields generated by all the particles ahead of it. If the
wakefield kicks are computed by summing over all particle pairs, the computation will scale as N2 where
N is the number of particles. This quickly becomes computationally exorbitant. A better solution is
to keep track of the wakes in a cavity. When a particle comes through, the wake it generates is simply
added to the existing wake. This computation scales as N and makes simulations with large number of
particles practical.

To add wakes together, a wake must be decomposed into its components. Spatially, there are normal
and skew components and temporally there are sin and cosine components. This gives 4 components
which will be labeled acos, asin, bcos, and bsin. For a mode of order m, a particle passing through at a
time tw with respect to the reference particle will produce wake components

δasin ≡ cAa

Å
R

Q

ã
ed tw cos(ω tw) Im sin(mθw)

δacos ≡ − cAa
Å
R

Q

ã
ed tw sin(ω tw) Im sin(mθw) (19.15)

δbsin ≡ cAa

Å
R

Q

ã
ed tw cos(ω tw) Im cos(mθw)

δbcos ≡ −cAa
Å
R

Q

ã
ed tw sin(ω tw) Im cos(mθw)
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These are added to the existing wake components. The total is

asin =
∑

particles

δasin (19.16)

with similar equations for acos etc. Here the sum is over all particles that cross the cavity before the
kicked particle. To calculate the kick due to wake, the normal and skew components are added together

atot = e−d t (acos cos(ω t+ ϕ) + asin sin(ω t+ ϕ)) (19.17)

btot = e−d t (bcos cos(ω t+ ϕ) + bsin sin(ω t+ ϕ))

Here t is the passage time of the particle with respect to the reference particle. In analogy to Eq. (19.13)
and (19.14), the kick is

−∆px + i∆py = Cm (btot + iatot) r
m−1 ei(m−1)θ (19.18)

∆pz = −C rm
(
(b′tot + ia′tot)e

imθ + (b′tot − ia′tot)e−imθ
)

(19.19)

where a′ ≡ da/dt and b′ ≡ db/dt.

When simulating trains of bunches, the exponential factor d tw in Eq. (19.15) can become very large. To
prevent numerical overflow, Bmad uses a reference time zref so that all times t in the above equations
are replaced by

t −→ t− tref (19.20)

The above equations were developed assuming cylindrical symmetry. With cylindrical symmetry, the
cavity modes are actually a pair of degenerate modes. When the symmetry is broken, the modes no longer
have the same frequency. In this case, one has to consider a mode’s polarization angle θp. Equations
(19.17) and (19.18) are unchanged. In place of Eq. (19.15), the contribution of a particle to a mode is

δasin = cAa

Å
R

Q

ã
ed tw cos(ω tw) Im

[
sin(mθw) sin

2(mθp) + cos(mθw) sin(mθp) cos(mθp)
]

δacos = − cAa
Å
R

Q

ã
ed tw sin(ω tw) Im

[
sin(mθw) sin

2(mθp) + cos(mθw) sin(mθp) cos(mθp)
]

(19.21)

δbsin = cAa

Å
R

Q

ã
ed tw cos(ω tw) Im

[
cos(mθw) cos

2(mθp) + sin(mθw) sin(mθp) cos(mθp)
]

δbcos = −cAa
Å
R

Q

ã
ed tw sin(ω tw) Im

[
cos(mθw) cos

2(mθp) + sin(mθw) sin(mθp) cos(mθp)
]

Note: Technically an unpolarized mode is actually two polarized modes perpendicular to each other.
The axes of these two normal modes can be chosen arbitrary as long as they are at right angles.



Chapter 20

Multiparticle Simulation

Bmad has routines for tracking two types of objects called “particles” and “macroparticles”. Particles
are characterized by a six-vector representing the particle’s phase space coordinates and a pair of com-
plex numbers characterizing the particle’s spin. A macroparticle is like a particle with the addition of a
6× 6 “sigma” matrix characterizing the size of the macroparticle.

Macroparticle tracking was implemented in Bmad in order to simulate particle bunches. The idea was
that far fewer macroparticles than particles would be needed to characterize a bunch. In practice, it was
found that the complexity of handling the macroparticle sigma matrix more than offset the reduction
in the number of particles needed. Hence, while the basic macroparticle tracking routines still exist,
macroparticle tracking is not currently maintained and the use of this code is discouraged. However
macroparticle tracking could be revived in the future if there is a demonstrated need for it.

Particle tracking can be divided into “single particle” tracking and “beam” tracking. Single particle
tracking is simply tracking a single particle. Beam tracking is tracking an ensemble of particles divided
up into a number of bunches that make up a “beam”.

20.1 Bunch Initialization

[Developed by Michael Saelim]

To better visualize the evolution of a particle beam, it is sometimes convenient to initialize the beam
with the particles regularly spaced. The following two algorithms are implemented in Bmad for such a
purpose.

See Chapter c:beam.init for details on the standard input format used by Bmad based programs for
reading in bunch initialization parameters.

20.1.1 Elliptical Phase Space Distribution

To observe nonlinear effects on the beam, it is sometimes convenient to initialize a bunch of particles
in a way that puts more particles in the tails of the bunch than one would normally have with the
standard method of seeding particles using a Gaussian distribution. In order to preserve the emittance,
a distribution with more particles in the tail needs to decrease the charge per tail particle relative to
the core. This feature, along with a regular distribution, are contained in the following “ellipse”

355
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distribution algorithm.

Consider the two dimensional phase space (x, px). The transformation to action-angle coordinates, (J, ϕ),
is

J =
1

2
[γx2 + 2αx p+ βp2] (20.1)

tanϕ =
−β (p+ αx)

x
(20.2)

The inverse is Å
x
p

ã
=
√
2J

Ç √
β 0

− α√
β
− 1√

β

åÅ
cosϕ
sinϕ

ã
. (20.3)

In action-angle coordinates, the normalized Gaussian phase space distribution, ρ(J, ϕ), is

ρ(J, ϕ) =
1

2πε
e−

J
ε . (20.4)

where the emittance ε is just the average of J over the distribution

ε = ⟨J⟩ ≡
∫
dJ dϕJρ(J, ϕ). (20.5)

The beam sizes are:

σ2
x ≡ ⟨x2⟩ = εβ (20.6)

σ2
p ≡ ⟨p2⟩ = εγ, (20.7)

and the covariance is
⟨x p⟩ = −εα. (20.8)

The ellipse algorithm starts by partitioning phase space into regions bounded by ellipses of constant
J = Bn, n = 0, . . . NJ . The boundary values Bn are chosen so that, except for the last boundary, the√
Bn are equally spaced

Bn =

®
ε
2

(
nσ n
N

)2 for 0 ≤ n < NJ

∞ for n = NJ
(20.9)

where nσ is called the “boundary sigma cutoff”. Within each region, an elliptical shell of constant Jn
is constructed with Nϕ particles equally spaced in ϕ. The charge qn of each particle of the nth ellipse is
chosen so that the total charge of all the particles of the ellipse is equal to the total charge within the
region

Nϕ qn =

∫ Bn

Bn−1

dJ

∫ 2π

0

dϕ ρ(J, ϕ) = exp

Å
−Bn−1

ε

ã
− exp

Å
−Bn

ε

ã
(20.10)

The value of Jn is chosen to coincide with the average J within the region

Nϕ qn Jn =

∫ Bn

Bn−1

dJ

∫ 2π

0

dϕ J ρ(J, ϕ) = ε(ξ + 1)e−ξ
∣∣∣∣
Bn−1

ε

Bn
ε

(20.11)

The ellipse phase space distribution is thus

ρmodel(J, ϕ) = qtot

NJ∑
n=1

qn δ(J − Jn)
Nϕ∑
m=1

δ(ϕ− 2π
m

Nϕ
) (20.12)

where qtot is the total charge. At a given point in the lattice, where the Twiss parameters are known,
the input parameters needed to construct the ellipse phase space distribution is nσ, NJ , Nϕ, and qtot.

The ellipse distribution is two dimensional in nature but can easily be extended to six dimensions.
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20.1.2 Kapchinsky-Vladimirsky Phase Space Distribution

The Kapchinsky-Vladimirsky (KV) distribution can be thought of as a four dimensional analog of the
ellipse distribution with only one elliptical shell. Consider a 4D phase space (x, x′, y, y′). Using this
framework, a 4D Gaussian distribution is

ρ(Jx, ϕx, Jy, ϕy) =
1

(2π)2εxεy
exp(−Jx

εx
) exp(−Jy

εy
) (20.13)

=
1

(2π)2εxεy
exp(−I1

ε
), (20.14)

where the orthogonal action coordinates are:

I1 =

Å
Jx
εx

+
Jy
εy

ã
ε (20.15)

I2 =

Å
−Jx
εy

+
Jy
εx

ã
ε (20.16)

with ε = ( 1
ε2x

+ 1
ε2y
)−1/2. The reverse transformation is:

Jx =

Å
I1
εx
− I2
εy

ã
ε (20.17)

Jy =

Å
I1
εy

+
I2
εx

ã
ε. (20.18)

The KV distribution is
ρ(I1, I2, ϕx, ϕy) =

1

A
δ(I1 − ξ), (20.19)

where A =
εxεy
ε2 ξ(2π)2 is a constant which normalizes the distribution to 1. By choosing a particular ξ,

and iterating over the domain of the three remaining coordinates, one can populate a 3D subspace of
constant density.

The range in I2 to be iterated over is constrained by Jx, Jy ≥ 0. Thus I2isintherange[− εxεy I1,
εy
εx
I1].

This range is divided into N regions of equal size, with a ring of particles placed in the middle of each
region. The angle variables are also constrained to ϕx, ϕy ∈ [0, 2π], with each range divided into Mx and
My regions, respectively. Each of these regions will have a particle placed in its center.

The weight of a particle is determined by the total weight of the region of phase space it represents.
Because the density ρ is only dependent on I1,

q =

∫ ∞

0

dI1

∫ I2+∆I2

I2

dI2

∫ ϕx+∆ϕx

ϕx

dϕx

∫ ϕy+∆ϕy

ϕy

dϕy
1

A
δ(I1 − ξ) (20.20)

=
1

A
∆I2∆ϕx∆ϕy. (20.21)

To represent the distribution with particles of equal weight, we must partition (I2, ϕx, ϕy)-space into
regions of equal volume.

The weight of each particle is

q =
1

NMxMy
=

1

Ntot
(20.22)

where Ntot is the total number of particles
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20.2 Touschek Scattering

[Developed by Michael Ehrlichman]

Touschek scattering occurs when a single scattering event between two particles in the same beam
transfers transverse momentum to longitudinal momentum, and the resulting change in longitudinal
momentum results in the loss of one or both particles. In the case of storage rings, these losses impose a
beam lifetime. In low-emittance storage rings, Touschek scattering can be the dominant mechanism for
particle loss. In the case of linear accelerators, these losses generate radiation in the accelerator tunnel.
When the scattered particles collide with the beam chamber, x-rays are produced which can damage
equipment and impose a biohazard. Studies of Touschek scattering typically look at beam lifetime and
locations where scattering occurs and where particles are lost.

A commonly utilized theory for studying Touschek scattering is from Piwinski [Piwin98]. A basic outline
of the derivation is,

1. Scatter two particles from a bunch in their COM frame using the relativistic Moller cross-section.

2. Boost from COM frame to lab frame. Changes to longitudinal momentum end up amplified by a
factor of γ.

3. Integrate over 3D Gaussian distribution of particle positions and angles.

During the derivation many approximations are made which lead to a relatively simple formula. The
integration is set up such that only those collisions which will result in particle loss are counted. The
formula takes the momentum aperture as a parameter. The resulting formula is reproduced here to give
the reader an idea of what influences the scattering rate, and how one might go about evaluating the
formula,

R =
r2ecβxβyσhN

2
p

8
√
πβ2γ4σ2

xβσ
2
yβσsσp

∫ ∞

τm

(Å
2 +

1

τ

ã2 Å τ/τm
1 + τ

− 1

ã
+ 1−

√
1 + τ√
τ/τm

− 1

2τ

Å
4 +

1

τ

ã
ln
τ/τm
1 + τ

) √
τ√

1 + τ
e−B1τI0 [B2τ ] dτ, (20.23)

where τm = β2δ2m and δm is the momentum aperture. This formula gives the rate at which particles
are scattered out of the bunch. It is assumed that two particles are lost per scattering event, one with
too much energy and one with too little energy. If a machine with an asymmetric momentum aperture
is being studied, then the formula should be evaluated twice, once for each aperture, and the results
averaged. Refer to [Piwin98] for definitions of the parameters involved. This formula is implemented in
BMAD as part of the touschek_mod module.

Different formulas for calculating the Touschek scattering rate exist elsewhere in the literature. For
example, Wiedemann [Wiede99], presents a formula with a simpler integrand. This formula, originally
from a paper by LeDuff [Duff87], is derived in a fashion similar to Piwinski except that the formula does
not take dispersion into account and uses a non-relativistic scattering cross-section. Since Piwinski’s
formula is the most robust, it is the one used in Bmad.

Particles are lost from Touschek scattering due to two effects. In storage rings, there is a momentum
aperture defined by the RF system that is often referred to as the RF bucket. If the δp imparted by a
Touschek scattering event exceeds this RF bucket, then the particle will no longer undergo synchrotron
oscillations with the rest of the bunch and will coast through the accelerator. Second, if the Touschek
scattering event occurs in a dispersive region, the scattered particles will take on a finite J and undergo
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betatron oscillations. These oscillations can be large in amplitude and may cause the particles to collide
with the beam pipe. To first order, the amplitude of J due to a scattering event that imparts a momentum
deviation of ∆p is,

J ≈ γ0H0
∆p2

2
, (20.24)

where γ0 is relativistic γ and H0 is the dispersion invariant.

20.3 Macroparticles

Note: The macroparticle tracking code is not currently maintained in favor of tracking an ensemble of
particles where each particle is specified by a position without a sigma matrix. The following is present
for historical reference only.

A macroparticle[Brown77] is represented by a centroid position r and a 6 × 6 σ matrix which defines
the shape of the macroparticle in phase space. σi =

√
σ(i, i) is the RMS sigma for the ith phase space

coordinate. For example σz =
√
σ(5, 5).

σ is a real, non-negative symmetric matrix. The equation that defines the ellipsoid at a distance of
n–sigma from the centroid is

(r− r)tσ−1(r− r) = n (20.25)

where the t superscript denotes the transpose. Given the sigma matrix at some point s = s1, the sigma
matrix at a different point s2 is

σ2 = M12 σ1 M
t
12 (20.26)

where M12 is the Jacobian of the transport map from point s1 to s2.

The Twiss parameters can be calculated from the sigma matrix. The dispersion is given by

σ(1, 6) = ηx σ(6, 6)

σ(2, 6) = η′x σ(6, 6) (20.27)
σ(3, 6) = ηy σ(6, 6)

σ(4, 6) = η′y σ(6, 6)

Ignoring coupling for now, the betatron part of the sigma matrix can be obtained from the linear
equations of motion. For example, using

x =
√
2βx ϵx cosϕx + ηx pz (20.28)

Solving for the first term on the RHS, squaring and averaging over all particles gives

βx ϵx = σ(1, 1)− σ2(1, 6)

σ(6, 6)
(20.29)

It is thus convenient to define the betatron part of the sigma matrix

σβ(i, j) ≡ σ(i, j)−
σ(i, 6)σ(j, 6)

σ(6, 6)
(20.30)

and in terms of the betatron part the emittance is

ϵ2x = σβ(1, 1)σβ(2, 2)− σ2
β(1, 2) (20.31)
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and the Twiss parameters are

ϵx

Å
βx −αx
−αx γx

ã
=

Å
σβ(1, 1) σβ(1, 2)
σβ(1, 2) σβ(2, 2)

ã
(20.32)

If there is coupling, the transformation between the 4× 4 transverse normal mode sigma matrix σa and
the 4× 4 laboratory matrix σx is

σx = VσaV
t (20.33)

where V is given by Eq. (22.5).

The sigma matrix is the same for all macroparticles and is determined by the local Twiss parameters:

σ(1, 1) = ϵx βx
σ(1, 2) = −ϵxαx
σ(2, 2) = ϵx γx = ϵx (1 + α2

x)/βx
σ(3, 3) = ϵy βy (20.34)
σ(3, 4) = −ϵyαb
σ(3, 4) = ϵy γy = ϵy (1 + α2

b)/βy
σ(i, j) = 0 otherwise

The centroid energy of the kth macroparticle is

Ek = Eb +
(nmp − 2 k + 1)σE NσE

nmp
(20.35)

where Eb is the central energy of the bunch, nmp is the number of macroparticles, σE is the energy
sigma, and NσE is the number of sigmas in energy that the range of macroparticle energies cover. The
charge of each macroparticle is, within a constant factor, the charge contained within the energy region
Ek − dEmp/2 to Ek + dEmp/2 assuming a Gaussian distribution where the energy width dEmp is

dEmp =
2σE NσE
nmp

(20.36)

20.4 Space Charge and Coherent Synchrotron Radiation

The electric field E felt by particle A due to particle B can be described using the Liénard-Wiechert
formula [Sagan09]. The field is singular as the distance between particles goes to zero so one approach
to handling this is to decompose the field into two parts: One part, called the “space charge” (SC) or
“Coulomb” term, ESC is the field that would result if the particles where moving without acceleration
along a straight line. The “Coherent Synchrotron Radiation” (CSR) term ECSR is everything else
ECSR ≡ E− ESC . Generally, the longitudinal component of the SC kick is negligible compared to the
CSR kick at large enough particle energies.

The SC term is singular at small distances while the CSR term is not. This being the case, it is possible
to model the CSR term using a 1-dimensional formalism where the beam is approximated as a line
charge[Sagan09, Sagan17]. In this formalism, the CSR kick is strictly longitudinal.

Transport through a lattice element with SC and CSR involves a beam of particles. The lattice element
is divided up into a number of slices. Transport through a slice is a two step process. The first step is
to give all the particles a kick due to SC and CSR. The second step is transport of all particles from one
slice to the next without any interaction between particles. User settable parameters pertinent to the
CSR calculation are listed in §11.5.
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20.4.1 1_Dim CSR Calculation

When an element’s csr_method is set to 1_dim (§6.5), The particle-particle CSR kick is calculated
by dividing the bunch longitudinally into a number of bins. To smooth the computed bin densities,
each particle of the bunch is considered to have a triangular density distribution as shown in Fig. 20.1.
The particle density of a bin is calculated by summing the contribution from all the particles. The
contribution of a given particle to a given bin is calculated from the overlap of the particle’s triangular
density distribution with the bin. For the CSR kick, the density is actually calculated for a second set
of staggered bins that have been offset by 1/2 the bin width with respect to the first set. This gives
the density at the edges of the original set of bins. The density is considered to vary linearly between
the computed density points. For a description of the parameters that affect the CSR calculation see
Section §11.5.

20.4.2 Slice Space Charge Calculation

When an element’s space_charge_method is set to slice (§6.5), the calculation of the SC kick uses,
the same particle binning as is used with the 1_dim CSR calculation (§20.4.1). The kick is divided
into longitudinal and a transverse parts. The transverse part uses the same Bassetti–Erskine complex
error function formula[Talman87] as with the beam-beam interaction (§25.5) except here, since all the
particles are moving in the same direction, the kicks due to the electric and magnetic fields generated

z

ρ

bins

particle

shifted bins

Figure 20.1: The Coherent Synchrotron Radiation kick is calculated by dividing longitudinally a bunch
into a number of bins. To smooth the computed densities, each particle of the bunch is considered to
have a triangular density distribution.
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by a given particle tend to cancel

Ky(CS) + iKx(CS) =
re ρ(z)

γ3 e
·
 

2π (σx + σy)

σx − σy
(20.37)w
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where K(CS) is the CS kick per unit length of travel of the beam, ρ(z) is the density of particles per
unit length evaluated at the z position of the kicked particle, e is the charge on the electron, and w is
the complex error function.

The longitudinal SC kick is given by Eq. (31) of Sagan[Sagan09]

dKSC =
rcmc

2 sign(ζ)ρ(z′)dz′

σx σy exp
[
x2

2σ2
x
+ y2

2σ2
y

]
+

σ2
x+σ

2
y

σx+σy
γ|ζ|+ γ2ζ2

, (20.38)

where ζ is the longitudinal distance between the kick point and the slice doing the kicking. There are
two simulation modes for the longitudinal SC kick. In both these modes, the kick is evaluated at the
center plane of each slice. The kick is a sum kicks from all the slices. Since the thickness of the slices is,
in general, not negligible, the integral over a slice is used to calculate the kick. The total kick KSC(j) at
slice j is

KSC(j) =
∑
i

∫ ζij+dzs/2

ζij−dzs/2
dζ dKSC (20.39)

where the sum is over all slices i, ζij is the distance between slices i and j, and dzs is the slice thickness.
An analytic expression of the above integral is easily calculated assuming that the charge density ρ(z) is
linearly varying within a given slice. For brevity’s sake, the calculation is not explicitly presented here.
Once the kick at the slice center planes is calculated, the kick given to a particle is calculated using
linear interpolation.

One mode for calculating the transverse SC kick which is computationally fast, ignores the transverse
dependence of the kick and just evaluates the kick on the beam centerline. The other simulation mode
represents the kick due to a given slice using a Padé approximant of form∫ ζij+dzs/2

ζij−dzs/2
dζ dKSC ≃

1

a00 + a20x2 + a40x4 + a02y2 + a04y4 + a22x2 y2
(20.40)

the a_mn are calculated from an analytic formula derived from integrating Eq. (20.38). The reason for
using this form is that it is a reasonable approximation even for very large x or y in that the actual and
approximate kick both go to zero in this limit. That this Padé approximant is reasonable is dependent
upon the fact that all the amn for a slice are either all positive or all negative. Kicks from different slices
can be combined using standard Differential Algebra techniques to give a summed kick in the same form
as above. To avoid divergences, for a given j where the kick is evaluated, all the kicks from slices with
negative coefficients are combined together and all the kicks from slices with positive coefficients are
combined together and the total kick is then the sum of the “positive kick” part and the “negative kick”
part. The kick applied to a particle is calculated by first evaluating the kick, at the particle’s x and y,
at the neighboring slices and then using linear interpolation.

Note: Match elements (§4.34) can have orbit shifts which are not well handled by the CSR algorithm.
For this reason, match elements are ignored in the CSR calculation.
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20.4.3 FFT_3D Space Charge Calculation

When an element’s space_charge_method is set to fft_3d or cathode_fft_3d (§6.5), the space charge
calculation uses code from the OpenSC package developed by Rob Ryne and Christopher Mayes [Ryne18].
The method works by calculating the field due to the particles deposited on a 3D grid using an integrated
Green function method for the Poisson equation. The steps are:

1. Deposit weighted charged particles on a 3D rectangular grid.

2. Calculate the space charge fields on this grid by FFT convolution.

3. Interpolate the field to an arbitrary point within its domain.

The FFT convolution is done using FFTs from the FFTW package, is parallelized using OpenMP.
Special options allow the consideration of image charges at a cathode. This method will be able to
handle lower energy bunches than the slice method (§20.4.2) the disadvantage is that the fft_3d and
cathode_fft_3d methods will be slower.

Note: The mesh size is set by the csr_pram parameter space_charge_mesh_size (§11.5).

20.5 High Energy Space Charge

Bmad has a code module for simulating the effect of space charge (SC) at high energies. This is separate
from the regular space charge calculation of §20.4. Thus it should be noted that turning on of both the
regular space charge and the high energy space charge in the same element will result in double counting
of the space charge effect.

The advantage of the high energy space charge algorithm is that the kick on a given particle is computed
assuming a Gaussian beam with the beam size calculated using emittances supplied by the user. Thus
the high energy space charge calculation can be done in single particle tracking (§20) as opposed to the
beam tracking that must be used for the regular space charge calculation. The other advantage is that
the high energy space charge calculation is quick since it is assumed that the kick is small enough so
that the kick is only applied once per lattice element. The disadvantage of the high energy space charge
calculation is that there is the assumption that the beam distribution is Gaussian which is generally
acceptable for storage rings at relatively high energy but will not accurate in other situations.

If a Bmad based program has been constructed to use the high energy space charge module (the doc-
umentation for the program should indicate if this is true), the high energy space charge force can be
turned on or off by setting the bmad_com[high_energy_space_charge_on] parameter (§11.2, §10.4).

The high energy space charge kick is computed assuming a gaussian bunch shape
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where N is the number of particles in the bunch. This equation is similar to Eq. (20.37) except that
ρ(z) has been replaced assuming that the longitudinal distribution is Gaussian. For particles close to
the bunch core the kick is linear with displacement giving rise to a tune shift [Decking00].
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The high energy space charge calculation ignores any CSR effects and ignores any longitudinal kicks and
is thus not a good approximation at lower energies. See the discussion in [Sagan09] for more details.



Chapter 21

Synchrotron Radiation

21.1 Radiation Damping and Excitation

Emission of synchrotron radiation by a particle can be decomposed into two parts. The deterministic
average energy emitted produces damping while the stochastic fluctuating part of the energy spectrum
produces excitation[Jowett87].

The treatment of radiation damping by Bmad essentially follows Jowett[Jowett87]. The energy loss at
a given location is modeled via

∆E

E0
= −kE ≡ −

[
kd
〈
g2
〉
Lp +

»
kf ⟨g3⟩Lp ξ

]
(1 + pz)

2 (21.1)

where Lp is the actual path length, g is the bending strength (1/g is the bending radius), and ⟨. . .⟩ is
an average over the actual path. In the above equation kd gives the deterministic part of the emission,
ξ is a Gaussian distributed random number with unit sigma and zero mean, and kf is the amplitude of
the stochastic part of the emission. Values for kd and kf are calculated via the equations

kd =
2 rc
3
γ30 (21.2)

kf =
55 rc ℏ

24
√
3mc

γ50 (21.3)

where γ0 is the energy factor of an on-energy particle and rc is the particles “classical radius” given by

rc =
q2

4π ϵ0mc2
(21.4)

where q is the particle’s charge and m is the particle’s mass.

Ignoring the finite opening angle of the emission for now, the angular orientation of the particle motion
is invariant for forward directed emission which leads to the following equations for the changes in
momentum phase space coordinates

∆px = − kE
1 + pz

px, ∆py = − kE
1 + pz

py, ∆pz ≈
∆E

E0
= −kE (21.5)

Synchrotron radiation emission involves energy loss and this energy loss leads to what is known as the
energy “sawtooth” effect where the curve of particle energy on the closed orbit as a function of longitudinal

365
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position has a sawtooth shape. A sawtooth pattern can also be generally seen in the horizontal orbit.
It is sometimes convenient in simulations to eliminate the sawtooth effect. This can be done by shifting
the photon emission spectrum at any given element to have zero average energy loss along the closed
orbit. For this calculation the closed orbit should be the closed orbit as calculated without radiation
damping (in other words the closed orbit without the sawtooth). In this case, kE is calculated by

kE =
[
kd
〈
g2
〉
Lp +

»
kf ⟨g3⟩Lp ξ

]
(1 + pz)

2 − kd
〈
g20
〉
Lp (21.6)

where g0 is g evaluated along the closed orbit. In practice, for the calculation, Bmad approximates the
closed orbit as the zero orbit.

The deterministic and stochastic parts of the emission can be included or excluded from a tracking
simulation by setting in a lattice file the Bmad global parameters (§11.2)

bmad_com[radiation_damping_on] = True or False ! Deterministic part on/off.
bmad_com[radiation_fluctuations_on] = True or False ! Stochastic part on/off.
bmad_com[radiation_zero_average] = True or False ! Make ave radiation kick zero.

The global parameter bmad_com[radiation_zero_average] controls the shifting of the photon spectrum
to have zero average. Currently, the shifting of the spectrum only works for non PTC dependent tracking.
That is, the shifting is not applicable to tracking with Taylor maps and with symp_lie_ptc (§6.1)
tracking.

The fact that an emitted photon is not exactly colinear with the particle direction (often called the “verti-
cal opening angle”) can be modeled as a separate process from the energy loss. With this approximation,
the change ∆p⊥ in the momentum transverse to the bending plane is given by

∆p⊥ =
»
kv ⟨g3⟩Lp ξ (21.7)

where the ξ in Eq. (21.7) is independent of the ξ in Eq. (21.1) and

kv =
13 rc ℏ

24
√
3mc

γ30 (21.8)

21.2 Transport Map with Radiation Included

Transport maps which include radiation effects can be constructed[Ohmi94]. The first step is to calculate
the reference orbit which is the closed orbit for lattices with a closed geometry and for lattices with an
open geometry the reference orbit is the orbit for some given initial position. Orbits here are calculated
with radiation damping but ignoring stochastic effects. The transfer map from s1 to s2 will be of the
form

δr2 =M21(δr1) + S21Ξ (21.9)

where δr1 and δr2 are the particle positions with respect to the reference orbit at s1 and s2 respectively
and M21 is the transfer map with damping. The stochastic radiation part is represented by a 6 × 6
matrix S times a 6-vector

Ξ = (ξ1, ξ2, ξ3, ξ4, ξ5, ξ6) (21.10)

with each ξi being an independent Gaussian distributed random number with unit sigma and zero mean.
The stochastic transport (second term in Eq. (21.9)) is treated here only in lowest order. This is a good
approximation as long as the radiation emitted is small enough in the region between s1 and s2. This
is true for nearly all practical cases. In the case where this approximation fails, the equilibrium beam
distribution would not be Gaussian and the standard radiation integral treatment (§21.3), which relies
on this approximation, would not be valid.
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The transfer map with damping M is calculated by adding in the effect of the damping (Eqs. (21.5))
when integrating the equations of motion to form the map. Through a given lattice element, it is
generally very safe to assume that the change in energy is small compared to the energy of a particle.
Thus the matrix M through an element, which is the first order part of M, can is computed via first
order perturbation theory to be

M = T+ Z (21.11)

where T is the transfer matrix without damping and Z is the change in T due to damping computed
via

Z =

∫ s2

s1

dsT2,s d(s)Ts,1 (21.12)

where s1 and s2 are the longitudinal positions at the ends of the element and the local damping matrix
d is computed from Eqs. (21.5)

d = −kd



0 0 0 0 0 0
dg2

dx px(1 + pz) g2(1 + pz)
dg2

dy px(1 + pz) 0 0 g2px
0 0 0 0 0 0

dg2

dx py(1 + pz) 0 dg2

dy py(1 + pz) g2(1 + pz) 0 g2py
0 0 0 0 0 0

dg2

dx (1 + pz)
2 0 dg2

dy (1 + pz)
2 0 0 2g2(1 + pz)


(21.13)

All quantities are evaluated on the closed orbit. Notice that sinceM21 is computed with respect to the
beam centroid orbit, there is no constant part to the map. Since T21 is invertible, Eq. (21.11) can be
written in the form

M21 =
(
1+ Z21 T

−1
21

)
T21 ≡ D21 T21 (21.14)

D is defined by this equation. The 1-turn damping decrement α for each mode a, b, and c of oscillation
can be calculated from D using Eq. (86) of Ohmi[Ohmi94].

The S matrix (Eq. (21.9)) is calculated by first noting that, to linear order, the distribution of δr2 due
to stochastic radiation over some length ds as some point s is

δr2 =
√
dsM2,s (Ff (s) ξ1 + Fv ξ2) (21.15)

where M2,s is the first order part (matrix) of the mapM2,s from s to s2, ξ1 and ξ2 are two independent
Gaussian random numbers with unit sigma and zero mean, and Ff and Fv are (see §21.1)

Ff =
»
kfg30 (0, px (1 + pz), 0, py (1 + pz), 0, (1 + pz)

2) (21.16)

Fv =
√
kvg0 (0,−gy, 0, gx, 0, 0) (21.17)

where kf px, py and pz are to be evaluated on the reference orbit and (gx, gy) is the curvature vector which
points away from the center of curvature of the particle’s orbit. Notice that since δr is, by definition,
the deviation from the reference orbit, px = r2 and py = r4 will be zero on the reference orbit. The
covariance matrix σγ is defined by σγij ≡ ⟨ri rj⟩γ where ⟨. . .⟩γ is an average over the photon emission
spectrum. The contribution, σγ21, to the covariance matrix at s2 due to the stochastic emission over
the region between s1 and s2, is

σγ21 =

∫ s2

s1

dsM2,s

[
Ff (s)F

t
f (s) + Fv(s)F

t
v(s)

]
Mt

2,s (21.18)

where the t superscript indicates transpose. σγ21 is related to S via

σγ21 = S21 St21 (21.19)
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The calculation of S21 involves calculating σγ21 via Eq. (21.18) and then using Eq. (21.19) to solve for
S21 using, say, a Cholesky decomposition. Notice that while Eq. (21.19) does not have a unique solution,
what matters here is that S21 Ξ (see Eq. (21.9)) gives the correct distribution. The S21 matrix may
contain columns or rows that are all zero. This can happen if there are vectors z where ztσγ21z is zero.
For example, in a planer ring where the vertical emittance is zero there will be rows that are zero.

The covariance matrix σγ(s2) at s2 relative to the covariance matrix at s1 is

σγ(s2) = σγ21 +M21 σγ(s1)M
t
21 (21.20)

The beam size matrix σ is not the same as the covariance matrix since the beam size matrix is an
average over the particles of a beam and not an average over the photon emission spectrum. However, in
equilibrium, the two are the same. To calculate the equilibrium beam size matrix, Eq. (21.20) is recast.
For any symmetric 6× 6 matrix A, define the 21-vector V(A) by

V(A) ≡ (A11, A12, . . . , A16, A22, A23, . . . , A56, A66) (21.21)

With s1 = s2 = s, and using Eq. (21.20), the equilibrium beam size matrix can be calculated via

V(σ(s)) = V(σγss) + M̃V(σ(s)) (21.22)

where the 21× 21 matrix M̃ is defined so that for any symmetric A, M̃V(A) = V(MAMt). That is

M̃ =

â
M2

11 2M11M12 · · · 2M15M16 M16M16

M11M21 2M11M22 · · · 2M15M26 M16M26

...
...

. . .
...

...
M51M61 2M51M62 · · · 2M55M66 M56M66

M61M61 2M61M62 · · · 2M65M66 M66M66

ì
(21.23)

Eq. (21.22) is linear in the unknown V(σ) and is easily solved.

The emittances can be calculated from the eigenvalues of the matrix σ S (Wolski[Wolski06] Eq. 30)
where S is given by Eq. (22.25). Specifically, the eigenvalues of σ S are pure imaginary and, using the
eigenvector ordering given by Eq. (22.24) (which is opposite that of Wolski), the emittances are the
imaginary part of the odd eigenvalues (ϵa, ϵb, ϵc) = (Imλ1, Imλ3, Imλ5).

Unlike the case where radiation is ignored and the motion is symplectic, the calculated emittances along
with the beam size will vary from point to point in a manner similar to the variation of the average
beam energy (sawtooth effect) around the ring (§21.1).

The emittance calculation makes a number of approximations. One approximation is embodied in
Eq. (21.12) which assumes that the damping is weak enough so that second order and higher terms can
be neglected. Another approximation is that, within the extent of the beam, the damping as a function
of transverse position is linear. That is, the effect of the damping is well represented by the matrix d
in Eq. (21.12). The third major assumption is that, within the extent of the beam, the stochastic kick
coefficient Ff (Eq. (21.17)) is independent of the transverse coordinates. Other approximations involve
the assumption of linearity of the guide fields and the ignoring of any resonance or wakefield effects. To
the extent that these assumptions are violated, this will lead to a non-Gaussian beam shape.

21.3 Synchrotron Radiation Integrals

The synchrotron radiation integrals can be used to compute emittances, the energy spread, etc. However,
using the 6D damped and stochastic transport matrices (§21.2) has a number of advantages:
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• Unlike the radiation integrals, the 6D calculation does not make the approximation that the syn-
chrotron frequency is negligible. Therefore, the 6D calculation will be more accurate.

• The 6D calculation is simpler: Not as many integrals needed (only 2) and the 6D calculation does
not depend upon calculation of the Twiss parameters.

• When doing any lattice design which involves constraining the emittances: Since the integrals of the
6D calculation are local (the integrations through any given lattice element are only dependent upon
the properties of that lattice element), by caching integrals element-by-element, the computation
of the emittances can be speeded up. That is, in a design problem, only the parameters of some
subset of all the lattice elements will be varied (for example, a design may only involve varying the
strength of quadrupoles), only this subset of elements needs to have their integrals recomputed.
On the other hand, the radiation integrals are dependent on the Twiss, dispersion, and coupling
parameters which make the integrals nonlocal.

• The 6D formalism can be used to construct transport maps with radiation damping and excitation
for efficient particle tracking.

The standard radiation formulas assume no coupling between the horizontal and vertical plains[Helm73,
Jowett87]. With coupling, the equations need to be generalized and this is detailed below.

In the general case, the curvature vector g = (gx, gy), which points away from the center of curvature of
the particle’s orbit and has a magnitude of |g| = 1/ρ, where ρ is the radius of curvature (see Fig. 16.2),
does not lie in the horizontal plane. Similarly, the dispersion η = (ηx, ηy) will not lie in the horizontal
plane. With this notation, the synchrotron integrals for coupled motion are:

I0 =

∮
ds γ0 g (21.24)

I1 =

∮
dsg · η ≡

∮
ds (gx ηx + gy ηy) (21.25)

I2 =

∮
ds g2 (21.26)

I3 =

∮
ds g3 (21.27)

I4a =

∮
ds
[
g2 g · ηa +∇g2 · ηa

]
(21.28)

I4b =

∮
ds
[
g2 g · ηb +∇g2 · ηb

]
(21.29)

I4z =

∮
ds
[
g2 g · η +∇g2 · η

]
(21.30)

I5a =

∮
ds g3Ha (21.31)

I5b =

∮
ds g3Hb (21.32)

I6b =

∮
ds g3 βb (21.33)

where γ0 is that usual relativistic factor and Ha is

Ha = γa η
2
a + 2αa ηa η

′
a + βaη

′2
a (21.34)

with a similar equation for Hb. Here ηa = (ηax, ηay), and ηb = (ηbx, ηby) are the dispersion vectors for
the a and b modes respectively in x–y space (these 2–vectors are not to be confused with the dispersion
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4–vectors used in the previous section). The position dependence of the curvature function is:

gx(x, y) = gx + x k1 + y s1

gy(x, y) = gy + x s1 − y k1 (21.35)

where k1 is the quadrupole moment and s1 is the skew–quadrupole moment. Using this gives on–axis
(x = y = 0)

∇g2 = 2 (gxk1 + gys1, gxs1 − gyk1) (21.36)

Note: The above equations must be modified in places in the lattice where there are mode flips (§22.1
since an individual integral must be evaluated using the same physical mode throughout the lattice.

I0 is not a standard radiation integral. It is useful, though, in calculating the average number of photons
emitted. For electrons:

N =
5 rcmc2

2
√
3 ℏ c

I0 (21.37)

where N is the average number of photons emitted by a particle over one turn, and rc is the the particle’s
“classical radius” given by Eq. (21.4).

In a dipole a non–zero e1 or e2 gives a contribution to I4 via the ∇g2 ·η term. The edge field is modeled
as a thin quadrupole of length δ and strength k = −g tan(e)/δ. It is assumed that g rises linearly within
the edge field from zero on the outside edge of the edge field to its full value on the inside edge of the
edge field. Using this in Eq. (21.36) and integrating over the edge field gives the contribution to I4 from
a non–zero e1 as

I4z = − tan(e1) g
2 (cos(θ) ηx + sin(θ) ηy) (21.38)

With an analogous equation for a finite e2. The extension to I4a and I4b involves using ηa and ηb in
place of η. In Eq. (21.38) θ is the reference tilt angle which is non–zero if the bend is not in the
horizontal plane. Here use of the fact has been made that the g vector rotates as θ and the quadrupole
and skew quadrupole strengths rotate as 2 θ.

The above integrals are invariant under rotation of the (x, y) coordinate system and reduce to the
standard equations when gy = 0 as they should.

There are various parameters that can be expressed in terms of these integrals. The I1 integral can be
related to the momentum compaction αp via

I1 = L
dL/L

dp/p
= Lαp (21.39)

where p is the momentum and L is the ring circumference. The can be related to the time slip factor ηp
by

ηp =
dt/t

dp/p
= αp −

1

γ2
(21.40)

The energy loss per turn is related to I2 via

U0 =
2 rcE

4
0

3 (mc2)3
I2 (21.41)

where E0 is the nominal energy.

The damping partition numbers are related to the radiation integrals via

Ja = 1− I4a
I2

, Jb = 1− I4b
I2

, and Jz = 2 +
I4z
I2

. (21.42)
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Since
ηa + ηb = η , (21.43)

Robinson’s theorem, Ja + Jb + Jz = 4, is satisfied. Alternatively, the exponential damping coefficients
per turn are

αa =
U0 Ja
2E0

, αb =
U0 Jb
2E0

, and αz =
U0 Jz
2E0

. (21.44)

The energy spread is given by

σ2
pz =

Å
σE
E0

ã2

= Cqγ
2
0

I3
2I2 + I4z

(21.45)

where γ0 is the usual energy factor and

Cq =
55

32
√
3

ℏ
mc

= 3.832× 10−13 meter for electrons (21.46)

If the synchrotron frequency is not too large, the bunch length is given by

σ2
z =

I1
M(6, 5)

σ2
pz (21.47)

where M(6, 5) is the (6, 5) element for the 1–turn transfer matrix of the storage ring. Finally, the
emittances are given by

ϵa =
Cq

I2 − I4a
γ20 I5a

ϵb =
Cq

I2 − I4b

Å
γ20 I5b +

13

55
I6b

ã
(21.48)

The I6b term come from the finite vertical opening angle of the radiation[Rauben91]. Normally this term
is very small compared to the emittance due to coupling or vertical kicks due to magnet misalignment.

For a non-circular machine, radiation integrals are still of interest if there are bends or steering elements.
However, in this case, the appropriate energy factors must be included to take account any changes in
energy due to any lcavity elements. For a non-circular machine, the I1 integral is not altered and the
I4 integrals are not relevant. The other integrals become

L2 =

∫
ds g2 γ40 (21.49)

L3 =

∫
ds g3 γ70 (21.50)

L5a =

∫
ds g3Ha γ60 (21.51)

L5b =

∫
ds g3Hb γ60 (21.52)

In terms of these integrals, the energy loss through the lattice is

U0 =
2 rcmc

2

3
L2 (21.53)

The energy spread assuming σE is zero at the start and neglecting any damping is

σ2
E =

4

3
Cq rc

(
mc2

)2
L3 (21.54)
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The above equation is appropriate for a linac. In a storage ring, where there are energy oscillations,
the growth of σ2

E due to quantum excitation is half that. One way to explain this is that in a storage
ring, the longitudinal motion is “shared” between the z and pz coordinates and, to preserve phase space
volume, this reduces σ2

E by a factor of 2.

Again neglecting any initial beam width, the transverse beam size at the end of the lattice is

ϵa =
2

3
Cq rc

L5a

γf

ϵb =
2

3
Cq rc

L5b

γf
(21.55)

Where γf is the final gamma.



Chapter 22

Linear Optics

22.1 Coupling and Normal Modes

The coupling formalism used by Bmad is taken from the paper of Sagan and Rubin[Sagan99]. The main
equations are reproduced here.

The analysis starts with the map T(s) for the transverse two–dimensional phase space coordinates
x = (x, x′, y, y′). In ring, with a closed geometry, this map will be a one-turn map starting and ending
at some point s. For a machine with open geometry, T(0) can be computed from the initial Twiss and
coupling parameters and T(s) can then be computed by propagating with the transfer map M0s from 0
to s:

T(s) = M0sT(0)M−1
0s (22.1)

T can be decomposed using a similarity transformation can be written as

T = VUV−1, (22.2)

where V is symplectic, and U is of the form

U =

Å
A 0
0 B

ã
. (22.3)

Since U is uncoupled, the standard Twiss analysis can be performed with the A and B matrices being
parameterized using the standard form:

A =

Å
cos θa + αa sin θa βa sin θa
−γa sin θa cos θa − αa sin θa

ã
(22.4)

with a similar equation for B.

The V “coupling” matrix is written in the form:1

V =

Å
γI C
−C+ γI

ã
, (22.5)

1The form of V and U is not unique. The form of V and U used here essentially follows the form given by Edwards
and Teng[Edwards73].
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where C is a 2x2 matrix and + superscript denotes the symplectic conjugate:

C+ =

Å
C22 −C12

−C21 C11

ã
. (22.6)

Since we demand that V be symplectic we have the condition

γ2 + |C| = 1, (22.7)

and V−1 is given by

V−1 =

Å
γI −C
C+ γI

ã
. (22.8)

C is a measure of the coupling. T is uncoupled if and only if C = 0.

It is useful to normalize out the β(s) variation in the above analysis. Normalized quantities being denoted
by a bar above them. The normalized normal mode matrix U is defined by

U = GUG−1, (22.9)

Where G is given by

G ≡
Å
Ga 0
0 Gb

ã
, (22.10)

with

Ga =

Ñ
1√
βa

0

αa√
βa

√
βa

é
, (22.11)

with a similar equation for Gb. With this definition, the corresponding A and B (cf. Eq. (22.3)) are just
rotation matrices. The relationship between T and U is

T = G−1 VUV
−1

G, (22.12)

where
V = GVG−1. (22.13)

Using Eq. (22.10), V can be written in the form

V =

Ç
γI C

−C
+

γI

å
, (22.14)

with the normalized matrix C given by

C = GaCG−1
b . (22.15)

The two normal modes of oscillation are denoted a and b with the a-mode associated with the A matrix
and the b-mode associated with the B matrix. The normal mode phase space coordinates are denoted
a = (a, pa, b, pb). If the one–turn matrix T is uncoupled then the a-mode is associated with horizontal
horizontal motion and b-mode is associated with vertical motion.

The normal mode coordinates a are related to the laboratory frame via

a = V−1 x. (22.16)



22.2. TUNES FROM ONE-TURN MATRIX EIGEN ANALYSIS 375

In particular the normal mode dispersion ηa = (ηa, η
′
a, ηb, η

′
b) is related to the laboratory frame dispersion

ηx = (ηx, η
′
x, ηy, η

′
y) via

ηa = V−1 ηx. (22.17)

When there is no coupling (C = 0), ηa and ηx are equal to each other.

In highly coupled lattices there is the possibility of “mode flips”. An example will make this clear.
Suppose that at one point in a lattice, which will be labeled s1, the 1-turn matrix T1 is uncoupled (V1 is
the unit matrix). The two normal modes at this point will be labeled a1 and b1. and T1 can be written
in the form

T1 =

Å
A1 0
0 B1

ã
(22.18)

Further assume that the transfer matrix M12 between point s1 and some other point s2 is of the form

M12 =

Å
0 E
F 0

ã
(22.19)

The 1-turn matrix T2 at s2 will be

T2 = M−1
12 T1 M12 =

Å
F−1 B1F 0

0 E−1 A1 E

ã
=

Å
A2 0
0 B2

ã
(22.20)

This shows that the at s2 the a2 normal mode is associated with the b1 mode and the b2 mode is
associated with the a1 mode! This is a mode flip. What this means is that in this highly coupled lattice
the excitation of a given “physical” mode will be described using the a-mode in some places of the lattice
and the b-mode in other places. In particular, it is important to keep track of where there are mode
flips when evaluating synchrotron radiation integrals like I4a and I4b (§21.3) since an individual integral
must be evaluated using the same physical mode throughout.

At any point where Bmad evaluates the Twiss parameters, a mode_flip parameter is set. By default,
Bmad sets the mode_flip at the beginning of the lattice to False (§10.4) and then calculates the
mode_flip parameter appropriately for any other point. For a lattice with a closed geometry, if the
lattice is stable, the mode_flip state at the end of the lattice will be equal to the state at the beginning
of the lattice.

22.2 Tunes From One-Turn Matrix Eigen Analysis

Given the 6 × 6 one-turn matrix for a storage ring, one issue is how to extract the tunes. If there is
no coupling the analysis is simple but with coupling things get more complicated. In the general case,
calculating with eigenvectors and eigenvalues gives, assuming that the lattice is stable, three pairs of
eigenvalues with the two eigenvalues of a given pair being complex conjugates and all eigenvalues having
unit amplitude. That is, the eigenvalues λi, i = 1, . . . 6 can be ordered in pairs:

λ1, λ2 = exp(i θa), exp(−i θa)
λ3, λ4 = exp(i θb), exp(−i θb) (22.21)
λ5, λ6 = exp(i θc), exp(−i θc)

where θa, θb, and θc are the three tunes. To associate λ1 and λ2, along with their associated eigenvectors
v1 and v2, with the “horizontal-like” mode, all the eigenvectors are compared to one another and the
eigenvector pair with the largest values for the x and px components are used for v1 and v2. Similarly,
for the “vertical-like” mode, eigenvector pair with the largest values for the y and py components are
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x

px

+θx

z

pz

+θz ??

A) B)

Figure 22.1: A) The standard accelerator physics convention is that a clockwise rotation in (x, px) or
(y, py) space represents a positive tune. B) For longitudinal oscillations, it is sometimes conventional to
take counterclockwise rotation as positive if a machine is always running above transition.

associated with v3 and v4, and finally for the “longitudinal-like” mode the eigenvector pair with the
largest values for the z and pz components are associated with v5 and v6.

It can be useful to arrange the eigenvalues such that the odd numbered eigenvalues (1, 3, and 5) are
associated with the tune and the even numbered eigen values (2, 4, and 6) are associated with the
negative of the tune as arranged in Eq. (22.21). The algorithm for doing this can be deduced by first
considering the case where the motion is in one-dimension only. Here taken to be (x, p) as shown in
Fig. 22.1. Notice that, by the standard accelerator physics convention, a positive tune represents a
clockwise rotation in the transverse dimensions. For the longitudinal mode what counts as positive tune
can depend upon whether the machine is above transition or not. To keep the mathematics consistent,
positive tune for all modes will be taken to be clockwise.

Assuming that the motion is circular, the one-turn matrix M with tune θ is

M =

Å
cos(θ) sin(θ)
− sin(θ) cos(θ)

ã
(22.22)

The eignvalues and eigenvectors are

λ1 = exp(i θ), v1 =
1√
2
(1, i)

λ2 = exp(−i θ), v2 =
1√
2
(1,−i) (22.23)

Thus, for the eigenvector (1, i)/
√
2, were the momentum component is rotated by a factor of π/2 coun-

terclockwise from the position coordinate, the rotation angle is the tune. The rotation angle associated
with the eigenvector (1,−i)/

√
2 is associated with the negative of the tune.

In the general case, each vk, k = 1, . . . 6, is a vector in (x, px, y, py, z, pz) space with each component of
the vector being a complex number. The criterion that an eigenvector is associated with the tune is that
the phase of the momentum components are on average rotated clockwise from the position coordinates
is

ṽ∗
k Svk = i, k = 1, 3, 5

ṽ∗
k Svk = −i, k = 2, 4, 6 (22.24)
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where the tilde means transpose and S is the matrix

S =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0

 (22.25)

Eq. (22.24), along with the condition

vk+1 = v∗k, k = 1, 3, 5 (22.26)

makes sure that the vk are properly normalized.2

22.3 Linear Action-Angle Coordinates

The transformation from the one-turn 6× 6 matrix T in laboratory coordinates to action-angle coordi-
nates uses the similarity transformation

T = NRN−1 (22.27)

where N is a symplectic matrix. NT SN = S with S given in Eq. (22.25) and R is a rotation matrix

R =

Ñ
R2(θa)

R2(θb)
R2(θc)

é
(22.28)

with each 2× 2 rotation submatrix R2 being of the form as M in Eq. (22.22). The transformation from
laboratory coordinates x to normal mode a coordinates is

a = N−1 x (22.29)

In action-angle coordinates a looks like

a =
Ä√

2 Ja cos(ϕa),−
√

2 Ja sin(ϕa),
√
2 Jb cos(ϕb),−

√
2 Jb sin(ϕb), (22.30)√

2 Jc cos(ϕc),−
√

2 Jc sin(ϕc)
ä

where Ja, Jb, and Jc are the actions and ϕa, ϕb, and ϕc are the angles.

When the motion is uncoupled, the action and angle of a mode is related to the laboratory coordinates,
up to an overall phase factor via:

x =
√
2 J β cos(ϕ)

p = −
 

2 J

β
(α cos(ϕ) + sin(ϕ))

(22.31)

2Different Authors use different conventions. For example, the S matrix in the paper by Chao[Chao81], is the negative
of the S matrix defined here and in the paper by Ohmi, Hirata, and Oide [Ohmi94] the phases are reversed (positive phase
is counterclockwise rotation) as can be seen from Eqs. (77) and (79) in their paper.
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With the eigenvectors normalized with Eq. (22.24), the particle position x on turn m when a single mode
k is excited can be written in the form

x(m) =
√
J vk e

i (θk m+ϕ0) + C.C. (22.32)

where the phase ϕ0 is set by the initial particle position x(0) and C.C. means complex conjugate.

The N matrix can be constructed using the eigenvectors of T (§22.2)

N =
1√
2
((ṽ1 + ṽ2),−i (ṽ1 − ṽ2), (ṽ3 + ṽ4),−i (ṽ3 − ṽ4), (ṽ5 + ṽ6),−i (ṽ5 − ṽ6)) (22.33)

where the tilde means transpose. That is, the ṽk are column vectors.

The vk vectors, k = 1, 3, 5 can each be multiplied by an arbitrary complex phase factor z with unit
magnitude. The corresponding vk must then be multiplied by z∗ to keep Eq. (22.26) satisfied. To
recover the standard Twiss parameters, without coupling N should have the form

N =

Ñ
Na

Nb

Nc

é
(22.34)

where the 2× 2 submatrices have the standard form

Na =

(√
βa 0
−αa√
βa

1√
βa

)
(22.35)

with similar equations for Nb and Nc. To make the (1, 2) component of these submatrices zero, along
with having

√
β positive, the kth component of vk, k = 1, 3, 5 must be positive real. This fixes the

overall phase of the eigenvectors.

22.4 Dispersion Calculation

The dispersion η is defined in the standard way

eta_x = ηx(s) ≡
dx

dpz

∣∣∣∣
s

, eta_y = ηy(s) ≡
dy

dpz

∣∣∣∣
s

(22.36)

The associated momentum dispersion is:

etap_x = ηpx ≡
dpx
dpz

∣∣∣∣
s

, etap_y = ηpy ≡
dpy
dpz

∣∣∣∣
s

, (22.37)

The momentum dispersion is useful when constructing particle bunch distributions and for various
calculations like for calculating radiation integrals.

To calulate the normal mode dispersions, Eq. (22.16) is used to transform from laboratory to normal
mode coordinates.

The one drawback with the momentum dispersion is that it is not always simply related to the derivative
of the dispersion dη/ds. This becomes a factor when designing lattices where, if some section of the
lattice needs to be dispersion free, it is convienient to be able to optimize dη/ds to zero. The dispersion
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derivative is related to the momentum dispersion by

deta_x_ds ≡ dηx
ds

=
d

dpz

Å
dx

ds

ã
=

d

dpz

Å
px

1 + pz

ã
=

1

1 + pz
ηpx −

px
(1 + pz)2

deta_y_ds ≡ dηy
ds

=
d

dpz

Å
dy

ds

ã
=

d

dpz

Å
py

1 + pz

ã
=

1

1 + pz
ηpy −

py
(1 + pz)2

(22.38)

For a lattice branch with an open (non-circular) geometry, the dispersion of the z phase space coordinate,
ηz can be defined similar to the dispersion of the other coordinates. In this case, the dispersion vector
η is defined by

η = (ηx, ηpx, ηy, ηpy, ηz, 1) (22.39)

and this vector is propagated via
η(s2) = M21 η(s1) (22.40)

where M21 is the transfer matrix between points s1 and s2.

For an open geometry lattice branch, there are two ways one can imagine defining the dispersion: Either
with respect to changes in energy at the beginning of the machine or with respect to the local change in
energy at the point of measurement. The former definition will be called “non-local dispersion” and the
latter definition will be called “local dispersion” which what Bmad calculates. The non-local dispersion
η̃(s1) at some point s1 is related to the local dispersion η(s1) via

η̃(s1) =
dpz1
dpz0

η(s1) (22.41)

where s0 is the s-position at the beginning of the machine. The non-local dispersion has the merit of
reflecting what one would measure if the starting energy of the beam is varied. The local dispersion,
on the other hand, reflects the correlations between the particle energy and particle position within a
beam.

For a closed geometry lattice branch, defining the dependence of z on pz is problematical. With the RF
off, z is not periodic so a closed orbit z cannot be defined. With the RF on, the dispersion of any of the
phase space components is not well defined. This being the case, ηz is just treated as zero for a closed
branch.

Note: For a closed geometry branch with RF on, it is possible to define dispersions. If v is the eigenvector
of the eigenmode associated with longitudinal oscillations, the dispersion ηx can be defined by v(1)/v(6)
with similar definitions for the other dispersion components. With this definition, the dispersion become
complex. In the low RF limit, the dispersions ηx, ηpx, ηy, ηpy converge to the standard (real) values and
ηz diverges to infinity.3

3This is assuming a linear system. In practice, the motion will become unstable due to the finite size of the RF bucket.



380 CHAPTER 22. LINEAR OPTICS



Chapter 23

Spin Dynamics

23.1 Equations of Motion

The propagation of the classical spin vector S is described in the local reference frame (§16.1.1) by a
modified Thomas-Bargmann-Michel-Telegdi (T-BMT) equation[Hoff06]

d

ds
S =

ß
(1 + rt · g)

c βz
(ΩΩΩBMT +ΩΩΩEDM )− g × ẑ

™
× S (23.1)

where g is the bend curvature function which points away from the center of curvature of the particle’s
reference orbit (see Fig. 16.2), rt = (x, y) are the transverse coordinates, c βz is the longitudinal compo-
nent of the velocity, and ẑ is the unit vector in the z-direction. ΩΩΩBMT is the usual T-BMT precession
vector due to the particle’s magnetic moment

ΩΩΩBMT (r,P, t) = −
q

m c

ïÅ
1

γ
+ a

ã
cB− a γ c

1 + γ
(β ·B)β −

Å
a+

1

1 + γ

ã
β ×E

ò
(23.2)

= − q

m c

ïÅ
1

γ
+ a

ã
cB⊥ +

(1 + a) c

γ
B∥ −

Å
a+

1

1 + γ

ã
β ×E

ò
and ΩΩΩEDM is the precession vector due to a finite Electric Dipole Moment (EDM) [Silenko08]1

ΩΩΩEDM (r,P, t) = − q η

2mc

ï
E− γ

1 + γ
(β ·E)β + cβ ×B

ò
(23.3)

Here E(r, t) and B(r, t) are the electric and magnetic fields, B⊥ and B∥ are the components perpendicular
and parallel to the particle’s momentum, γ is the particle’s relativistic gamma factor, q, and m are the
particle’s charge and mass, β is the normalized velocity, a = (g − 2)/2 is the particle’s anomalous
magnetic moment (values given in Table 3.2), and η is the normalized electric dipole moment which is
related to the dipole moment d via

d =
η

2

q

m c
S (23.4)

Note: Some authors define η without the factor of c is the denominator.

It is important to keep in mind that the a and g-factors used here are defined using Eq. (3.2) which,
in the case of nuclei and other composite baryonic particles, differs from the conventional definition
Eq. (3.4). See the discussion after Eq. (3.2).

1Note: The value for the EDM is set by bmad_com[electric_dipole_moment] (§11.2).
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23.2 Quaternions and Biquaternions

Bmad uses a quaternion representation for spin rotations[Quat] and for the single resonance analysis
(§23.7) it is convenient to use biquaternions which are quaternions with complex coefficients. The
following is a brief introduction to quaternions and biquaternions. For more information, the reader is
referred to the literature[Sangwine].

WARNING! It is important when looking at software or documentation to keep in mind that there
are multiple conventions that are used to define quaternions! The “Hamilton” convention used here is
widely used in mathematics, physics and other fields. The “JPL” (Jet Propulsion Laboratory) and “STS”
(“space shuttle”) conventions are generally confined to use in areospace and robotics contexts[Yazell09,
Sommer18].

A quaternion q is a 4-component object:

q = q0 + qx i+ qy j+ qz k (23.5)

where q0, qx, qy, and qz are real numbers for quaternions and complex numbers for biquaternions. i, j,
and k are the fundamental quaternion units with the properties under multiplication

i2 = j2 = k2 = i j k = −1, i j = k, j i = −k, etc. (23.6)

i, j, and k do not commute among themselves but do commute with real or complex numbers. It is
important to keep in mind the difference between the quaternion unit i and the imaginary number i
which is not the same.

Explicitly, the product of two bi/quaternions (that is, two quaternions or biquaternions) is

ba =(a0b0 − axbx − ayby − azbz) + (a0bx + axb0 + aybz − azby) i+ (23.7)
(a0by − axbz + ayb0 + azbx) j+ (a0bz + axby − aybx + azb0)k

The q0 component of a quaternion q is called the scalar part and will be denoted by S(q). the
qxi+ qyj+ qzk part is called the vector part and will be denoted V(q). That is:

q = S(q) +V(q) (23.8)

A bi/quaternion with S(q) equal to zero is called a “pure” quaternion. the quaternion product in terms
of S and V is

pq = S(p)S(q) + S(p)V(q) + S(q)V(p) +V(p)V(q) (23.9)

and, if V(p) and V(q) are considered as vectors, the last term a ≡ V(p)V(q) in the above equation
can be written as

S(a) = −V(p) ·V(q), V(a) = V(p)×V(q) (23.10)

In the literature, the scalar part is sometimes called the real part and the vector part is sometimes
called the imaginary part. In this manual, this nomenclature is avoided to avoid confusion with the
real and imaginary parts of complex numbers. Here Re(q) and Im(q) are defined to be the real and
imaginary parts of the biquaternion.

Re(q) ≡ Re(q0) + Re(qx) i+Re(qy) j+Re(qz)k

Im(q) ≡ −i [Im(q0) + Im(qx) i+ Im(qy) j+ Im(qz)k] (23.11)

The dot product (inner product) of two bi/quaternions is defined to be the standard Euclidean dot
product in 4D:

a · b = a0 b0 + ax bx + ay by + az bz (23.12)
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and the bi/quaternion norm ||q|| is given by

||q|| ≡
√
q · q =

»
q20 + q2x + q2y + q2z (23.13)

Notice that for quaternions the norm is positive or zero and real. On the other hand, the norm of a
biquaternion will, in general, be complex. For pure bi/quaternions, the complex norm is defined by

|q| ≡
»
|qx|2 + |qy|2 + |qz|2 (23.14)

with the convention that quaternion norm uses double bars and complex norm uses a single bar. For
pure quaternions the two are equal.

The “quaternion conjugate”, q, valid for both quaternions and biquaternions, is defined by2

q = q0 − qx i− qy j− qzk (23.15)

The quaternion conjugate has the properties

q1 q2 = q2 q1, S(q) = S(q), V(q) = −V(q) (23.16)

Along with the properties

p · q =
1

2
(pq+ qp) (23.17)

The bi/quaternion inverse q−1 is related to the quaternion conjugate by

q−1 =
q

||q||2
(23.18)

The biquaternion complex conjugate q∗ is just the complex conjugate of the components

q∗ = q∗0 + q∗x i+ q∗y j+ q∗z k (23.19)

When a quaternion represents a rotation, i, j, and k can be thought of as representing unit vectors along
the three Cartesian axes x, y, and z respectively. A rotation through an angle θ around the unit axis
u = (ux, uy, uz) is represented by the quaternion

q = cos
θ

2
+ (ux i+ uy j+ uz k) sin

θ

2
(23.20)

A rotation quaternion q is a unit quaternion since its norm is unity ||q|| = 1.

Given an ordinary spatial vector (rx, ry, rz), this vector is represented by a pure quaternion r =
(0, rx, ry, rz). The rotation of r through a rotation represented by quaternion q to position r′ is given
by

r′ = q rq (23.21)

The rotation matrix R corresponding to Eq. (23.21) so that r′ = Rr is

R =

Ñ
q20 + q2x − q2y − q2z 2 qx qy − 2 q0 qz 2 qx qz + 2 q0 qy
2 qx qy + 2 q0 qz q20 − q2x + q2y − q2z 2 qy qz − 2 q0 qx
2 qx qz − 2 q0 qy 2 qy qz + 2 q0 qx q20 − q2x − q2y + q2z

é
(23.22)

2Different symbols are used in the literature. Here the use of “*” to denote the quaternion conjugate is avoided to avoid
confusion with complex conjugate. Notice that even with biquaternions, there is no complex conjugation when computing
q.
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Define functions I−(n) and I+(n) which map pure quaternions n = (0, nx, ny, nz) to biquaternions n-
and n+ via

n+ ≡ I+(n) ≡
1

2
+
i

2

(
nx i+ ny j+ nz k

)
n- ≡ I−(n) ≡ 1

2
− i

2

(
nx i+ ny j+ nz k

)
(23.23)

It will be assumed throughout that n has unit magnitude ||n|| = 1 and has real components (is a
quaternion).

For later use, the following identities are useful

n+n+ = n+, n-n- = n-, (23.24)
n = i(n- − n+), n+n- = n-n+ = 0

n+ = n-, n- = n+

The relations on the first row mean that I+(n) and I−(n) produce “idempotent” biquaternions[Sangwine].

For any biquaternions q, n+ = I+(n), and n- = I−(n), the biquaternion Q = n+qn- is pure. This
follows from

2S(Q) = Q+Q = n+(S(q) + S(q))n- + n+(V(q) +V(q))n- = 2S(q)n+n- = 0 (23.25)

Furthermore, the real and imaginary parts of Q have the following properties

Re(Q) · Im(Q) = 0

Re(Q) · n = Im(Q) · n = 0 (23.26)
|Re(Q)| = | Im(Q)|

These relations are fairly easy to derive. For example, the last one is proved via

4 |Re(Q)|2 = (Q+Q∗) · (Q+Q∗) = n+q2n+ +n-q2n- = −(Q−Q∗) · (Q−Q∗) = 4 | Im(Q)|2 (23.27)

and since the magnitude of both Re(Q) and Im(Q) must be positive (since Re and Im produce real
numbers), it follows that |Re(Q)| = | Im(Q)|.

23.3 Invariant Spin Field

In a storage ring, the invariant spin field n(r, s) = (nx, ny, nz) [Hoff06, Duan15], which is a function
of phase space position r = (x, px, y, py, z, pz) and longitudinal position s, is the continuous function with
unit amplitude that satisfies

n(Mrr, s) =Ms(r)n(r, s) (23.28)

where Mr is the orbital part of the 1-turn transfer map and Ms(r), derived from T-BMT equation,
is the spin part of the map which is a function of r. That is, the invariant spin field (ISF) obeys the
T-BMT equation. Thus, a particle whose spin points in the direction of n(r, s) at some time t will, in
the absence of radiation effects, always have its spin pointing in the direction of n(r, s). When there are
no resonances, n(r, s) is unique up to a flip of sign.

In general, it is not straightforward to calculate n. The exceptional case (besides the cases where there
is a resonance) is if the particle is on the closed orbit r0. In this case, sinceMrr0 = r0, and sinceMs(r)
is a rotation matrix, Eq. (23.28) can be solved to give the invariant spin field on the closed orbit denoted
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by n0. Over one turn, a spin on the closed orbit rotates around n0 by the angle 2πν0 where ν0 is the
closed-orbit spin tune.

Only the fractional part of the closed orbit spin tune ν0 is generally well defined. That is, it is not in
general possible to distinguish between tunes ν0 + m where m is an integer.3 Additionally, if n0 is a
valid closed orbit spin field then so is −n0 and the spin tune associated with −n0 is the negative of the
spin tune associated with n0.

Since the direction of n0 is arbitrary, Bmad uses the following convention: The range of the spin tune is
choisen to be [0, π]. From the 1-turn spin transport quaternian q (Eqs. (23.5) and (23.20)), the equation
to calculate the tune is

θ = 2 · atan2
(∣∣(qx, qy, qz)∣∣, |q0|) (23.29)

where atan2 is the standard arc tangent function. With this, n0 is given by

n0 =
sgn(q0)
|(qx, qy, qz)|

(qx, qy, qz) (23.30)

where sgn is the sign function. With this, the calculation of the tune and n0 is independent of whether
q or −q is used.

23.4 Polarization Limits and Polarization/Depolarization Rates

Once the invariant spin field (§23.3) has been calculated, various quantities of interest can be computed.
For example, given some initial distribution of spins in a beam, the maximum possible time averaged
polarization ⟨S⟩max is

⟨S⟩max =

∫
dr ρ(r)n(r) (23.31)

where the integral is over the beam phase space space density ρ and the longitudinal s-dependence is
implicit. The above equation neglects any single spin polarization or depolarization processes. Notice
that what is calculated is a time averaged quantity. Instantaneously, the beam can be fully polarized
but the average over many turns, at some given position s, cannot exceed ⟨S⟩max.

Another quantity that can be computed from knowledge of n is the equilibrium polarization of a beam.
The Baier-Katkov-Strakhovenko polarization Pbks (generalized from Sokolov-Ternov to include non-
vertical fields) is calculated by ignoring deviations of the beam from the closed orbit[Barber99]

Pbks = ±
8

5
√
3

∮
ds g3 b̂ · n0∮

ds g3
Å
1− 2

9
(n0 · ŝ)2

ã (23.32)

where g = 1/ρ is the bending strength (ρ is the bending radius), ŝ is the unit vector in the direction of
motion, and b̂ is defined to be

b̂ ≡ ŝ× dŝ/ds

|dŝ/ds|
(23.33)

3This is in contrast to the orbital tunes where the integer part is generally well defined (but there are exceptions when
there is strong coupling). The reason for this is that at all points in the ring, the orbital normal mode axes are fairly
well defined (see, for example, Eq. (22.16)). This means that the phase angle of an oscillating particle with respect to the
axes is fairly well defined and counting full oscillations is unambiguous. With spin, the closed orbit spin oscillations are
in the plane transverse to n0 and here there is no non-arbitrary way to define the transverse plane coordinate axes (there
is an exception here if n0 always is pointing in the same general direction). This makes the integer part of the spin tune
ambiguous.
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Notice that b̂ is the direction of the magnetic field when ŝ is perpendicular to the magnetic field and
when there is no electric field. In the above equation, the plus sign is for positrons (polarized parallel to
the field) and the minus sign is for electrons. Since the above equation is only valid when the anomalous
magnetic moment is small[Jackson76], this formula is not valid for protons and anti-protons.

The corresponding BKS polarization build-up rate τ−1
bks is

τ−1
bks =

5
√
3

8

re γ
5 ℏ

m

1

C

∮
ds g3

Å
1− 2

9
(n0 · ŝ)2

ã
(23.34)

If the stochastic excitation of the beam is taken into account, the generalized Sokolov-Ternov polarization
is called the Derbenev-Kondratenko formula

Pdk = ± 8

5
√
3

∮
ds

≠
g3 b̂ ·

Å
n− ∂n

∂δ

ã∑
∮
ds

Æ
g3
Ç
1− 2

9
(n · ŝ)2 + 11

18

∣∣∣∣∂n∂δ
∣∣∣∣2
å∏ (23.35)

where <> denotes an average over phase space, and δ is the fractional energy deviation which, for ultra-
relativistic particles, is the same as phase space pz. Since, away from any resonances, n is very close to
n0, and since generally machines are tuned away from any resonances, the n − ∂n/∂δ and n · ŝ terms
can be replaced by n0 − ∂n/∂δ and n0 · ŝ when evaluating Pdk.

The b̂ · ∂n/∂δ term in Eq. (23.35) is called the “kinetic polarization” term.

The time dependence of the polarization is [Barber99])

P(t) = Pdk (1− exp(−t/τdk)) +P0 exp(−t/τdk) (23.36)

where P0 is the initial polarization and the polarization rate τ−1
dk is

τ−1
dk =

5
√
3

8

re γ
5 ℏ

m

1

C

∮
ds

Æ
g3
Ç
1− 2

9
(n · ŝ)2 + 11

18

∣∣∣∣∂n∂δ
∣∣∣∣2
å∏

(23.37)

τ−1
dk can be decomposed into two parts:

τ−1
dk = τ−1

pol + τ−1
dep (23.38)

τ−1
pol is the polarization rate given by the first two terms on the RHS in Eq. (23.37) and the depolarization

rate τ−1
dep is given by the third term:

τ−1
pol =

5
√
3

8

re γ
5 ℏ

m

1

C

∮
ds

≠
g3
Å
1− 2

9
(n · ŝ)2

ã∑
τ−1
dep =

5
√
3

8

re γ
5 ℏ

m

1

C

∮
ds

Æ
g3

11

18

∣∣∣∣∂n∂δ
∣∣∣∣2
∏

(23.39)

τ−1
pol is generally well approximated by the Baier-Katkov-Strakhovenko polarization rate (Eq. (23.34)).

The difference being that τ−1
bks is evaluated along the closed orbit while τ−1

pol involves an average over the
transverse beam size.

The calculation of Pdk (Eq. (23.35)) and τ−1
dep (Eq. (23.39)) involve integrating ∂n/∂δ around the ring.

The calculation of ∂n/∂δ at any point in the ring involves a sum of eigenvectors nk, k = 1, . . . , 6
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(Eq. (23.53)) with pairs of eigenvectors being associated with the three orbital modes of oscillation.
Insight into the decoherence process can had by considering what Pdk and τ−1

dep would be if only one
oscillation mode was being excited. This is done by calculating ∂n/∂δ with Eq. (23.53) by using the
two nk for one particular mode and taking the other nk to be zero. This is then used in Eq. (23.35) and
Eq. (23.39).

One problem in evaluating Eq. (23.35) is that accurately evaluating the ∂n/∂δ terms over the transverse
bunch distribution is complicated due to lattice nonlinearities. One way to evaluate Pdk with nonlin-
earities included is by tracking a bunch of particles over some number of turns. To help minimize the
needed tracking, the spin flip process can be neglected. With this, and starting with 100% polarization,
a turn-by-turn plot of the polarization will give the depolarization rate τ−1

dep. The integrals of g3 b̂ · n
and g3 (1−2(n · ŝ)2/9) can be well approximated by the integrals over the closed orbit ignoring the finite
beam size. Finally, for most rings, the integral of g3b̂ ·∂n/∂δ is generally small compared to the integral
of g3 b̂ · n since, in most of the machine, b̂ and n will point in the vertical direction and ∂n/∂δ will be
perpendicular to the vertical (see Eq. (23.46)). Putting this all together, the equilibrium polarization
can be computed from

Pdk ≈ Pbks
τ−1
bks

τ−1
bks + τ−1

dep

(23.40)

where τ−1
dep is calculated via particle tacking and the other quantities are calculated by integrals over the

closed orbit ignoring beam size effects.

23.5 Bmad Tune and n0 convention

As mentioned above, at any point in a ring the direction of the closed orbit invariant spin n0 is ambiguous
since, if n0 is a valid invariant spin direction, then so is −n0. The same is true of the spin tune ν0 and
if ν0 is the spin tune associated with n0, −ν0 is the spin tune associated with −n0. This ambiguity
complicates various calculations. For example, to do the integral in Eq. (23.32), it is necessary to make
sure that the direction of n0(s1), the invariant spin at s1, must be consistent with the direction of the
invariant spin at s2, n0(s2). That is, the two must be related via

n0(s2) = q21 n0(s1)q21 (23.41)

where q21 is the closed orbit spin transport quaternion from s1 to s2. The tune must also be computed
consistent with the choice of invariant spin direction. This is important when calculating sum and
difference resonance strengths (Eqs. (23.73) and (23.74)).

To ensure a consistent invariant spin direction, Eq. (23.41) is used when calculating integrals involving
n0. To ensure a consistent tune, Bmad uses the following convention that the spin tune will always be
in the range [0, π], and the direction of n0 will be chosen to be consistent with this choice in tune (it is
left as an exercise for the reader to prove that there will always be exactly one spin tune in the range
[0, π].

23.6 Linear ∂n/∂δ Calculation

When evaluating the equations in the previous section, in many situations it is sufficient to just use the
value of ∂n/∂δ as calculated in the linear regime. In the linear regime, ∂n/∂δ is only dependent upon
the s-position and is independent of the phase space position. The calculation of ∂n/∂δ starts with the
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linearized transport equations which are characterized by a 6× 6 orbital 1-turn transfer matrix M along
with the spin transport which can be written in the form

qs(r) = q0 +
−→q · r (23.42)

The quaternion map qs, evaluated at the orbital phase space point r, has a zeroth order part q0 (the
spin rotation for a particle on the closed orbit) and the first order part −→q = (q1, . . . ,q6) which is a
vector of six quaternions and which is evaluated in Eq. (23.42) by taking the dot product with the vector
r.

The closed orbit invariant spin n0 which has unit amplitude satisfies the equation

q0 n0 q0 = n0 (23.43)

The solution to this equation, normalized to one, is

n0 =
(q0,x, q0,y, q0,z)

∥(q0,x, q0,y, q0,z)∥
(23.44)

Another way of writing this is using Eq. (23.20)

q0 = cos(π ν0) + (n0,x i+ n0,y j+ n0,z k) sin(π ν0) (23.45)

where ν0 is the spin tune.

Since qs is a rotation quaternion, the magnitude of qs(r) must remain one. Using Eq. (23.42) in
Eq. (23.13), to keep the magnitude equal to one to linear order gives the condition

q0 · qj = 0, j = 1, . . . , 6 (23.46)

for all qj components of −→q .

To calculate ∂n/∂δ, the first step is to compute the eigenvectors vk and eigenvalues λk, k = 1, . . . , 6 of
the 1-turn orbital matrix. The corresponding spin eigenvectors nk are computed from the equation

qs(vk) (n0 + nk) qs(vk) = n0 + λk nk (23.47)

These eigenvectors are perpendicular to n0. This can be easily shown by noting that n(r) in Eq. (23.52)
must have unit magnitude to linear order for any arbitrary choice of Ak(r). Using Eqs. (23.42) and
(23.43), and keeping only linear terms gives

λk nk − q0 nk q0 = (−→q · vk)n0 q0 + q0 n0 (
−→q · vk) (23.48)

This equation is linear in the unknown nk and so may be solved using standard linear algebra techniques.
One small problem with Eq. (23.48) is that it is degenerate along the n0 axis in the limit when there is no
RF voltage since the eigen mode associated with the longitudinal motion will have an eigenvalue of one.
In this case, round-off errors can cause large inaccuracies. To get around this, Eq. (23.48) is projected
onto the plane perpendicular to n0 by first constructing vectors c1 and c2 which are orthogonal to n0

and orthogonal to each other. Eq. (23.48) is projected onto the (c1, c2) plane to give(
λk nk − q0 nk q0

)
· cm =

(
(−→q · vk)n0 q0 + q0 n0 (

−→q · vk)
)
· cm, m = 1, 2 (23.49)

Now using the fact that nk is perpendicular to n0 means that nk can be written as a linear combination
of c1 and c2

nk = a1 c1 + a2 c2 (23.50)
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Using this in Eq. (23.49) gives linear coupled equations in the unknowns (a1, a2) which is easily solved.

Since the eigenvectors vk span phase space, for any given phase space position r, there exist a set of
coefficients Ak(r), k = 1, . . . , 6, such that

r =

6∑
k=1

Ak(r)vk (23.51)

Define the function n by

n(r) ≡ n0 +

6∑
k=1

Ak(r)nk (23.52)

This function obeys the T-BMT equation and is continuous and thus is the solution (up to a flip in sign
and a normalization constant) for the invariant spin field. From this, ∂n/∂δ, which is computed taking
the derivative at constant x, px, y, py, and z, is obtained via

∂n

∂δ
=

6∑
k=1

Ak nk (23.53)

with the Ak being computed by inverting the equation

(0, 0, 0, 0, 0, 1)t =

6∑
k=1

Ak vk (23.54)

where the superscript t means transpose. Notice that for ∂n/∂δ, as well as any other partial derivative,
the component in the direction of n0 will be zero since, to first order, the amplitude of n must be
constant (since the equation for n is only valid to first order, the computed amplitude will have non-zero
higher order terms).

A problem arises if the machine that is being simulated does not have any RF cavities or the voltage
in the cavities is zero. In this case, there are no synchrotron oscillations which results in degenerate
eigenvectors and the eigenvectors will not span all of phase space. The solution here is to reduce the
dimensionality of phase space to five by removing the z coordinate. The above equations then can be
used with the sums over k ranging from 1 to 5.

It is sometimes informative to compute the contribution of ∂n/∂δ due to just one or two modes of
oscillation. That is, to compute ∂n/∂δ with the sum in Eq. (23.53) restricted to be over one or two
corresponding eigen states that comprise the oscillation modes of interest. This information can help
guide lattice design.

Another way for analyzing where in the lattice contributions to ∂n/∂δ are coming from is to consider the
spin transport maps for individual elements. These maps will be of the form given in Eq. (23.42). The
contribution to ∂n/∂δ from an element is due to the non-zero terms in −→q = (q1, . . . ,q6). If terms are
selectively zeroed, and this significantly changes the polarization, this is a clue for designing a lattice.
For example, if setting q1 and q2 to zero for a set of elements in a certain region of the machine leads to
significantly greater polarizations, this indicates that the polarization is sensitive to horizontal excitation
in this region. Similarly, zeroing elements in q3 and q4 is associated with vertical excitation and q5 and
q6 is associated with longitudinal excitation. With the slim formalism (§23.9), the 2× 6 matrix G can
be decomposed into three 2× 2 sub-matrices:

G = (Gx,Gy,Gz) (23.55)

Zeroing q1 and q2 is equivalent to zeroing Gx, etc.
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23.7 Single Resonance Model

Resonances occur when the spin tune νs is an integer (“imperfection” resonances) and when the spin
tune νs in combination with the three orbital tunes νx, νy, and νz is an integer (“intrinsic” or “spin-orbit”
resonances)

νs +mx νx +my νy +mz νz = m0 (23.56)

where mx, my, mz, and m0 are integers. As discussed below, in the linear approximation (§23.6),
resonances only occur if one and exactly one of the mx, my, or mz has a value of one and the other two
are zero.

Generally, in rings where the synchrotron radiation is large (think electrons), the depolarization due
to radiation will tend to dominate (§23.4). For rings where the synchrotron radiation is small (think
protons), resonances will be more important. Notice that synchrotron radiation, being a stochastic
process results in depolarization. Resonances, on the other hand, are not stochastic and even if a
resonance tilts the polarization direction there can be the possibility of recovery.

To calculate the effect of a resonance it is helpful to know the resonance strength. The resonance
strength calculation can be motivated by considering the Single Resonance Model (SRM)[Hoff06] where
it is assumed that only one orbital mode is excited and that there is a single dominating resonance. In
this case the spin equation of motion is

ds

dθ
= Ω× s, Ω =

Ñ
ϵr cosΦ
ϵr sinΦ
ν0

é
(23.57)

where ϵr is the resonance strength, ν0 is the closed orbit spin tune and θ is the longitudinal angle with
θ = 2π representing one turn in the circular accelerator. In the above equation the phase Φ is related
to the orbital mode tunes Q via

Φ = (j0 + jxQx + jyQy + jzQz)θ +Φ0 ≡ κθ +Φ0 (23.58)

with j0, jx, jy, and jz being integers and Φ0 being the starting phase. Eq. (23.57) defines κ. Eq. (23.57)
can be solved by transforming to a coordinate system rotating about the z-axis with a rotational fre-
quency κ. This is called the “resonance” coordinate system or the “rotating” coordinate system. In
this frame, the spin vector sR is

sR = qz(−Φ/2) s qz(−Φ/2) (23.59)

where
qz(ϕ) ≡

(
cos(ϕ/2) + sin(ϕ/2)

)
k (23.60)

Using Eq. (23.59) in Eq. (23.57) gives

dsR
dθ

= ΩR × sR, ΩR =

Ñ
ϵr
0
δ

é
, δ = ν0 − κ (23.61)

Spins rotate around around ΩR. A spin initially aligned along the z-axis will be tilted a maximum of
tan−1(2ϵr/δ) away from the z-axis. This shows that the characteristic frequency width of the resonance
is set by δ ≈ ϵr. That is, the frequency width scales linearly with ϵr.

In the rotating coordinate system, a spin oriented parallel to ΩR remains parallel to ΩR so ΩR is in the
direction of the invariant spin field. Transforming back to the laboratory frame and normalizing to one,
n is

n(Φ) =
sgn(δ)

Λ

Ñ
ϵr cosΦ
ϵr sinΦ

δ

é
, Λ =

√
δ2 + ϵ2r (23.62)
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where the sign factor sgn(δ) is chosen so that on the closed orbit with ϵr = 0 the n axis is in the positive
z-direction.

Eq. (23.62) shows that resonance occurs when δ = 0 or ν0 = κ. The use of a sinusoidal perturbation in
the single resonance model results in the suppression of all other resonances. In an actual machine, the
presence of a perturbation at some specific point in the machine will produce a comb of resonances of
the form m0 ±Q.

At resonance, with δ = 0, Eq. (23.61) shows that if a spin in the resonance coordinate system is initially
aligned along the n0 axis (sR = (0, 0, 1)), After N turns, in the linear approximation, the spin will be

sR(N,n0) = (0,−N · 2π ϵr, 1) (23.63)

Eq. (23.63) gives a physical interpretation to the resonance strength ϵr. The resonance strength is the
angle (modulo 2π) that a spin is tipped away from n0 in one turn. The linear approximation will be
valid for N such that N ϵr ≪ 1. For the linear approximation to be valid for any positive N , ϵr must
satisfy ϵr ≪ 1.

23.8 Linear Resonance Analysis

Within the linear approximation, the resonance strength ϵr (Eq. (23.57)) can be related to the first order
spin transport (Eq. (23.42)). The analysis starts by inversion of Eq. (23.63) and letting N go to infinity

ϵr = lim
N→∞

1

2πN
|sR(N,n0)− n0| (23.64)

Here the restriction N ≪ 1/ϵr can be ignored since the analysis below will use the linearized spin
transport and it is the nonlinear terms in the spin transport which makes the restriction necessary. In
fact, with linear spin transport, the magnitude of sR is not constant and at resonance is unbounded.
Eq. (23.64) will still be valid even when there are multiple resonances present since Eq. (23.64) must be
evaluated on a particular resonance and, it will be seen, the contribution to Eq. (23.64) from non-resonant
resonances is zero.

sR(N,n0) is the spin after N turns given an initial spin of n0. sR(N,n0) can be computed via

sR(N,n0) = QN n0 QN (23.65)

The rotation quaternion QN over N turns is the product of one-turn rotation quaternions qs(r) with
an extra factor of q−N

0 to convert from laboratory coordinates to resonance coordinates since qs is the
transport in laboratory coordinates (by definition, resonance coordinates are the same as laboratory
coordinates at N = 0).

QN = q−N
0 qs(rN−1) . . .qs(r1)qs(r0) (23.66)

In the above equation, rj is the orbital position after j turns. Using Eq. (23.42) and expanding to linear
order in −→q gives

QN = q−1
0

Ñ
q0 +

N−1∑
j=0

q−j
0

(−→q · rj)qj0
é

(23.67)

Using this with Eq. (23.65) in Eq. (23.64) and keeping only linear terms, gives

ϵr =
∣∣∣q−1

0 Zn0 + n0 Zq0

∣∣∣ (23.68)
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where

Z = lim
N→∞

1

2πN

N−1∑
j=0

q−j
0

(−→q · rj)qj0 (23.69)

To evaluate Z, the quantity qj0 is decomposed into two parts using the fact that κ = ν0 + δ

qj0 = eiπj(ν0+δ)+iΦ0 n-0 + e−iπj(ν0+δ)−iϕ0 n+
0 (23.70)

where n-0 ≡ I−(n0) and n+
0 ≡ I+(n0) are given by Eq. (23.23).

For a particular mode k of oscillation, rj is given by Eq. (22.32). The end result will be independent of
ϕ0 in Eq. (22.32) so without loss of generality, Φ0 will be set to zero. Using this along with the above
equations gives

Z = lim
N→∞

√
J

2πN

N−1∑
j=0

[
n+
0 (
−→q · vk)n-0 ei2πj(Qk+ν0+δ) + n-0(−→q · v∗

k)n
+
0 e

−i2πj(Qk+ν0+δ) +

n-0(−→q · vk)n+
0 e

i2πj(Qk−ν0−δ) + n+
0 (
−→q · v∗

k)n
-
0 e

−i2πj(Qk−ν0−δ) + (23.71)

n-0(−→q · vk)n-0 ei2πjQk + n+
0 (
−→q · v∗

k)n
+
0 e

−i2πjQk+

n+
0 (
−→q · vk)n+

0 e
i2πjQk + n-0(−→q · v∗

k)n
-
0 e

−i2πjQk

]
At a resonance, δ = 0. The first two terms on the right hand side of Eq. (23.71) will be nonzero only at
the sum resonance with Qk + ν0 = p for p an integer. The third and fourth terms will be nonzero only
at the difference resonance with Qk − ν0 = p. And the last four terms will be nonzero only at an integer
resonance where Qk = p which can be ignored since an accelerator can never be operated stably at an
integer tune.

The normalized resonance strength ξr is defined by

ϵr ≡
√
J ξr (23.72)

Combining the above equations along with Eqs. (23.24) through (23.27), the strength of the sum reso-
nance for the k mode of oscillation is

ξr+ =

√
2

2π

∣∣G · vk

∣∣ (23.73)

and for the difference resonance the strength is

ξr− =

√
2

2π

∣∣G · v∗
k

∣∣ (23.74)

where G is given by

G = 2n+
0
−→q n-0 (23.75)

It should be noted that sum resonances are not physically “distinct” from difference resonances. That
is, sum resonances become difference resonances and vice versa if the sign of n and ν are flipped in the
analysis (remember that if n is a valid spin field then so is −n).

The resonance strength can also be calculated within the SLIM formalism (§23.9) via Eq. (23.92) or
Eq. (23.94). Comparing Eqs. (23.73) or (23.74) with Eq. (23.94) it is seen that G is the quaternion
equivalent of the SLIM G 2× 6 matrix.
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23.9 SLIM Formalism

The SLIM formalism4 [Chao81, Barber99], introduced by Alex Chao, is a way to represent the linearized
(that is, first order) orbital and spin transport as an 8 × 8 matrix which then can be analyzed using
standard linear algebra techniques. The idea is to expand the transport map around the closed orbit
(r0,n0) where r0 is the orbital closed orbit and n0 is the “spin closed orbit”. Namely the unit-vector,
one-turn periodic solution of the Thomas-BMT equation on r0

5. n0 is just the invariant spin field on
the closed orbit. The formalism provides estimates of the equilibrium spin polarization and the rate of
depolarization in electron storage rings, both under the restriction of the aforementioned linearization.
Moreover, a procedure known as spin-matching, for minimizing depolarization driven by the noise in-
jected into synchro-betatron motion by synchrotron radiation, and which involves optimizing the layout
of the ring, can be executed in a simple and elegant way via the SLIM formalism. The formalism can
also give insights into proton spin dynamics in regimes where the linearization approximation suffices.

The SLIM formalism expresses spin components using two right-hand coordinate systems: 6(
l(s),n0(s),m(s)

)
and(

l0(s),n0(s),m0(s)
)

(23.76)

The axes l0(s) and m0(s) are solutions of the Thomas-BMT equation on the closed orbit and, generally,
are not one-turn periodic. The axes l(s) and m(s) are chosen to be one-turn periodic but can have an
arbitrary s dependence which can be chosen for convenience otherwise. The axes l0(s) and m0(s) are
used for spin-matching and l(s) and m(s) are used for calculating polarization and depolarization. With
respect to these axes, a unit-length spin S can be written as

S =
»

1− α2
0 − β2

0 n0 + α0 l0 + β0 m0 or

S =
√
1− α2 − β2 n0 + α l+ βm (23.77)

To linearize the transport, it is assumed that α0, and β0 (and hence α and β) are small compared to
one. To first order, the variation from unity of the spin component along the n0 axis will be second
order and can be ignored:

S ≈ n0 + α0 l0 + β0 m0 or
S ≈ n0 + α l+ βm (23.78)

The n0 coordinate is dropped since the spin component along n0 is a constant. With this, the eight-
dimensional spin-orbit phase space used in the SLIM formalism is

(x, px, y, py, z, pz, α0, β0) or
(x, px, y, py, z, pz, α, β) (23.79)

where the orbital part x, px, etc. is taken with respect to the closed orbit.
4The name references an early computer program that implemented the formalism.
5Warning: The symbol n̂ or n⃗ used in [Chao81, Barber85] and other early literature to denote the periodic solution

of the T–BMT equation on the closed orbit should be replaced by the symbol n̂0 to conform to the modern convention
[Barber99] and thereby avoid confusion with the symbol n̂ which denotes the invariant spin field. In addition, the symbols
m⃗ and l⃗ appearing, for example, in the formulae for the matrix G in [Barber85], should be replaced by the symbols m̂0 and
l̂0, namely by the modern symbols for the two (normally) non-periodic solutions of the T-BMT equation, which together
with n̂0, form an orthonormal coordinate system.

6Different authors will use different conventions for the ordering of the axes The ordering used here puts n0 second
reflecting the fact that in many rings the n0 axis will point in the vertical y-direction in the arcs.
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The first order map between two any points s1 and s2 is an 8× 8 matrix M̃ which is written in the form

M̃(s1, s2) =

Å
M6×6 06×2

G2×6 D2×2

ã
(23.80)

where M(s1, s2) is the 6× 6 orbital phase space transport matrix, and G(s1, s2) contains the coupling
of the spin coordinates (α0, β0) or (α, β) to the orbital motion. The upper right block 06×2 in the M̃
matrix is zero since Stern-Gerlach effects are ignored. When G is calculated with respect to the (l0,m0)
axes, large spin precessions on the closed orbit due to dipole and solenoid fields are eliminated. That
leaves small precessions due to synchro-betatron motion. The G matrix then represents the dominating
linear dependence of the small precessions on the six synchro-betatron coordinates and it then provides
a good framework for analysis [Barber85, Barber99]. In Eq. (23.80), D is a 2× 2 rotation matrix for the
spin transport of a particle on the closed orbit. In this case, since the l0(s) and m0(s) are solutions to
the T-BMT equation, D is the unit matrix.

To compute M̃ for a section of the ring, the first step is to find the 6× 6 orbital matrix for the section.
To calculate n0, l0 and m0, first n0 at some starting point s is calculated (section 18.3) and propagated
around the ring. This n0 is then available for calculations involving the whole ring. If only part of the
ring is being analyzed, the orientation of n0 at the start of the section can be an input parameter. That
is, it can be given by the User and not calculated. However, for spin-matching, it usually only makes
physical sense to use the n0 at the start of the section that corresponds to the n0 calculated for the
whole ring. After n0 is known at some s-position, l0 and m0 at that s-position can be chosen somewhat
arbitrarily to form the right handed coordinate system. Sometimes it is possible to make a special choice
of the initial l0 and m0 in order to simplify the G matrices. For example, in a section where there are
only drifts and quadrupoles so that there is no spin rotation for a particle traveling on the centerline,
with n0 pointing vertically, a choice of m0 pointing in the longitudinal s-direction results in the first line
of the G matrix for the section being zero. After the initial l0 and m0 axes have been specified at some
initial s, the axes can be transported along the closed orbit of the section.

If the one-turn G were zero everywhere, the spin motion would be completely decoupled from the orbital
motion (at least to first order) and the depolarization rate τ−1

dep given by Eq. (23.39) would be zero since
∂n/∂δ would be zero. Therefore, spin-matching analysis for a section of the ring involves adjusting
the parameters (quadrupole strengths, drift lengths etc) of the section so as to minimize elements in
appropriate columns of the G matrix. This decreases the rate of depolarization by minimizing ∂n/∂δ
at the dipole magnets (where g in Eq. (23.39) is nonzero) [Barber99]. Such adjustments are made while
simultaneously maintaining acceptable Courant-Snyder parameters and for this the closed orbit should
be taken to be the design orbit. This optimization can be carried out using standard facilities in Bmad.
The calculation of ∂n/∂δ in the SLIM approximation is described below.

The process for calculating electron polarization and the rate of depolarization in the SLIM formalism
is as follows. First, the 8 × 8 matrix M̃ for one-turn is calculated as described above. After this,
using the closed-orbit spin tune ν0, a specific version of (l,m) is constructed by rotating the vectors l0
and m0 backwards around n0 by the angle 2πν0 in a drift space right at the end of the turn, thereby
transforming α0 and β0 into α and β and transforming the G matrix correspondingly7. The original
one-turn G matrix is not one-turn periodic but the transformed G matrix is one-turn periodic and the
matrix D for one-turn becomes the 2 × 2 rotation matrix with rotation angle 2πν0 [Chao81]. The new
matrix M̃ is then also one-turn periodic and its eigenvectors are used as described after Eq. (23.88)
for calculating the derivative ∂n/∂δ used in Eq. (23.39). Note that if the elements in the appropriate
columns of the non-periodic G matrix for the one-turn map at a dipole have been minimized by spin-
matching, the corresponding elements of the periodic one-turn G matrix have been minimized too. As
a consequence it can be seen, via Eqs. (23.89) and (23.90), that ∂n/∂δ has been minimized as required.

7Adding a rotation at the end is just for convenience. For some other applications it is useful to choose axes l and m
with respect to which spins precess at the constant rate with a phase advance of 2πν0 per turn.
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In contrast to the approach in [Barber85, Barber99], Bmad calculates the G and D matrices from the
quaternion of the spin transport map (which Bmad calculates via PTC (§28)). After the (l0,n0,m0) co-
ordinates have been calculated (or set by the User) at some initial point, the spin axes can be transported
using the q0 quaternion (Eq. (23.42)). When analyzing only a section of a ring, there is no identifiable
spin tune so nothing further needs to be done. In this case, the D matrix is just a unit matrix. When
analyzing one-turn maps, if the l and m axes are set to be the l0(s) and m0(s) axes except at the end of
the lattice, the spin phase advance as a function of s will be zero except just before the starting position
where there will be a discontinuous jump in phase.

Once the (l0,n0,m0) axes have been calculated, the matrices G and D can be calculated from the spin
transport map (which Bmad calculates via PTC (§28)). The first order transport map Eq. (23.42) is used.
Let qlnm(s) be the quaternion that transforms from (l0,n0,m0)

8 coordinates to (x, y, z) coordinates at
a given point s. With this, the spin transport q̂ from s1 to s2 in the (l0,n0,m0) coordinate system is

q̂s(s1, s2) = qlnm(s2)qs(s1, s2)q
−1
lnm(s1) (23.81)

The zeroth order part of qs gives:

q̂0(s1, s2) = qlnm(s2)q0(s1, s2)q
−1
lnm(s1) (23.82)

represents a rotation around the n0 axis.

To calculate the D matrix, q̂0 is converted into a 3× 3 rotation matrix R0 via Eq. (23.22)). The second
row and second column of this rotation matrix corresponds to the n0 axis. Since the component of the
spin along this axis does not vary to first order, R0 has the form

R0 =

Ñ
R0(1, 1) 0 R0(1, 3)

0 1 0
R0(3, 1) 0 R0(3, 3)

é
(23.83)

That is, the rotation is around the n0 axis. Since the n0 spin component is ignored in the SLIM formalism
(Eq. (23.79)), the 2× 2 D matrix is simply R0 with the second row and second column removed.

D(s1, s2) =

Å
R0(1, 1) R0(1, 3)
R0(3, 1) R0(3, 3)

ã
(23.84)

In particular, when using the (l0,n0,m0) coordinate system, q̂0 represents the identity (≡ (1, 0, 0, 0))
and D is a unit matrix as expected.

The rows of the G matrix encode the first-order dependence of the changes of the angles α0 and β0 (or
of the angles α and β). The G matrix can therefore be calculated from q̂i which is the first order part
of q̂s

q̂i = qlnm(s2)qi(s1, s2)q
−1
lnm(s1) (23.85)

Using Eq. (23.42) in Eq. (23.22) and keeping only first order terms gives

G(1, i) = 2(q̂0,y q̂i,x − q̂0,0 q̂i,z) (23.86)
G(2, i) = 2(q̂0,0 q̂i,x + q̂0,y q̂i,z), i = 1, . . . , 6

where the fact that q̂0,x = q̂0,z = 0 has been used.9 10

8Such a formalism works also with the (l,n0,m)
9Do not be confused by the x, y and z subscripts which refer to the components of q̂ as defined in Eq. (23.5). q̂ rotates

spins in the (l0,n0,m0) coordinate system. Not the (x, y, z) coordinate system.
10Unlike the operation of going from the linearized quaternion transport (Eq. (23.42) to the M̃ matrix, given an M̃
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The calculation of the derivative ∂n/∂δ within the SLIM formalism is similar to the calculation using
quaternions (§23.6). The following follows Barber[Barber99]. The calculation starts with the one-turn
periodic 8 × 8 matrix M̃ [Here the periodic (l(s),n0(s),m(s)) coordinate system must be used since
the ending coordinates for M must be the same as the starting coordinates.] The eigenvectors uk and
eigenvalues λk (k = 1, . . . 8) of M̃ are of the form

uk =

Å
vk
wk

ã
, k = 1, . . . , 6 (23.88)

uk =

Å
06

wk

ã
, k = 7, 8

where vk are eigenvectors of the orbital submatrix M, and for the first six eigenvectors the wk are
computed via (compare with Eqs. (23.48))

wk = [λk I2 −D]
−1

Gvk, k = 1, . . . , 6 (23.89)

where I2 is the 2× 2 unit matrix. These eigenvectors, computed at the chosen starting point s1 and are
then propagated to other s-positions s2 using M̃(s1, s2).

The derivative ∂n/∂δ is computed analogously to Eq. (23.90)

∂n

∂δ
=

Å
∂α

∂δ
,
∂β

∂δ

ã
=

6∑
k=1

Akwk (23.90)

with the Ak being computed from Eq. (23.54).

Alternatively, Chao [Chao79] gives a an analytical formulation where the eigenvectors are normalized in
the form Eq. (22.24). With this, ∂n/∂δ is computed via

∂n

∂δ
= i

6∑
k=1

v∗
k5 wk (23.91)

The strength of linear resonances can be calculated from the G matrix. The corresponding equation to
Eqs. (23.73) and (23.74) is[Hoff06]

ξr =
1

2π

∣∣−→G · vk∣∣ (23.92)

where
−→
G = G(1, :) + iG(2, :) (23.93)

with G(1, :) being the first row of the 2× 6 G matrix and G(2, :) being the second row. It can be shown
that an equivalent way of writing Eq. (23.92) is

ξr =

√
2

2π

∣∣(G(1, :) · vk,G(2, :) · vk)
∣∣ (23.94)

matrix, it is not possible to uniquely construct the q̂i quaternions. q̂i,x and q̂i,z can be determined by Eq. (23.86).
However, q̂i,0 and q̂i,y can only be determined via Eq. (23.43) up to an unknown factor κ:

q̂i,0 = κ q̂0,y , q̂i,y = −κ q̂0,0 (23.87)

A finite κ represents a variation of the spin tune with a particle’s orbital phase space position. This is, a finite qi,0 and
qi,y represent a non-linear effect which will average to zero over many turns as a particle with constant orbital amplitude
samples different points on the phase space torus it is on.
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23.10 Spinor Notation

The following describes the old spinor representation formally used by Bmad to represent spins. This
documentation is kept as an aid for comparison with the spin tracking literature.

In the SU(2) representation, a spin S is written as a spinor Ψ = (ψ1, ψ2)
T where ψ1,2 are complex

numbers. The conversion between SU(2) and SO(3) is

S = Ψ†σΨ ←→ Ψ =
eiξ√

2 (1 + s3)

Å
1 + s3
s1 + is2

ã
(23.95)

Where ξ is an unmeasurable phase factor, and σ = (σx, σy, σz) are the three Pauli matrices

σx =

Å
0 1
1 0

ã
, σy =

Å
0 −i
i 0

ã
, σz =

Å
1 0
0 −1

ã
(23.96)

In polar coordinates

Ψ =

Å
ψ1

ψ2

ã
= eiξ

Å
cos θ2

eiϕ sin θ
2

ã
←→ S =

Ñ
sin θ cosϕ
sin θ sinϕ

cos θ

é
(23.97)

Due to the unitarity of the spin vector, |ψ1|2 + |ψ2|2 = 1. The spinor eigenvectors along the x, y and z
axes are

Ψx+ =
1√
2

Å
1
1

ã
, Ψx− =

1√
2

Å
1
−1

ã
,

Ψy+ =
1√
2

Å
1
i

ã
, Ψy− =

1√
2

Å
1
−i

ã
, (23.98)

Ψz+ =

Å
1
0

ã
, Ψz− =

Å
0
−1

ã
.

In spinor notation, the T-BMT equation can be written as

d

dt
Ψ = − i

2
(σ ·ΩΩΩ)Ψ = − i

2

Å
Ωz Ωx − iΩy

Ωx + iΩy −Ωz

ã
Ψ (23.99)

The solution over a time interval ∆t, assuming constant ΩΩΩ, leads to a rotation of the spin vector by an
angle α = |ΩΩΩ|∆t around a unit vector â pointing in the same direction as ΩΩΩ

Ψf = exp
[
−iα

2
â · σ

]
Ψi

=
[
cos
(α
2

)
I2 − i (â · σ) sin

(α
2

)]
Ψi (23.100)

= AΨi.

where Ψi is the initial spin state, Ψf is the final spin state, and A, describes the spin transport. The Pauli
matrices constitute a 2x2 Hermitian-matrix representation of the quaternion components i, j, and k in
Eq. (23.5) and A is the SU(2) matrix representation of the quaternion (a0,a) = (cos(α/2),− sin(α/2) â).
A has the normalization condition a20 + a2 = 1.

With spinors, the matrix representation of the observable Su corresponding to the measurement of the
spin along the unit vector u is

Su ≡
ℏ
2
σ · u (23.101)

=
ℏ
2

Å
uz ux − i uy

ux + i uy uz

ã
(23.102)
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The expectation value of this operator, Ψ† SuΨ, representing the spin of a particle, satisfies the equation
of motion of a classical spin vector in the particle’s instantaneous rest frame.

For a distribution of spins, the polarization Ps along the unit vector u is defined as the absolute value
of the average expectation value of the spin over all N particles times 2

ℏ ,

Ps =
2

ℏ
1

N

N∑
k=1

Ψ†
kSuΨk (23.103)

See § §18.8 for formulas for tracking a spin through a multipole fringe field.



Chapter 24

Taylor Maps

24.1 Taylor Maps

A transport mapM : R6 → R6 through an element or a section of a lattice is a function that maps the
starting phase space coordinates r(in) to the ending coordinates r(out)

r(out) =M (δr) (24.1)

where
δr = r(in)− rref (24.2)

rref is the reference orbit at the start of the map around which the map is made. In many cases the
reference orbit is the zero orbit. For a storage ring, the closed orbit is commonly used for the reference
orbit. For a lattice with an open geometry the reference orbit may be the orbit as computed from some
given initial coordinates.

M in the above equation is made up of six functions Mi : R6 → R. Each of these functions maps to
one of the r(out) coordinates. Each of these functions can be expanded in a Taylor series and truncated
at some order. Each Taylor series is in the form

ri(out) =
N∑
j=1

Cij

6∏
k=1

(δrk)
eijk (24.3)

Where the Cij are coefficients and the eijk are integer exponents. The order of a given term associated
with index i, j is the sum over the exponents

orderij =
6∑
k=1

eijk (24.4)

The order of the entire map is the order at which the map is truncated.

The standard Bmad routine for printing a Taylor map might produce something like this:
Taylor Terms:
Out Coef Exponents Order Reference
--------------------------------------------------
1: -0.600000000000 0 0 0 0 0 0 0 0.200000000
1: 1.000000000000 1 0 0 0 0 0 1
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1: 0.145000000000 2 0 0 0 0 0 2
--------------------------------------------------
2: -0.185000000000 0 0 0 0 0 0 0 0.000000000
2: 1.300000000000 0 1 0 0 0 0 1
2: 3.800000000000 2 0 0 0 0 1 3

--------------------------------------------------
3: 1.000000000000 0 0 1 0 0 0 1 0.100000000
3: 1.600000000000 0 0 0 1 0 0 1
3: -11.138187077310 1 0 1 0 0 0 2

--------------------------------------------------
4: 1.000000000000 0 0 0 1 0 0 1 0.000000000

--------------------------------------------------
5: 0.000000000000 0 0 0 0 0 0 0 0.000000000
5: 0.000001480008 0 1 0 0 0 0 1
5: 1.000000000000 0 0 0 0 1 0 1
5: 0.000000000003 0 0 0 0 0 1 1
5: 0.000000000003 2 0 0 0 0 0 2

--------------------------------------------------
6: 1.000000000000 0 0 0 0 0 1 1 0.000000000

Each line in the example represents a single Taylor term. The Taylor terms are grouped into 6 Taylor
series. There is one series for each of the output phase space coordinate. The first column in the
example, labeled “out”, (corresponding to the i index in Eq. (24.3)) indicates the Taylor series: 1 = x(out),
2 = px(out), etc. The 6 exponent columns give the eijk of Eq. (24.3). In this example, the second Taylor
series (out = 2), when expressed as a formula, would read:

px(out) = −0.185 + 1.3 δpx + 3.8 δx2 δpz (24.5)

The reference column in the above example shows the input coordinates around which the Taylor map
is calculated. In this case, the reference coordinates where

(x, px, y, py, z, pz)ref = (0.2, 0, 0.1, 0, 0, 0, 0) (24.6)

The choice of the reference point will affect the values of the coefficients of the Taylor map. As an
example, consider the 1-dimension map

x(out) = A sin(k δx) (24.7)

Then a Taylor map to 1st order is
x(out) = c0 + c1 δx (24.8)

where

c1 = Ak cos(k xref) (24.9)
c0 = A sin(k xref) (24.10)

Taylor maps using complex numbers is also used by Bmad. The output of such maps is similar to the
output for real maps as shown above except that the coefficient has a real and imaginary part.

24.2 Spin Taylor Map

A Taylor map that fully describes spin (§23.1) and orbital motion, would consist of nine Taylor series
(six for the orbital phase space variables and three for the spin components) and each Taylor series would
be a polynomial in nine variables.



24.3. SYMPLECTIFICATION 401

To simplify things, Bmad assumes that the effect on the orbital phase space due to the spin orientation
is negligible. That is, Stern-Gerlach effects are ignored. With this assumption, the orbital part of
the map is only dependent on the six orbital variables. This means that ΩΩΩBMT and ΩΩΩEDM in the
Thomas-Bargmann-Michel-Telegdi equation (§23.1), are assumed independent of the spin. Thus the
spin transport is just a rotation. Bmad represents this rotation using a quaternion (§23.2). Each of the
four components of the quaternion is a Taylor series and the full phase space plus spin transport uses
10 (= 6 orbital + 4 spin) Taylor series with each Taylor series only being dependent on the six orbital
phase space coordinates.

Spin transport involves:
1. Using the six orbital coordinates, evaluate the four spin Taylor series to produce a quaternion q.

2. Normalize the quaternion to one: q −→ q/|q|.
3. Rotate the spin vector: S −→ qSq−1.

The normalization of the quaternion is needed since the truncation of the map to a finite order will
produce errors in the magnitude of the quaternion.

The standard Bmad routine for printing a spin Taylor map will produce a result that is very similar as
that produced for the orbital phase space. The difference is that there will only be four Taylor series
labeled (S1, Sx, Sy, Sz) for the four components of the quaternion. Also the reference orbit will not be
shown (it is exactly the same as the orbital phase space reference orbit).

Note: When tracking a particle’s spin through a map, the quaternion used to rotate the spin is always
normalized to one so that the magnitude of the spin will be invariant.

24.3 Symplectification

If the evolution of a system can be described using a Hamiltonian then it can be shown that the linear
part of any transport map (the Jacobian) must obey the symplectic condition. If a matrix M is not
symplectic, Healy[Healy86] has provided an elegant method for finding a symplectic matrix that is “close”
to M. The procedure is as follows: From M a matrix V is formed via

V = S(I−M)(I+M)−1 (24.11)

where S is the matrix

S =


0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 1 0 0
0 0 −1 0 0 0
0 0 0 0 0 −1
0 0 0 0 −1 0

 (24.12)

V is symmetric if and only if M is symplectic. In any case, a symmetric matrix W near V can be
formed via

W =
V +Vt

2
(24.13)

A symplectic matrix F is now obtained by inverting (24.11)

F = (I+ SW)(I− SW)−1 (24.14)
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24.4 Map Concatenation and Feed-Down

Of importance in working with Taylor maps is the concept of feed-down. This is best explained with
an example. To keep the example simple, the discussion is limited to one phase space dimension so that
the Taylor maps are a single Taylor series. Take the map M1 from point 0 to point 1 to be

M1 : x1 = x0 + 2 (24.15)

and the map M2 from point 1 to point 2 to be

M2 : x2 = x21 + 3x1 (24.16)

Then concatenating the maps to form the map M3 from point 0 to point 2 gives

M3 : x2 = (x0 + 2)2 + 3(x0 + 2) = x20 + 7x0 + 10 (24.17)

However if we are evaluating our maps to only 1st order the map M2 becomes

M2 : x2 = 3x1 (24.18)

and concatenating the maps now gives

M3 : x2 = 3(x0 + 2) = 3x0 + 6 (24.19)

Comparing this to Eq. (24.17) shows that by neglecting the 2nd order term in Eq. (24.16) leads to 0th
and 1st order errors in Eq. (24.19). These errors can be traced to the finite 0th order term in Eq. (24.15).
This is the principal of feed–down: Given M3 which is a map produced from the concatenation of two
other maps, M1, and M2

M3 =M2(M1) (24.20)

Then if M1 and M2 are correct to nth order, M3 will also be correct to nth order as long as M1 has no
constant (0th order) term. [Notice that a constant term in M2 does not affect the argument.] What
happens if we know there are constant terms in our maps? One possibility is to go to a coordinate
system where the constant terms vanish. In the above example that would mean using the coordinate
x̃0 at point 0 given by

x̃0 = x0 + 2 (24.21)

24.5 Symplectic Integration

Symplectic integration, as opposed to concatenation, never has problems with feed–down. The subject of
symplectic integration is too large to be covered in this guide. The reader is referred to the book “Beam
Dynamics: A New Attitude and Framework” by Étienne Forest[Forest98]. A brief synopsis: Symplectic
integration uses as input 1) The Hamiltonian that defines the equations of motion, and 2) a Taylor map
M1 from point 0 to point 1. Symplectic integration from point 1 to point 2 produces a Taylor map M3

from point 0 to point 2. Symplectic integration can produce maps to arbitrary order. In any practical
application the order n of the final map is specified and in the integration procedure all terms of order
higher than n are ignored. If one is just interested in knowing the final coordinates of a particle at point
2 given the initial coordinates at point 1 then M1 is just the constant map

M1 : x1 = ci (24.22)
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where ci is the initial starting point. The order of the integration is set to 0 so that all non–constant
terms are ignored. The final map is also just a constant map

M3 : x2 = cf (24.23)

If the map from point 1 to point 2 is desired then the map M1 is just set to the identity map

M1 : x1 = x0 (24.24)

In general it is impossible to exactly integrate any non–linear system. In practice, the symplectic
integration is achieved by slicing the interval between point 1 and point 2 into a number of (generally
equally spaced) slices. The integration is performed, slice step by slice step. This is analogous to
integrating a function by evaluating the function at a number of points. Using more slices gives better
results but slows down the calculation. The speed and accuracy of the calculation is determined by the
number of slices and the order of the integrator. The concept of integrator order can best be understood
by analogy by considering the trapezoidal rule for integrating a function of one variable:∫ yb

ya

f(y) dy = h

ï
1

2
f(ya) +

1

2
f(yb)

ò
+ o(h3 f (2)) (24.25)

In the formula h = yb − ya is the slice width. 0(h3 f (2)) means that the error of the trapezoidal rule
scales as the second derivative of f . Since the error scales as f (2) this is an example of a second order
integrator. To integrate a function between points y1 and yN we slice the interval at points y2 . . . yN−1

and apply the trapezoidal rule to each interval. The concept of integrator order in symplectic integration
is analogous.

The optimum number of slices is determined by the smallest number that gives an acceptable error.
The slice size is given by the ds_step attribute of an element (§6.4). Integrators of higher order will
generally need a smaller number of slices to achieve a given accuracy. However, since integrators of
higher order take more time per slice step, and since it is computation time and not number of slices
which is important, only a measurement of error and calculation time as a function of slice number
and integrator order will unambiguously give the optimum integrator order and slice width. In doing a
timing test, it must be remembered that since the magnitude of any non-nonlinearities will depend upon
the starting position, the integration error will be dependent upon the starting map M1. Bmad has
integrators of order 2, 4, and 6 (§6.4). Timing tests performed for some wiggler elements (which have
strong nonlinearities) showed that, in this case, the 2nd order integrator gave the fastest computation
time for a given accuracy. However, the higher order integrators may give better results for elements
with weaker nonlinearities.
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Chapter 25

Tracking of Charged Particles

Bmad can track both charged particles and X-rays. This chapter deals with charged particles and X-rays
are handled in chapter §26.

For tracking and transfer map calculations (here generically called “tracking”), Bmad has various methods
that can be applied to a given element (Cf. Chapter §6). This chapter discusses the bmad_standard
calculation that is the default for almost all element types and the symp_lie_bmad calculation that does
symplectic integration.

Generally, it will be assumed that tracking is in the forward direction.

25.1 Relative Versus Absolute Time Tracking

Unlike other elements, the kick given a particle going through an lcavity, rfcavity, or possibly an
em_field element depends upon the time that the particle enters the element relative to some “RF clock”.
Bmad has two modes for calculating this time called “relative time tracking” and “absolute time
tracking”. The switch to set the type of tracking for a lattice is bmad_com[absolute_time_tracking]
(§11.2).1 The phase of the RF, ϕrf, is determined by

ϕrf = ϕt + ϕref (25.1)

where ϕt is the part of the phase that depends upon the time t and ϕref is a fixed phase offset (generally
set in the lattice file) and independent of the particle coordinates. See Eqs. (4.30) and (4.46)

The phase ϕt is
ϕt = frf teff (25.2)

where frf is the RF frequency, and teff is the effective time. With relative time tracking, which
Bmad uses by default, teff is a function of the phase space coordinate z (§16.4.2) via

teff(s) = t0(s)− t0(sent)−
z(s)

β c
(25.3)

where t0 is the reference time (see Eq. (16.28)) and sent is the s-position at the upstream end of the
element. teff is defined such that a particle entering an element with z = 0 has teff = 0.

1An old, deprecated notation for this switch is parameter[absolute_time_tracking].
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With absolute time tracking, and bmad_com[absolute_time_ref_shift] set to True (the default),
teff is defined by

teff(s) = t(s)− t0(sent) (25.4)

t0(sent), by definition, equal to the time of the reference particle at the entrance end of the element. With
multipass §9, t0(sent) is set by the time of the reference particle at the entrance end of the element on the
first pass. For absolute time tracking, it is important to keep in mind that t0(sent) is a property of the
element independent of how tracking is done. Thus, if a particle goes through a particular element mul-
tiple times, the value of tent will be the same for each transit. If bmad_com[absolute_time_ref_shift]
set to True, teff is simply

teff(s) = t(s) (25.5)

To understand the difference between relative and absolute time tracking, consider a particle traveling
on the reference orbit along side the reference particle in a circular ring with one RF cavity. This
particle always has z = 0 and thus, with relative time tracking, teff will always be zero (assuming
bmad_com[absolute_time_ref_shift] is set to True) at the entrance to the cavity. With absolute
time tracking, the particle, on the first turn, will have teff equal to zero. However, on subsequent turns
(or subsequent passes if using multipass), the time will increase by the revolution time tC on each turn.
If the RF frequency frf is some multiple of the revolution harmonic, the RF phase with absolute vs
relative time tracking will be some multiple of 2π and thus RF kick given the particle will be the same
in both cases. However, if the RF frequency is not some multiple of the revolution harmonic, there will
be a difference in the RF kicks (except for the kick on the first turn).

There are advantages and disadvantages to using either relative or absolute time tracking. Absolute time
tracking is more correct since RF cavities may have frequencies that are not commensurate with the
revolution time. The problem with absolute time tracking is that the transfer map through the cavity
is now a function of time and therefore is a function of z and the turn number. This complicates lattice
analysis. For example, standard element transfer maps use phase space coordinates so with absolute
time tracking, one has a different map for each turn.

With relative time tracking the transfer map problem is swept under the rug. The penalty for using
relative time tracking is that results can be unphysical. For example, with relative time tracking, the
closed orbit is essentially independent of the RF frequency. From a different angle this can be viewed as
a desirable feature since if one is only interested in, say, calculating the Twiss parameters, it can be an
annoyance to have to worry that the ring one has constructed have a length that is exactly commensurate
with the RF frequency. And it is potentially confusing to see non-zero closed orbits when one is not
expecting it due to a mismatch between the ring circumference and the RF frequency or due to RF
cavities not being spaced a multiple of the RF wavelength apart.

The above discussion is limited to the cavity fundamental mode. Long-range wakefields, on the other
hand, cannot be synchronized to the z coordinate since, in general, their frequencies are not commen-
surate with the fundamental mode frequency. For simulating the long-range wakes, the kick is thus,
by necessity, tied to the absolute time. The exception is that a wake associated with the fundamental
mode (that is, has the same frequency as the fundamental mode) will always use relative time if the
fundamental is using relative time and vice versa.

Do not confuse absolute time tracking with the time_runge_kutta tracking method (§6.1). The
time_runge_kutta method uses time as the independent variable instead of z. Absolute time tracking
just means that the RF phase is dependent upon the time instead of z. It is perfectly possible to use
absolute time tracking with code that uses z as the independent variable.

One important point to always keep in mind is that any PTC based tracking (§1.4) will always use
relative time tracking independent of the setting of bmad_com[absolute_time_tracking].
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Figure 25.1: Element coordinates are coordinates attached to the physical element (solid green outline).
The laboratory coordinates are fixed at the nominal position of the element (red dashed outline).
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25.2 Element Coordinate System

The general procedure for tracking through an element makes use of element reference coordinates
(also called just element coordinates). Without any offsets, pitches or tilt (§5.6), henceforth called
“misalignments”, the element coordinates are the same as the laboratory reference coordinates (or
simply laboratory coordinates) (§16.1.1). The element coordinates stay fixed relative to the element.
Therefore, if the element is misaligned, the element coordinates will follow as the element shifts in
the laboratory frame as shown in Fig. 25.1.

Tracking a particle through an element is a three step process:

1. At the entrance end of the element, transform from the laboratory coordinates to the entrance
element coordinates.

2. Track through the element ignoring any misalignments.

3. At the exit end of the element, transform from the exit element reference frame to the laboratory
reference frame.

The transformation between laboratory and element reference frames is given in §16.3.1 and §16.3.2.

25.3 Hamiltonian

The time dependent Hamiltonian Ht in the curvilinear coordinate system shown in Fig. 16.2 is ([Ruth87])

Ht = ψ̃ +

ñÅ
ps − as
1 + g x

ã2

+ ‹m2 + (px − ax)2 + (py − ay)2
ô1/2

(25.6)

where (px, py, ps/(1 + gx)) are the momentum normalized by P0, ρ being the local radius of curvature
of the reference particle, and ‹m, a and ψ̃ are the normalized mass, vector, and scalar potentials:‹m =

mc2

c P0

Å
ax, ay,

as
1 + g x

ã
=
qA

P0 c
ψ̃(x, y, z) =

q ψ

P0 c
(25.7)

In terms of the normalized velocities βx, βy, the canonical momentum are

px =
mc2

P0 c
βx + ax, py =

mc2

P0 c
βy + ay (25.8)



408 CHAPTER 25. TRACKING OF CHARGED PARTICLES

The s-dependent Hamiltonian is obtained from Ht by solving for −ps and using a contact transformation
to convert to Bmad coordinates (§16.4.2). For particles propagating in the positive s direction, the s-
dependent Hamiltonian is, assuming ψ̃ is zero

H ≡ Hs = −(1 + g x)
»

(1 + pz)2 − (px − ax)2 − (py − ay)2 − as +
1

β0

»
(1 + pz)2 + ‹m2 (25.9)

where β0 is the reference velocity and the equality (1 + pz)
2 = (E/cP0)

2 − ‹m2 has been used. The last
term on the RHS of Eq. (25.9) accounts for the fact that the Bmad canonical z (Eq. (16.28)) has an
“extra” term β c t0 so that Bmad canonical z is with respect to the reference particle’s z.

The equations of motion are
dqi
ds

=
∂H

∂pi

dpi
ds

= −∂H
∂qi

(25.10)

Without an electric field, ψ is zero. Assuming a non-curved coordinate system (g = 0), and using the
paraxial approximation (which expands the square root in the Hamiltonian assuming the transverse
momenta are small) (§16.4.2), Eq. (25.9) becomes

H =
(px − ax)2

2(1 + pz)
+

(py − ay)2

2(1 + pz)
− (1 + g x) (1 + pz)− as +

1

β0

»
(1 + pz)2 + ‹m2 (25.11)

Once the transverse trajectory has been calculated, the longitudinal position z2 at the exit end of an
element is obtained from symplectic integration of Eq. (25.11)

z2 = z1 −
1

2(1 + pz1)2

∫
ds
[
(px − ax)2 + (py − ay)2

]
−
∫
ds g x (25.12)

where z1 is the longitudinal position at the entrance end of the element. Using the equations of motion
Eqs. (25.10) this can also be rewritten as

z2 = z1 −
1

2

∫
ds

ñÅ
dx

ds

ã2

+

Å
dy

ds

ã2
ô
−
∫
ds g x (25.13)

For some elements, bmad_standard uses a truncated Taylor map for tracking. For elements without
electric fields where the particle energy is a constant, the transfer map for a given coordinate ri may be
expanded in a Taylor series

ri,2 → mi +

4∑
j=1

mij rj,1 +

4∑
j=1

4∑
k=j

mijk rj,1 rk,1 + . . . (25.14)

where the map coefficients mij··· are functions of pz. For linear elements, the transfer map is linear for
the transverse coordinates and quadratic for ri = z.

Assuming mid–plane symmetry of the magnetic field, so that ax and ay can be set to zero[Iselin94], The
vector potential up to second order is (cf. Eq. (17.1))

as = −k0
Å
x− g x2

2(1 + g x)

ã
− 1

2
k1
(
x2 − y2

)
(25.15)

For backwards propagation, where particle are traveling in the −s direction and where ps is negative,
solving for ps involves using a different part of the square root branch. There is also an overall negative
sign coming from switching from using s as the independent variable to s̃ ≡ −s as the independent
variable. the Hamiltonian Hs̃ is then

Hs̃ = −(1 + g x)
»

(1 + pz)2 − (px − ax)2 − (py − ay)2 + as +
1

β0

»
(1 + pz)2 + ‹m2 (25.16)
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25.4 Symplectic Integration

Using Eq. (25.11) the Hamiltonian is written in the form

H = Hx +Hy +Hz (25.17)

where

Hx =
(px − ax)2

2(1 + δ)
, Hy =

(py − ay)2

2(1 + δ)
, Hs = −as (25.18)

For tracking, the element is broken up into a number of slices set by the element’s ds_step attribute.
For each slice, the tracking uses a quadratic symplectic integrator I:

I = Ts/2 Ix/2 Iy/2 Is Iy/2 Ix/2 Ts/2 (25.19)

Ts/2 is just a translation of the s variable:

s→ s+
ds

2
(25.20)

And the other integrator components are

Ix/2 = exp

Å
: −ds

2
Hx :

ã
Iy/2 = exp

Å
: −ds

2
Hy :

ã
(25.21)

Is = exp (: −dsHs :)

The evaluation of Ix/2 and Iy/2 is tricky since it involves both transverse position and momentum
variables. The trick is to split the integration into three parts. For Ix/2 this is

Ix/2 = exp

Å
: −ds

2

(px −Ax)2

2(1 + δ)
:

ã
= exp

Å
: −
∫
Ax dx :

ã
exp

Å
: −ds

2

p2x
2(1 + δ)

:

ã
exp

Å
:

∫
Ax dx :

ã
(25.22)

With an analogous expression for Iy/2.

For magnetic elements that do not have longitudinal fields (quadrupoles, sextupoles, etc.), ax and ay
can be taken to be zero (cf. Eq. (25.15)).

For lcavity and rfcavity elements, the vector potential is computed from Eq. (17.60).

25.5 BeamBeam Tracking

A beam-beam element (§4.3) simulates the effect on a tracked particle of an opposing beam of particles
moving in the opposite direction. The opposing beam, called the “strong” beam, is assumed to be
Gaussian in shape.

The strong beam is divided up into n_slice equal charge (not equal thickness) slices. Propagation
through the strong beam involves a kick at the charge center of each slice with drifts in between the kicks.
The kicks are calculated using the standard Bassetti–Erskine complex error function formula[Talman87].
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Even though the strong beam can have a finite sig_z, the length of the element is always considered to
be zero. This is achieved by adding drifts at either end of any tracking so that the longitudinal starting
point and ending point are identical. The longitudinal s–position of the BeamBeam element is at the
center of the strong bunch. For example, with n_slice = 2 and with a solenoid field, the calculation
would proceed as follows:

1. Start with the particle longitudinally at the beambeam element (which is considered to have zero
longitudinal length) in laboratory coordinates (§16).

2. Propagate backwards through the solenoid field so that the particle is in the plane of the first
beambeam slice. The fact that the plane of the slice may be, due to finite x_pitch or y_pitch
values, canted with respect to the laboratory x-y plane is taken into account.

3. Transform the particle coordinates to the beambeam element body coordinates (§16.3).

4. Apply the beam–beam kick due to the first slice including a spin rotation.

5. Transform back to laboratory coordinates.

6. Propagate forwards so that the particle is in the plane of the second slice.

7. Transform the particle coordinates to the beambeam element body coordinates.

8. Apply the beam–beam kick due to the second slice.

9. Transform back to laboratory coordinates.

10. Propagate backwards through the solenoid field to end up with the particle longitudinally at the
beambeam element.

There is an energy kick due to the motion of the strong beam. There are two parts to this dpz =
dpz,s + dpz,h. One part, dpz,s, is similar to the gravitational slingshot in orbital mechanics. The
slingshot energy kick is simply calculated using conservation of 4-momentum of the tracked particle and
the strong beam where the mass of the strong beam is assumed to be large compared to the mass of the
tracked particle.2 After a little bit of algebra. The energy kick dEw to lowest order in the angle of the
weak particle with respect to the axis defined by the of motion of the strong beam is

dEw =
c Pw

2 (1/βw + 1/βs)

(
θ2w2 − θ2w1

)
(25.23)

where Pw is the momentum of the weak particle, βw and βs are the weak and strong beam velocities, and
θw1 and θw2 are angles of the weak particle trajectory with respect to the strong beam motion before
and after the interaction. Converting to phase space coordinates, the momentum kick dpz is

dpz,s =
1

2βw (1/βw + 1/βs) (1 + pz)
(dpx (dpx − 2px1) + dpy (dpy − 2py1)) (25.24)

where dpx and dpy are the transverse kicks and px1 and py1 are the initial phase space momenta.

The other part of the energy kick, dpz,h, happens when the strong beam’s cross-section is changing due
to the hourglass effect. The hourglass longitudinal kick relative to the transverse kicks can derived using
Eq. (5) of Sagan [Sagan91]. In the relativistic limit the result is

dpz,h =
σx
2

dσx
ds

dpx
dx

+
σy
2

dσy
ds

dpy
dy

(25.25)

where σx and σy are the strong beam sizes, and the factor of two is due to the relative velocity (2c)
between the beams.

2This assumption breaks down if a tracked particle is deflected due to a single scattering event with a particle of the
strong beam. But particle-particle scattering is outside of the assumption of a strong beam that is unaffected by the weak
beam.
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25.6 Bend: Exact Body Tracking with k1 = 0
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Figure 25.2: Geometry for the exact bend calculation.

Function definitions:

sinc(x) ≡ sin(x)

x
(25.26)

cosc(x) ≡ 1− cos(x)

x2
(25.27)

These functions cannot be directly evaluated at x = 0 and are defined at x = 0 using the x → 0 limit.
The point to keep in mind here is that these functions are well behaved and can be easily coded in
software.

Referring to Figure 25.2, at point 1 where the particle enters a sector bend, the angle ϕ1 of the particle
trajectory in the (x, s) plane with respect to the s axis is

sin(ϕ1) =
px1»

(1 + pz)2 − p2y
(25.28)

where the subscript “1” for pz and py is dropped since these quantities are invariant.

The (u, v) coordinate system in the plane of the bend is defined with the u-axis along the exit edge of
the bend and the v-axis is perpendicular to the u-axis. The origin is at the design center of the bend.
In this coordinate system the point (u1, v1) where the particle enters the bend is given by

u1 = (ρ+ x1) cos(θ) (25.29)
v1 = (ρ+ x1) sin(θ) (25.30)

where ρ is the design radius of curvature, x1 is the offset of the particle from the design at the entrance
point, and θ is the design bend angle

θ =
L

ρ
= g L (25.31)
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with L being the design arc length and g ≡ 1/ρ.

The coordinates (u0, v0) of the center of curvature of the particle trajectory is

u0 = u1 − ρp cos(θ + ϕ1) (25.32)
v0 = v1 − ρp sin(θ + ϕ1) (25.33)

where ρp is the radius of curvature of the particle trajectory in the (u, v) plane (see Eq. (25.39)).

The coordinates of the particle at the exit face is (u2, 0) where

u2 = u0 +
»
ρ2p − v20 (25.34)

After some manipulation, the offset of the particle x2 from the design point at the exit face is

x2 = u2 − ρ = x1 cos(θ)− L2 g cosc(θ) + ξ (25.35)

where ξ can be expressed in two different ways

ξ =
α

[cos2(θ + ϕ1) + gp α]
1/2

+ cos(θ + ϕ1)
or (25.36)

=

[
cos2(θ + ϕ1) + gp α

]1/2 − cos(θ + ϕ1)

gp
(25.37)

where

α = 2 (1 + g x1) sin(θ + ϕ1)L sinc(θ)− gp (1 + g x1)
2 L2 sinc2(θ) (25.38)

gp =
1

ρp
=

gtot»
(1 + pz)2 − p2y

(25.39)

In the above equation gtot is the bending strength of the actual field. Both Eq. (25.36) and Eq. (25.37)
are needed since Eq. (25.36) is singular when α = 0 and θ+ϕ1 = π (which happens when the particle is
bent by 180◦), and Eq. (25.37) is singular when gp is zero. A simple way to implement the calculation
for x2 is to use Eq. (25.36) when |θ + ϕ1| < π/2 and otherwise use Eq. (25.37).

Once x2 is computed, the arc length of the particle Lp is

Lp =
|Lc|

sinc(θp/2)
(25.40)

where Lc is the vector (chord) from point 1 and point 2

Lc = (Lcu, Lcv) = (ξ,−L sinc(θ)− x1 sin(θ)) (25.41)

and θp is the angle made by the particle trajectory which is twice the angle between the initial particle
trajectory P and the vector Lc

θp = 2 (θ + ϕ1 − atan2 (Lcu,−Lcv)) (25.42)

where atan2(y, x) is the standard two argument arctangent function.

Once Lp is computed, px2, y2 and z2 are easily derived from

px2 =
»
(1 + pz)2 − p2y sin(θ + ϕ1 − θp) (25.43)

y2 = y1 +
py Lp»

(1 + pz)2 − p2y
(25.44)

z2 = z1 +
β L

βref
− (1 + pz)Lp»

(1 + pz)2 − p2y
(25.45)
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where β is the normalized velocity of the particle and βref if the normalized velocity of the reference
particle.

Using the above equation, round-off error will give a non-zero final position even if the initial position is
zero. Even though the round-off error will be very small, a non-zero result can be confusing. To avoid
this, the standard linear transfer matrix for a bend is used if all the following conditions are satisfied:

|x g|, |px|, |py|, |pz| < 10−9, and, gtot = g (25.46)

The matrix is: 

cos(θ) L sinc(θ) 0 0 0 g L2 cosc(θ)
−g sin(θ) cos(θ) 0 0 0 g L sinc(θ)

0 0 1 L 0 0
0 0 0 1 0 0

−g L sinc(θ) −g L2 cosc(θ) 0 0 1 L
Ä

1
γ2 − g2 L2 sincc(θ)

ä
0 0 0 0 0 1

 (25.47)

where

sincc(θ) ≡ x− sin(x)

x3
(25.48)

25.7 Bend: Body Tracking with finite k1

For a bend with a finite k1, the Hamiltonian for the body of an sbend is

H = (gtot − g)x− g x pz +
1

2

(
(k1 + g gtot)x

2 − k1 y2
)
+

p2x + p2y
2(1 + pz)

(25.49)

This is simply solved

x2 = cx (x− xc) + sx
px1

1 + pz1
+ xc

px2 = τx ω
2
x (1 + pz1) sx (x− xc) + cx px1

y2 = cy y1 + sy
py1

1 + pz1

py2 = τy ω
2
y (1 + pz1) sy y1 + cy py1 (25.50)

z2 = z1 +m5 +m51(x− xc) +m52px1 +m511 (x− xc)2 +
m512 (x− xc) px1 +m522 p

2
x1 +m533 y

2 +m534 y1 py1 +m544 p
2
y1

pz2 = pz1

where

kx = k1 + g gtot ωx ≡
 
|kx|

1 + pz1

xc =
g (1 + pz1)− gtot

kx
ωy ≡

 
|k1|

1 + pz1
(25.51)
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and

kx > 0 kx < 0 k1 > 0 k1 < 0

cx = cos(ωx L) cosh(ωx L) cy = cosh(ωy L) cos(ωy L)

sx =
sin(ωx L)

ωx

sinh(ωx L)

ωx
sy =

sinh(ωy L)

ωy

sin(ωy L)

ωy
(25.52)

τx = −1 +1 τy = +1 −1

and

m5 = −g xc L

m51 = −g sx m52 =
τx g

1 + pz1

1− cx
ω2
x

m511 =
τx ω

2
x

4
(L− cx sx) m533 =

τy ω
2
y

4
(L− cy sy)

m512 =
−τx ω2

x

2 (1 + pz1)
s2x m534 =

−τy ω2
y

2 (1 + pz1)
s2y

m522 =
−1

4 (1 + pz1)2
(L+ cx sx) m544 =

−1
4 (1 + pz1)2

(L+ cy sy)

25.8 Bend: Fiducial Point Calculations

When the fiducial_pt switch for a bend is set to something other than none, changing one of rho,
g, b_field or angle in a program (that is, changing after the lattice has been read in and the bend
parameters calculated) involves adjustment to the other three parameters along with adjustment to e1,
e2, l, l_chord, and l_rectangle. This is done to keep the shape of the bend invariant. Invariance is
not maintained with variation of any other parameter (EG variation of e1).

Fig. 25.3 shows the situation when the fiducial_pt is set to either entrance_end or center (the
situation for the exit_end setting is analogous to the entrance_end setting and so is not discussed).
For any one of the fiducial_pt settings discussed there are essentially two cases. One case is direct
variation of the bend field via variation of rho, g, or b_field. This is called “g-variation”. The other
type of variation is variation of angle. This is called “angle-variation”. The discussion below shows
how, with g-variation, l, e1, and e2 are calculated. With angle-variation, l, g, e1, and e2 need to
be calculated. Once l and g are know, the other parameters l_chord, l_rectangle, l_sagitta (and
angle for the g-variation case) can be readily computed.

The entrance_end analysis is as follows (Fig. 25.3a). The entrance end coordinates around the point
r1 are held fixed and as as a result r′1 = r1 and e1 does not vary as well. r2 is the exit point before
variation and r3 is the exit point after. The position of r3 is calculated by first calculating the position
of r1 in a coordinate system centered at r2 and with axes parallel to the (s1,x1) axes of the coordinate
system at r1

r̄1 = (−lrectangle, ρ (1− cosα)) (25.53)

Where the bar denotes that the coordinates are in the (s1,x1) system. The coordinates of r1 in the
(es, ex) coordinate system with origin at r2 and with ex along the bend edge and es perpendicular to
ex is a rotation R(θ)

r1 = R(α− e2) r̄1 (25.54)
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(a) With fiducial_pt set to entrance_end,
r1 is the fiducial point at the entrance end.
By construction, the entrance point r1 and
the slope of the reference curve at r1 is invari-
ant with the reference curve before (dashed
line) and after (solid line) being tangent to
s1 where s1 being the perpendicular to x1.
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(b) With fiducial_pt set to center, rc is the
fiducial point at the center. By construction,
the reference curve always goes through rc
and the tangent of the reference curve at rc
is invariant.

Figure 25.3: Geometry with fiducial_pt set to (a) entrance_end and (b) center. In both cases, r1
and r2 are the entrance and exit reference points before and r′1 and r2 are the entrance and exit points
after variation of one of rho, g, b_field, or angle. Similarly, ρ and α are the bending radius and
bending angle before variation while ρ′ and α′ are the bending radius afterwards. Finally, e1 e2 are the
face angles and rectangular length before variation, and L′

r and r′0 are the rectangular length and center
of curvature after variation.

The angle θ1 of the vector s1, which is the invariant tangent of the reference curve at the point r1, in
the (es, ex) coordinate system (which is used from here on) is

θ1 = α− e1 (25.55)

The center of curvature after variation r′0 is

r′0 = r1 + ρ′ (sin θ1,− cos θ1) (25.56)

The reference trajectory after variation r′ is a circular arc subject to the condition

|r′ − r′0| = ρ′2 (25.57)

With g-variation, the value of ρ′ is set (perhaps indirectly) by the User. To find the point r′2, it is noted
that in the (es, ex) coordinate system, the s coordinate of r′2, r′2s is zero. so using this inEq. (25.57) and
throwing away the unphysical root gives for the x coordinate

r′2x = r1x +
2 c

−b−
√
b2 − 4 a c

(25.58)
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where

a = g′

b = 2 cos θ1 (25.59)

c = g′ r21s + 2 r1s sin θ1

where g′ = 1/ρ′. The rectangular length after variation L′
r is then

L′
r = Lr + r′2x ∗ sin θ1 (25.60)

where Lr is the rectangular length before variation. Finally, the length L′ after variation is

L′ = asinc (g′ L′
r) L

′
r (25.61)

where asinc is the function

asinc(θ) =
sin−1(θ)

θ
(25.62)

For fiducial_pt set to entrance_end and with angle-variation, α′ is know and g′ can be computed
via

g′ =
sin(α′ − θ1) + sin(θ1)

r1s
(25.63)

With this, all other parameters can be created. In both angle-variation and g-variation the new face
angle e′2 is given by

e′2 = e2 + α′ − α (25.64)

For fiducial_pt set to center, The center point rc (see Fig. 25.3b) is held constant. Here the g-variation
analysis is similar to the g-variation analysis with fiducial_pt set to entrance_end (or exit_end except
in this case the reference orbit to the right and left of bfrc are analyzed separately and the two lengths
for each piece are added together. For angle-variation, the only situation where it is possible to keep
rc fixed while varying the angle is when e1 and e2 are equal. In this instance, the calculation is again
similar to the angle-variation analysis with the fiducial_pt set to either end. If e1 and e2 are not
equal, a calculation is done that gives the desired angle but the center point will shift.

25.9 Converter Tracking

Tracking through a converter element involves generating five random numbers 3 and then using these
numbers with the outgoing particle distribution to generate the position and orientation of the outgoing
particle. The outgoing particle distribution is pre-computed by a program converter_element_modeling
and the distribution parameters are included in the converter element description in the Bmad lattice
file (§4.8). The accuracy of the converter modeling will depend in part upon the granularity of the prob-
ability tables generated by the converter_element_modeling program and on other approximations
made during tracking. Generally, inaccuracies in the 1% to 10% range are to be expected.

In a tracking simulation, a single outgoing particle is generated for each incoming particle. Since, in a
real machine, the number of outgoing particles will not be equal to the number of incoming particles,
each outgoing particle is assigned a weight such that the weighted distribution of outgoing particles is
correct. This weight will be the same for all outgoing particles. The weight will depend upon whether
the momentum or angular range of the outgoing particles is restricted using the element parameters
(§4.8):3Since the outgoing particle starts at the exit surface of the converter only five numbers are needed to generate the
6-dimensional particle phase space position.
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Figure 25.4: An incoming particle strikes the bottom of the converter. At some point within the interior,
a new particle is generated and this new particle exits the top surface. To calculate the position and
orientation of the outgoing particle, a coordinate system is established where the origin point ‹O is the
point that the incoming particle would strike the top surface if it went straight through and the (x, y)
axes are randomly rotated with respect to the (xb, yb) body coordinate axes. By construction, the
position of the outgoing particle will be along the x-axis.

.

pc_out_min ! Minimum momentum of generated outgoing particles (eV).
pc_out_max ! Maximum momentum of generated outgoing particles (eV).
angle_out_max ! Maximum angle to the surface perpendicular (rad).

The geometry of the converter is shown in Fig. 25.4. On the top surface, where the outgoing particle
emerges, (xb, yb) are the axes for the element body coordinate system (§16). To generate the position
and orientation of the outgoing particle, another coordinate system is used with axes labeled by (x, y).
Each outgoing particle will be assigned its own (x, y) axes. The origin ‹O of this coordinate system is
constructed by placing ‹O at the point where the incoming particle under consideration would strike the
top surface if the incoming particle would pass straight through the converter. The angular orientation
of the (x, y) axes with respect to the (x, y) axes is chosen using a random number with a uniform
probability distribution in the interval [0, π]. By construction, the outgoing particle, at the surface of
the converter will be generated at a point a distance r along the x-axis.

The particle distribution is calculated at a number of converter thickness ti, i = 1 . . . Nt. It is an error
if the actual converter thickness is outside the range of these thicknesses. [The exception is if only one
distribution for a given thickness is present, this distribution is used to generate the outgoing particle
coordinates independent of the converter thickness.] The particle distribution is also calculated within a
certain incoming particle momentum range. It is also an error if an incoming particle has a momentum
outside of this range.

The first step is to choose the value of the outgoing particle’s momentum pout. For each thickness ti,
the pre-computed particle distribution parameters includes a two-dimensional table of P (pout, r) — the
probability density of creating an outgoing particle versus pout and r. P (pout, r) is normalized so that
the integrated probability is equal to the average number of outgoing particles created for each incoming
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particle Nout/Nin
Nout

Nin
=

∫ ∫
dpout dr P (pout, r) (25.65)

The integrals are done using linear interpolation between grid points. From a P (pout, r) probability
table, a “normalized” probability Pn(pout, r) table is computed where Pn is the probability of generating
a particle at given pout and r with an angular range restricted by angle_out_max. If angle_out_max is
not set, Pn will be equal to P . This calculation is part of a “setup” computation done before tracking
which, to save time, is only done if one of the three element parameters, pc_out_min, pc_out_max,
or angle_out_max, changes. Additionally, the setup includes creating a table of I(pout) which is the
integrated probability for generating a particle with momentum less than pout

Ip(pout) =

∫ pout

pmin

dp̃out

∫
dr Pn(p̃out, r)∫ pmax

pmin

dp̃out

∫
dr Pn(p̃out, r)

(25.66)

where pmin is the minimum momentum in the P (pout, r) table or the value of pc_out_min which ever is
greatest and pmax is the maximum momentum in the P (pout, r) table or the value of pc_out_max which
ever is smallest. I(pout) is normalized such that I(pmax) = 1. A value for pout is generated by solving
numerically for pout the equation

Ip(pout) = R1 (25.67)

where R1 is a random number with uniform distribution in the interval [0, 1]. This calculation is done
for the two ti thicknesses that straddle the actual thickness. The value of pout assigned to the outgoing
particle is obtained via linear interpolation between the two computed values. Note that for both
thicknesses the same random number needs to be used.

The next step is to choose a value for r. This is done by solving the equation

Ir(r) = R2 (25.68)

where R2 is another random number with uniform distribution in the interval [0, 1] and Ir is

Ir(r) =

∫ r

0

dr̃ Pn(pout, r̃)∫ rmax

0

dr̃ Pn(pout, r̃)

(25.69)

with pout being the momentum chosen for the particle and rmax being the maximum radius the probability
table goes out to4. Like pout, this calculation is done for the two ti thicknesses that straddle the actual
thickness. The value of r assigned to the outgoing particle is obtained via linear interpolation between
the two computed values. Note that for both thicknesses the same random number needs to be used.

Once pout and r have been chosen, the next steps are to choose values for the angular orientation of
the outgoing particle. The angular orientation is characterized by the distribution parameters using the
derivatives x′ = dx/ds and y′ = dy/ds in the form of a skewed Lorentzian probability distribution Pd

Pd (x
′, y′; pout, r) = Ad

1 + β x′

1 + α2
x (x′ − cx)2 + α2

y (y′)
2 (25.70)

4The range [0, rmax] encompasses nearly all of the outgoing particles. In principle, the integral could be extended by
extrapolating the values in the table but this could potentially lead to inaccuracies in determining the outgoing orientation.
Generally the inaccuracy in truncating the distribution at rmax should be small.
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where the parameters Ad, β, cx, αx, and αy all depend upon pout and r. Notice that by construction,
with the outgoing particle generated on the x-axis, the distribution is symmetric about y′-axis. The
pre-computed distribution characterizes each of these parameters by a set of one or more fits which are
functions of pout and r. There are also four functions of pout and r that give the range over which
Eq. (25.70) is valid x′min, x′max, y′min, and y′max. By symmetry, y′min = −y′max. Also Ad can be computed
from knowledge of β, cx, αx, and αy using the normalization condition that at any given pout and r

1 =

∫ x′
max

x′
min

dx′
∫ y′max

−y′max

dy′ Pd (x
′, y′) (25.71)

Thus there are only seven independent parameters that need to be fitted. The fit functions for all seven
have the same form. The fit is divided into two regions. For pout lower than some cutoff, a parameter is
fit using a set of one-dimensional functions Γi(r) at discrete momentum pi, i = 1, . . . , Nβ with

Γi(r) =

M∑
n=1

cn,i r
n (25.72)

The polynomial cutoff M is 4 for cx and β and is 3 for the other five. To evaluate a parameter at
momenta lower than pNβ

, the Γi are used with linear interpolation in p between functions of different
pi. At higher energies, the parameter variation is smoother so a two dimensional fit Xi is used

Ξ(pout, r) = e−(kp pout+kr r)

(
3∑

n=0

kn r
n

) (
1 +

3∑
n=1

wn p
n
out

)
+ C (25.73)

The C parameter is only nonzero for x′min.

Once Ad, β, cx, αx, and αy have been calculated for a given pout and r, The calculation of x′ starts with
integrating Pd in Eq. (25.70) over y′

Ixd(x
′) ≡

∫ y′lim

−y′lim
dy′ Pd(x

′, y′) (25.74)

= 2Ad
1 + β x′

αy
√
1 + α2

x (x
′ − cx)2

tan−1

Ç
αy y

′
lim√

1 + α2
x (x

′ − cx)2

å
where y′lim is either the lesser of y′max and tan−1(angle_out_max). A spline fit is used to integrate Ixd
and this is used to choose a value for x′. Once x′ is known, The integral of Pd(x′, y′) over y′ is used to
choose a value for y′.

Except for the placement of ‹O, the above algorithm for calculating the position and orientation of
the outgoing particle will be independent of the angular orientation of the incoming particle. This is
valid for incoming particles that are traveling perpendicular to the converter surface. To the extent
that the incoming particles are not perpendicular to the converter, this will introduce inaccuracies.
Typically, however, the incoming particles will be fairly close to being perpendicular. Considering this,
and considering the approximations used to calculate the distribution parameters, the neglect of incoming
particle orientation effects is usually justified.
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25.10 Drift Tracking

Bmad uses the exact map for a drift This gives the map

x2 = x1 +
Lpx1

(1 + pz1) pl

px2 = px1

y2 = y1 +
Lpy1

(1 + pz1) pl

py2 = py1 (25.75)

z2 = z1 +

Å
β

βref
− 1

pl

ã
L

pz2 = pz1

where β is the normalized particle velocity, βref is the reference particle’s normalized velocity, and pl is
the longitudinal momentum

pl =

 
1−

p2x + p2y
(1 + pz)2

(25.76)

25.11 ElSeparator Tracking

[Thanks to Étienne Forest for the derivation of the elseparator equation of motion.]

The Hamiltonian for an electric separator is

H = −ps = −
®Å

1

β0
+ δ + kE x

ã2

− ‹m2 − p2x − p2y

´1/2

(25.77)

Here the canonical coordinates (−c t, δ are being used, ‹m is defined in Eq. (25.7), and ps = −H is just
the longitudinal momentum. In the above equation, kE is the normalized field

kE =
q E

P0 c
(25.78)

z

x

Figure 25.5: Elseparator Electric field. The fringe field lines break the translational invariance in x.
.
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The field is taken to be pointing along the x-axis with positive kE accelerating a particle in the positive
x direction. To solve the equations of motion, a “hard edge” model is used where kE is constant inside
the separator and the field ends abruptly at the separator edges.

Since, as shown in Fig. 25.5, the fringe fields break the translational invariance in x, it is important here
that the x = 0 plane be centered within the separator plates. With this, the canonical momentum δ just
outside the separator assumes its free space form of δ = (E −E0)/E0). This is analogous to the case of
a solenoid where, to ensure that the canonical transverse momenta assume their free space form just
outside the solenoid, the z-axis must be along the centerline of the solenoid.

The solution of the equations of motion is:

x = (x0 − xc) cosh
Å
kE L

ps

ã
+
px0
kE

sinh

Å
kE L

ps

ã
+ xc

px = kE (x0 − xc) sinh
Å
kE L

ps

ã
+ px0 cosh

Å
kE L

ps

ã
y = y0 + L

py0
ps

(25.79)

py = py0

c δt =

∫ L

0

−∂H
∂δ

= (x0 − xc) sinh
Å
kE L

ps

ã
+
px0
kE

ï
cosh

Å
kE L

ps

ã
− 1

ò
where the critical position xc is

xc = −
‹E
kE

(25.80)

and ‹E ≡ 1

β0
+ δ =

E

P0 c
(25.81)

Eqs. (25.79) predict that for x < xc and px0 = 0 a particle will, unphysically, accelerate in the negative
x direction. In actuality, a particle in this instance will be reflected backwards by the longitudinal
component of the edge field. Specifically, the argument of the square root in Eq. (25.77) must be
non-negative and a particle will only make it through the separator if

x0 >
1

kE

Ä»‹m2 + p2x0 + p2y0 − ‹Eä (25.82)

25.12 Foil Tracking

A particle going through a foil element is scattered both in angle and in energy, and the charge of the
particle may be affected. The following two subsections give the formulas used for scattering and energy
loss. Currently, the final charge is a fixed number but that may change in the future.

25.12.1 Scattering in a Foil

For the angle scattering, the user can select between one of two algorithms, both of which are given in
the paper by Peralta and Louro[Peralta12] (also see Lynch and Dahl[Lynch90]) Both methods vary the
phase space px and py coordinates using:

(dpx, dpy) =
p σ

P0
(r1, r2) (25.83)
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where p is the particle momentum, P0 is the reference momentum, r1 and r2 are Gaussian random
numbers with unit sigma and zero mean, and σ is the sigma of the angular scattering distribution. The
factor of p/P0 is due to a translation between change in angle and change in phase space momenta (see
Eq. (16.34)).

The Highland algorithm uses Eq. (32) of Peralta and Louro[Peralta12] to calculate the scattering sigma:

σ =
(13.6 · 106 eV ) z

p c β

 
X

X0

ï
1 + 0.038 ln

Å
X z2

X0 β2

ãò
(25.84)

where X0 is the material radiation “length” in kg/m2, z is the particle charge, β is the particle relativistic
beta, c is the speed of light, and X is the foil area density in kg/m2 equal to ρ t where ρ is the material
density and t is the foil thickness.

The Lynch_Dahl algorithm uses Eq. (33) of Peralta and Louro:

σ2 =
χ2
c

1 + F 2

ï
1 + ν

ν
ln(1 + ν)− 1

ò
(25.85)

where

ν =
0.5Ω

(1− F )

Ω =
χ2
c

1.167χ2
α

χ2
c =

Å
1.57 · 1010 eV

2m2

kg

ã
Z(Z + 1)X

A

ï
z

p β

ò2
(25.86)

χα = (2.007 · 107 eV 2)
Z2/3

(p c)2

ñ
1 + 3.34

Å
Z z α

β

ã2
ô

and the A is the atomic weight, p is the particle momentum, α is the fine structure constant, and F is
a fit parameter representing the percent of the central angular distribution that is used. F is a settable
parameter with a default value of 0.98.

For compound materials, the value of X/X0 in Eq. (25.84) is computed from

X

X0
=

N∑
i=1

Xi

X0i
(25.87)

where the summation is over all constituents in the material.

Also for compound materials, χ2
c in Eqs. (25.85) and (25.86) is replaced by the sum of the constituent

χ2
ci, and χα is computed from Lynch and Dahl Eq. (11)

ln(χα) =

N∑
i=1

Zi(Zi + 1)Xi

Ai
ln(χαi)

/
N∑
i=1

Zi(Zi + 1)Xi

Ai
(25.88)

The actual scattering distribution has 1/θ4 tails (θ is the scattering angle) due to single event large angle
scattering (Rutherford scattering). By assuming a Gaussian distribution, these tails are not present in
a simulation. It is also important to note that with both the Highland and Lynch_Dahl algorithms,
simulating the passage of particles through a single foil versus two foils with half the thickness as the
single foil will not give exactly the same results. This is just a reflection that both algorithms are trying
to model an inherently non-Gaussian process.
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25.12.2 Energy Loss in a Foil

The particle energy loss per unit length dE/dx through a foil is calculated using the Bethe-Bloch
formula

−
≠
dE

dx

∑
=

4π

mec2
· nz

2

β2
·
Å

e2

4πε0

ã2

·
ï
ln

Å
2mec

2β2

I · (1− β2)

ã
− β2

ò
(25.89)

where n is the material electron density, I is the mean excitation energy, z is the particle charge, c is
the speed of light, ϵ0 is the vacuum permittivity, β = v/c, is the normalized velocity, and e and me the
electron charge and rest mass respectively.

Note that to keep the direction of travel of the particle constant when energy is lost, this implies that
px/(1 + pz) and py/(1 + pz) are to be held constant (Eq. (16.34)).

25.13 Kicker, Hkicker, and Vkicker Tracking

The Hamiltonian for a horizontally deflecting kicker or separator is

H =
p2x + p2y
2(1 + pz)

− k0 x (25.90)

This gives the map

x2 = x1 +
1

1 + pz1

Å
Lpx1 +

1

2
k0 L

2

ã
, px2 = px1 + k0 L,

y2 = y1 +
Lpy1
1 + pz1

, py2 = py1, (25.91)

z2 = z1 −
L

2(1 + pz1)2

Å
p2x1 + p2y1 + px1 k0 L+

1

3
k20 L

2

ã
, pz2 = pz1

The generalization when the kick is not in the horizontal plane is easily derived.

25.14 LCavity Tracking

For tracking using something like runge_kutta, with field_calc set to bmad_standard, the fields are
modeled by the equations given in Sections §17.8 and §18.9.

For bmad_standard tracking, and with cavity_type set to standing_wave, the transverse trajectory
through an Lcavity is modeled using equations developed by Rosenzweig and Serafini[Rosen94] (R&S)
with

b0 = 1, and b−1 = 1 (25.92)

and all other bn set to zero.

The transport equations in R&S were developed in the ultra-relativistic limit with β = 1. To extend
these equations to lower energies, the transport through the cavity body (R&S Eq. (9)) has been modified
to give the correct phase-space area at non ultra-relativistic energies:Å

x
x′

ã
2

=

 
β1
β2

(
cos(α)

»
8

η(∆ϕ)
γ1
γ′ cos(∆ϕ) sin(α)

−
»

η(∆ϕ)
8

γ′

γ2 cos(∆ϕ) sin(α) γ1
γ2

cos(α)

) Å
x
x′

ã
1

(25.93)
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The added factor of
√
β1/β2 gives the matrix the correct determinant of β1 γ1/β2 γ2. While the added

factor of
√
β1/β2 does correct the phase space area, the above equation can only be considered as a rough

approximation for simulating particles when β is significantly different from 1. Indeed, the only accurate
way to simulate such particles is by integrating through the actual field [Cf. Runge Kutta tracking (§6.1)].

The change in z going through a cavity is calculated by first calculating the particle transit time ∆t

c∆t =

∫ s2

s1

ds
1

β(s)
=

∫ s2

s1

ds
E√

E2 − (mc2)2

=
c P2 − c P1

G
=
E2 + E1

P2 + P1

L

c
(25.94)

where L is the accelerating length and it has been assumed that the accelerating gradient G is constant
through the cavity and retarding due to the particle’s finite transverse momentum is ignored. In this
equation β = v/c, E is the energy, and P is the momentum. The change in z is thus

z2 =
β2
β1
z1 −

β2 L

c

Ç
E2 + E1

P2 + P1
− E2 + E1

P 2 + P 1

å
(25.95)

where P and E are the momentum and energy of the reference particle.

Note that the above transport equations are only symplectic on-axis There are second order terms in
the transverse coordinates that are missing. To obtain a proper symplectic matrix, the symplectify
attribute of an lcavity element (§6.7) can be set to True.

25.15 Octupole Tracking

The Hamiltonian for an upright octupole is

H =
p2x + p2y
2(1 + pz)

+
k3
24

(x4 − 6x2 y2 + y4) (25.96)

An octupole is modeled using a kick-drift-kick model.

25.16 Patch Tracking

The transformation of the reference coordinates through a “standard” patch (a patch where custom fields
are not used) is given by Eqs. (16.5) and (16.6). At the entrance end of the patch, a particle’s position
and momentum in the entrance coordinate system will be

r = (x, y, 0)

P = (Px, Py, Pz) =
Ä
px, py,±

»
(1 + pz)2 − p2x − p2y

ä
P0ent (25.97)

where px, py and pz are the phase space momenta, and z, which is coordinate z and not phase space z, is
always zero by construction as shown in Fig. 25.6 [Also see Fig. 16.2 and the discussion in §16.4.2.] The
sign of the longitudinal momentum Pz is determined by whether the particle is traveling in the positive
s or negative s direction (which will occur when an element is flipped longitudinally).
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Figure 25.6: Standard tracking through a patch element. A particle’s starting coordinate at the entrance
end of the patch has, by construction, coordinate z = 0. The particle is drifted, as in a field free region,
between the entrance z = 0 plane and the exit z = 0 plane.

The transformation between entrance and exit coordinate systems is given by Eqs. (16.12) and (16.13)

r→ S−1 (r− Loff)

P→ S−1 P (25.98)

where Loff is given by Eq. (16.16)

After this transformation, the particle must be propagated by a longitudinal length −rz to intersect the
rz = 0 plane of the exit face.

r→ (rx − rz
Px
Pz
, ry − rz

Py
Pz
, 0)

P→ P (25.99)

The final r and P can now be used compute the particles phase space coordinates, along with the time
t and the reference time tref at the exit end.

x→ rx px →
Px
P0exi

y → ry py →
Py
P0exi

(25.100)

z → z + rz
|P|
Pz

+ L0
β

β0
+ β t_offset pz →

(1 + pz)P0ent − P0exi

P0exi

t→ t− rz
|P|
Pz β

tref → tref + t_offset + L0
1

β0

where the exit reference momentum P0exi is related to the entrance reference momentum P0ent through
e_tot_offset. In the above equation, β is the particle velocity, β0 is the velocity of the reference
particle, and L0 is the drift length of the reference particle

L0 =
1

S−1
33

(
S−1
31 x_offset + S−1

32 y_offset + S−1
33 z_offset

)
(25.101)

25.17 Quadrupole Tracking

The bmad_standard calculates the transfer map through an upright quadrupole and then transforms
that map to the laboratory frame.
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The Hamiltonian for an upright quadrupole is

H =
p2x + p2y
2(1 + pz)

+
k1
2
(x2 − y2) (25.102)

This is simply solved

x2 = cx x1 + sx
px1

1 + pz1

px2 = τx ω
2 (1 + pz1) sx x1 + cx px1

y2 = cy y1 + sy
py1

1 + pz1

py2 = τy ω
2 (1 + pz1) sy y1 + cy py1 (25.103)

z2 = z1 +m511 x
2
1 +m512 x1 px1 +m522 p

2
x1 +m533 y

2
1 +m534 y1 py1 +m544 p

2
y1

pz2 = pz1

where

ω ≡
 
|k1|

1 + pz1
(25.104)

and

k1 > 0 k1 < 0 k1 > 0 k1 < 0

cx = cos(ω L) cosh(ω L) cy = cosh(ω L) cos(ω L)

sx =
sin(ω L)

ω

sinh(ω L)

ω
sy =

sinh(ω L)

ω

sin(ω L)

ω
(25.105)

τx = −1 +1 τy = +1 −1

with this

m511 =
τx ω

2

4
(L− cx sx) m533 =

τy ω
2

4
(L− cy sy)

m512 =
−τx ω2

2 (1 + pz1)
s2x m534 =

−τy ω2

2 (1 + pz1)
s2y (25.106)

m522 =
−1

4 (1 + pz1)2
(L+ cx sx) m544 =

−1
4 (1 + pz1)2

(L+ cy sy)

25.18 RFcavity Tracking

For tracking using something like runge_kutta, with field_calc set to bmad_standard, the fields are
modeled by the equations given in Sections §17.8 and §18.9.

With bmad_standard tracking, a kick-drift-kick model is used. The kick is a pure energy kick (see
equations in §4.46) and the phase of the RF is calculated under the assumption that the waveform
moves at a phase velocity equal to the velocity of the reference particle.

With bmad_standard tracking, the transverse forces due to the RF are ignored. This is generally a
reasonable approximation when the acceleration is small as is standard in rings. Lcavity elements
should be used in place of rfcavity elements when this is not so.
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25.19 Sad_Mult Tracking

The “hard edge” fringe field kick is taken from Forest[Forest98] Eqs. (13.29) and onward. In the notation
of Bmad, and taking into account both normal and skew terms, Eq. (13.29) is for the mþorder multipole
(what Forest labels n+ 1)

f± = ∓ℜ (bm + i am) (x+ i y)(m+1)

4 (m+ 2) (1 + pz)

ï
x px + y py + i

m+ 3

m+ 1
(x py − y px)

ò
(25.107)

The “soft edge” dipole fringe for sad_mult elements is a generalization of the soft edge dipole fringe for
a SAD bend element. For the entrance kick the equations are:

x2 = x1 +
δ1

1 + δ1
∆xfx, px2 = px1 +

1

1 + δ1

[
∆xfy v −∆xfay v

3
]

y2 = y1 −
δ1

1 + δ1
∆yfy, py2 = py1 +

1

1 + δ1

[
∆yfx w −∆yfax w

3
]

(25.108)

z2 = z1 +
1

(1 + δ1)2

ï
∆xfx px1 −∆yfy py1 +

1

2
(∆yfx +∆xfy)w

2 − 1

4
(∆yfax +∆xfay)w

4

ò
where

∆xfx =
K0 F

2
B

24L
, ∆yfx =

K2
0 FB
6L2

, ∆yfax =
2K2

0

3FB L2
,

∆yfy =
SK0 F

2
B

24L
, ∆xfy =

SK2
0 FB

6L2
, ∆xfay =

2SK2
0

3FB L2
, (25.109)

v = cos θ x1 + sin θ y1, w = − sin θ x1 + cos θ y1, tan θ =
−SK0

K0

25.20 Sextupole Tracking

The Hamiltonian for an upright sextupole is

H =
p2x + p2y
2(1 + pz)

+
k2
6
(x3 − 3x y2) (25.110)

Tracking through a sextupole uses a kick-drift-kick model.

25.21 Sol_Quad Tracking

The Hamiltonian is

H =
(px +

ks
2 y)

2

2(1 + pz)
+

(py − ks
2 x)

2

2(1 + pz)
+
k1
2
(x2 − y2) (25.111)
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Solving the equations of motion gives

x2 = m11 x1 +m12 px1 +m13 y1 +m14 py1

px2 = m21 x1 +m22 px1 +m23 y1 +m24 py1

y2 = m31 x1 +m32 px1 +m33 y1 +m34 py1

py2 = m41 x1 +m42 px1 +m43 y1 +m44 py1 (25.112)

z2 = z1 +

4∑
j=1

4∑
k=j

m5jk rj rk

pz2 = pz1

where

m11 =
1

2 f
(f0+ c+ f0− ch) m31 = −m24

m12 =
1

2 f (1 + pz1)

Å
f++

ω+
s+

f−−

ω−
sh

ã
m32 = −m14

m13 =
k̃s
4 f

Å
f+−

ω+
s+

f−+

ω−
sh

ã
m33 =

1

2 f
(f0− c+ f0+ ch)

m14 =
k̃s

f (1 + pz1)
(−c+ ch) m34 =

1

2 f (1 + pz1)

Å
f+−

ω+
s+

f−+

ω−
sh

ã
m21 =

−(1 + pz1)

8 f

Å
ξ1+
ω+

s+
ξ2+
ω−

sh

ã
m41 = −m23 (25.113)

m22 = m11 m42 = −m13

m23 =
k̃3s (1 + pz1)

4 f
(c− ch) m43 =

−(1 + pz1)

8 f

Å
ξ1−
ω+

s+
ξ2−
ω−

sh

ã
m24 =

k̃s
4 f

Å
f++

ω+
s+

f−−

ω−
sh

ã
m44 = m33

and

k̃1 =
k1

1 + pz1
k̃s =

ks
1 + pz1

f =
»
k̃4s + 4 k̃21 f±0 = f ± k̃2s

f0± = f ± 2 k̃1 f±± = f ± k̃2s ± 2 k̃1

ω+ =

…
f+0

2
ω− =

…
f−0

2
(25.114)

s = sin(ω+ L) sh = sinh(ω− L)

c = cos(ω+ L) ch = cosh(ω− L)

ξ1± = k̃2s f+∓ ± 4 k̃1 f+± ξ2± = k̃2s f−± ± 4 k̃1 f−∓

The m5jk terms are obtained via Eq. (25.12)

m5jk = − τjk
2(1 + pz1)2

∫
ds

ïÅ
m2j +

ks
2
m3j

ã Å
m2k +

ks
2
m3k

ã
+ (25.115)Å

m4j −
ks
2
m1j

ã Å
m4k −

ks
2
m1k

ãò



25.22. SOLENOID TRACKING 429

z

Figure 25.7: Solenoid with a hard edge. The field is assumed to end abruptly at the edges of the solenoid.
Here, for purposes of illustration, the field lines at the ends are displaced from one another.

.

where

τjk =

®
1 j = k

2 j ̸= k
(25.116)

The needed integrals involve the product of two trigonometric or hyperbolic functions. These integrals
are trivial to do but the explicit equations for m5jk are quite long and in the interests of brevity are not
reproduced here.

25.22 Solenoid Tracking

The bmad_standard solenoid tracking does not make the small angle approximation. The transfer map
for the solenoid is:

x2 =
1 + c

2
x1 +

s

ks
px1 +

s

2
y1 +

1− c
ks

py1

px2 =
−ks s
4

x1 +
1 + c

2
px1 −

ks (1− c)
4

y1 +
s

2
py1

y2 =
−s
2
x1 −

1− c
ks

px1 +
1 + c

2
y1 +

s

ks
py1 (25.117)

py2 =
ks (1− c)

4
x1 +

−s
2
px1 −

ks s

4
y1 +

1 + c

2
py1

z2 = z1 +
L (1 + pz1)

2

2 p3r

ñÅ
px1 +

ks
2
y1

ã2

+

Å
py1 −

ks
2
x1

ã2
ô

pz2 = pz1

where ks = B/P0 is the normalized field and

c = cos (ksL/pr)

s = sin (ksL/pr) (25.118)

with
pr =

»
(1 + pz)2 − (px + y1 ks/2)2 − (py − x1 ks/2)2 (25.119)
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To be useful, the canonical momenta px and py in the above equations must be connected to the canonical
momenta used for other elements (drifts, quadrupoles, etc.) that may be placed to either side of the
solenoid. These side elements use zero ax and ay (cf. Eq. (25.8)). The vector potential used in the
solenoid canonical momenta may be made zero at the edges of the solenoid if the solenoid fringe field
is assumed to end abruptly at the edges of the solenoid (as shown in Fig. 25.7), and the reference axis
z-axis (at x = y = 0) is placed along the centerline of the solenoid so that there is cylindrical symmetry
around the z-axis.

25.23 Sprint Spin Tracking

The sprint spin tracking method is named after the SPRINT program developed by Matthias Vogt.
The sprint algorithm Uses a first order spin map evaluated with respect to the zero orbit to track
through elements. This method is much faster than PTC integration, and its run-time does not increase
proportionally to element length. Currently, the supported lattice elements are bends (including bends
with k1 ̸= 0), quadrupoles, and solenoids §6.3.

Elements with fringe field contributions are split into three quaternions representing the entrance, body,
and exit of the element. Before propagation, the exit fringe quaternion is always equivalent to the
entrance fringe quaternion, with all field strengths multiplied by -1, and e1 replaced with −e2. The
exit quaternion is then propagated to the end of the element via Bmad mapping tools. Appropriate
quaternions are concatenated according to the values of spin_fringe_on and fringe_at.

d = g l e = a g lγ s = a ksl t = (1 + a)ksl

cd = cos(d) se2 = sin(
e

2
) cs = cos(s) ct = cos(t) (25.120)

sd = sin(d) ce2 = cos(
e

2
) ss = sin(s) st2 = sin(

t

2
)

χ = 1 + aγ ζ = γ − 1 ψ = γ2 − 1 ct2 = cos(
t

2
)

25.23.1 SBend Body, k1 = 0

q0 qy qz

1 ce2 −se2
x − 1

2gχsdse2 − 1
2gχ sdce2

px
1
2χ (cd − 1)se2

1
2χ (cd − 1)ce2

py
1
γ ζ se2

pz
1
2γ (γ χ sd − aψ d) se2
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25.23.2 Sbend Body, k1 ̸= 0

kx = k1 + g2

ωx =
»
|kx|

ωy =
»
|k1|

α = 2(a2g2γ2 + k1)

β = agk1(γχ− ζ)
σ = ωy(k1 + ak1γ + a2g2ζγ)

ξ = ωy(k1χ+ a2g2ζγ)

kx > 0 kx < 0 k1 > 0 k1 < 0
sx = sin (lωx) sinh (lωx) sy = sinh (lωy) sin (lωy)
cx = cos (lωx) cosh (lωx) cy = cosh (lωy) cos (lωy)
τx = −1 +1 τy = +1 −1

q0 qx qy qz

1 ce2 −se2
x −kxχ

2ωx
sxse2

−kxχ
2ωx

sxce2

px
kxχ
2ω2

x
τx(1− cx)se2 kxχ

2ω2
x
τx (1− cx) ce2

y
−1
α

[
β(1 + cy)se2 +

τyσsyce2
] 1

α

[
β(1− cy)ce2 +

τyσsyse2
]

py

1

ωyα

[
ξ(1− cy)ce2 −

βsyse2
] 1

ωyα

[
ξ(1 + cy)se2 −

βsyce2
]

pz
g
2

Ä
χsx
ωx
− alψ

γ

ä
se2

g
2

Ä
χsx
ωx
− alψ

γ

ä
ce2

25.23.3 Sbend Entrance Fringe

To calculate the exit fringe, multiply all field strengths g by -1, and replace all entrance face angles e1
with exit face angles −e2. The negative exit face angle is used due to Bmad convention.

q0 qx qy qz

1 1

x 1
2χg tan(e1)

y 1
2 (1 + a)g sin(e1) − 1

2 (1 + a)g cos(e1)

25.23.4 Quadrupole

ω =
»
|k1|

k1 > 0 k1 < 0 k1 > 0 k1 < 0

sx = sin (lω)
ω

sinh (lω)
ω sy = sinh (lω)

ω
sin (lω)
ω

cx = 1−cos (lω)
ω2

−1+cosh (lω)
ω2 cy = −1+cosh (lω)

ω2

1−cos (lω)
ω2
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q0 qx qy

1 1

x − 1
2k1χsx

px − 1
2k1χcx

y − 1
2k1χsy

py − 1
2k1χcy

25.23.5 Solenoid Element Body

q0 qx qy qz

1 ct2 −st2
x 1

4ksζ((1− cs)ct2 − ssst2)
1
4ksζ((−1 + cs)st2 − ssct2)

px
1
2ζ((1− cs)st2 + ssct2)

1
2ζ((1− cs)ct2 − ssst2)

y 1
4ksζ((1− cs)st2 + ssct2)

1
4ksζ((1− cs)ct2 − ssst2)

py
1
2ζ((−1 + cs)ct2 + ssst2)

1
2ζ((1− cs)st2 + ssct2)

pz
1
2 tst2

1
2 tct2

25.23.6 Solenoid Entrance Fringe

To calculate the exit fringe, multiply all field strengths ks by -1.

q0 qx qy

1 1
x 1

4ksχ
y 1

4ksχ

25.24 Symplectic Tracking with Cartesian Modes

The method for symplectic integration for elements that define the magnetic field using a Cartesian mode
decomposition (§5.16.2) is outlined in §25.4. The vector potential is constructed to avoid singularities
when one of the wave vectors kx, ky, or kz is zero.

For the x family the vector potential is:

Form hyper-y hyper-xy hyper-x

Ax A
kz
k2y

Sx Shy Sz A
1

ky
Shx Shy Sz A

kz
kx ky

Shx Sy Sz

Ay 0 0 0

Az A
kx
k2y

Cx Shy Cz A
kx
ky kz

Chx Shy Cz A
1

ky
Chx Sy Cz

For the y family the vector potential is:



25.24. SYMPLECTIC TRACKING WITH CARTESIAN MODES 433

Form hyper-y hyper-xy hyper-x
Ax 0 0 0

Ay −A kz
kx ky

Sx Shy Sz −A 1

kx
Shx Shy Sz −A kz

k2x
Shx Sy Sz

Az −A 1

kx
Sx Chy Cz −A ky

kx kz
Shx Chy Cz −A ky

k2x
Shx Cy Cz

For the qu family the vector potential is:

Form hyper-y hyper-xy hyper-x

Ax A
1

kz
Sx Chy Sz A

ky
k2z

Shx Chy Sz A
ky
kx kz

Shx Cy Sz

Ay −A kx
ky kz

Cx Shy Sz −A kx
k2z

Chx Shy Sz −A 1

kz
Chx Sy Sz

Az 0 0 0

For the sq family the vector potential is:

Form hyper-y hyper-xy hyper-x

Ax A
1

kz
Cx Shy Sz A

ky
k2z

Chx Shy Sz A
ky
kx kz

Chx Sy Sz

Ay A
kx
ky kz

Sx Chy Sz −A kx
k2z

Shx Chy Sz A
1

kz
Shx Cy Sz

Az 0 0 0
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Chapter 26

Tracking of X-Rays

Bmad can track both charged particles and X-rays. This chapter deals with X-rays. Charged particles
are handled in chapter §25.

26.1 Coherent and Incoherent Photon Simulations

Bmad can track photons either coherently or incoherently. In both cases, the photon has a transverse
electric field

(Ex, Ey) (26.1)

Ex and Ey are complex and therefore have both amplitude and phase information. When photons are
tracked incoherently, the phase information is not used for calculating X-ray intensities.

In addition to coherent and incoherent tracking, partially coherent simulations can be done by using
sets of photons with the photons in any one set treated as coherent and the photons between sets being
treated as incoherent.

26.1.1 Incoherent Photon Tracking

In a simulation with incoherent photons, some number of photons, N0, will be generated and the ith
photon (i = 1, . . . , N0) will have a initial “electric field” components Ex0(i), Ey0(i) assigned to it. The
field amplitude E0 will be

»
E2
x0 + E2

y0.

At some an observation point, the power S per unit area falling on some small area dA due to either x
or y component of the electric field is

Sx,y =
αp

N0 dA

∑
j∈hits

E2
x,y(j) (26.2)

where αp is a constant that can be chosen to fit the simulation against experimental results, and the sum
is over photons who intersect the area. The factors of N0 and dA in the above equation make, within
statistical fluctuations, S independent of N0 and, for dA small enough, S will be independent of dA as
it should be. The total power is just Sx + Sy.

When traveling through vacuum, the electric field of a photon is a constant. As an example, consider a
point source radiating uniformly in 4π solid angle with each photon having the same initial field E0. An

435
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observation area dA situated a distance R from the source will intercept N0 dA/4π R
2 photons which

gives a power of

Sw =
αpE

2
0

4π R2
(26.3)

which falls off as 1/R2 as expected.

At some places the light may be split into various “channels”. An example is Laue diffraction where
X-rays can excite the α and β branches of the dispersion surface. Or a partially silvered mirror where
some of the light is reflected and some is transmitted. In such a case, the probability Pi of a photon
traveling down the ith channel is

Pi “E2
i =

Si
S0

(26.4)

where Si is the power flowing into channel i, S0 is the power flowing into the junction, and “Ei = Ei/E0

is the ratio of the electric field amplitudes of any photon just before and just after being shunted into
the ith channel. The probabilities must be properly normalized∑

Pi = 1 (26.5)

If the ratio of the electric field of any photon just before and just after being shunted into the ith channel
is not a constant, than “Ei must be adjusted so that “E2

i is equal to the average of “E2
i (j) for all photons

j channeled into channel i.

As long as Eqs. (26.4) and (26.5) are satisfied, the choice of the Pi, and “Ei are arbitrary. This freedom
allows simulation to be optimized for efficiency. For example, In an actual experiment much of the
light can be lost never to reach a detector and be counted. To decrease the simulation time, simulated
photons may be limited to be generated with a direction to be within some solid angle Ω1 if photons
with a direction outside this solid angle will not contribute to the simulation results. In this case, there
are two channels. Channel 1 consists of all photons whose direction is within Ω1 and channel 2 is all
the other photons. To limit the photons to channel 1, P1 is taken to be 1 and P2 is taken to be 0.
Additionally, if the light, say, is being generated isotropically from a surface into a Ω0 = 2π solid angle
then “E1 =

 
Ω1

Ω0
(26.6)“E2 is infinite here but since no photons are generated in channel 2 this is not a problem.

26.1.2 Coherent Photon Tracking

In a simulation with coherent photons, some number of photons, N0, will be generated and the ith photon
(i = 1, . . . , N0) will have an initial electric field Ex0(i), Ey0(i) assigned to it. These quantities will be
complex.

At some an observation point, the field E at some small area dA due to either x or y component of the
electric field is

E =
αp

N0 dA

∑
j∈hits

E(j) (26.7)

where αp is a constant that can be chosen to fit the simulation against experimental results, and the
sum is over photons who intersect the area. In the above equation E(j) is either the x or y component
of the electric field as is appropriate. The factors of N0 and dA in the above equation make, within
statistical fluctuations, E independent of N0 and, for dA small enough, E will be independent of dA as
it should be.
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When traveling through a a vacuum, the photons travel ballistically in straight lines. This is justified by
using the stationary phase approximation with Kirchhoff’s integral. the electric field of a photon varies
with the propagation length. There is nothing physical in this and is just a way to make the bookkeeping
come out correctly. As an example, consider a point source radiating uniformly in 4π solid angle with
each photon having the same initial field component (either x or y) E1. An observation area dA situated
a distance R from the source will intercept N0 dA/4π R

2 photons and each photon will have a field of
E1R exp(i k R) where k is the photon wave number (all photons must have the same k to be coherent).
This gives an electric field at the observation point of

E =
αpE1 exp(i k R)

4π R
(26.8)

which falls off as 1/R as expected.

At a diffraction_plate element where diffraction effects are to be simulated, the following procedure
is used:

1. The electric field components are multiplied by the propagation length L:

E → E L (26.9)

The propagation length is reset to zero so that the at the next point where the propagation length
is factored into the electric field the propagation length will be the length starting at the aperture.

2. Depending upon the program, the photon is is either given a random direction over 2π solid
angle or the photon’s direction is restricted to be within some solid angle chosen to increase the
probability that the photon will make it through some downstream aperture.

If the photon is restricted to some aperture dependent solid angle of area Ω, the photon’s electric
field is scaled by

E → E
Ω

4π
(26.10)

3. The electric field components are scaled by

E → E
k

4π i
(cos θ1 + cos θ2) (26.11)

where θ1 and θ2 are the direction cosines of the incoming and outgoing directions of the photon
with respect to the longitudinal reference axis.

This algorithm is designed so that the resulting fields at points downstream from the aperture as com-
puted from a simulation will, to within statistical errors, be the same as one would get using Kirchoff’s
integral. That is, the simulation is constructed to be a Monte Carlo integration of Kirchhoff’s integral.

What is, and what is not considered a place where there are diffraction effects is dependent upon the
problem. For example, there are diffraction effects associated with light reflecting from a mirror (or any
other object) of finite size. If these effects are important to the experiment, then a procedure similar to
the one above must be followed.

At places where there are no diffraction effects a simulation can treat the photons ballistically or can use
the aperture procedure outlined above. While in theory it is possible to choose what to do, in practice
the aperture procedure increases the number of photons that must be tracked for a given resolution.
Thus, from a practical standpoint the ballistic alternative should always be used.
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As explained in §26.1.1, at some places the light may be split into various “channels”. With coherent
photons, the analog to Eq. (26.4) is

Pi “Ei = Ei
E0

(26.12)

where here “Ei can be complex to take into account phase shifts. The same considerations about choosing
the Pi and “Ei apply to coherent photons as incoherent photons. In particular, “E1 for the case of isotropic
emission from a surface as in the example in §26.1.1 (cf. Eq. (26.6)) is“E1 =

Ω1

Ω0
(26.13)

26.1.3 Partially Coherent Photon Simulations

When there is partial coherence the photons must be divided into sets. All of the photons of a given set
are considered coherent while the photons of different sets are treated incoherently.

The procedure is to track all the photons of one set coherently and calculate the field using equation
Eq. (26.7). The fields of different sets are then combined to calculate a power using Eq. (26.2).

26.2 Element Coordinate System

The general procedure for tracking through an element makes use of element reference coordinates
(also called just element coordinates). Without any offsets, pitches or tilt (§5.6), henceforth called
“misalignments”, the element coordinates are the same as the laboratory reference coordinates (or
simply laboratory coordinates) (§16.1.1). The element coordinates stay fixed relative to the element.
Therefore, if the element is misaligned, the element coordinates will follow as the element shifts in
the laboratory frame as shown in Fig. 25.1.

For crystal (§4.10), mirror (§4.35), and multilayer_mirror (§4.37) elements, the “kinked” reference
trajectory through the element complicates the calculation. For these elements, there are three coordinate
systems attached to the element as shown in Fig. 26.1. Besides the element entrance and element
exit coordinates, there are element surface coordinates with z perpendicular to the surface pointing
inward.

Tracking a particle through an element is therefore a three step transformation:

1. At the entrance end of the element, transform from the laboratory reference coordinates to the
element’s entrance or surface coordinates.

2. Track through the element ignoring any misalignments.

3. At the exit end of the element, transform from the element coordinates to the laboratory exit
coordinates.

26.2.1 Transform from Laboratory Entrance to Element Coordinates

For elements that have a reference orbit kink (§26.2), the element coordinates here are the surface
coordinates. Otherwise the element coordinates are the entrance coordinates.

1. Apply offsets, pitches and tilt using the formulas in §16.2.2 along with Eqs. (16.6), and (16.16).
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Figure 26.1: The three element coordinate systems for crystal (Bragg configuration), mirror, and
multilayer_mirror elements. The origin O of all three are the same but are shown spread out for
clarity. n̂ is the normal to the element surface.

.

2. Apply the tilt to the electric field (Eq. (16.40)).

3. For crystal, mirror, and multilayer_mirror elements rotate to element surface coordinates.

4. Transform the photon’s position as if in a drift by a distance −z where z is the photon’s longitudinal
coordinate. That is, z will be zero at the end of the transform to element coordinates (remember
that z is the distance from the start of the element (§16.4.4)).

26.2.2 Transform from Element Exit to Laboratory Coordinate

The back transformation from element to laboratory coordinates is accomplished by the transformation

1. For crystal, mirror, and multilayer_mirror elements rotate to element from element surface
coordinates to element exit coordinates

2. Apply the reverse tilt to the electric field (Eq. (16.40)).

3. Apply reverse offsets, pitches and tilt using the formulas in §16.2.2 along with Eqs. (16.6), and
(16.16).

26.3 Transformation for Mirror and Crystal Elements Between
Laboratory and Element Coordinates

26.3.1 Transformation from Laboratory to Element Coordinates

With photons, the intensities must also be transformed. The transformation from the entrance laboratory
coordinates to the entrance element coordinates is:

1. Track as in a drift a distance z_offset_tot.

2. Apply offsets and pitches: The effective “length” of the element is zero (§16.2.3) so the origin of
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the element coordinates is the same point around which the element is pitched so

x1 = x0 − xoff

px1 = px0 − (1 + pz0)x
′
pitch

y1 = y0 − yoff (26.14)
py1 = px0 − (1 + pz0) y

′
pitch

z1 = z0 + x′pitch x1 + y′pitch y1

where xoff ≡ x_offset, x′pitch ≡ x_pitch, etc.

3. Apply ref_tilt and tilt: Å
x2
y2

ã
= R(θtot)

Å
x1
y1

ãÅ
px2
py2

ã
= R(θtot)

Å
px1
py1

ã
(26.15)Å

Ex2
Ey2

ã
= R(θtot)

Å
Ex1
Ey1

ã
where E is shorthand notation for

E ≡ E ei ϕ (26.16)

with E being the field intensity and ϕ being the field phase angle. In the above equations R is the
rotation matrix

R(θ) =

Å
cos θ sin θ
− sin θ cos θ

ã
(26.17)

with θtot being

θtot =

®
ref_tilt+ tilt+ tilt_corr for crystal elements
ref_tilt+ tilt for mirror elements

(26.18)

The tilt_corr correction is explained in §26.4.2.

26.3.2 Transformation from Element to Laboratory Coordinates

The back transformation from exit element coordinates to exit laboratory coordinates is accomplished
by the transformation

1. Apply ref_tilt and tilt: ref_tilt rotates the exit laboratory coordinates with respect to the
exit element coordinates in the same way ref_tilt rotates the entrance laboratory coordinates
with respect to the entrance element coordinates. The forward and back transformations are
thus just inverses of each other. With tilt, this is not true. tilt, unlike ref_tilt, does not
rotate the output laboratory coordinates. There is the further complication in that tilt is a
rotation about the entrance laboratory coordinates. The first step is to express tilt with respect
to the exit coordinates. This is done with the help of the S matrix of Eq. (16.8) with αt given
by Eq. (16.15). The effect of the tilt can be modeled as a rotation vector ein in the entrance
laboratory coordinates pointing along the z-axis

ein = (0, 0, tilt) (26.19)
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In the exit laboratory coordinates, the vector eout is

eout = Sein (26.20)

The z component of eout combines with ref_tilt to give the transformationÅ
x2
y2

ã
= R(−θt)

Å
x1
y1

ãÅ
px2
py2

ã
= R(−θt)

Å
px1
py1

ã
(26.21)Å

Ex2
Ey2

ã
= R(−θt)

Å
Ex1
Ey1

ã
where θt is ref_tilt + eout,z. The x and y components of eout give rotations around the x and y
axes

px3 = px2 − eout,y

py3 = py2 + eout,x (26.22)
z3 = z2 + x2 eout,y − y2 eout,x (26.23)

2. Apply pitches: Since pitches are defined with respect to the entrance laboratory coordinates, they
have to be translated to the exit laboratory coordinates

Pout = SPin (26.24)

where Pin = (x′pitch, y
′
pitch, 0) is the pitch vector in the entrance laboratory frame and Pout is the

vector in the exit laboratory frame. The transformation is then

px4 = px3 −Pout,y

py4 = py3 +Pout,x (26.25)
z4 = z3 + x3 Pout,y − y3 Pout,x (26.26)

3. Apply offsets: Again, offsets are defined with respect to the entrance laboratory coordinates. Like
pitches, the translation is

Oout = SOin (26.27)

where Oin = (xoff, yoff, soff) is the offset in the entrance laboratory frame. The transformation is

x5 = x4 +Oout,x − px4 Oout,z

y5 = y4 +Oout,y − py4 Oout,z (26.28)
z5 = z4 +Oout,z (26.29)
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Figure 26.2: Reference trajectory reciprocal space diagram for for A) Bragg diffraction and B) Laue
diffraction. The bar over the vectors indicates that they refer to the reference trajectory. The x-z
coordinates shown are the element surface coordinates. All points in the diagram are in the plane of the
paper except for the tip of H. K0, and KH are the wave vectors inside the crystal and k0 and kH are
the wave vectors outside the crystal. The reference photon traveling along the reference trajectory has
K0 and KH originating at the Q point. For Laue diffraction, the crystal faces are assumed parallel. For
Bragg diffraction the crystal normal is in the −x̂ direction while for Laue diffraction the crystal normal
is in the −ẑ direction

26.4 Crystal Element Tracking

[Crystal tracking developed by Jing Yee Chee, Ken Finkelstein, and David Sagan]
Crystal diffraction is modeled using dynamical diffraction theory. The notation here follows Batterman
and Cole[Bater64]. The problem can be divided up into two parts. First the reference trajectory must be
calculated. This means calculating the incoming grazing angle θB,in and outgoing grazing angle θB,out as
well as calculating the transformations between the various coordinate systems. This is done in §26.4.1,
§26.4.2, and §26.4.3. The second part is the actual tracking of the photon and this is covered in §26.4.5
and §26.4.6

26.4.1 Calculation of Entrance and Exit Bragg Angles

Fig. 26.2 shows the geometry of the problem. The bar over the vectors indicates that they refer to the
reference trajectory. The reference trajectory is calculated such that the reference photon will be in the
center of the Darwin curve. That is, the internal wave vectors K0 and KH originate from the Q point
(See [Bater64] Figs. 8 and 29).

The external wave vectors k0, and kH and the internal wave vectors have magnitude

|k0| = |kH| =
1

λ
(26.30)

|K0| = |KH | =
1− δ
λ

(26.31)

where λ is the wavelength, and δ is

δ =
λ2re
2π V

F ′
0 =

Γ

2
F ′
0 =

1

2
ΓF ′

0 (26.32)
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with re being the classical electron radius, V the unit cell volume, and F ′
0 is the real part of the F0

structure factor.

In element surface coordinates (which will be the coordinate system used henceforth), k0 lies in the x-z
plane. K0 is related to k0 via Batterman Eq. (25)

K0 = k0 + q0 n̂ (26.33)

where the value of q0 is to be determined. Here, and in equations below, if the equation is true in general,
and not just for the reference trajectory, the bar superscript is dropped.

Since n̂ is in the −x̂ direction, K0 is also in the x-z plane. Thus k0 and K0 can be written in the form

k0 =
1

λ

Ñ
− cos θB,in

0
sin θB,in

é
, K0 =

1− δ
λ

Ñ
− cos θ0

0
sin θ0

é
[Bragg]

k0 =
1

λ

Ñ
sin θB,in

0
cos θB,in

é
, K0 =

1− δ
λ

Ñ
sin θ0
0

cos θ0

é
[Laue] (26.34)

Where, as shown in Fig. 26.2, θB,in, and θ0 are the angles of k0 and K0 with respect to the x-axis for
Bragg reflections and with respect to the z-axis for Laue reflection.

αH (alpha_angle) is the angle that H makes with respect to the −ẑ axis and ψH (psi_angle) is the
rotation of H around the −ẑ axis such that for ψH = 0, H is in the x-z plane and oriented as shown in
Fig. 26.2. Thus

H ≡ 1

d
“H =

1

d

Ñ
− sinαH cosψH
sinαH sinψH
− cosαH

é
(26.35)

where “H is H normalized to 1. αH is determined via the setting of b_param and via Eq. (4.18).

The vectors K0 and H must add up to the reciprocal lattice vector KH

KH = K0 +H (26.36)

Taking the length of both sides of this equation and using Eqs. (26.31), (26.34), and (26.35) gives for θ0

sin θ0 =


−β “Hz − “Hx

»“H2
x + “H2

z − β2“H2
x +

“H2
z

Bragg

−β “Hx + “Hz

»“H2
x + “H2

z − β2“H2
x + “H2

z

Laue

(26.37)

where
β ≡ λ

2 d (1− δ)
(26.38)

Once θ0 has been calculated, θB,in can be calculated from Eq. (26.33)

cos θB,in = (1− δ) cos θ0 [Bragg] (26.39)
sin θB,in = (1− δ) sin θ0 [Laue] (26.40)

The outgoing reference wave vector kH is computed using the equation

KH = kH + qH n̂ (26.41)
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Using this with Eqs. (26.35) and (26.36) gives

kH,x = KH,z =
1

d
“Hx + k0,x

kH,y = KH,y =
1

d
“Hy (26.42)

kH,z =

…
1

λ2
− k2H,x − k

2

H,y

The total bending angle of the reference trajectory is then

θbend = tan−1

Ç
|k0 × kH |
k0 · kH

å
(26.43)

The outgoing Bragg angle θB,out is then defined to be the difference between the total bend angle and
the entrance Bragg angle.

θB,out ≡ θbend − θB,in (26.44)

26.4.2 Crystal Coordinate Transformations

There are four transformations needed between coordinates denoted by Σ1, Σ2, Σ3, and Σ4

Σ1 Transform from laboratory entrance to element entrance coordinates.
Σ2 Transform from element entrance to surface coordinates.
Σ3 Transform from surface to element exit coordinates.
Σ4 Transform from element exit to laboratory exit coordinates.

The total transformation is just the map represented by S and V of Eqs. (16.5) and (16.6)

[S,V] = Σ4 Σ3 Σ2 Σ1 (26.45)

The transformation Σ1 is given in §26.3.1 and the transformation Σ4 is given in §26.3.2. In general, the
transformation Σ1 needs a “tilt correction” (Eq. (26.18)), as explained below, when ψH is nonzero. [The
exception is when the undiffracted or forward_diffracted beam is tracked with Laue geometry. In
these cases, no tilt correction is needed.] Since this tilt correction is independent of any misalignments,
the tilt correction calculation proceeds assuming here that there are no misalignments. The finite V due
to the finite crystal thickness in Laue diffraction will also be ignored for the moment.

Without misalignments, and with ψH zero, the transformation Σ1 is, as it is for every other type of
element, just the unit matrix.

Σ1 = I (26.46)

That is, the two coordinate systems are identical. Furthermore, the transformation Σ2 from element
entrance coordinates to surface coordinates is a rotation around the y axis

Σ2 = Ry(θB,in) ≡

Ñ
cos θB,in 0 sin θB,in

0 1 0
− sin θB,in 0 cos θB,in

é
[Laue] (26.47)

= Ry(θB,in −
π

2
) [Bragg]

The transformation from element surface coordinates to element exit coordinates, Σ3, is another rotation
around the y axis

Σ3 = Ry(θB,out) [Laue] (26.48)

= Ry(θB,out +
π

2
) [Bragg]
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and the transformation from element exit coordinates to laboratory exit coordinates, Σout is the unity
matrix

Σ4 = I (26.49)

Thus, the combined transformation S from laboratory entrance to laboratory exit coordinates is a
rotation around the y axis of θB,in + θB,out as explained in section §16.2

S = Σ4 Σ3 Σ2 Σ1 = Ry(θB,in + θB,out) (26.50)

When ψH is non-zero, the situation is complicated since, if S as calculated above is used, the vector
kH would be bent out of the x-z plane even though it has been assumed that the ref_tilt θt is zero.
But kH points in the same direction as the z axis of the outgoing reference trajectory. Furthermore, by
definition, the reference trajectory has the form given by Eq. (16.8) with the Rz(θt) matrix depending
only upon the ref_tilt parameter (which is here taken to be zero). To satisfy Eq. (16.8), the crystal
must be reoriented to keep the kH vector in the x-z plane of the laboratory entrance coordinates. The
reorientation is done by rotating the crystal about the laboratory entrance z axis by an amount θcorr
(tilt_corr).

With this tilt correction the transformation Σ1 is a rotation about the z axis

Σ1 =

Ñ
cos θcorr − sin θcorr 0
sin θcorr cos θcorr 0

0 0 1

é
(26.51)

To calculate a value for θcorr, note that the transformation Σ2 from element entrance coordinates to
element surface coordinates is not affected by a finite ψH and so Eq. (26.47) is unmodified. The kH
vector, expressed in laboratory entrance coordinates, is Σ−1

1 Σ−1
2 kH where the components of kH are

given by Eq. (26.42). To satisfy Eq. (16.8), this vector must have zero y component

(
Σ−1

1 Σ−1
2 kH

)
·

Ñ
0
1
0

é
= 0 (26.52)

Solving gives

θcorr = tan−1 kH,y
kH,z sin θB,in − kH,x cos θB,in

(26.53)

The transformation Σ3 from element surface coordinates to element exit coordinates is now obtained by
requiring that the total transformation from laboratory entrance to laboratory exit coordinates be the
Ry(−αb) matrix given in Eq. (16.8)

Σ3 Σ2 Σ1 =

Ñ
cos θbend 0 − sin θbend

0 1 0
sin θbend 0 cos θbend

é
(26.54)

In the above equation, the transformation Σ4 has been dropped since it is the unit matrix independent
of ψH .

For Laue diffraction when the non-diffracted beam is tracked, the exit coordinate system corresponds to
the entrance coordinate system. That is, V is the unit matrix. In this case, there is no tilt correction
and Σ3 = Ry(−θB,in) is just the inverse of Σ2.
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Figure 26.3: Energy flow used to determine the reference orbit for Laue diffraction.

26.4.3 Laue Reference Orbit

For Laue diffraction, with the reference orbit following the undiffracted beam, the reference orbit at
the exit surface is just the extension of the reference orbit at the entrance surface. Since the reference
orbit’s direction is k0. the reference orbit displacement vector L (cf. Eq. (16.5)) is given by

L =
t2

dk0 · t
dk0 [undiffracted] (26.55)

where

t =

Ñ
0
0
t

é
(26.56)

with t being the crystal thickness and the z-axis pointing into the crystal as illustrated in Fig. 26.3. The
S rotation matrix (Eq. (16.6)) for the undiffracted beam will be the unit matrix.

With the reference orbit following the forward_diffracted or Bragg_diffracted beam, the displace-
ment vector L follows the energy flow associated with the tie points labeled A or B in Fig. 26.3. These
tie points are defined by the intersection of the dispersion surfaces and the vector n originating from the
point T as shown in the figure. The energy flow is perpendicular to the dispersion surface and it can
be shown that since, by construction, n goes through the Q point, and since the dispersion surfaces are
hyperboles, the energy flows from A and B tie points are colinear. The direction of the energy flow is
given by:

Kf = ξH KH + ξ0 K0 (26.57)

where ξH and ξ0 are given by [Bater64] Eq. (18) (See section §26.4.5 below). L is thus

L =
t2

Kf · t
Kf (26.58)

At the exit surface, if the reference orbit is following the forward_diffracted beam, the orientation of
the element exit coordinates will be the same as the orientation of the element entrance coordinates.
That is, S (Eq. (16.6)) is the unit matrix. If the reference orbit is following the Bragg diffracted beam,
S is the same as for Bragg diffraction

S =

Ñ
cos θbend 0 − sin θbend

0 1 0
sin θbend 0 cos θbend

é
(26.59)
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26.4.4 Crystal Surface Reflection and Refraction

There are corrections to the field amplitude and phase when a photon reflects or refracts from the surface
of a crystal. A plane wave is incident on a crystal surface with

E = “E0 exp(ik0 r) (26.60)

An outgoing plane wave has a field
E = “E1 exp(ik1 r) (26.61)

A simulation of this condition will start with a number of photons with wave vector k0 and electric
field E0. After reflecting from the surface, the photons will have wave vector k1. Now imagine a set
of N photons that flow through an planar area dA0, perpendicular to the incoming beam, before being
reflected from the surface.

Since the electric field is “E0, when tracking incoherent photons“E2
0 =

αpE
2
0 N

dA0
(26.62)

where αp is the simulation constant (cf. Eq. (26.2). After the photons are reflected they will have some
field E1 and thus “E2

1 =
αpE

2
1 N

dA1
(26.63)

Where dA1 is the area that the photons flow through which is related to dA0 via

dA1

dA0
=

k1 · z
k0 · z

≡ |b| (26.64)

Combining the above three equations, the change in field for a photon as it reflects from the surface is

E1

E0
=
“E1“E0

»
|b| Incoherent (26.65)

For coherent photon tracking the electric field at dA0 is“E0 =
αpE0N

dA0
(26.66)

After the photons are reflected they will have some field E1 and thus“E1 =
αpE1N

dA1
(26.67)

Combining these equations the change in field for a photon as it reflects from the surface is

E1

E0
=
“E1“E0

|b| Coherent (26.68)

Additionally, for coherent tracking, all photons in a plane wave must have the same phase when passing
through an area transverse to the wave. Thus the two photons labeled a and b in Fig. ?? must have the
same phase advance in going from dA0 to dA1. The difference in the phase advance for photon b relative
to a from dA0 to the surface is k0 · r where r is the vector between where photon b hits the surface
relative to photon a. Similarly, the difference in the phase advance for photon b relative to a from the
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surface to dA0 is −k1 · r. Since the total phase advance for both photons is the same from dA0 to dA1

the phase shift dϕb of photon b as it is reflected from the surface relative to the phase shift dϕa is

dϕb = dϕa − (k1 − k0) · r (26.69)

This shift in the reflection phase can be related to the lattice diffraction planes. The wave vector
difference can be written

k1 − k0 = H+ q n̂ (26.70)

where n̂ is perpendicular to the surface. Combining Eqs. (26.69) and (26.70) and since r is in the plane
of the surface

dϕb = dϕa −H · r (26.71)

This shows that the reflection shift has the same periodicity as the pattern of the lattice planes at the
surface of the crystal. Notice that for a mirror, where one point on the surface is the same as any other,
dϕb must be equal to dϕa. Using this in Eq. (26.69) gives

k1 · r = k0 · r (26.72)

and since |k1| = |k0| this proves that the angle of incidence is equal to the angle of reflection for a mirror.

In practice, the registration of the surface planes with respect to the surface is not specified in a simu-
lation. Thus the reflection phase shift can only be calculated up to a constant offset.

26.4.5 Bragg Crystal Tracking

The starting photon coordinates are specified in the laboratory entrance coordinates. The transforma-
tion from laboratory entrance coordinates to element entrance coordinates k̃0 is given in §26.3. The
transformation to element surface coordinates k0 is

k0 = Σ2 k̃0 (26.73)

with Σ2 given by Eq. (26.47). The outgoing wave vector kH is related to k0 via

kH = k0 +H+ qt n̂ (26.74)

where qt is determined by using Eqs. (26.34) and (26.35) in Eq. (26.30)

kH,x = k0,x +Hx

kH,y = k0,y +Hy (26.75)

kH,z =
»
λ2 − k2H,x − k2H,y

To compute the field amplitude of the outgoing photon, the equation to be solved is ([Bater64] Eq. (21))

ξ0 ξH =
1

4
k2 P 2 Γ2 FH FH̄ (26.76)

where ξ0 and ξH are given by [Bater64] Eq. (18) and P is the polarization factor

P =

®
1 σ polarization state
cos 2θg π polarization state

(26.77)

2θg is the angle between K0 and KH which is well approximated by θB,in + θB,out.
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The solution to Eq. (26.76) is ([Bater64] Eq. (31))

ξ0 =
1

2
k |P |Γ [FH FH̄ ]1/2 |b|1/2 [η ± (η2 + sgn(b))1/2]

ξH =
1

2
k |P |Γ [FH FH̄ ]1/2

1

|b|1/2 [η ± (η2 + sgn(b))1/2]
(26.78)

where the + part of ± is for the α branch and the − part of ± is for the β branch and sgn is the sign
function

sgn(b) ≡
®
1 b > 0

−1 b < 0
(26.79)

and η is given by [Blas94] Eq. (5)

η =
−b a+ ΓF0 (1− b)
2 Γ |P |

√
|b|FH FH̄

(26.80)

with the asymmetry factor b for the photon being tracked being given by [Blas94] Eq. (3)

b ≡ n̂ · k̂0

n̂ · (◊�k0 +H)
(26.81)

and the angular deviation variable a is given by [Blas94] Eq. (4)

a ≡ H2 + 2k0 ·H
k20

= −2∆θ sin(2θB) (26.82)

Once ξ0 and ξH are determined, the ratio of the incoming and outgoing fields for the α or β branches
can be computed via ([Bater64] Eq. (24))

rE ≡
EH
E0

=
− 2 ξ0

k P ΓFH̄
=
− k P ΓFH

2 ξH
(26.83)

where the α or β subscript has been suppressed. The total field which is the sum of the fields on the
branches is computed using the boundary conditions

E0 = E0α +E0β , 0 = EHα +EHβ (26.84)

Using the above two equations gives

E0α = E0
rEβ

rEβ − rEα
EHα = E0

rEα rEβ
rEβ − rEα

E0β = −E0
rEα

rEβ − rEα
EHβ = −E0

rEα rEβ
rEβ − rEα

(26.85)

As can be seen from Battermann and Cole Figs. (8) and (29), the α tie point is excited and the β tie
point is not if ξ0α < ξ0β and vice versa. Since only one tie point is excited, The external field ratio is
equal to the internal field ratio

EeH
Ei0

=
EHj
E0j

(26.86)

where j is α or β as appropriate.
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26.4.6 Coherent Laue Crystal Tracking

Laue diffraction has two interior wave fields (branches), labeled α and β, corresponding to the two tie
points that are excited on the two dispersion surfaces. For coherent tracking, a photon has some proba-
bility to be channeled to follow the α or β branch. The electric field ratios “Eα and “Eβ (cf. Eq. (26.12))
are taken to be equal to each other. With this choice, the probabilities Pα and Pβ for being channeled
to the α or β branches are such that a branch with a greater intensity will have a greater number of
photons channeled down it.

When a crystal’s ref_orbit_follows parameter is set to bragg_diffracted, The branching probabil-
ities are

Pα =
|EHα|

|EHα|+ |EHβ |
, Pβ =

|EHβ |
|EHα|+ |EHβ |

, “EHα = “EHβ =
|EHα|+ |EHβ |

|Ei0|
(26.87)

where (see Battermann and Cole[Bater64] Eqs (42)),

EHα = −Ei0
|b|1/2

2 cosh v

|P |
P

[FH FH ]1/2

FH
exp(−2π iK′

Hα · rα) exp(−2πK′′
Hα · rα)

EHβ = Ei0
|b|1/2

2 cosh v

|P |
P

[FH FH ]1/2

FH
exp(−2π iK′

Hβ · rβ) exp(−2πK′′
Hβ · rβ) (26.88)

where rα and rβ are the vectors from the entrance surface to the exit surface for the α and β wave fields

rα =
t2

Sα · t Sα, rβ =
t2

Sβ · t Sβ (26.89)

with

Sα = e−2 v s0 +

∣∣∣∣b FH FHF 2
H

∣∣∣∣ sH
Sβ = e2 v s0 +

∣∣∣∣b FH FHF 2
H

∣∣∣∣ sH (26.90)

The phase shift of the electric field is obtained from the phase of EHα if the photon is channeled into
the α branch and EHβ if the photon is channeled into the β branch.

When a crystal’s ref_orbit_follows parameter is set to forward_diffracted or undiffracted, the
algorithm is similar to the bragg_diffracted case except E0α and E0β are used in place of EHα and
EHβ with

E0α = Ei0
e−v

2 cosh v
exp(−2π iK′

0α · rα) exp(−2πK′′
0α · rα)

E0β = Ei0
e−v

2 cosh v
exp(−2π iK′

0β · rα) exp(−2πK′′
0β · rβ) (26.91)

Since a simulation photon has two polarization components, the above equations are used for one polar-
ization component and for the second polarization component the same branch is used as for the first
with an appropriately scaled “E.

26.5 X-ray Targeting

X-rays can have a wide spread of trajectories resulting in many “doomed” photons that hit apertures
or miss the detector with only a small fraction of “successful” photons actually contributing to the
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simulation results. The tracking of doomed photons can therefore result in an appreciable lengthening of
the simulation time. To get around this, Bmad can be setup to use what is called “targeting” to greatly
reduce the number of doomed photons generated.

Photons can be generated either at a source like a wiggler element or at a place where diffraction is
simulated like at a diffraction_plate element. To be able to do targeting, an element with apertures
defined must be present downstream from the generating element. The idea is to only generate photons
that are going in the general direction of the “target” which is the space within the aperture.

A necessary restriction for targeting to work is that the photon must travel in a straight line through
all elements between the generating element and the element with the apertures. So, for example, a
crystal element would not be allowed between the two two elements. A crystal element could be
the aperture element as long as the aperture was defined before photons were diffracted. That is, if the
aperture was at the upstream end of the crystal or was defined with respect to the crystal surface.

The target is defined by the four corners of the aperture. In element coordinates, the (x, y, z) values of
the corners are:

(-x1_limit, -y1_limit, z_lim)
(-x1_limit, y2_limit, z_lim)
( x2_limit, -y1_limit, z_lim)
( x2_limit, y2_limit, z_lim)

where x1_limit, etc. are the aperture limits (§5.8) and z_lim will be zero except if the element’s
aperture_at parameter is set to entrance_end in which case z_lim will be set to -L where L is the
length of the element.

If the aperture is associated with a curved surface (for example with a crystal element), four extra
corner points are also used to take into account that the aperture is not planar. These extra points have
(x, y, z) values in element coordinates of

(-x1_limit, -y1_limit, z_surface(-x1_limit, -y1_limit))
(-x1_limit, y2_limit, z_surface(-x1_limit, y2_limit))
( x2_limit, -y1_limit, z_surface( x2_limit, -y1_limit))
( x2_limit, y2_limit, z_surface( x2_limit, y2_limit))

where z_surface(x,y) is the z value of the surface at the particular (x, y) point being used. Notice
that in this case z_lim is zero.

The coordinates of the four or eight corner points are converted from element coordinates of the aperture
element to element coordinates of the photon generating element. Additionally, the approximate center
of the aperture, which in element coordinates of the aperture element is (0, 0, zlim), is converted to
element coordinates of the photon generating element.

The above calculation only has to be done once at the beginning of a simulation.

When a photon is to be emitted from a given point (xemit, yemit, zemit), the problem is how to restrict
the velocity vector (βx, βy, βz) (which is normalized to 1) to minimize the number of doomed photons
generated. The problem is solved by constructing a vector r for each corner point:

r = (xlim, ylim, zlim)− (xemit, yemit, zemit) (26.92)

The direction of each r is characterized in polar coordinates (ϕ, y) defined by

y =
ry
|r|

tanϕ =
rx
rz

(26.93)
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For now make the assumption that rz is positive and larger than rx and ry for all r. Let ϕmax and ϕmin
be the maximum and minimum ϕ values over all the r. Similarly, let ymin and ymax be the minimum
and maximum y values over all the r. The rectangle in (ϕ, y) space defined by these four min and max
values almost covers the projection of the aperture onto the unit sphere. There is a correction that must
be made due to the fact that a straight line of constant y in (x, y, z) space projects to a curved line when
projected onto (ϕ, y) space. Therefore a correction must be made to ymin when ymin < 0:

ymin →
ymin√

(1− y2min) cos2(phimax − ϕmin)/2 + y2min
(26.94)

with a similar correction for ymax that must be made when ymax > 0.

The above prescription works as long as the projection of the aperture onto (ϕ, y) space does not touch
the branch cut at ϕ = π or cover the singular points y = ±1. Generally these restrictions are fullfilled
since z is the direction of the reference orbit. If this is not the case, a transformation can be made where
rotation matrices are constructed to transform between the element coordinates of the emitting element
and what are called target coordinates defined so that r for the center point has the form (0, 0, |r|).
The procedure for calculating the photon velocity vector is now

1. Rotate all the corner r from element to target coordinates.

2. Calculate min and max values for ϕ and y.

3. Calculate the velocity vector such that the (ϕ, y) of this vector falls within the min and max values
in the last step.

4. Rotate the velocity vector back to element coordinates.



Chapter 27

Simulation Modules

In the Bmad “ecosystem”, various modules have been developed to simulate machine hardware. This
chapter provides documentation.

27.1 Instrumental Measurements

Bmad has the ability to simulate instrumental measurement errors for orbit, dispersion, betatron phase,
and coupling measurements. The appropriate attributes are listed in §5.22 and the conversion formulas
are outlined below.

27.1.1 Orbit Measurement

For orbits, the relationship between measured position (x, y)meas and true position (x, y)true isÅ
x
y

ã
meas

= nf

Å
r1
r2

ã
+Mm

ïÅ
x
y

ã
true

−
Å
x
y

ã
0

ò
(27.1)

where the Gaussian random numbers r1 and r2 are centered at zero and have unit width and the
factor nf represents the inherent noise in the measurement. In the above equation, (x, y)0 represents a
measurement offset and Mg is a “gain” matrix written in the form

Mm =

Å
(1 + dgx) cos(θ + ψ) (1 + dgx) sin(θ + ψ)
−(1 + dgy) sin(θ − ψ) (1 + dgy) cos(θ − ψ)

ã
(27.2)

Here dgx and dgy represent gain errors and the angles θ and ψ are tilt and “crunch” errors.

In the above equations, various quantities are written as a difference between an “error” quantity and a
“calibration” quantity:

x0 = xoff − xcalib

y0 = yoff − ycalib
ψ = ψerr − ψcalib

θ = θerr − θcalib (27.3)
dgx = dgx,err − dgx,calib
dgy = dgy,err − dgy,calib
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See §5.22 for the element attribute names that correspond to these quantities.

The calibration component is useful in a simulation where initally the error quantities are set to represent
the errors in the monitors. After this, analysis of orbit data with the machine in various states can be
used to calculate a best guess as to what the errors are. The calculated error values can then be put in
the calibration quantities. This represents a correction in software of the errors in the monitors. Further
simulations of orbit measurements will show how well the actual orbit can be deduced from the measured
orbit.

27.1.2 Dispersion Measurement

A dispersion measurement is considered to be the result of measuring the orbit at two different energies.
The measured values are thenÅ

ηx
ηy

ã
meas

=

√
2nf

dE/E

Å
r1
r2

ã
+Mm

ïÅ
ηx
ηy

ã
true

−
ÅÅ

ηx
ηy

ã
err

−
Å
ηx
ηy

ã
calib

ãò
(27.4)

The factor of
√
2 comes from the fact that there are two measurements. Mm is given in Eq. (27.2).

27.1.3 Coupling Measurement

The coupling measurement is considered to be the result of measuring the beam at a detector over Ns
turns while the beam oscillates at a normal mode frequency with some amplitude Aosc. The measured
coupling is computed as follows. First, consider excitation of the a-mode which can be written in the
form: Å

xi
yi

ã
true

= Aosc

Å
cosϕi

K22a cosϕi +K12a sinϕi

ã
true

(27.5)

i is the turn number and ϕi is the oscillation phase on the ith turn. The coefficients K22a and K12a are
related to the coupling C via Sagan and Rubin[Sagan99] Eq. 54:

K22a =
−
√
βb

γ
√
βa

C22

K12a =
−
√
βb

γ
√
βa

C12 (27.6)

To apply the measurement errors, consider the general case where the beam’s oscillations are split into
two components: One component being in-phase with some reference oscillator (which is oscillating with
the same frequency as the beam) and a component oscillating out-of-phase:Å

xi
yi

ã
true

=

Å
qa1x
qa1y

ã
true

Aosc cos(ϕi + dϕ) +

Å
qa2x
qa2y

ã
true

Aosc sin(ϕi + dϕ) (27.7)

where dϕ is the phase of the reference oscillator with respect to the beam. Comparing Eq. (27.5) with
Eq. (27.7) gives the relation

K22a =
qa1x qa1y + qa2x qa2y

q2a1x + q2a2x

K12a =
qa1x qa2y − qa2x qa1y

q2a1x + q2a2x
(27.8)
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This equation is general and can be applied in either the true or measurement frame of reference.
Eq. (27.1) can be used to transform (xi, yi)true in Eq. (27.5) to the measurement frame of reference.
Only the oscillating part is of interest. Averaging over many turns givesÅ
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ã
true

,
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(27.9)

This neglects the measurement noise. A calculation shows that the noise gives a contribution to the
measured K22a and K12a of

K22a → K22a + r1
nf

NsAosc
, K12a → K12a + r2

nf
NsAosc

(27.10)

Using the above equations, the transformation from the true coupling to measured coupling is as follows:
From a knowledge of the true C and Twiss values, the true K22a and K12a can be calculated via
Eq. (27.6). Since the value of dϕ does not affect the final answer, dϕ in Eq. (27.7) is chosen to be zero.
Comparing this to Eq. (27.5) givesÅ

qa1x
qa1y

ã
true

=

Å
1

K22a

ã
true

,

Å
qa2x
qa2y

ã
true

=

Å
0

K12a

ã
true

(27.11)

Now Eq. (27.9) is used to convert to the measured q’s and Eq. (27.8) then gives the measured K22a and
K12a. Finally, Applying Eq. (27.10) and then Eq. (27.6) gives the measured C22 and C12.

A similar procedure can be applied to b-mode oscillations to calculate values for the measured C11 and
C12. K11b and K12b are defined byÅ
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ã
true
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Å
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ã
true

(27.12)

Comparing this to Sagan and Rubin[Sagan99] Eq. 55 gives

K11b =
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γ
√
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−
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γ
√
βb

C12 (27.13)

The qx1b, qy1b, qx2b and qy2b are defined by using Eq. (27.7) with the “a” subscript replaced by “b”. The
relationship between K and q is then

K11b =
qb1y qb1x + qb2y qb2x

q2b1y + q2b2y

K12b =
qb1y qb2x − qb2y qb1x

q2b1y + q2b2y
(27.14)

27.1.4 Phase Measurement

Like the coupling measurement, the betatron phase measurement is considered to be the result of mea-
suring the beam at a detector over Ns turns while the beam oscillates at a normal mode frequency with
some amplitude Aosc. Following the analysis of the previous subsection, the phase ϕ isÅ
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Chapter 28

Using PTC/FPP

The PTC/FPP library of Étienne Forest handles Taylor maps to any arbitrary order. This is also
known as Truncated Power Series Algebra (TPSA). The core Differential Algebra (DA) package used by
PTC/FPP was developed by Martin Berz[Berz89]. The PTC/FPP libraries are interfaced to Bmad so
that calculations that involve both Bmad and PTC/FPP can be done in a fairly seamless manner.

The FPP (“Fully Polymorphic Package”) part of the code handles Taylor map manipulation and Lie
algebraic operations. This is purely mathematical. FPP has no knowledge of accelerators, magnetic
fields, particle tracking etc. PTC (“Polymorphic Tracking Code”) implements the physics and uses FPP
to handle the Taylor map manipulation. Since the distinction between FPP and PTC is irrelevant to the
non-programmer, “PTC” will be used to refer to the entire package.

PTC is used by Bmad when constructing Taylor maps and when the tracking_method §6.1) is set to
symp_lie_ptc. All Taylor maps above first order are calculated via PTC. No exceptions.

For the programmer, see Chapter §38 for more information.

28.1 PTC Tracking Versus Bmad Tracking

While such things as magnet strengths will be the same, the model that PTC uses when it tracks
through a lattice element is independent of Bmad. That is, what approximations are made can be
different. Generally the agreement between PTC and Bmad tracking is quite good. But there are
situations where there is a noticeable difference. In such cases, one thing to do is to vary parameters
that affect PTC tracking. Two parameters that affect PTC accuracy are the integration step size and
the order of the integrator. The step size is set by each lattice element’s ds_step parameter (§6.5.1).

28.2 PTC / Bmad Interfacing

Bmad interfaces to PTC in two ways: One way, called “single element” mode, uses PTC on a per element
basis. In this case, the method used for tracking a given element can be selected on an element-by-element
basis so non-PTC tracking methods can be mixed with PTC tracking methods to optimize speed and
accuracy. [PTC tends to be accurate but slow.] The advantage of single element mode is the flexibility it
affords. The disadvantage is that it precludes using PTC’s analysis tools which rely on the entire lattice
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being tracked via PTC. Such tools include normal form analysis beam envelope tracking, etc.

The alternative to single element mode is “whole lattice” mode where a series of PTC layouts (equivalent
to a Bmad branch) are created from a Bmad lattice. Whether single element or whole lattice mode (or
both) is used is determined by the program being run.



Part III

Programmer’s Guide
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Chapter 29

Bmad Programming Overview

29.1 Manual Notation

Bmad defines a number of structures and these structures may contain components which are structures,
etc. In order to keep the text in this manual succinct when referring to components, the enclosing
structure name may be dropped. For example, the lat_struct structure looks like

type lat_struct
character(40) name
type (mode_info_struct) a, b, z
type (lat_param_struct) param
type (ele_struct), pointer :: ele(:)
type (branch_struct), allocatable :: branch(:)
... etc. ...

end type
In this example, “%a” could be used to refer to, the a component of the lat_struct. To make it explicit
that this is a component of a lat_struct, “lat_struct%a” is an alternate possibility. Since the vast
majority of structures have the “_struct” suffix, this may be shortened to “lat%a”. A similar notation
works for subcomponents. For example, a branch_struct looks like

type branch_struct
character(40) name
integer ix_from_ele ! Index of branching element
integer, pointer :: n_ele_track ! Number of tracking elements
integer, pointer :: n_ele_max
type (ele_struct), pointer :: ele(:) ! Element array
... etc. ...

end type
The ele component of the branch component of the lat_struct can be referred to using “lat%branch%ele”,
“%branch%ele”, or “%ele”. Potentially, the last of these could be confused with the “lat%ele” component
so “%ele” would only be used if the meaning is unambiguous in the context.

29.2 The Bmad Libraries

The code that goes into a program based upon Bmad is divided up into a number of libraries. The
Bmad libraries are divided into two groups. One group of libraries contains “in-house” developed code.
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The other “package” libraries consist of “external” code that Bmad relies upon.

The in-house developed code libraries are:

bmad
The bmad library contains the routines for charged particle simulation including particle tracking,
Twiss calculations, symplectic integration, etc., etc.

cpp_bmad_interface The cpp_bmad_interface library is for interfacing Bmad with C++. This
library defines a set of C++ classes corresponding to the major Bmad structures. Along with this,
the library contains conversion routines to move information between the C++ classes and the
corresponding Bmad structures.

sim_utils
The sim_utils library contains a set of miscellaneous helper routines. Included are routines
for string manipulation, file manipulation, matrix manipulation, spline fitting, Gaussian random
number generation, etc.

The package libraries are:

forest
This is the PTC/FPP (Polymorphic Tracking Code / Fully Polymorphic Package) library of Étienne
Forest that handles Taylor maps to any arbitrary order (this is also known as Truncated Power
Series Algebra (TPSA)). See Chapter 28 for more details. FPP/PTC is a very general package.
For more information see the FPP/PTC manual[Forest02]. The core Differential Algebra (DA)
package used by PTC was developed by Martin Berz[Berz89].

fftw
FFTW is a C subroutine library for computing the discrete Fourier transform in one or more
dimensions. FFTW has a Fortran 2003 API.

gsl / fgsl
The Gnu Scientific Library (GSL), written in C, provides a wide range of mathematical routines
such as random number generators, special functions and least-squares fitting. There are over 1000
functions in total. The FGSL library provides a Fortran interface to the GSL library.

hdf5
hdf5 is a library for for storing and managing data[HDF5]. In particular, Bmad uses this library
for storing particle position data and field grid data.

lapack / lapack95
lapack is a widely used package of linear algebra routines written in Fortran77. The lapack95
library provides a Fortran95 interface to lapack.

mad_tpsa
mad_tpsa is a subset of the MAD-NG (Next Generation MAD) code[MAD-NG]. Specifically, the
mad_tpsa library implements TPSA (Truncated Power Series Algebra). This is similar to the
FPP code (see above). There are several advantages to using mad_tpsa over FPP. For one, using
mad_tpsa is independent of PTC so mad_tpsa can be used along side PTC. Another reason is that
mad_tpsa is more flexible and better structured.

open_spacecharge
The open_spacecharge library provides low energy tracking with space charge effects.
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PGPLOT
The pgplot Graphics Subroutine Library is a Fortran or C-callable, device-independent graphics
package for making simple scientific graphs. Documentation including a user’s manual may be
obtained from the pgplot web site at

www.astro.caltech.edu/~tjp/pgplot.

One disadvantage of pgplot for the programmer is that it is not the most user friendly. To remedy
this, there is a set of Fortran90 wrapper subroutines called quick_plot. The quick_plot suite is
part of the sim_utils library and is documented in Chapter 41.

plplot
The plplot library is an updated version of pgplot. The plplot library can be used as a replace-
ment for pgplot. The quick_plot suite, which is part of the sim_utils library and is documented
in Chapter 41, provides wrapper routines for plplot to make things more programmer friendly.

xraylib
The xraylib library provides routines for obtaining parameters pertinent to the X-ray interaction
with matter. xraylib is developed by Tom Schoonjans and is hosted on github[Schoon11]

29.3 Using getf and listf for Viewing Routine and Structure Doc-
umentation

As can be seen from the program example in Chapter 30 there is a lot going on behind the scenes even
for this simple program. This shows that programming with Bmad can be both easy and hard. Easy in
the sense that a lot can be done with just a few lines. The hard part comes about since there are many
details that have to be kept in mind in order to make sure that the subroutines are calculating what you
really want them to calculate.

To help with the details, all Bmad routines have in their source files a comment block that explains the
arguments needed by the subroutines and explains what the subroutine does. To help quickly access
these comments, there are two Python scripts that are supplied with the Bmad distribution that are
invoked with the commands listf (“list function”) and getf (“get function”).

The getf command is used to locate routines and structures, and to type out information on them. The
form of the command is

getf <name>

This searches for any routine or structure with the name <name>. <name> may contain the wild–cards
“*” and “.” where “*” matches to any number of characters and “.” matches to any single character. For
example:

getf bmad_parser
getf lat_struct
getf twiss_at_.

The third line in this example will match to the routine twiss_at_s but not the routine twiss_at_start.
You may or may not have to put quotation marks if you use wild card characters. As an example, the
command getf twiss_struct produces:

/home/cesrulib/cesr_libs/devel/cvssrc/bmad/modules/twiss_mod.f90
type twiss_struct
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real(rp) beta, alpha, gamma, phi, eta, etap
real(rp) sigma, emit

end type
The first line shows the file where the structure is located (This is system and user dependent so don’t be
surprised if you get a different directory when you use getf). The rest of the output shows the definition
of the twiss_struct structure. The result of issuing the command getf relative_tracking_charge
is:

File: ../../bmad/modules/bmad_utils_mod.f90
!+
! Function relative_tracking_charge (orbit, param) result (rel_charge)
!
! Routine to determine the relative charge/mass of the particle being
! tracked relative to the charge of the reference particle.
!
! Input:
! orbit -- coord_struct: Particle position structure.
! param -- lat_param_struct: Structure holding the reference particle id.
!
! Output:
! rel_charge -- real(rp): Relative charge/mass
!-
function relative_tracking_charge (orbit, param) result (rel_charge)

The first line again shows in what file the subroutine is located. The rest of the output explains what
the routine does and how it can be called.

The getf command can also be used to search for global integer and real parameter constants. For
example

getf c_light
will give the result:

File: ../sim_utils/interfaces/physical_constants.f90
real(rp), parameter :: c_light = 2.99792458d8 ! speed of light

[Global constants are constants defined in a module that have global scope (defined before the contains
statement).] For parameters whose name ends with a dollar sign “$” character (§29.5), the dollar sign
suffix may be omitted in the search string. For example the search

getf quadrupole
will give the result

File: ../../bmad/modules/bmad_struct.f90
integer, parameter :: drift$ = 1, sbend$ = 2, quadrupole$ = 3, group$ = 4, ...

Since the dollar sign is a special character for the Python regexp module used by getf, to include a
dollar sign in the search string the dollar sign must be prefixed by three back slashes. Thus the search

getf quadrupole\\\$
will also locate the value of quadrupole$.

The listf command is like the getf command except that only the file name where a routine or
structure is found is printed. The listf command is useful if you want to just find out where a routine
or structure definition lives. For example, the listf relative* command would produce

File: ../../bmad/code/relative_mode_flip.f90
function relative_mode_flip (ele1, ele2) result (rel_mode)

File: ../../bmad/modules/bmad_utils_mod.f90
function relative_tracking_charge (orbit, param) result (rel_charge)
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The way getf and listf work is that they search a list of directories to find the bmad, sim_utils, and
tao libraries. Currently the libraries in the Bmad distribution that were not developed at Cornell are
not searched. This is primarily due to the fact that, to save time, getf and listf make assumptions
about how documentation is arranged in a file and the non–Cornell libraries do not follow this format.

29.4 Precision of Real Variables

Historically, Bmad come in two flavors: One version where the real numbers are single precision and
a second version with double precision reals. Which version you are working with is controlled by the
kind parameter rp (Real Precision) which is defined in the precision_def module. On most platforms,
single precision translates to rp = 4 and double precision to rp = 8. The double precision version is
used by default since round-off errors can be significant in some calculations. Long–term tracking is an
example where the single precision version is not adequate. Changing the precision means recompiling
all the libraries except PTC and pgplot. You cannot mix and match. Either you are using the single
precision version or you are using the double precision version. Currently, Bmad is always compiled
double precision and it is a near certainty that there would have to be some fixes if there was ever a
need for compiling single precision.

To define floating point variables in Fortran with the correct precision, use the syntax “real(rp)”. For
example:

real(rp) var1, var2, var3

When you want to define a literal constant, for example to pass an argument to a subroutine, add the
suffix _rp to the end of the constant. For example

var1 = 2.0_rp * var2
call my_sub (var1, 1.0e6_rp)

Note that 2_rp is different from 2.0_rp. 2_rp is an integer of kind rp, not a real.

Independent of the setting of rp, the parameters sp and dp are defined to give single and double precision
numbers respectively.

29.5 Programming Conventions

Bmad subroutines follow the following conventions:

A “$” suffix denotes a parameter: A dollar sign “$” at the end of a name denotes an parameter.
For example, in the above program, to check whether an element is a quadrupole one would write:

if (lat%ele(i)%key == quadrupole$) ...

Checking the source code one would find in the module bmad_struct

integer, parameter :: drift$ = 1, sbend$ = 2, quadrupole$ = 3, group$ = 4

One should always use the parameter name instead of the integer it represents. That is, one should
never write

if (lat%ele(i)%key == 3) ... ! DO NOT DO THIS!
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For one, using the name makes the code clearer. However, more importantly, the integer value of
the parameters may at times be shuffled for practical internal reasons. The use of the integer value
could thus lead to disastrous results.
By convention all names ending in “$” are parameters. And most “dollar sign” parameters are
integers but there are exceptions. For example, the parameter real_garbage$ is a real number.
To find the value of a dollar sign parameter, the getf or listf (§29.3) commands can be used.

Structure names have a “_struct” suffix: For example: lat_struct, ele_struct, etc. Structures
without a _struct are usually part of Étienne’s PTC/FPP package.

29.6 Using Modules

When constructing a program unit,1 the appropriate use statement(s) need to appear at the top of
the unit to import the appropriate modules. This should be a simple matter but, due to historical
reasons, Bmad module dependencies are somewhat convoluted. At some point in the future this will be
straightened out but, for now, the following serves as a guide on how to handle things.

In many cases, a “use bmad” statement is all that is needed. If there is a problem, an error message will
be generated at the program linking stage. The error message might look like:

[100%] Linking Fortran executable /home/dcs16/linux_lib/production/bin/test
CMakeFiles/test-exe.dir/test.f90.o: In function ‘MAIN__’:
test.f90:(.text+0x22e): undefined reference to ‘write_bmad_lattice_file_’
gmake[2]: *** [/home/dcs16/linux_lib/production/bin/test] Error 1
gmake[1]: *** [CMakeFiles/test-exe.dir/all] Error 2

The “undefined reference” line shows that the subroutine write_bmad_lattice_file was called in
the program (“MAIN”) without the necessary use statement. To find the correct use statement, use the
getf or listf command (§29.3) to find the file that the subroutine is in. Example:

> listf write_bmad_lattice_file

File: ../bmad/modules/write_lat_file_mod.f90
subroutine write_bmad_lattice_file (bmad_file, lat, err, output_form, orbit0)

This shows that the subroutine lives in the file write_lat_file_mod.f90. The coding rule that Bmad
follows is that the module name is the file name minus the .f90 suffix.2 Thus the needed use statement
in this case is:

use write_lat_file_mod
Note: if the linking error looks like:

[100%] Linking Fortran executable /home/dcs16/linux_lib/production/bin/test
CMakeFiles/test-exe.dir/test.f90.o: In function ‘MAIN__’:
test.f90:(.text+0x230): undefined reference to

‘write_lat_file_mod_mp_write_bmad_lattice_file_’
here the error message references

write_lat_file_mod_mp_write_bmad_lattice_file_
The “write_lat_file_mod_mp” prefix shows that the linker knows to look in the module write_lat_file_mod
for the subroutine. Here the problem is not a missing use statement but rather the problem is that the
linker cannot find the module itself. This indicates something like a library is missing in the list of
libraries to link to or the order of libraries to link to is wrong. This kind of problem generally happens
with libraries other than the Bmad library itself. Further documentation on how the list of libraries to
link to is defined is contained on the Bmad web site[Bmad].

1A program unit is a module such as a subroutine, function, or program.
2Be aware. PTC code does not follow this logic.



Chapter 30

An Example Bmad Based Program

To get the general feel for how Bmad works before getting into the nitty–gritty details in subsequent
chapters, this chapter analyzes an example test program.

30.1 Programming Setup

Information on how to setup your work environment for the compiling and linking of programs can be
obtained from the Bmad web site at:

https://www.classe.cornell.edu/bmad In particular, instructions for compiling, linking, and
running of the example program can be obtained by going to the above web page and clicking on the
button labeled “Compiling Custom Programs”.

30.2 A First Program

Consider the example program shown in Fig. 30.1. The source code for this program is provided with
Bmad in the directory:

$ACC_ROOT_DIR/code_examples/simple_bmad_program

[Note: $ACC_ROOT_DIR is the root directory of the Bmad Distribution when you are running “off-site”
and is root directory of the Release when you are running “on-site”.]
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1 program test
2
3 use bmad ! Define the structures we need to know about.
4 implicit none
5 type (lat_struct), target :: lat ! This structure holds the lattice info
6 type (ele_struct), pointer :: ele, cleo
7 type (ele_pointer_struct), allocatable :: eles(:)
8 type (all_pointer_struct) a_ptr
9 integer i, ix, n_loc

10 logical err
11
12 ! Programs must implement "intelligent bookkeeping".
13 bmad_com%auto_bookkeeper = .false.
14
15 ! Read in a lattice, and modify the ks solenoid strength of "cleo_sol".
16
17 call bmad_parser ("lat.bmad", lat) ! Read in a lattice.
18
19 call lat_ele_locator (’CLEO_SOL’, lat, eles, n_loc, err) ! Find element
20 cleo => eles(1)%ele ! Point to cleo_sol element.
21 call pointer_to_attribute (cleo, "KS", .true., a_ptr, err) ! Point to KS attribute.
22 a_ptr%r = a_ptr%r + 0.001 ! Modify KS component.
23 call set_flags_for_changed_attribute (cleo, a_ptr%r)
24 call lattice_bookkeeper (lat)
25 call lat_make_mat6 (lat, cleo%ix_ele) ! Remake transfer matrix
26
27 ! Calculate starting Twiss params if the lattice is closed,
28 ! and then propagate the Twiss parameters through the lattice.
29
30 if (lat%param%geometry == closed$) call twiss_at_start (lat)
31 call twiss_propagate_all (lat) ! Propagate Twiss parameters
32
33 ! Print info on the first 11 elements
34
35 print *, " Ix Name Ele_type S Beta_a"
36 do i = 0, 10
37 ele => lat%ele(i)
38 print "(i4,2x,a16,2x,a,2f12.4)", i, ele%name, key_name(ele%key), ele%s, ele%a%beta
39 enddo
40
41 ! print information on the CLEO_SOL element.
42
43 print *
44 print *, "!---------------------------------------------------------"
45 print *, "! Information on element: CLEO_SOL"
46 print *
47 call type_ele (cleo, .false., 0, .false., 0, .true., lat)
48
49 deallocate (eles)
50
51 end program

Figure 30.1: Example Bmad program
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30.3 Explanation of the Simple_Bmad_Program

A line by line explanation of the example program follows. The use bmad statement at line 3 defines
the Bmad structures and defines the interfaces (argument lists) for the Bmad subroutines. In particular,
the lat variable (line 5), which is of type lat_struct (§32.3), holds all of the lattice information: The
list of elements, their attributes, etc. The manditory setting of bmad_com%auto_bookkeeper to False
in line 13 enables the “intelligent” bookkeeping of lattice attributes as discussed in §32.6). The call
to bmad_parser (line 17) causes the lattice file lat.bmad to be parsed and the lattice information is
stored the lat variable. Note: To get a listing of the lat_struct components or to find out more about
bmad_parser use the getf command as discussed in §29.3.

The routine lat_ele_locator (§33.3) is used in line 19 to find the element in the lattice with the name
CLEO_SOL. Line 20 defines a pointer variable named cleo which is used here as shortcut notation rather
than having to write eles(1)%ele when refering to this element. The call to pointer_to_attribute
in line 21 sets up a pointer structure a_ptr%r to point to the KS solenoid strength component of cleo.
[a_ptr also has components a_ptr%i and a_ptr%l to point to integrer or logical components if needed.
See §33.4.]

Line 22 changes the ks solenoid strength of cleo. Since an element attribute has been changed, the call
to set_flags_for_changed_attribute in line 23 is needed for Bmad to inform Bmad that this attribute
has changed and the call to lattice_bookkeeper does the necessary lattice bookkeeping (§32.6).

The call to lat_make_mat6 in line 25 recalculates the linear transfer matrix for the CLEO_SOL element.

In line 30, the program checks if the lattice is circular (§10.1) and, if so, uses the routine twiss_at_start
to multiply the transfer matrices of the individual elements together to form the 1–turn matrix from the
start of the lat back to the start. From this matrix twiss_at_start calculates the Twiss parameters
at the start of the lattice and puts the information into lat%ele(0) (§35.2). The next call, to twiss_-
propagate_all, takes the starting Twiss parameters and, using the transfer matrices of the individual
elements, calculates the Twiss parameters at all the elements. Notice that if the lattice is not circular,
The starting Twiss parameters will need to have been defined in the lattice file.

The program is now ready output some information. Lines 24 through 28 of the program print infor-
mation on the first 11 elements in the lattice. The do-loop is over the array lat%ele(:). Each element
of the array holds the information about an individual lattice element as explained in Chapter 32. The
lat%ele(0) element is basically a marker element to denote the beginning of the array (§7). Using the
pointer ele to point to the individual elements (line 37) makes for a cleaner syntax and reduces typing.
The table that is produced is shown in lines 1 through 12 of Fig. 30.2. The first column is the element
index i. The second column, ele%name, is the name of the element. The third column, key_name(elethe
name of the element class. ele%key is an integer denoting what type of element (quadrupole, wiggler,
etc.) it is. key_name is an array that translates the integer key of an element to a printable string.
The fourth column, ele%s, is the longitudinal position at the exit end of the element. Finally, the last
column, ele%x%beta, is the a–mode (nearly horizontal mode) beta function.

The type_ele routine on line 47 of the program is used to type out the CLEO_SOL’s attributes and other
information as shown on lines 14 through 41 of the output (more on this later).

This brings us to the lattice file used for the input to the program. The call to bmad_parser shows that
this file is called simple_bmad_program/lat.bmad. In this file there is a call to another file

call, file = "layout.bmad"

It is in this second file that the layout of the lattice is defined. In particular, the line used to define the
element order looks like

cesr: line = (IP_L0, d001, DET_00W, d002, Q00W, d003, ...)
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use, cesr

If you compare this to the listing of the elements in Fig. 30.2 you will find differences. For example,
element #2 in the program listing is named CLEO_SOL\3. From the definition of the cesr line this should
be d001 which, if you look up its definition in layout.bmad is a drift. The difference between lattice file
and output is due to the presence the CLEO_SOL element which appears in lat.bmad:

ks_solenoid := -1.0e-9 * clight * solenoid_tesla / beam[energy]
cleo_sol: solenoid, l = 3.51, ks = ks_solenoid, superimpose

The solenoid is 3.51 meters long and it is superimposed upon the lattice with its center at s = 0 (this
is the default if the position is not specified). When bmad_parser constructs the lattice list of elements
the superposition of IP_L0, which is a zero–length marker, with the solenoid does not modify IP_L0.
The superposition of the d001 drift with the solenoid gives a solenoid with the same length as the drift.
Since this is a “new” element, bmad_parser makes up a name that reflects that it is basically a section
of the solenoid it came from. Next, since the CLEO_SOL element happens to only cover part of the Q00W
quadrupole, bmad_parser breaks the quadrupole into two pieces. The piece that is inside the solenoid is
a sol_quad and the piece outside the solenoid is a regular quadrupole. See §8 for more details. Since the
center of the CLEO_SOL is at s = 0, half of it extends to negative s. In this situation, bmad_parser will
wrap this half back and superimpose it on the elements at the end of the lattice list near s = slat where
slat is the length of the lattice. As explained in Chapter 32, the lattice list that is used for tracking
extends from lat%ele(0) through lat%ele(n) where n = lat%n_ele_track. The CLEO_SOL element is
put in the section of lat%ele(n) with n > lat%n_ele_track since it is not an element to be tracked
through. The Q00W quadrupole also gets put in this part of the list. The bookkeeping information
that the cleo_sol\3 element is derived from the cleo_sol is put in the cleo_sol element as shown in
lines 33 through 41 of the output. It is now possible in the program to vary, say, the strength of the
ks attribute of the CLEO_SOL and have the ks attributes of the dependent (“super_slave”) elements
updated with one subroutine call. For example, the following code increases the solenoid strength by
1% lattice_bookkeeper lat_ele_locator

call lat_ele_locator (’CLEO_SOL’, lat, eles, n_loc, err)
eles(1)%ele(ix)%value(ks$) = eles(1)%ele%value(ks$) * 1.01
call lattice_bookkeeper (lat)

Bmad takes care of the bookkeeping. In fact control_bookkeeper is automatically called when transfer
matrices are remade so the direct call to control_bookkeeper may not be necessary.

Running the program (§30.1) gives the output as shown in Fig. 30.2.
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1 Ix Name Ele_type S Beta_a
2 0 BEGINNING BEGINNING_ELE 0.0000 0.9381
3 1 IP_L0 MARKER 0.0000 0.9381
4 2 CLEO_SOL#3 SOLENOID 0.6223 1.3500
5 3 DET_00W MARKER 0.6223 1.3500
6 4 CLEO_SOL#4 SOLENOID 0.6380 1.3710
7 5 Q00W\CLEO_SOL SOL_QUAD 1.7550 7.8619
8 6 Q00W#1 QUADRUPOLE 2.1628 16.2350
9 7 D003 DRIFT 2.4934 27.4986

10 8 DET_01W MARKER 2.4934 27.4986
11 9 D004 DRIFT 2.9240 46.6018
12 10 Q01W QUADRUPOLE 3.8740 68.1771
13
14 !---------------------------------------------------------
15 ! Information on element: CLEO_SOL
16
17 Element # 871
18 Element Name: CLEO_SOL
19 Key: Solenoid
20 S_start, S: 766.671421, 1.755000
21 Ref_time: 5.854050E-09
22
23 Attribute values [Only non-zero/non-default values shown]:
24 1 L = 3.5100000E+00 m
25 5 KS = -8.5023386E-02 1/m
26 10 FRINGE_TYPE = None (1)
27 11 FRINGE_AT = Both_Ends (3)
28 13 SPIN_FRINGE_ON = T (1)
29 47 PTC_CANONICAL_COORDS = 1.0000000E+00
30 49 BS_FIELD = 1.5000000E+00 T
31 50 DELTA_REF_TIME = 1.1708100E-08 sec
32 53 P0C = 5.2890000E+09 eV BETA = 0.999999995
33 54 E_TOT = 5.2890000E+09 eV GAMMA = 1.0350315E+04
34 66 NUM_STEPS = 18
35 67 DS_STEP = 2.0000000E-01 m
36
37 TRACKING_METHOD = Bmad_Standard APERTURE_AT = Exit_End
38 MAT6_CALC_METHOD = Bmad_Standard APERTURE_TYPE = Rectangular
39 SPIN_TRACKING_METHOD = Tracking OFFSET_MOVES_APERTURE = F
40 PTC_INTEGRATION_TYPE = Matrix_Kick SYMPLECTIFY = F
41 CSR_METHOD = Off FIELD_MASTER = F
42 SPACE_CHARGE_METHOD = Off
43 FIELD_CALC = Bmad_Standard
44
45 Slave_status: Free
46
47 Lord_status: Super_Lord
48 Slaves:
49 Index Name Type
50 865 Q00E\CLEO_SOL Sol_Quad
51 866 CLEO_SOL#1 Solenoid
52 868 CLEO_SOL#2 Solenoid
53 2 CLEO_SOL#3 Solenoid
54 4 CLEO_SOL#4 Solenoid
55 5 Q00W\CLEO_SOL Sol_Quad
56
57 Twiss at end of element:
58 A B Cbar C_mat
59 Beta (m) 7.73293815 88.01448113 | -0.16691726 0.00910908 -0.05360747 0.23764236
60 Alpha -6.94661336 -1.53007417 | 2.24946759 -0.02027746 0.03925732 0.14506787
61 Gamma (1/m) 6.36956306 0.03796110 | Gamma_c = 1.00851669 Mode_Flip = F
62 Phi (rad) 1.00744612 1.55387058 X Y Z
63 Eta (m) -0.08500243 -0.00073095 -0.08600823 -0.00846284 0.00029134
64 Etap -0.08439901 -0.00135097 -0.08534249 -0.00922386 1.00000000

Figure 30.2: Output from the example program
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Chapter 31

The ele_struct

This chapter describes the ele_struct which is the structure that holds all the information about an
individual lattice element: quadrupoles, separators, wigglers, etc. The ele_struct structure is shown in
Figs. 31.1 and 31.2. This structure is somewhat complicated, however, in practice, a lot of the complexity
is generally hidden by the Bmad bookkeeping routines.

As a general rule, for variables like the Twiss parameters that are not constant along the length of
an element, the value stored in the corresponding component in the ele_struct is the value at the
downstream end of the element.

For printing information about an element, the type_ele or type_ele routines can be used (§30.2). The
difference between the two is that type_ele will print to the terminal window while type_ele will return
an array of strings containing the element information.

473
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type ele_struct
character(40) name ! name of element \sref{c:ele.string}.
character(40) type ! type name \sref{c:ele.string}.
character(40) alias ! Another name \sref{c:ele.string}.
character(40) component_name ! Used by overlays, multipass patch, etc.
character(200), pointer :: descrip ! Description string.
type (twiss_struct) a, b, z ! Twiss parameters at end of element \sref{c:normal.modes}.
type (xy_disp_struct) x, y ! Projected dispersions \sref{c:normal.modes}.
type (ac_kicker_struct), pointer :: ac_kick ! ac_kicker element parameters.
type (bookkeeping_state_struct) bookkeeping_state ! Element attribute bookkeeping
type (branch_struct), pointer :: branch ! Pointer to branch containing element.
type (controller_struct), pointer :: control ! For group and overlay elements.
type (cartesian_map_struct), pointer :: cartesian_map(:) ! Used to define DC fields
type (cylindrical_map_struct), pointer :: cylindrical_map(:) ! Used to define DC fields
type (ele_struct), pointer :: lord ! Pointer to a slice lord.
type (gen_grad_map_struct), pointer :: gen_grad_map(:) ! Used to define DC fields.
type (grid_field_struct), pointer :: grid_field(:) ! Used to define DC and AC fields.
type (fibre), pointer :: ptc_fibre ! PTC tracking.
type (floor_position_struct) floor ! Global floor position.
type (mode3_struct), pointer :: mode3 ! Full 6-dimensional normal mode decomposition.
type (photon_element_struct), pointer :: photon
type (rad_int_ele_cache_struct), pointer :: rad_int_cache

! Radiation integral calc cached values
type (space_charge_struct), pointer :: space_charge
type (taylor_struct) :: taylor(6) ! Orbital Taylor map.
type (taylor_struct) :: spin_taylor(0:3) ! Spin Taylor map.
type (wake_struct), pointer :: wake ! Wakes

ele_struct definition continued on next figure...

Figure 31.1: The ele_struct. structure definition. The complete structure is shown in this and the
following figure.
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... ele_struct definition continued from previous figure.
type (wall3d_struct) :: wall3d ! Chamber or capillary wall
type(coord_struct) map_ref_orb_in ! Transfer map ref orbit at upstream end of element.
type(coord_struct) map_ref_orb_out ! Transfer map ref orbit at downstream end of element.
type(coord_struct) time_ref_orb_in ! Reference orbit at upstream end for ref_time calc.
type(coord_struct) time_ref_orb_out ! Reference orbit at downstream end for ref_time calc.
real(rp) value(num_ele_attrib$) ! attribute values.
real(rp) old_value(num_ele_attrib$) ! Used to see if %value(:) array has changed.
real(rp) vec0(6) ! 0th order transport vector.
real(rp) mat6(6,6) ! 1st order transport matrix.
real(rp) c_mat(2,2) ! 2x2 C coupling matrix
real(rp) gamma_c ! gamma associated with C matrix
real(rp) s_start ! longitudinal ref position at entrance_end
real(rp) s ! longitudinal position at the downstream end.
real(rp) ref_time ! Time ref particle passes downstream end.
real(rp), pointer :: r(:,:,:) ! For general use. Not used by Bmad.
real(rp), pointer :: a_pole(:) ! multipole
real(rp), pointer :: b_pole(:) ! multipoles
real(rp), pointer :: a_pole_elec(:) ! Electrostatic multipoles.
real(rp), pointer :: b_pole_elec(:) ! Electrostatic multipoles.
real(rp), pointer :: custom(:) ! Custom attributes
integer key ! key value
integer sub_key ! Records bend input type (rbend$, sbend$).
integer ix_ele ! Index in lat%branch(n)%ele(:) array [n = 0 <==> lat%ele(:)].
integer ix_branch ! Index in lat%branch(:) array [0 => In lat%ele(:)].
integer lord_status ! overlay_lord$, etc.
integer n_slave ! Number of slaves
integer n_slave_field ! Number of field slaves
integer ix1_slave ! Pointer to lat%control array
integer slave_status ! super_slave$, etc.
integer n_lord ! Number of lords
integer n_lord_field ! Number of field lords
integer ic1_lord ! Pointer to lat%ic array.
integer ix_pointer ! For general use. Not used by Bmad.
integer ixx, iyy ! Index for Bmad internal use
integer mat6_calc_method ! bmad_standard$, taylor$, etc.
integer tracking_method ! bmad_standard$, taylor$, etc.
integer spin_tracking_method ! bmad_standard$, symp_lie_ptc$, etc.
integer ptc_integration_type ! drift_kick$, matrix_kick$, etc.
integer field_calc ! Used with Runge-Kutta integrators.
integer aperture_at ! Aperture location: exit_end$, ...
integer aperture_type ! Type of aperture: rectanular$, elliptical$, or custom$.
integer orientation ! -1 -> Element is longitudinally reversed. +1 -> Normal.
logical symplectify ! Symplectify mat6 matrices.
logical mode_flip ! Have the normal modes traded places?
logical multipoles_on ! For turning multipoles on/off
logical scale_multipoles ! multipole components scaled by the strength of element?
logical taylor_map_includes_offsets ! Taylor map calculated with element offsets?
logical field_master ! Calculate strength from the field value?
logical is_on ! For turning element on/off.
logical logic ! For general use. Not used by Bmad.
logical bmad_logic ! For Bmad internal use only.
logical select ! For element selection. Used by make_hybrid_ring, etc.
logical csr_method ! Coherent synchrotron radiation calculation
logical space_charge_method ! Space charge method.
logical offset_moves_aperture ! element offsets affects aperture?

end type

Figure 31.2: The ele_struct. The complete structure is shown in this and the preceding figure.
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31.1 Initialization and Pointers

The ele_struct has a number of components and subcomponents that are pointers and this raises a
deallocation issue. Generally, most ele_struct elements are part of a lat_struct variable (§32.2) and
such elements in a lat_struct are handled by the lat_struct allocation/deallocation routines. In the
case where a local ele_struct variable is used within a subroutine or function, the ele_struct variable
must either be defined with the save attribute

type (ele_struct), save :: ele ! Use the save attribute
logical, save :: init_needed = .false.
...
if (init_needed) then

call init_ele (ele, quadrupole$) ! Initialize element once
init_needed = .false.

endif
or the pointers within the variable must be deallocated with a call to deallocate_ele_pointers:

type (ele_struct) ele
...
call init_ele (ele, sbend$) ! Initialize element each time
...
call deallocate_ele_pointers (ele) ! And deallocate.

In the “normal” course of events, the pointers of an ele_struct variable should not be pointing to the
same memory locations as the pointers of any other ele_struct variable. To make sure of this, the
equal sign in the assignment ele1 = ele2 is overloaded by the routine ele_equal_ele. The exception
here are the “Electro-magnetic field component” pointers ele%wig_term, ele%em_field%mode(:)%map,
and ele%em_field%mode(:)%grid. Since these components potentially contain large arrays, and since
the individual sub-components of these components are not likely to be individually modified, The field
component pointers of ele1 and ele2 after the set ele1 = ele2 will point at the same memory locations.

Note: The assignment ele1 = ele2 will not modify ele1%ix_ele or ele1%ix_branch. If ele1 is
associated with a lattice then ele1%lat will also be unaffected.

31.2 Element Attribute Bookkeeping

When a value of an attribute in an element changes, the values of other attributes may need to be
changed (§5.1). Furthermore, in a lattice, changes to one element may necessitate changes to attribute
values in other elements. For example, changing the accelerating gradient in an lcavity will change the
reference energy throughout the lattice.

The attribute bookkeeping for a lattice can be complicated and, if not done intelligently, can cause
programs to be slow if attributes are continually being changed. In order to keep track what bookkeeping
has been done, the ele%status component is used by the appropriate bookkeeping routines for making
sure the bookkeeping overhead is keep to a minimum. However, “intelligent” bookkeeping is only done
if explicitly enabled in a program. See §32.6 for more details.

31.3 String Components

The %name, %type, %alias, and %descrip components of the ele_struct all have a direct correspon-
dence with the name, type, alias, and descrip element attributes in an input lattice file (§5.3). On
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input (§34.1), The name attribute is converted to uppercase before being loaded into an ele_struct.
The other three are not. To save memory, since %descrip is not frequently used, %descrip is a pointer
that is only allocated if descrip is set for a given element.

When a lattice is constructed by bmad_parser, a “nametable” is constructed to enable the fast lookup
of element names. Therefore, It is important that if element names are modified, that the nametable
is updated appropriately. This is done by calling create_lat_ele_nametable after any element name
modifications.

31.4 Element Key

The %key integer component gives the class of element (quadrupole, rfcavity, etc.). In general, to get
the corresponding integer parameter for an element class, just add a “$” character to the class name. For
example quadrupole$ is the integer parameter for quadrupole elements. The key_name array converts
from integer to the appropriate string. For example:

type (ele_struct) ele
if (ele%key == wiggler$) then ! Test if element is a wiggler.
print *, "This element: ", key_name(ele%key) ! Prints, for example, "WIGGLER"

Note: The call to init_ele is needed for any ele_struct defined outside of a lat_struct structure.

The %sub_key component is only used for bend element. When a lattice file is parsed, (§34.1), all rbend
elements are converted into sbend elements (§4.5). To keep track of what the original definition of the
element was, the %sub_key component will be set to sbend$ or rbend$ whatever is appropriate. The
%sub_key component does not affect any calculations and is only used in the routines that recreate
lattice files from a lat_struct (§34.3).

31.5 The %value(:) array

Most of the real valued attributes of an element are held in the %value(:) array. For example, the value
of the k1 attribute for a quadrupole element is stored in %value(k1$) where k1$ is an integer parameter
that Bmad defines. In general, to get the correct index in %value(:) for a given attribute, add a “$"
as a suffix. To convert from an attribute name to its index in the %value array use the attribute_index
routine. To go back from an index in the %value array to a name use the attribute_name routine.
Example:

type (ele_struct) ele
call init_ele (ele, quadrupole$) ! Initialize element
ele%value(k1$) = 0.3 ! Set K1 value
print *, "Index for Quad K1: ", attribute_index(ele, "K1") ! prints: ‘4’ (= k1$)
print *, "Name for Quad k1$: ", attribute_name (ele, k1$) ! prints: ‘K1’

The list of attributes for a given element type is given in the writeup for the different element in Chapter 4.

To obtain a list of attribute names and associated %value(:) indexes, the program element_attributes
can be used. This program is included in the standard Bmad distribution.

Besides real valued attributes, the value(:) array also holds logical, integer, and, as explained below,
“switch” attributes. To find out the type of a given attribute, use the function attribute_type. See the
routine type_ele for an example of how attribute_type is used.

An example of a logical attribute is the flexible logical of match elements which is stored in %value(flexible$).
To evaluate logical attributes, the functions is_true(param) or is_false(param) should be used.
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Integer attributes stored in the value(:) array include n_slice (stored in %value(n_slice$)). With
integer attributes, the nint(param) Fortran instrinsic should be used for evaluation.

A switch attribte is an attribute whose value is one of a certain set of integers where each integer
corresponds to some “state”. For example, the fringe_at switch which, as explained in §5.21, may have
one of four values. Generally, the integer parameters that correspond to the states of a switch can be
constructed by putting a “$” after the associated name. Thus, with the fringe_at switch, the four
integer parameters are no_end$, both_ends$, entrance_end$, and exit_end$. For example:

if (nint(ele%value(fringe_type$)) == soft_edge_only$) then
...

For printing purposes, to convert a switch value to the appropriate string, use the routineswitch_-
attrib_value_name can be used.

The %field_master logical within an element sets whether it is the normalized strength or field strength
that is the independent variable. See §5.1 for more details.

The %old_value(:) component of the ele_struct is used by the attribute_bookkeeper routine to
check for changes for changes in the %value(:) array since the last time the attribute_bookkeeper
routine had been called. If nothing has been changed, the attribute_bookkeeper routine knows not
to waste time recalculating dependent values. Essentially what this means is that the %old_value(:)
array should not be modified outside of attribute_bookkeeper.

31.6 Connection with the Lat_Struct

If an element is part of a lat_struct (§32), the %ix_ele and %ix_branch components of the ele_struct
identify where the element is. Additionally, the %lat component will point to the encomposing lattice.
That is

type (lat_struct), pointer :: lat
type (ele_struct), pointer :: ele2
if (ele%ix_ele > -1) then

ie = ele%ix_ele
ib = ele%ix_branch
lat => ele%lat
ele2 => lat%branch(ib)%ele(ie)
print *, associated(ele2, ele) ! Will print True.

endif

In this example the ele2 pointer is constructed to point to the ele element. The test (ele%ix_ele > -1)
is needed since ele_struct elements may exist outside of any lat_struct instance. Such “external”
elements always have %ix_ele < 0. A value for %ix_ele of -2 is special in that it prevents the deallocate_-
ele_pointers routine from deallocating the pointers of an element which has its %ix_ele set to -2.

An element “slice” is an example of an element that exists external to any lat_struct instance. A slice
is an ele_struct instance that represents some sub-section of a given element. Element slices are useful
when tracking particles only part way through an element (§36.7).

31.7 Limits

The aperture limits (§5.8) in the ele_struct are:
%value(x1_limit$)
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%value(x2_limit$)
%value(y1_limit$)
%value(y2_limit$)

The values of these limits along with the %aperture_at, %aperture_type, and %offset_moves_aperture
components are used in tracking to determine if a particle has hit the vacuum chamber wall. See Sec-
tion §36.8 for more details.

31.8 Twiss Parameters, etc.

The components %a, %b, %z, %x, %y, %c_mat, %gamma_c, %mode_flip, and mode3 hold information on the
Twiss parameters, dispersion, and coupling at the downstream end of the element. See Chapter 35 for
more details.

31.9 Element Lords and Element Slaves

In Bmad, elements in a lattice can control other elements. The components that determine this control
are:

%slave_status
%n_slave
%n_slave_field
%ix1_slave
%lord_status
%n_lord
%n_lord_field
%ic1_lord
%component_name

This is explained fully in the chapter on the lat_struct (§32).

31.10 Group and Overlay Controller Elements

Group and overlay elements use the %control_var(:) array for storing information about the control
variables. Each element in the array represents a single variable. %control_var(:) is an array of
controller_var_struct structures and these structures look like:

type controller_struct
character(40) :: name = ""
real(rp) :: value = 0
real(rp) :: old_value = 0

end type

The %old_value component is only used for group elements.

See Section §33.2 for an example of setting up a controller element within a program.
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31.11 Coordinates, Offsets, etc.

The “upstream” and “downstream” ends of an element are, by definition, where the physical ends of the
element would be if there were no offsets. In particular, if an element has a finite z_offset, the physical
ends will be displaced from upstream and downstream ends. See §36.2 for more details.

The %floor component gives the “laboratory” global “floor” coordinates (§16.2) at the downstream end
of the element. These coordinates are computed without misalignments. That is, the coordinates are
not “body” coordinates. The components of the %floor structure are

type floor_position_struct
real(rp) r(3) ! Offset from origin
real(rp) w(3,3) ! Orientation matrix (Eq. (16.2))
real(rp) theta, phi, psi ! Angular orientation

end type

The routine ele_geometry will calculate an element’s floor coordinates given the floor coordinates at the
beginning of the element. In a lattice, the lat_geometry routine will calculate the floor coordinates for
the entire lattice using repeated calls to ele_geometry.

The positional offsets (§5.6) for an element from the reference orbit are stored in

%value(x_offset$)
%value(y_offset$)
%value(z_offset$)
%value(x_pitch$)
%value(y_pitch$)
%value(tilt$)

If the element is supported by a girder element (§4.23) then the girder offsets are added to the element
offsets and the total offset with respect to the reference coordinate system is stored in:

%value(x_offset_tot$)
%value(y_offset_tot$)
%value(z_offset_tot$)
%value(x_pitch_tot$)
%value(y_pitch_tot$)
%value(tilt_tot$)

If there is no girder, the values for %value(x_offset_tot$), etc. are set to the corresponding val-
ues in %value(x_offset$), etc. Thus, to vary the position of an individual element the values of
%value(x_offset$), etc. are changed and to read the position of an element a program should look at
%value(x_offset_tot$), etc.

The longitudinal position at the downstream end of an element is stored in %s and the reference time
is stored in %ref_time. This reference time is calculated assuming that the reference time is zero
at the start of the lattice. Also stored in the ele_struct is the reference time at the start of the
element and the differnece in the reference time between the end and the beginning. These are given in
%value(ref_time_start$) and %value(delta_ref_time$) respectively.

Notice that the reference time used to calculate the z phase space coordinate (Eq. (16.28)) may be
different from %ref_time. For example, with multiple bunches the z phase space coordinate is generally
taken to be with respect to a reference particle at the center of the bunch the particle is in. And, at
a given element, the reference time of the different bunch reference particles will be different. Another
example happens when a particle is tracked through multiple turns. In this case the reference time at a
given element will depend upon the turn number.
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31.12 Transfer Maps: Linear and Non-linear (Taylor)

The routine make_mat6 computes the linear transfer matrix (Jacobian) along with the zeroth or-
der transfer vector. This matrix is stored in %mat6(6,6) and the zeroth order vector is stored in
%vec0(6). The reference orbit at the upstream end of the element about which the transfer matrix
is computed is stored in %map_ref_orb_in and the reference orbit at the downstream end is stored in
%map_ref_orb_out. In the calculation of the transfer map, the vector %vec0 is set so that

map_ref_orb_out = %mat6 * map_ref_orbit_in + %vec0

The reason redundant information is stored in the element is to save computation time.

To compute the transfer maps for an entire lattice use the routine lat_make_mat6.

The Taylor map (§6) for an element is stored in %taylor(1:6). Each %taylor(i) is a taylor_struct
structure that defines a Taylor series:

type taylor_struct
real (rp) ref
type (taylor_term_struct), pointer :: term(:) => null()

end type

Each Taylor series has an array of taylor_term_struct terms defined as
type taylor_term_struct

real(rp) :: coef
integer :: expn(6)

end type

The coefficient for a Taylor term is stored in %coef and the six exponents are stored in %exp(6).

To see if there is a Taylor map associated with an element the association status of %taylor(1)%term
needs to be checked. As an example the following finds the order of a Taylor map.

type (ele_struct) ele
...
if (associated(ele%taylor(1)%term) then ! Taylor map exists

taylor_order = 0
do i = 1, 6

do j = 1, size(ele%taylor(i)%term)
taylor_order = max(taylor_order, sum(ele%taylor(i)%term(j)%exp)

enddo
enddo

else ! Taylor map does not exist
taylor_order = -1 ! flag non-existence

endif

The Taylor map is made up around some reference phase space point corresponding to the coordinates
at the upstream of the element. This reference point is saved in %taylor(1:6)%ref. Once a Taylor map
is made, the reference point is not needed in subsequent calculations. However, the Taylor map itself
will depend upon what reference point is chosen (§24.1).

31.13 Reference Energy and Time

The reference energy and reference time are computed around a reference orbit which is different from
the reference orbit used for computing transfer maps (§31.12). The energy and time reference orbit for
an element is stored in
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ele%time_ref_orb_in ! Reference orbit at upstream end
ele%time_ref_orb_out ! Reference orbit at downstream end

Generally ele%time_ref_orb_in is the zero orbit. The exception comes when an element is a super_slave.
In this case, the reference orbit through the super_slaves of a given super_lord is constructed to be con-
tinuous. This is done for consistancey sake. For example, to ensure that when a marker is superimposed
on top of a wiggler the reference orbit, and hence the reference time, is not altered.

31.14 EM Fields

%em_field component holds information on the electric and magnetic fields of an element (§4.17) Since
ele%em_field is a pointer its association status must be tested before any of its sub–components are
accessed.

type (ele_struct) ele
...
if (associated(ele%em_field)) then

...

The ele%em_field component is of type em_fields_struct which holds an array of modes
type em_fields_struct

type (em_field_mode_struct), allocatable :: mode(:)
end type

Each mode has components
type em_field_mode_struct

integer m ! Mode varies as cos(m*phi - phi_0)
real(rp) freq ! Oscillation frequency (Hz)
real(rp) :: f_damp = 0 ! 1/Q damping factor
real(rp) :: phi0_autoscale = 0 ! Mode oscillates as: twopi * (f * t + phi0_autoscale)
real(rp) :: phi0_azimuth = 0 ! Azimuthal orientation of mode.
real(rp) :: field_scale = 1 ! Factor to scale the fields by
type (em_field_mode_map_struct), pointer :: map => null()
type (em_field_grid_struct), pointer :: grid => null()

end type

31.15 Wakes

The ele%wake component holds information on the wakes associated with an element. Since ele%wake
is a pointer, its association status must be tested before any of its sub–components are accessed.

type (ele_struct) ele
...
if (associated(ele%wake)) then

...

Bmad observes the following rule: If %wake is associated, it is assumed that all the sub–components
(%wake%sr_table, etc.) are associated. This simplifies programming in that you do not have to test
directly the association status of the sub–components.

See §19 for the equations used in wakefield calculations. wakefields are stored in the %wake struct:
type wake_struct

type (wake_sr_struct) :: sr ! Short-range wake.
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type (wake_lr_struct) :: lr ! Long-range wake.
real(rp) :: amp_scale = 1 ! Wake amplitude scale factor.
real(rp) :: time_scale = 1 ! Wake time scale factor.

end type
The short–range wake parameterization uses pseudo–modes (§19.1). This parameterization utilizes the
%wake%sr%long(:), and %wake%sr%trans(:) arrays for the longitudinal and transverse modes respec-
tively. The structure used for the elements of these arrays are:

type wake_sr_mode_struct ! Pseudo-mode short-range wake struct
real(rp) amp ! Amplitude
real(rp) damp ! Damping factor.
real(rp) freq ! Frequency in Hz
real(rp) phi ! Phase in radians/2pi
real(rp) b_sin ! non-skew sin-like component of the wake
real(rp) b_cos ! non-skew cos-like component of the wake
real(rp) a_sin ! skew sin-like component of the wake
real(rp) a_cos ! skew cos-like component of the wake

end type
The wakefield kick is calculated from Eq. (19.6). %amp, %damp, %freq, and %phi are the input parameters
from the lattice file. the last four components (%norm_sin, etc.) store the accumulated wake: Before the
bunch passes through these are set to zero and as each particle passes through the cavity the contribution
to the wake due to the particle is calculated and added the components.

%wake%z_sr_mode_max is the maximum z value beyond which the pseudo mode representation is not
valid. This is set in the input lattice file.

The %wake%lr array stores the long–range wake modes. The structure definition is:
type wake_lr_struct ! Long-Range Wake struct

real(rp) freq ! Actual Frequency in Hz
real(rp) freq_in ! Input frequency in Hz
real(rp) R_over_Q ! Strength in V/C/m^2
real(rp) Q ! Quality factor
real(rp) angle ! polarization angle (radians/2pi).
integer m ! Order (1 = dipole, 2 = quad, etc.)
real(rp) b_sin ! non-skew sin-like component of the wake
real(rp) b_cos ! non-skew cos-like component of the wake
real(rp) a_sin ! skew sin-like component of the wake
real(rp) a_cos ! skew cos-like component of the wake
logical polarized ! Polarized mode?

end type
This is similar to the sr_mode_wake_struct. %freq_in is the actual frequency in the input file. bmad_-
parser will set %freq to %freq_in except when the lr_freq_spread attribute is non-zero in which case
bmad_parser will vary %freq as explained in §4.30. %polarized is a logical that indicates whether the
mode has a polarization angle. If so, then %angle is the polarization angle.

31.16 Wiggler Types

The %sub_key component of the ele_struct is used to distinguish between map type and periodic
type wigglers (§31.4):

if (ele%key == wiggler$ .and. ele%sub_key == map_type$) ...
if (ele%key == wiggler$ .and. ele%sub_key == periodic_type$) ...
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For a map type wiggler, the wiggler field terms (§4.54.2) are stored in the %wig_term(:) array of the
element_struct. This is an array of wig_term_struct structure. A wig_term_struct looks like:

type wig_term_struct
real(rp) coef
real(rp) kx, ky, kz
real(rp) phi_z
integer type ! hyper_y$, hyper_xy$, or hyper_x$

end type

A periodic wiggler will have a single %wig_term(:) term that can be used for tracking purposes, etc.
The setting for this wig_term element is

ele%wig_term(1)%ky = pi / ele%value(l_pole$)
ele%wig_term(1)%coef = ele%value(b_max$)
ele%wig_term(1)%kx = 0
ele%wig_term(1)%kz = ele%wig_term(1)%ky
ele%wig_term(1)%phi_z = (ele%value(l_pole$) - ele%value(l$)) / 2
ele%wig_term(1)%type = hyper_y$

31.17 Multipoles

The multipole components of an element (See §17.1) are stored in the pointers %a_pole(:) and
%b_pole(:). If %a_pole and %b_pole are allocated they always have a range %a_pole(0:n_pole_maxx)
and %b_pole(0:n_pole_maxx). Currently n_pole_maxx = 20. For a Multipole element, the %a_pole(n)
array stores the integrated multipole strength KnL, and the %b_pole(n) array stores the tilt Tn.

A list of Bmad routines for manipulating multipoles can be found in §43.28.

31.18 Tracking Methods

A number of ele_struct components control tracking and transfer map calculations. These are:
%mat6_calc_method
%tracking_method
%taylor_order
%symplectify
%multipoles_on
%taylor_map_includes_offsets
%is_on
%csr_method
%space_charge_method
%offset_moves_apaerture

See Chapter §36 for more details.

31.19 Custom and General Use Attributes

There are four components of an ele_struct that are guaranteed to never be used by any Bmad routine
and so are available for use by someone writing a program. These components are:

%r(:,:,:) ! real(rp), pointer.
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%custom(:) ! real(rp), pointer.
%ix_pointer ! integer.
%logic ! logical.

Values for ele%r and ele%custom can be set in the lattice file (§3.9). If values are set for ele%r or
ele%custom, these arrays will be expanded in size if needed.

Accessing the ele%custom array should be done using the standard accessor routines (§33.4). For
example, if the lattice file being used defines a custom attribute called rise_time (§3.9):

parameter[custom_attribute1] = "rise_time"

then a program can access the rise_time attribute via:
type (ele_struct), poiner :: ele
type (all_pointer_struct) a_ptr
...
ele => ... ! Point ele to some element in the lattice
call pointer_to_attribute (ele, "RISE_TIME", .true., a_ptr, err_flag)
print *, "RISE_TIME Attribute has value:", a_ptr%r

Note: Even if there are custom attributes associated with a given type of element (say, all quadrupoles),
a given element of that type may not have its %custom(:) array allocated. [In this case, none of the
custom values have been set so are zero by definition.] In the above example, the %custom array will be
allocated if needed in the call to pointer_to_attribute.

If not defined through a lattice file, custom attributes can also be defined directly from within a program
using the set_custom_attribute_name routine. For example:

logical err_flag
...
call set_custom_attribute_name (’QUADRUPOLE::ERROR_CURRENT’, err_flag)

Note: When there is a superposition (§8), the super_slave elements that are formed do not have any
custom attributes assigned to them even when their super_lord elements have custom attributes. This
is done since the Bmad bookkeeping routines are not able to handle the situation where a super_slave
element has multiple super_lord elements and thus the custom attributes from the different super_lord
elements have to be combined. Proper handling of this situation is left to any custom code that a program
implements to handle custom attributes.

31.20 Bmad Reserved Variables

A number of ele_struct components are reserved for Bmad internal use only. These are:
%ixx
%iyy
%bmad_logic

To avoid conflict with multiple routines trying to use these components simultaneously, these components
are only used for short term bookkeeping within individual routines.
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Chapter 32

The lat_struct

The lat_struct is the structure that holds of all the information about a lattice (§2.3). The components
of a lat_struct are listed in Fig. 32.1.

type lat_struct
character(40) use_name ! Name in USE statement
character(40) lattice ! Lattice name
character(80) input_file_name ! Lattice input file name
character(80) title ! From TITLE statement
character(100), allocatable :: print_str(:) ! Saved print statements
type (expression_atom_struct), allocatable :: constant(:) ! Constants defined in the lattice
type (mode_info_struct) a, b, z ! Tunes, etc.
type (lat_param_struct) param ! Parameters
type (bookkeeping_state_struct) lord_state ! lord bookkeeping status.
type (ele_struct) ele_init ! For use by any program
type (ele_struct), pointer :: ele(:) => null() ! Array of elements [=> branch(0)].
type (branch_struct), allocatable :: branch(:) ! Branch(0:) array
type (control_struct), allocatable :: control(:) ! Control list
type (photon_reflect_surface_struct), pointer :: surface(:) => null()
type (coord_struct) particle_start ! Starting coords
type (pre_tracker_struct) pre_tracker ! For OPAL/IMPACT-T
type (nametable_struct) nametable ! For quick searching by element name.
real(rp), allocatable :: custom(:) ! Custom attributes.
integer version ! Version number
integer n_ele_track ! Number of lat elements to track through.
integer n_ele_max ! Index of last valid element in %ele(:) array
integer n_control_max ! Last index used in control_array
integer n_ic_max ! Last index used in ic_array
integer input_taylor_order ! As set in the input file
integer, allocatable :: ic(:) ! Index to %control(:)
integer :: photon_type = incoherent$ ! Or coherent$. For X-ray simulations.
integer :: creation_hash ! Number to determine if lattice is different.

end type

Figure 32.1: Definition of the lat_struct.

487
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The %ele_init component within the lat_struct is not used by Bmad and is available for general
program use.

32.1 Initializing

Normally initialization of a lat_struct lattice is done by bmad_parser when a lattice file is parsed
and does not have to be done by the programmer. When a programmer needs to initialize a lattice,
however, init_lat is used to initialize the lattice with a single branch. After this initial setup, the
routines allocate_branch_array and allocate_lat_ele_array can be used to set up additional branches.
Example:

type (lat_struct) lat
...
call init_lat (lat, 1000) ! Branch(0) has 1001 elements.
call allocate_branch_array (lat, 2) ! Allocate Branch(1) and Branch(2).
call allocate_lat_ele_array (lat, 20, 1) ! Branch(1) has 21 elements
call allocate_lat_ele_array (lat, 30, 2) ! Branch(2) has 31 elements.

32.2 Pointers

Since the lat_struct has pointers within it, there is an extra burden on the programmer to make sure
that allocation and deallocation is done properly. To this end, the equal sign has been overloaded by
the routine lat_equal_lat so that when one writes

type (lat_struct) lattice1, lattice2
! ... some calculations ...
lattice1 = lattice2

the pointers in the lat_struct structures will be handled properly. The result will be that lattice1 will
hold the same information as lattice2 with all the lattice elements in the same place but the pointers
in lattice1 will point to different locations in physical memory so that changes to one lattice will not
affect the other.

deallocate_lat_pointers Initial allocation of the pointers in a lat_struct variable is generally handled
by the bmad_parser and lat_equal_lat routines. Once allocated, local lat_struct variables must have
the save attribute or the pointers within must be appropriately deallocated before leaving the routine.

type (lat_struct), save :: lattice ! Either do this at the start or ...
...
call deallocate_lat_pointers (lattice) ! ... Do this at the end.

Using the save attribute will generally be faster but will use more memory. Typically using the save
attribute will be the best choice.

32.3 Branches in the lat_struct

The lattice is divided up into the “root branch” (§7.7) and, if there are fork or photon_fork elements,
a number “forked” branches.

The branches of a lattice is contained in the lat%branch(0:) array. The %branch(0:) array is always
indexed from 0 with the 0 branch being a root branch. The definition of the branch_struct structure
is
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Element index

section min max

tracking 0 %n_ele_track
control %n_ele_track+1 %n_ele_max

Table 32.1: Bounds of the tracking and control parts of the root branch (lat%branch(0)%ele(:)) array.

type branch_struct
character(40) name
integer ix_branch ! Index in lat%branch(:) array.
integer ix_from_branch ! -1 => No forking element to this branch.
integer ix_from_ele ! Index of forking element
integer, pointer :: n_ele_track ! Number of tracking elements
integer, pointer :: n_ele_max
type (mode_info_struct), pointer :: a, b, z
type (ele_struct), pointer :: ele(:)
type (lat_param_struct), pointer :: param
type (wall3d_struct), pointer :: wall3d(:)
type (ptc_branch1_info_struct) ptc
type (normal_form_struct) normal_form_with_rf, normal_form_no_rf

end type
The value of the %branch(i)%ix_branch conponent is the branch index and will thus have the value i.
This can be useful when passing a branch to a subroutine. The %branch(i)%ix_from_branch component
gives the branch index of the branch that the ith branch branched off from. %branch(i)%ix_from_ele
gives the index in the %branch(j)%ele(:) array of the fork or photon_fork element that marks the
beginning of the ith branch. Example:

type (lat_struct), target :: lat
type (ele_struct), pointer :: ele
...
ib = lat%branch(3)%ix_from_branch
ie = lat%branch(3)%ix_from_ele
! ele is the fork or photon_fork element for lat%branch(3)
ele => lat%branch(ib)%ele(ie)
! This is the same as the above.
ele => pointer_to_ele(lat%branch(3)%ix_from_branch, lat%branch(3)%ix_from_ele)

The %branch%ele(:) array holds the array of elements in the branch. Historically, the lat_struct was
developed at the start of the Bmad project and branches were implemented well after that. To maintain
compatibility with older code, the following components point to the same memory blocks

lat%ele(:) <---> lat%branch(0)%ele(:)
lat%n_ele_track <---> lat%branch(0)%n_ele_track
lat%n_ele_max <---> lat%branch(0)%n_ele_max
lat%param <---> lat%branch(0)%param

All %branch%ele(:) arrays are allocated with zero as the lower bound. The %ele(0) element of all
branches is an beginning_ele element with its %name component set to “BEGINNING”. %ele(0)%mat6
is always the unit matrix. For the root branch, the %branch(0)%ele(0:) array is divided up into
two parts: The “tracking” part and a “control” part (also called the “lord” part). The tracking part of
this array holds the elements that are tracked through. The control part holds elements that control
attributes of other elements (§32.5). The bounds of these two parts is given in Table 32.1. Only the root
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branch has a lord section so %branch%n_ele_track and %branch%n_ele_max are the same for all other
branches. Since the root branch can also be accessed via the lat%ele(:) array, code that deals with
the lord section of the lattice may use lat%ele(:) in place of lat%branch(0)%ele(:).

for a given fork or photon_fork element, the index of the branch that is being forked to and the index
of the element that is being forked to is stored in:

ix_branch = nint(branch_ele%value(ix_branch_to$)) ! branch index
ix_element = nint(branch_ele%value(ix_element_to$)) ! element index
direction = nint(branch_ele%value(direction$))

The direction will be +1 for forward forking and -1 for backward forking.

32.4 Param_struct Component

The %param component within each lat%branch(:) is a lat_param_struct structure whose definition
is shown in Fig. 32.2 This structure would be more aptly named branch_param_struct but is named
otherwise for historical reasons.

%param%total_length is the length of the branch that a beam tracks through defined by
%param%total_length = %ele(n_ele_track)%s - %ele(0)%s

Normally %ele(0)%s = 0 so %param%total_length = %ele(n_ele_track)%s but this is not always the
case.

%param%n_part is the number of particles in a bunch and is used in various calculations. Historically,
this parameter has been used to set the number of strong beam particle with BeamBeam elements but it
is strongly recommended to use the beambeam element’s n_particle parameter instead.

For closed branches, %param%t1_with_RF and %param%t1_no_RF are the 1–turn transfer matrices from
the start of the branch to the end. %param%t1_with_RF is the full transfer matrix with RF on.
%param%t1_no_RF is the transverse transfer matrix with RF off. %param%t1_no_RF is used to com-
pute the Twiss parameters. When computing the Twiss parameters %param%stable is set according to
whether the matrix is stable or not. If the matrix is not stable the Twiss parameters cannot be computed.
If unstable, %param%unstable_factor will be set to the growth rate per turn of the unstable mode.

type lat_param_struct
real(rp) n_part ! Particles/bunch.
real(rp) total_length ! total_length of lattice
real(rp) unstable_factor ! closed branch: growth rate/turn.

! all branches: |orbit/limit|
real(rp) t1_with_RF(6,6) ! Full 1-turn 6x6 matrix
real(rp) t1_no_RF(6,6) ! Transverse 1-turn 4x4 matrix (RF off).
integer particle ! +1 = positrons, -1 = electrons, etc.
integer geometry ! open$, etc...
integer ixx ! Integer for general use
logical stable ! For closed branch. Is lat stable?
type (bookkeeper_status_struct) bookkeeping_state

! Overall status for the branch.
end type

Figure 32.2: Definition of the param_struct.
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Besides being set when the 1–turn transfer matrix is calculated, %param%unstable_factor will be set
if a particle is lost in tracking to:

orbit_amplitude / limit - 1
The particle type for a branch is stored in the integer variable %param%particle. The value of this vari-
able will encode for a fundamental particle, atom, or molecule. See the file particle_species_mod.f90
for more details. If the particle corresponds to a fundamental particle, %param%particle will correspond
to one of the following constants:

electron$, positron$,
muon$, antimuon$,
proton$, antiproton$,
photon$, pion_0$,
pion_minus$, pion_plus$
deuteron$ deuteron_0$

To print the name of the particle use the function species_name. A particles mass and charge can
be obtained from the functions mass_of and charge_of respectively. charge_of returns the particle’s
charge in units of e. Example:

type (lat_struct) lat
...
print *, "Beam Particles are: ", species_name(lat%param%particle)
if (lat%param%particle == proton$) print *, "I do not like protons!"
print *, "Particle mass (eV): ", mass_of(lat%param%particle)
print *, "Particle charge: ", charge_of(lat%param%particle)

32.5 Elements Controlling Other Elements

In the lat_struct structure, certain elements in the %ele(:) array (equivalent to the %branch(0)%ele(:)
array), called lord elements, can control the attributes (component values) of other %branch(:)%ele(:)
elements. Elements so controlled are called slave elements. The situation is complicated by the fact
that a given element may simultaneously be a lord and a slave. For example, an overlay element
(§4.40) is a lord since it controls attributes of other elements but an overlay can itself be controlled by
other overlay and group elements. In all cases, circular lord/slave chains are not permitted.

The lord and slave elements can be divided up into classes. What type of lord an element is, is set
by the value of the element’s ele%lord_status component. Similarly, what type of slave an element
is is set by the value of the element’s ele%slave_status component. Nomenclature note: An element
may be referred to by it’s %lord_status or %slave_status value. For example, an element with
ele%lord_status set to super_lord$ can be referred to as a “super_lord” element.

The value of the ele%lord_status component can be one of:

super_lord$
A super_lord element is created when elements are superimposed on top of other elements (§8).
super_lords (along with multipass_lords), are called major lords since the attribute values of
a super_slave are entirely determined by the attribute values of the super_lord(s) of the slave.

girder_lord$
A girder_lord element is a girder element (§4.23). That is, the element will have ele%key =
girder$.

multipass_lord$
multipass_lord elements are created when multipass lines are present (§9). multipass_lords
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(along with super_lords) are called major lords since most of the attribute values of a multipass_slave
are entirely determined by the attribute values of the multipass_lord of the slave. The few ex-
ceptions are parameters like phi0_multipass which can be set for individual slave elements.

overlay_lord$
An overlay_lord is an overlay element (§4.40). That is, such an element will have ele%key =
overlay$.

ramper_lord$
A ramper_lord is a ramper element (§4.44). That is, such an element will have ele%key =
ramper$. Note that a ramper_lord will not have pointers to its slaves. That is, ele%n_slave will
be zero.

group_lord$
A group_lord is a group element (§4.25). That is, such an element will have ele%key = group$.

not_a_lord$
This element does not control anything.

Any element whose %lord_status is something other than not_a_lord$ is called a lord element. In the
tracking part of the branch (§32.3), %lord_status will always be not_a_lord$. In the lord section
of the branch, under normal circumstances, there will never be any not_a_lord elements. However, it
is permissible, and sometimes convenient, for programs to set the %lord_status of a lord element to
not_a_lord$.

The possible values for the ele%slave_status component are:

multipass_slave$
A multipass_slave element is the slave of a multipass_lord (§9).

slice_slave$
A slice_slave element represents a longitudinal slice of another element. Slice elements are not
part of the lattice but rather are created on-the-fly when, for example, a program needs to track
part way through an element.

super_slave$
A super_slave element is an element in the tracking part of the branch that has one or more
super_lord lords (§8).

minor_slave$
A minor_slave element is an element that is not a slice_slave and does not have a major
lord. Major lords are super_lords and multipass_lords. A minor_slave element will some have
attributes that are controlled by overlay_lords, group_lords, girder_lords, or ramper_lords.

free$
A free element is one that has no lords except for perhaps ramper_lords. Additionally, there
still might be field overlap from other elements.

super_slave elements always appear in the tracking part of the branch. The other types can be in
either the tracking or control parts of the branch.

Only some combinations of %lord_status values and %slave_status values are permissible for a given
element. Table 32.2a lists the valid combinations. Thus, for example, it is not possible for an element
to be simultaneously a super_lord and a super_slave.
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(a) Possible ele%lord_status and ele%slave_status
combinations within an individual element.
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free$
minor_slave$ X X X
multipass_slave$ X X 1
super_slave$ X X X

(b) Possible %lord_status and %slave_status com-
binations for any lord/slave pair.

Table 32.2: Possible %lord_status/%slave_status combinations. “X” marks a possible combination. “1”
indicates that the slave will have exactly one lord of the type given in the column.

s

%lord_status = multipass_lord$

%name = “A”

%name = “A\1”

%slave_status = super_slave$

%slave_status = multipass_slave$

%lord_status = super_lord$

%name = “A\1#1”
Tracking Part:

...

...

Figure 32.3: Example of multipass combined with superposition. A multipass_lord element named A
controls a set of multipass_slaves (only one shown). The multipass_slave elements are also super_-
lord elements and they will control super_slave elements in the tracking part of the branch.

For lord/slave pairs, Table 32.2b lists the valid combinations of %lord_status values in the lord el-
ement and %slave_status values in the slave element. Thus, for example, a super_slave may only
be controlled by a super_lord. In the example in Section §9, element A would be a multipass_lord
and A\1 and A\2 would be multipass_slaves. When superposition is combined with multipass, the
elements in the tracking part of the branch will be super_slaves. These elements will be controlled by
super_lords which will also be multipass_slaves and these super_lord/multipass_slave elements
will be controlled by multipass_lords. This is illustrated in Fig. 32.3.

The number of slave elements that a lord controls is given by the value of the lord’s %n_slave component.
Additionally, the number of lord elements that the slave has is given by the value of the slave’s. %n_lord
component. To find the slaves and lords of a given element, use the routines pointer_to_slave and
pointer_to_lord. Example:
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type (lat_struct), target :: lat
type (ele_struct), pointer :: this_ele, lord_ele, slave_ele
...
this_ele => lat%ele(321) ! this_ele points to a given element in the lattice

do i = 1, this_ele%n_lord ! Loop over all lords of this_ele
! lord_ele points to the i^th lord element of this_ele
lord_ele => pointer_to_lord (this_ele, i)
...

enddo

do i = 1, this_ele%n_slave ! Loop over all slaves of this_ele
! slave_ele points to the i^th slave element of this_ele
slave_ele => pointer_to_slave (this_ele, i)
...

enddo
For non-ramper elements, the lord/slave bookkeeping is bidirectional. That is, for any given element,
call it this_ele, consider the ith lord:

lord_ele_i => pointer_to_lord (this_ele, i)
then there will always be some index j such that the element pointed to by

pointer_to_slave(lord_ele_i, j)
is the original element this_ele. The same is true for the slaves of any given element. That is, for the
ith slave

slave_ele_i => pointer_to_slave (this_ele, i)
there will always be some index j such that the element pointed to by

pointer_to_lord(slave_ele_i, j)
The following ordering of slaves and lords is observed:

Slaves of a super_lord:
The associated super_slave elements of a given super_lord element are ordered from the entrance
end of the super_lord to the exit end. That is, in the code snippet above, pointer_to_slave
(this_ele, 1) will point to the slave at the start of the super_lord and pointer_to_slave
(this_ele, this_ele%n_lord) will point to the slave at the exit end of the super_lord.

Slaves of a multipass_lord:
The associated multipass_slave elements of a multipass_lord element are ordered by pass
number. That is, in the code snippet above, pointer_to_slave (this_ele, i) will point to the
slave of the ith pass.

Lord of a multipass_slave:
A multipass_slave will have exactly one associated multipass_lord and this lord will be the
first one. That is, pointer_to_lord (this_ele, 1).

The element control information is stored in the lat%control(:) array. Each element of this array is
a control_struct structure

type control_struct
type (expression_atom_struct), allocatable :: stack(:) ! Evaluation stack
type (lat_ele_loc_struct) slave ! Slave location
type (lat_ele_loc_struct) lord ! Lord location
integer ix_attrib ! index of controlled attribute

end type
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Each element in the lat%control(:) array holds the information on one lord/slave pair. The %lord
component gives the location of the lord element which is always in the root branch — branch 0.
The %slave component give the element location of the slave element. The %stack and %ix_attrib
components are used to store the arithmetic expression and attribute index for overlay and group
control. The appropriate control_struct for a given lord/slave pair can be obtained from the optional
fourth argument of the pointer_to_lord and pointer_to_slave functions. Example: The following prints
a list of the slaves, along with the attributes controlled and coefficients, on all group elements in a lattice.

type (lat_struct), target :: lat
type (ele_struct), pointer :: lord, slave
type (control_struct), pointer :: con
...
do i = lat%n_ele_track+1, lat%n_ele_max ! loop over all lords

lord => lat%ele(i)
if (lord%lord_status = group_lord$) then

print *, "Slaves for group lord: ", lord%name
do j = 1, lord%n_slave

slave => pointer_to_slave (lord, j, con)
attrib_name = attribute_name (slave, con%ix_attrib)
print *, i, slave%name, attrib_name, con%coef

enddo
endif

enddo

The elements in the lat%control(:) array associated with the slaves of a given lord are in the same
order as the slaves and the index of the associated lat%control(:) element of the first slave is given
by the %ix1_slave component of the lord Example:

type (lat_struct), target :: lat
type (ele_struct), pointer :: lord, slave
type (control_struct), pointer :: con1, con2
...
lord => lat%ele(i) ! Point to some lord
do j = 1, lord%n_slave

slave => pointer_to_slave (lord, j, con1)
con2 => lat%control(lord%ix1_slave+j-1) ! con1 and con2 are the same.

enddo

Except for a slice_slave, the %ic1_lord, %n_lord, and %n_lord_field components of a given slave
element, along with the lat%ic(:) array, can be used to find the lords of the slave. Simplified, the code
for the pointer_to_lord function is:

function pointer_to_lord (slave, ix_lord, con, ...) result (lord_ptr)
implicit none
type (lat_struct), target :: lat
type (ele_struct) slave
type (ele_struct), pointer :: lord_ptr
type (control_struct), pointer, optional :: control
integer ix_lord, icon
!
icon = lat%ic(slave%ic1_lord + ix_lord - 1)
lord_ptr => lat%ele(lat%control(icon)%lord%ix_ele)
if (present(con)) con => lat%control(icon)

end function
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This method for finding the lords of an element is considered “private”. That is, no code outside of the
official Bmad library should rely on this.

slice_slave element bookkeeping has is different depending upon whether the element being sliced is
a super_slave or not. If the element being sliced is a super_slave, a slice_slave element that is
created is, for bookkeeping purposes, considered to be a slave of the super_slave’s lords. In this case,
the bookkeeping is exactly the same as that of any super_slave, and pointer_to_lord will return a
pointer to one of the super_slave’s lords.

On the other hand, if a non super_slave element is being sliced, the %lord pointer component of the
slice_slave will be set to point to the element being sliced.

32.6 Lattice Bookkeeping

The term “lattice bookkeeping” refers to the updating of the appropriate parameter values when a given
parameter in the lattice is changed. For example, if the accelerating gradient of an lcavity element
is modified, the reference energy parameter of all elements downstream of the lcavity will need to be
changed and this can also alter the transfer maps of the lcavity and downstream elements. Bmad
divides the lattice bookkeeping into a “core” part and everything else. The core part itself is divided into
five parts:

Attribute bookkeeping
This refers to intra-element dependent attribute bookkeeping (§5.1).

Control bookkeeping
This refers to Lord/Slave bookkeeping for overlay (§4.40) and group (§4.25)elements, and for
superposition (§8) and multipass (§9) lords.

Floor Position bookkeeping This refers to bookkeeping to keep track of an elements global “floor”
position stored in the ele%floor structure.

Length bookkeeping This refers to bookkeeping to keep track of the longitudinal s-position of an
element stored in the ele%s component.

Reference Energy bookkeeping This refers to the reference energy assigned to each element (§37.6).
ele%value(E_tot$) and ele%value(p0c$)

Lattice elements have a bookkeeper_status component which is of type bookkeeper_status_struct
which looks like

type bookkeeper_status_struct
integer attributes ! Intra element dependent attribute status
integer control ! Lord/slave bookkeeping status
integer floor_position ! Global (floor) geometry status
integer length ! Longitudinal position status
integer ref_energy ! Reference energy status
integer mat6 ! Linear transfer map status
integer rad_int ! Radiation integrals cache status

end type
All components of this structure give the status of some lattice bookkeeping aspect. The first five
components of this structure correspond to the five core bookkeeping parts discussed above. The other
two components are discussed below.

Possible values for the status components are
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super_ok$
ok$
stale$

The set_flags_for_changed_attribute routine sets the appropriate status components of an element
to stale$ which marks that element for the appropriate bookkeeping. When the bookkeeping is done by
lattice_bookkeeper, the stale$ status components are set to ok$. The super_ok$ value is reserved
for use by any program that needs to do its own custom bookkeeping. How this works is as follows: The
Bmad bookkeeping routines will never convert a status component with value super_ok$ to ok$ without
first doing some needed bookkeeping. Thus if a program sets a status component to super_ok$ and then
later on finds that the status component is set to ok$, the program knows that bookkeeping has been
done. An example will make this clear. Suppose a program needs to keep track of a collection of high
order transfer maps between various points in a lattice. Suppose that the constant calculation of these
maps would slow the program done so it is desired to recalculate a given map only when necessary. To
implement this, the program could set the ele%status%mat6 attribute of all the element to super_ok$
when the maps are calculated. If the program subsequently finds a ele%status%mat6 attribute of an
element set to ok$ it knows that it should recalculate any transfer maps that span that element.

It is guaranteed that when lattice_bookkeeper is run, all five core status components will not be
stale$. The routines used by lattice_bookkeeper are:

attribute_bookkeeper ! Intra-element attributes
control_bookkeeper ! Lord/slave control
s_calc ! Longitudinal element s-position
lat_geometry ! Global (floor) positions.
lat_compute_ref_energy_and_time ! Reference energy

In general, these routines should not be called directly since the correct way to do things is not always
straight forward. See the code for lattice_bookkeeper for more details.

After the core bookkeeping is done, a program can call lat_make_mat6 to remake the transfer matrices.
lat_make_mat6 will remake the transfer matrices if either the ele%status%mat6 flag is stale$ or the
reference orbit around which the existing transfer matrix was computed has shifted. lat_make_mat6
will set the ele%status%mat6 flag to ok$ for all elements whose transfer matrices are recomputed.

32.7 Intelligent Bookkeeping

Historically, as the code for lattice bookkeeping (§32.6) was being developed calls to bookkeeping routines
were added to calculational routines such as the tracking routine track1 and the routine for calculating
the linear transfer map make_mat6. This “automatic” bookkeeping system is inefficient since there is
no good way to keep track of what element attributes have been modified which leads to redundant
bookkeeping calculations. Eventually, as Bmad developed and became more complicated, it was found
that the unnecessary bookkeeping load was generally causing a significant slowdown in program execution
time — even in programs where no element attributes were changed. To avoid this, an “intelligent”
bookkeeping system was developed which could be switched on by setting the parameter:

bmad_com%auto_bookkeeper = .false.

To keep things back compatible with existing programs, the automatic bookkeeping system was set as
the default. However, given the fact that the automatic bookkeeping system has known deficiencies,
and given the overhead with maintaining two bookkeeping systems, the automatic bookkeeping system
has been retired and old programs needed to be upgraded if needed. Rule: A program that does not
“directly modify” element attributes does not have to modified. Modification of element attributes
via Bmad routines (for example, using the set_on_off routine) is “indirect”. A direct modification is
something like the following appearing in the program:
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lat%ele(ie)%value(hkick$) = ...

To use intelligent bookkeeping, a program must set the global bmad_com%auto_bookkeepper to false.
This only needs to be done once at the start of the program before bmad_parser is called. If lattice
parameters are not modified in the program, this is the only thing that needs to be done.

When a set of attributes needs to be modified, the set_flags_for_changed_attribute routine must be
called for each element attribute that is set. After all the attributes have been set, lattice_bookkeeper
is called to do the core bookkeeping. Example

type (lat_struct) lat
...
bmad_com%auto_bookkeeper = .false. ! Done once. Put this before the call to bmad_parser.
...
lat%ele(i)%value(gradient$) = 1.05e6 ! Change, say, the gradient of an RFCavity
call set_flags_for_changed_attribute (lat%ele(i), lat%ele(i)%value(gradient$))

... Set attributes of other elements ...

call lattice_bookkeeper (lat) ! Do once after all attribute sets done.

The argument list for set_flags_for_changed_attribute is
set_flags_for_changed_attribute (ele, attribute)

The attribute argument may be either real, integer, or logical.

The set_flags_for_changed_attribute routine sets flags in the ele%status structure §32.6.

32.8 particle_start Component

The lat%particle_start component is a coord_struct structure for holding the information obtained
from particle_start statements (§10.2) in a Bmad lattice file.

This component is not used in any standard Bmad calculation. It is up to an individual program to use
as desired. Use init_coord to initalize a particle position. Example:

type (lat_struct) lat
type (coord_struct) orbit_start
...
call bmad_parser("lat.bmad", lat) ! Read in a lattice.
...
! orbit_start is initalized for tracking from the beginning of the lattice
call init_coord(orbit_start, lat%particle_start, lat%ele(0), downstream_end$)

32.9 Custom Parameters

Custom parameters defined for the lattice as a whole (§3.9 are stored in lat%custom. The following
shows how to print a table of the custom parameters

type (lat_struct) lat
character(80) aname
...
if (allocated(lat%custom)) then

do i = 1, size(lat%custom)
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aname = attribute_name(def_parameter$, i+custom_attribute0$)
if (aname(1:1) == "!") cycle ! Ignore non-existant parameters
print "(a, es12.4)", " parameter[" // trim(aname) // "] = ", lat%custom(i)

enddo
endif
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Chapter 33

Lattice Element Manipulation

33.1 Creating Element Slices

It is sometimes convenient to split an element longitudinally into “slices” that represent a part of the
element. This is complicated by the fact that elements are not necessarily uniform. For example, map
type wigglers are nonuniform and bend elements have end effects. Furthermore, attributes like hkick
need to be scaled with the element length.

To create an element slice, the routine create_element_slice can be used. Example:
type (ele_struct) ele, sliced_ele
...
sliced_ele = ele
sliced_ele%value(l$) = l_slice ! Set the sliced element’s length
call create_element_slice (sliced_ele, ele, l_start, param, ...)

See the documentation on create_element_slice for more details (§29.3).

33.2 Adding and Deleting Elements From a Lattice

Modifying the number of elements in a lattice involves a bit of bookkeeping. To help with this there are
a number of routines.

The routine remove_eles_from_lat is used to delete elements from a lattice.

For adding elements there are three basic routines: To add a lord element, the new_control routine is
used. To add a new element to the tracking part of the lattice, use the insert_element routine. Finally, to
split an element into two pieces, the routine split_lat is used. These basic routines are then used in such
routines as create_overlay that creates overlay elements, create_group which creates group elements,
add_superimpose which superimposes elements, etc. Example:

type (lat_struct), target :: lat
type (ele_struct), pointer :: g_lord, slave

type (control_struct) con(1)
integer ix, n
logical err_flag

501
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...
call new_control (lat, ix)
g_lord => lat%ele(ix)
allocate (ele%control_var(1))
ele%control_var(1)%name = "A"
call reallocate_expression_stack(con(1)%stack, 10))
call expression_string_to_stack (’3.2*A^2’, con(1)%stack, n, err_flag)
con(1)%ix_attrib = k1$
call lat_ele_locator (’Q1W’, lat, eles)
con(1)%slave = ele_to_lat_loc(eles(1)%ele)
call create_group (g_lord, con, err_flag)

This example constructs a group element with one variable with name A controlling the K1 attribute of
element Q1W using the expression “3.2 ·A2” where A is the name of the control variable.

For constructing group elements (but not overlay elements), the controlled attribute (set by con(1)%ix_attrib
in the above example) can be set to, besides the set of element attributes, any one in the following list:

accordion_edge$ ! Element grows or shrinks symmetrically
start_edge$ ! Varies element’s upstream edge s-position
end_edge$ ! Varies element’s downstream edge s-position
s_position$ ! Varies element’s overall s-position. Constant length.

See Section §4.25 for the meaning of these attributes

33.3 Finding Elements

The routine lat_ele_locator can be used to search for an element in a lattice by name or key type or a
combination of both. Example:

type (lat_struct) lat
type (ele_pointer_struct), allocatable :: eles(:)
integer n_loc; logical err
...
call lat_ele_locator ("quad::skew*", lat, eles, n_loc, err)
print *, "Quadrupole elements whose name begins with the string "SKEW":"
print *, "Name Branch_index Element_index"
do i = 1, n_loc ! Loop over all elements found to match the search string.

print *, eles(i)%ele%name, eles(i)%ele%ix_branch, eles(i)%ele%ix_ele
enddo

This example finds all elements where ele%key is quadrupole$ and ele%name starts with “skew”. See
the documentation on lat_ele_locator for more details on the syntax of the search string.

The ele_pointer_struct array returned by lat_ele_locator is an array of pointers to ele_struct
elements

type ele_pointer_struct
type (ele_struct), pointer :: ele

end type

The n_loc argument is the number of elements found and the err argument is set True on a decode
error of the search string.

Once an element (or elements) is identified in the lattice, it’s attributes can be altered. However, care
must be taken that an element’s attribute can be modified (§5.1). The function attribute_free will
check if an attribute is free to vary.
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type (lat_struct) lat
integer ix_ele
...
call lat_ele_locator (’Q10W’, lat, eles, n_loc, err) ! look for an element "Q10W"
free = attribute_free (eles(i)%ele, "K1", lat, .false.)
if (.not. free) print *, "Cannot vary k1 attribute of element Q10W"

33.4 Accessing Named Element Attributes

A “named” parameter of the ele_struct structure is a parameter that has an associated name that can
be used in a lattice file. For example, the quadrupole strength is named K1 (§4.43). This parameter is
stored in the ele%value(:) array. Specifically at ele%value(k1$).

Historically, named parameters where always accessed directly but this has proved to be somewhat
problematical for a number of reasons. For one, something like ele%value(k1$) will always have a
value even if the associated lattice element does not have an associated K1 parameter (For example,
a sextupole does not have a K1 parameter). Another issue involves allocation since components like
ele%a_pole(:) are pointers that are not necessarily allocated.

To get around some of these issues, accessor functions have been developed for all non-character based
named attributes. These accessor functions are:

pointer_to_attribute ! pointer_to_attribute
pointers_to_attribute ! pointers_to_attribute
set_ele_attribute ! set_ele_attribute
value_of_attribute ! value_of_attribute

The workhorse is pointer_to_attribute that returns a pointer to the appropriate attribute. The
returned pointer argument is actually an instance of an all_pointer_struct which looks like:

type all_pointer_struct
real(rp), pointer :: r => null()
integer, pointer :: i => null()
logical, pointer :: l => null()

end type

When the all_pointer_struct argument is returned, one (or zero if the attribute name is not recog-
nized) of the pointer components will be associated. For example:

type (ele_struct) ele
type (all_pointer_struct) attrib_ptr
...
call pointer_to_attribute (ele, "A3_ELEC", .true., attrib_ptr, err)
attrib_ptr%r = 0.34
call attribute_set_bookkeeping (ele, "A3_ELEC", err_flag, attrib_ptr)
call lattice_bookkeeper (lat) ! Bookkeeping needed due to parameter change

Also see the example program in §30.2.

The set_ele_attribute routine is useful when there is user input since this routine can evaluate
expressions. For example:

type (lat_struct) lat
type (ele_pointer_struct), allocatable :: eles(:)
integer n_loc, n
logical err_flag, make_xfer_mat
...
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call lat_ele_locator (’Q01W’, lat, eles, n_loc, err_flag)
do n = 1, n_loc

call set_ele_attribute (eles(n)%ele, "K1 = 0.1*c_light", lat, err_flag)
enddo

This example sets the K1 attribute of all elements named Q01W. set_ele_attribute checks whether an
element is actually free to be varied and sets the err_flag logical accordingly. An element’s attribute
may not be freely varied if, for example, the attribute is controlled via an Overlay.
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Reading and Writing Lattices

34.1 Reading in Lattices

There are two subroutines in Bmad to read in a Bmad standard lattice file: bmad_parser and bmad_-
parser2. bmad_parser is used to initialize a lat_struct (§32) structure from scratch using the informa-
tion from a lattice file. Unless told otherwise, after reading in the lattice, bmad_parser will compute the
6x6 transfer matrices for each element and this information will be stored in the digested file (§3.2)
that is created. Notice that bmad_parser does not compute any Twiss parameters.

bmad_parser2 is typically used after bmad_parser if there is additional information that needs to be
added to the lattice. For example, consider the case where the aperture limits for the elements is stored
in a file that is separate from the main lattice definition file and it is undesirable to put a call statement
in one file to reference the other. To read in the lattice information along with the aperture limits, there
are two possibilities: One possibility is to create a third file that calls the first two:

! This is a file to be called by bmad_parser
call, file = ""lattice_file""
call, file = ""aperture_file""

and then just use bmad_parser to parse this third file. The alternative is to use bmad_parser2 so that
the program code looks like:

! program code to read in everything
type (lat_struct) lat
call bmad_parser (’lattice_file’, lat) ! read in a lattice.
call bmad_parser2 (’aperture_file’, lat) ! read in the aperture limits.

34.2 Digested Files

Since parsing can be slow, once the bmad_parser routine has transferred the information from a lattice
file into the lat_struct it will make what is called a digested file. A digested file is an image of the
lat_struct in binary form. When bmad_parser is called, it first looks in the same directory as the
lattice file for a digested file whose name is of the form:
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""digested_"" // LAT_FILE

where LAT_FILE is the lattice file name. If bmad_parser finds the digested file, it checks that the file is
not out–of–date (that is, whether the lattice file(s) have been modified after the digested file is made).
bmad_parser can do this since the digested file contains the names and the dates of all the lattice files
that were involved. Also stored in the digested file is the “Bmad version number”. The Bmad version
number is a global parameter that is increased (not too frequently) each time a code change involves
modifying the structure of the lat_struct or ele_struct. If the Bmad version number in the digested
file does not agree with the number current when bmad_parser was compiled, or if the digested file
is out–of–date, a warning will be printed, and bmad_parser will reparse the lattice and create a new
digested file.

Since computing Taylor Maps can be very time intensive, bmad_parser tries to reuse Taylor Maps it
finds in the digested file even if the digested file is out–of–date. To make sure that everything is OK,
bmad_parser will check that the attribute values of an element needing a Taylor map are the same as
the attribute values of a corresponding element in the digested file before it reuses the map. Element
names are not a factor in this decision.

This leads to the following trick: If you want to read in a lattice where there is no corresponding digested
file, and if there is another digested file that has elements with the correct Taylor Maps, then, to save
on the map computation time, simply make a copy of the digested file with the digested file name
corresponding to the first lattice.

read_digested_bmad_file write_digested_bmad_file The digested file is in binary format and is not
human readable but it can provide a convenient mechanism for transporting lattices between programs.
For example, say you have read in a lattice, changed some parameters in the lat_struct, and now you
want to do some analysis on this modified lat_struct using a different program. One possibility is to
have the first program create a digested file

call write_digested_bmad_file (’digested_file_of_mine’, lat)

and then read the digested file in with the second program
call read_digested_bmad_file (’digested_file_of_mine’, lat)

An alternative to writing a digested file is to write a lattice file using write_bmad_lattice_file

34.3 Writing Lattice files

write_bmad_lattice_file To create a Bmad lattice file from a lat_struct instance, use the routine
write_bmad_lattice_file. MAD–8, MAD–X, or SAD compatible lattice files can be created from a
lat_struct variable using the routine write_lattice_in_foreign_format:

type (lat_struct) lat ! lattice
...
call bmad_parser (bmad_lat_file, lat) ! Read in a lattice
call write_lattice_in_foreign_format ("lat.mad", "MAD-8", lat) ! create MAD file

Information can be lost when creating a MAD or SAD file. For example, neither MAD nor SAD has the
concept of things such as overlays and groups.
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Normal Modes: Twiss Parameters,
Coupling, Emittances, Etc.

35.1 Components in the Ele_struct

The ele_struct (§31) has a number of components that hold information on the Twiss parameters,
dispersion, and coupling at the exit end of the element. The Twiss parameters of the three normal modes
(§22.1) are contained in the ele%a, ele%b, and ele%z components which are of type twiss_struct:

type twiss_struct
real(rp) beta ! Twiss Beta function
real(rp) alpha ! Twiss Alpha function
real(rp) gamma ! Twiss gamma function
real(rp) phi ! Normal mode Phase advance
real(rp) eta ! Normal mode dispersion
real(rp) etap ! Normal mode momentum dispersion.
real(rp) deta_ds ! Dispersion derivative
real(rp) sigma ! Normal mode beam size
real(rp) sigma_p ! Normal mode beam size derivative
real(rp) emit ! Geometric emittance
real(rp) norm_emit ! Energy normalized emittance (= β γ ϵ)

end type
The projected horizontal and vertical dispersions in an ele_struct are contained in the ele%x and
ele%y components. These components are of type xy_disp_struct:

type xy_disp_struct
real(rp) eta ! Projected dispersion
real(rp) etap ! Projected momentum dispersion
real(rp) deta_ds ! Projected dispersion derivative dηx/ds or dηy/ds.

end type
Section §22.4 discussed the relationship between etap and deta_ds.

The components ele%emit, ele%norm_emit, ele%sigma, ele%sigma_p are not set by the standard Bmad
routines and are present for use by any program.

The relationship between the projected and normal mode dispersions are given by Eq. (22.16). The 2x2
coupling matrix C (Eq. (22.5)) is stored in the ele%c_mat(2,2) component of the ele_struct and the
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γ factor of Eq. (22.5) is stored in the ele%gamma_c component. There are several routines to manipulate
the coupling factors. For example:

c_to_cbar(ele, cbar_mat) ! Form Cbar(2,2) matrix
make_v_mats(ele, v_mat, v_inv_mat) ! Form V coupling matrices.

See §43.24 for a complete listing of such routines.

Since the normal mode and projected dispersions are related, when one is changed within a program the
appropriate change must be made to the other. To make sure everything is consistent, the set_flags_-
for_changed_attribute routine can be used. Example:

type (lat_struct), target :: lat
real(rp), pointer :: attrib_ptr
...
attrib_ptr => lat%ele(ix_ele)%value(k1$) ! Point to some attribute.
attrib_ptr = value ! Change the value.
call set_flags_for_changed_attribute (lat%ele(ix_ele), attrib_ptr)

The %mode_flip logical component of an ele_struct indicates whether the a and b normal modes have
been flipped relative to the beginning of the lattice. See Sagan and Rubin[Sagan99] for a discussion of
this. The convention adopted by Bmad is that the %a component of all the elements in a lattice will
all correspond to the same physical normal mode. Similarly, the %b component of all the elements will
all correspond to some (other) physical normal mode. That is, at an element where there is a mode
flip (with %mode_flip set to True), the %a component actually corresponds to the B matrix element in
Eq. (22.3) and vice versa. The advantage of this convention is that calculations of mode properties (for
example the emittance), can ignore whether the modes are flipped or not.

The normal mode analysis of Sagan and Rubin, while it has the benefit of simplicity, is strictly only
applicable to lattices where the RF cavities are turned off. The full 6-dimensional analysis is summarized
by Wolski[Wolski06]. The normal_mode3_calc routine perform the full analysis. The results are put in
the %mode3 component of the ele_struct which is of type mode3_struct:

type mode3_struct
real(rp) v(6,6)
type (twiss_struct) a, b, c
type (twiss_struct) x, y

end type
The 6-dimensional mode3%v(6,6) component is the analog of the 4-dimensional V matrix appearing in
Eq. (22.2).

35.2 Tune and Twiss Parameter Calculations

A calculation of the Twiss parameters starts with the Twiss parameters at the beginning of the lattice.
For linear machines, these Twiss parameters are generally set in the input lattice file (§10.4). For circular
machines, the routine twiss_at_start may be used (§10.4)

type (lat_struct) lat
...
if (lat%param%geometry == closed$) call twiss_at_start(lat)

In either case, the initial Twiss parameters are placed in lat%ele(0). The tune is placed in the variables
lat%a%tune and lat%b%tune.

To propagate the Twiss, coupling and dispersion parameters from the start of the lattice to the end, the
routine, twiss_propagate_all can be used. This routine works by repeated calls to twiss_propagate1
which does a single propagation from one element to another. The Twiss propagation depends upon
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the transfer matrices having already computed (§36). twiss_propagate_all also computes the Twiss
parameters for all the lattice branches.

Before any Twiss parameters can be calculated, the transfer matrices stored in the lattice elements must
be computed. bmad_parser does this automatically about the zero orbit. If, to see nonlinear effects,
a different orbit needs to be used for the reference, The routine twiss_and_track can be used. For
example:

type (lat_struct) lat
type (coord_struct), allocatable :: orbit(:)
call bmad_parser (’my_lattice’, lat)
call twiss_and_track (lat, orb, ok)

Once the starting Twiss parameters are set, twiss_propagate_all can be used to propagate the Twiss
parameters to the rest of the elements

The routine twiss_and_track_at_s can be used to calculate the Twiss parameters at any given longitu-
dinal location. Alternatively, to propagate the Twiss parameters partially through a given element use
the routine twiss_and_track_intra_ele.

35.3 Tune Setting

The routine set_tune can be used to set the transverse tunes:
set_tune (phi_a_set, phi_b_set, dk1, lat, orb_, ok)

set_tune varies quadrupole strengths until the desired tunes are achieved. As input,set_tune takes an
argument dk1(:) which is an array that specifies the relative change to be make to the quadrupoles in
the lattice.

To set the longitudinal (synchrotron) tune, the routine set_z_tune can be used. set_z_tune works by
varying rf cavity voltages until the desired tune is achieved.

35.4 Emittances & Radiation Integrals

See Section §21.3 for details on the radiation integral formulas.

The routine radiation_integrals is used to calculate the normal mode emittances along with the radiation
integrals:

type (lat_struct) lat
type (normal_modes_struct) modes
type (rad_int_all_ele_struct) ele_rad_int
...
call radiation_integrals (lat, orbit, modes, rad_int_by_ele = ele_rad_int)

The modes argument, which is of type normal_modes_struct, holds the radiation integrals integrated
over the entire lattice.

type normal_modes_struct
real(rp) synch_int(0:3) ! Synchrotron integrals I0, I1, I2, and I3
real(rp) sigE_E ! SigmaE/E
real(rp) sig_z ! Sigma_Z
real(rp) e_loss ! Energy loss / turn (eV)
real(rp) rf_voltage ! Total rfcavity voltage (eV)
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real(rp) pz_aperture ! pz aperture limit
type (anormal_mode_struct) a, b, z
type (linac_normal_mode_struct) lin

end type

In particular, the %a, %b, and %z components, which are of type anormal_mode_struct hold the emittance
values:

type anormal_mode_struct
real(rp) emittance ! Beam emittance
real(rp) synch_int(4:6) ! Synchrotron integrals
real(rp) j_damp ! damping partition number
real(rp) alpha_damp ! damping per turn
real(rp) chrom ! Chromaticity
real(rp) tune ! "Fractional" tune in radians

end type

The ele_rad_int argument, which is is of type rad_int_all_ele_struct, holds the radiation integrals
on an element-by-element basis.

type rad_int_all_ele_struct
type (rad_int1_struct), allocatable :: ele(:) ! Array is indexed from 0

end type

35.5 Chromaticity Calculation

For a circular lattice, chrom_calc calculates the chromaticity by calculating the tune change with change
in beam energy.

chrom_tune sets the chromaticity by varying the sextupoles. This is a very simple routine that simply
divides the sextupoles into two families based upon the local beta functions at the sextupoles.



Chapter 36

Tracking and Transfer Maps

36.1 The coord_struct

The coord_struct holds the coordinates of a particle The definition of the coord_struct is
type coord_struct

real(rp) vec(6) ! (x, px, y, py, z, pz)
real(rp) s ! Longitudinal position.
real(rp) t ! Absolute time (not relative to reference).
real(rp) spin(3) ! (x, y, z) Spin vector
real(rp) field(2) ! Photon (x, y) field intensity.
real(rp) phase(2) ! Photon (x, y) phase.
real(rp) charge ! charge in a particle (Coul).
real(rp) dt_dref ! path length (used by coherent photons).
real(rp) r ! For general use. Not used by Bmad.
real(rp) p0c ! For non-photons: Reference momentum. Negative -> going backwards.

! For photons: Photon momentum (not reference).
real(rp) beta ! Velocity / c_light.
integer ix_ele ! Index of the lattice element the particle is in.

! May be -1 or -2 if element is not associated with a lattice.
integer ix_branch ! Index of the lattice branch the particle is in.
integer ix_user ! Not used by Bmad
integer state ! alive$, lost$, lost_neg_x$, etc.
integer direction ! +1 or -1. Sign of longitudinal direction of motion (ds/dt).

! This is independent of the element orientation.
integer time_dir ! +1 or -1. Time direction. -1 => Traveling backwards in time.
integer species ! Positron$, proton$, etc.
integer location ! upstream_end$, inside$, or downstream_end$

end type

Definitions:

Direction of Travel
The “direction of travel”, also called the “direction of motion” is the direction that the
particle is moving in when traveling forward in time.

Propagation Direction
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The “propagation direction” is the direction that a particle will be propagated in during track-
ing. The propagation direction will be in the same direction as the direction of travel when prop-
agating a particle forward in time and will be opposite the direction of travel when propagating a
particle backwards in time.

Reverse Tracking
“Reverse tracking refers to tracking a particle with %direction set to -1. That is, tracking in the
reverse direction longitudinally. The opposite to reverse tracking is called “forward direction”
tracking.

Backwards Tracking
“Backwards Tracking refers to tracking a particle backwards in time. That is, with %time_dir =
-1. The opposite to backwards tracking is called “forward time” tracking.

The components of the coord_struct:

%beta
The normalized velocity v/c is stored in %beta. %beta is always positive.

%direction
Longitudinal forward time “direction of travel”. A setting of +1 (the default) is in the forward +s
(downstream) direction and a setting of -1 is in the reverse -s (upstream) direction (§16.1.3). Notice
that the setting of direction is independent of the orientation of the lattice element the particle
is traveling through. That is, for an element with reversed orientation (ele%orientation =
-1), a particle with direction = 1 will be traveling towards the entrance end of the element (-z
direction in body coordinates) and with direction = -1 the particle will be traveling towards the
exit (+z direction in body coordinates) end (§16.1.3). See %time_dir.

%time_dir
Time direction that a particle is propagated through. A value of +1 (the default) is forward time
and a value of -1 is backwards time.

%field_x, %field_y
The %field_x and %field_y components are for photon tracking and are in units of field/sqrt(cross-
section-area). That is, the square of these units is an intensity. It is up to individual programs to
define an overall scaling factor for the intensity if desired.

%ix_branch
The %ix_branch component gives the index of the lattice branch in the lat%branch(ib) array
that the particle is in.

%ix_ele
The %ix_ele component gives the index of the element in the lat%branch(ib)%ele(:) array
that the particle is in. If the element is not associated with a lattice, %ix_ele is set to -1. When
initializing a coord_struct (see below), %ix_ele will be initialized to not_set$.

%ix_user
The %ix_user component is for use by code outside of the Bmad library. This component will not
be modified by Bmad.

%location
The %location component indicates where a particle is longitudinally with respect to the element
being tracked. %location will be on of:
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entrance_end$
inside$
exit_end$

entrance_end$ indicates that the particle is at the element’s entrance (−s) end and exit_end$
indicates that the particle is at the element’s exit (+s) end. inside$ indicates that the particle
is in between. If the element has edge fields (for example, the e1 and e2 edge fields of a bend), a
particle at the entrance_end$ or exit_end$ is considered to be just outside the element.

%p0c
For charged-particles, the reference momentum in eV is stored in the %p0c component. For photons,
%p0c is the actual (not reference) momentum. For charged-particles, %p0c may be negative if the
particle is traveling backwards longitudinally. For photons, %vec(6) (βz) will be negative if the
photon is going backward.

%r
The %r component is for use by code outside of the Bmad library. Bmad will not modify this
component.

%s
The %s component gives the absolute s-position of the particle. When tracking through an element
(say with Runge-Kutta tracking), and when the particle coordinates is expressed in element body
coordinates (§16.3), the s-position at any point within the element, by definition, is independent
of any misalignments the element has as long as the element is not reversed. If the element is
reversed, the s-position is reversed as well.

%spin(3)
The %spin(3) component gives a particle’s (x, y, z) spin vector (§23.1).

%state
The %state component will be one of:

not_set$
pre_born$
alive$
lost$
lost_neg_x$
lost_pos_x$
lost_neg_y$
lost_pos_y$
lost_z$
lost_pz$

The not_set$ setting indicates that the coord_struct has not yet been used in tracking. The
alive$ setting indicates that the particle is alive. If a particle is “dead”, the %state component
will be set to one of the other settings. The lost_neg_x$ setting indicates that the particle was
lost at an aperture on the −x side of the element. The lost_z$ setting is used to indicate that the
particle tried to “turn around”. This can happen, for example, with strong magnetic fields or when
a particle has been decelerated too much. The reason why the particle is marked lost in this case
is due to the fact that s-based tracking algorithms cannot handle particles that reverse direction.
The exception is that the time_runge_kutta (§6.1) tracking method can handle particle reversal
so in this case, particles will not be declared lost if they reverse direction.
The lost$ setting is used when neither of the other lost_*$ settings are not appropriate. For
example, lost$ is used in Runge-Kutta tracking when the adaptive step size becomes too small
(this may happen if the fields do not obey Maxwell’s equations).
To convert the integer value of %state to a string that can be printed, use the function coord_-
state_name
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type (coord_struct) orbit
print *, "State of the orbit: ", coord_state_name(orbit%state)

%t
%t gives the absolute time.

%vec(:)
The %vec(:) array defines the phase space coordinants (§16.4.2). Note that for photons, the defi-
nition of the phase space coordinates (§16.4.4) is different from that used for charged particles. The
signs of %vec(2) and %vec(4) are such that, for the signs of the change in %vec(1) and %vec(3)
during propagation will be equal to the product %direction * %time_dir * sign_of(%vec(2)
and %direction * %time_dir * sign_of(%vec(2) respectively.

To initialize a coord_struct so it can be used as the start of tracking, the init_coord routine can be
used:

type (coord_struct) start_orb
real(rp) phase_space_start(6)
...
phase_space_start = [...]
call init_coord (start_orb, phase_space_start, lat%ele(i), lat%param%particle)

Here init_coord will initialize start_orb appropriately for tracking through element lat%ele(i) with
the particle species set to the species of the reference particle given by lat%param%particle.

36.2 Tracking Through a Single Element

track1 is the routine used for tracking through a single element
type (coord_struct), start_orb, end_orb
type (ele_struct) ele
real(rp) start_phase_space(6)
logical err
...
start_phase_space = [...]
call init_coord (start_orb, start_phase_space, ele, photon$)
call track1 (start_orb, ele, end_orb, err_flag = err)
if (.not. particle_is_moving_forward(end_orb)) then

print *, "Particle is lost and gone forever..."
endif

To check if a particle is still traveling in the forward direction, the particle_is_moving_forward routine
can be used as shown in the above example.

The “virtual” entrance and exit ends of a lattice element are, by definition, where the physical ends of
the element would be if there were no offsets. In particular, if an element has a finite z_offset (§31.11),
the physical ends will be displaced from the virtual ends. The position ds of a particle with respect to
the physical entrance end of the element is

ds = coord%s - (ele%s + ele%value(z_offset_tot$) - ele%value(l$))

When tracking through an element, the starting and ending positions always correspond to the virtual
ends. If there is a finite z_offset, the tracking of the element will involve tracking through drifts just
before and just after the tracking of the body of the element so that the particle ends at the proper
virtual exit end.
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Note: The z phase space component of the orbit (%vec(5)) is independent of the value of ele%ref_time
even though the reference time is used to define z (See Eq. (16.28)). This is true since the starting
reference time that is used for a particle is arbitrary. For example, when tracking multiple bunches, the
reference time is typically set so that a particle at the center of a bunch has z = 0. Also, in a ring,
ele%ref_time is only the reference time for the first turn through an element. Since Bmad does not
keep track of turn number, there is no way for Bmad to know what the true reference time is other than
to calculate it from the value of z!

36.3 Tracking Through a Lattice Branch

When tracking through a lattice branch, one often defines an array of coord_structs – one for each
element of the lattice branch. In this case, the ith coord_struct corresponds to the particle coordinates
at the end of the ith element. Since the number of elements in the lattice is not known in advance, the
array must be declared to be allocatable. The lower bound of the array must be set to zero to match a
lat%branch(i)%ele(:) array. The upper bound should be the upper bound of the %branch(i)%ele(:)
array. The routine reallocate_coord will allocate an array of coord_structs:

type (coord_struct), allocatable :: orbit(:)
type (lat_struct) lat
...
call reallocate_coord (orbit, lat, ix_branch)

Alternatively, the save attribute can be used so that the array stays around until the next time the
routine is called

type (coord_struct), allocatable, save :: orb(:)

Saving the coord_stuct is faster but leaves memory tied up. Note that in the main program, the save
attribute is not permitted If a coord_struct array is passed to a routine, the routine must explicitly
set the lower bound to zero if the array is not declared as allocatable:

subroutine my_routine (orbit1, orbit2)
use bmad
implicit none
type (coord_struct), allocatable :: orbit1(:) ! OK
type (coord_struct) orbit2(0:) ! Also OK
...

Declaring the array allocatable is mandatory if the array is to be resized or the array is passed to a
routine that declares it allocatable.

For an entire lattice, the coord_array_struct can be used to define an array of coord_array arrays:
type coord_array_struct

type (coord_struct), allocatable :: orb(:)
end type

The routine reallocate_coord_array will allocate an coord_array_struct instance
type (coord_array_struct), allocatable :: all_orbit(:)
type (lat_struct) lat
...
call reallocate_coord_array (all_orbit, lat)
...

Once an array of coord_struct elements is defined, the track_all routine can be used to track through
a given lattice branch

type (coord_struct), allocatable :: orbit(:)
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integer ib, track_state
...
ib = 1 ! Branch to track through
call init_coord(orbit(0), init_phase_space, lat%branch(ib)%ele(0), proton$)
call track_all (lat, orbit, ib, track_state, err_flag)
if (track_state /= moving_forward$) then

print *, "Particle lost at element:", track_state
print *, "Aperture lost at: ", coord_state_name(orbit(track_state)%state)

After tracking, orbit(i) will correspond to the particles orbit at the end of lat%branch(ib)%ele(i).

For routines like track_all where an array of coord_structs is used, an integer track_state argument
is provided that is set to moving_forward$ if the particle survives to the end, or is set to the index of
the element at which the particle either hit an aperture or the particle’s longitudinal velocity is reversed.

The reason why the reversal of the particle’s longitudinal velocity stops tracking is due to the fact that
the standard tracking routines, which are s-based (that is, use longitudinal position s as the independent
coordinate), are not designed to handle particles that reverse direction. To properly handle this situation,
time-based tracking needs to be used (§36.11). Notice that this is different from tracking a particle in
the reversed (−s) direction.

Alternatively to track_all, the routine track_many can be used to track through a selected number of
elements or to track backwards (See §36.14).

The track_all routine serves as a good example of how tracking works. A condensed version of the
code is shown in Fig. 36.1. The call to track1 (line 18) tracks through one element from the exit end of
the n− 1st element to the exit end of the nth element.

1 subroutine track_all (lat, orbit, ix_branch, track_state, err_flag)
2 use bmad
3 implicit none
4 type (lat_struct), target :: lat
5 type (branch_struct), pointer :: branch
6 type (coord_struct), allocatable :: orbit(:)
7 integer, optional :: ix_branch, track_state
8 logical, optional :: err_flag
9 logical err

10
11 !
12
13 branch => lat%param(integer_option(0, ix_branch))
14 branch%param%ix_track = moving_forward
15 if (present(track_state)) track_state = moving_forward\$
16
17 do n = 1, branch%n_ele_track
18 call track1 (orbit(n-1), branch%ele(n), branch%param, orbit(n), err_flag = err)
19 if (.not. particle_is_moving_forward(orbit(n))) then
20 if (present(track_state)) track_state = n
21 orbit(n+1:)%status = not_set$
22 return
23 endif
24 enddo
25 end subroutine

Figure 36.1: Condensed track_all code.
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36.4 Forking from Branch to Branch

Tracking from a fork or photon_fork (§4.22) element to the downstream branch is not “automatic”.
That is, since the requirements of how to handle forking can vary greatly from one situation to the next,
Bmad does not try to track from one branch to the next in any one of its tracking routines.

The discussion here is restricted to the case where the particle being tracked is simply transferred from
the forking element to the downstream branch. [Thus the subject of photon generation is not covered
here.]

There are two cases discussed here. The first case is when a given branch (called to_branch) has an
associated forking element in the from_branch that forks to the beginning of the to_branch. Appropriate
code is:

type (lat_struct), target :: lat ! Lattice
type (branch_struct) :: to_branch ! Given forked-to branch
type (branch_struct), pointer :: from_branch ! Base branch
type (ele_struct), pointer :: fork_ele
type (coord_struct), allocatable :: from_orbit(:), to_orbit(:)
integer ib_from, ie_from

ib_from = to_branch%ix_from_branch

if (ib_from < 0) then
! Not forked to ...

else
from_branch => lat%branch(ib_from)
ie_from = to_branch%ix_from_ele
fork_ele => from_branch%ele(ie_from)
to_orbit(0) = from_orbit(ie_from)
call transfer_twiss (fork_ele, to_branch%ele(0))

endif
from_orbit(0:) and to_orbit(0:) are arrays holding the orbits at the exit end of the elements for
the from_branch and to_branch respectively. The call to transfer_twiss transfers the Twiss values to
the to_branch which can then be propagated through the to_branch using twiss_propagate_all.

The second case starts with the fork_ele forking element. This is similar to the first case but is a bit
more general since here the element, called to_ele in the to_branch that is connected to fork_ele need
not be the starting element of to_branch.

type (lat_struct), target :: lat ! Lattice
type (branch_struct), pointer :: to_branch ! forked-to branch
type (ele_struct), pointer :: to_ele
type (coord_struct), allocatable :: from_orbit(:), to_orbit(:)
integer ib_to, ie_to

ib_to = nint(fork_ele%value(ix_to_branch$))
ie_to = nint(fork_ele%value(ix_to_element$))

to_branch => lat%branch(ib_to)
to_ele => to_branch%ele(ie_to)
to_orbit(to_ele%ix_ele) = from_orbit(fork_ele%ix_ele)

Notice that, by convention, the transferred orbit is located at the exit end of the to_ele.
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36.5 Multi-turn Tracking

Multi-turn tracking over a branch is simply a matter of setting the coordinates at the beginning zeroth
element equal to the last tracked element within a loop:

type (lat_struct) lat ! lattice to track through
type (coord_struct), allocatable :: orbit(:)
...
call reallocate_coord (orbit, lat, ix_branch = 1)
orbit(0)%vec = [0.01, 0.2, 0.3, 0.4, 0.0, 0.0] ! init
do i = 1, n_turns

call track_all (lat, orbit, 1)
orbit(0) = orbit(lat%branch(1)%n_ele_track)

end do

Often times it is only the root branch, branch(0), that is to be tracked. In this case, the above reduces
to

type (lat_struct) lat ! lattice to track through
type (coord_struct), allocatable :: orbit(:)
...
call reallocate_coord (orbit, lat%n_ele_max)
orbit(0)%vec = [0.01, 0.2, 0.3, 0.4, 0.0, 0.0] ! init
do i = 1, n_turns

call track_all (lat, orbit)
orbit(0) = orbit(lat%n_ele_track)

end do

36.6 Closed Orbit Calculation

For a circular lattice the closed orbit may be calculated using closed_orbit_calc. By default this
routine will track in the forward direction which is acceptable unless the particle you are trying to
simulate is traveling in the reverse direction and there is radiation damping on. In this case you must
tell closed_orbit_calc to do backward tracking. This routine works by iteratively converging on the
closed orbit using the 1–turn matrix to calculate the next guess. On rare occasions if the nonlinearities
are strong enough, this can fail to converge. An alternative routine is closed_orbit_from_tracking
which tries to do things in a more robust way but with a large speed penalty.

36.7 Partial Tracking through elements

There are several routines for tracking partially through an element:
twiss_and_track_at_s
twiss_and_track_intra_ele
track_from_s_to_s
twiss_and_track_from_s_to_s
mat6_from_s_to_s

These routines make use of element “slices” (§33.1) which are elements that represent some sub-section
of an element. There are two routines for creating slices:

create_element_slice
create_uniform_element_slice
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It is important to note that to slice up a given element, the s_to_s tracking routines will not always
work. For example, consider the case where a given element is followed by a zero length multipole. If
track_from_s_to_s is called with a value for s2 (the value at the end of the track) which corresponds
to the exit end of this element, the result will also include tracking through the zero length multipole.
Thus, in the case where a given element is to be sliced, one or the other of the two slice routines given
above must be first used to create an element slice then this slice can be used for tracking.

36.8 Apertures

The routine check_aperture_limit checks the aperture at a given element. The ele%aperture_type
component determines the type of aperture. Possible values for ele%aperture_type are

rectangular$
elliptical$
custom$

With custom$, a program needs to be linked with a custom version of check_aperture_limit_custom.

The logical bmad_com%aperture_limit_on determines if element apertures (See §5.8) are used to deter-
mine if a particle has been lost in tracking. The default bmad_com%aperture_limit_on is True. Even if
this is False there is a “hard” aperture limit set by bmad_com%max_aperture_limit. This hard limit is
used to prevent floating point overflows. The default hard aperture limit is 1000 meters. Additionally,
even if a particle is within the hard limit, some routines will mark a particle as lost if the tracking
calculation will result in an overflow.

lat%param%lost is the logical to check to see if a particle has been lost. lat%param%ix_lost is set by
track_all and gives the index of the element at which a particle is lost. %param%end_lost_at gives
which end the particle was lost at. The possible values for lat%param%end_lost_at are:

entrance_end$
exit_end$

When tracking forward, if a particle is lost at the exit end of an element then the place where the orbit
was outside the aperture is at orbit(ix) where ix is the index of the element where the particle is lost
(given by lat%param%ix_lost). If the particle is lost at the entrance end then the appropriate index is
one less (remember that orbit(i) is the orbit at the exit end of an element).

To tell how a particle is lost, check the lat%param%plane_lost_at parameter. Possible values for this
are:

x_plane$
y_plane$
z_plane$

x_plane$ and y_plane$ indicate that the particle was lost either horizontally, or vertically. z_plane$
indicates that the particle was turned around in an lcavity element. That is, the cavity was decelerating
the particle and the particle did not not have enough energy going into the cavity to make it to the exit.

36.9 Custom Tracking

Custom code can be used for tracking. This is discussed in detail in sections §37.2 and §37.3.
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36.10 Tracking Methods

For each element the method of tracking may be set either via the input lattice file (see §6.1) or directly
in the program by setting the %tracking_method attribute of an element

type (ele_struct) ele
...
ele%tracking_method = symp_lie_ptc$ ! for symp_lie_ptc, tracking
print *, "Tracking_method: ", calc_method_name(ele%tracking_method)

To form the corresponding parameter to a given tracking method just put “$” after the name. For
example, the bmad_standard tracking method is specified by the bmad_standard$ parameter. To convert
the integer %tracking_method value to a string suitable for printing, use the tracking_method_name
array.

It should be noted that except for linear tracking, none of the Bmad tracking routines make use
of the ele%mat6 transfer matrix. The reverse, however, is not true. The transfer matrix routines
(lat_make_mat6, etc.) will do tracking.

For determining what tracking methods are valid for a given element, use valid_tracking_method and
valid_mat6_calc_method functions

print *, "Method is valid: ", valid_tracking_method(ele, symp_lie_ptc$)

Bmad simulates radiation damping and excitation by applying a kick just before and after each element.

36.11 Using Time as the Independent Variable

Time tracking uses time as the independent variable as opposed to the standard s based tracking. Time
tracking is useful when a particle’s trajectory can reverse itself longitudinally. For example, low energy
particles generated when a relativistic particle hits the vacuum chamber wall are good candidates for
time tracking.

Currently, the only ele%tracking_method available for time tracking is time_runge_kutta$. Time
tracking needs extra bookkeeping due to the fact that the particle may reverse directions. See the
dark_current_tracker program as an example.

Note: Using time as the independent variable can be used with both absolute and relative time tracking
(§25.1).

36.12 Absolute/Relative Time Tracking

Absolute or relative time tracking (§25.1) can be set after the lattice file is parsed, by setting the
%absolute_time_tracking component of the lat_struct. when %absolute_time_tracking is tog-
gled, the autoscale_phase_and_amp must be called to reset the appropriate phase offsets and scale
amplitudes.

36.13 Taylor Maps

A list of routines for manipulating Taylor maps is given in §43.38. The order of the Taylor maps is set
in the lattice file using the parameter statement (§10.1). In a program this can be overridden using the
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routine set_ptc. The routine taylor_coef can be used to get the coefficient of any given term in a Taylor
map.

type (taylor_struct) t_map(6)
...
print *, "out(4)=coef * in(1)^2:", taylor_coef(t_map(4), 1, 1)
print *, "out(4)=coef * in(1)^2:", taylor_coef(t_map(4), [2,0,0,0,0,0])

Transfer Taylor maps for an element are generated as needed when the ele%tracking_method or
ele%mat6_calc_method is set to Symp_Lie_Bmad, Symp_Lie_PTC, or Taylor. Since generating a map
can take an appreciable time, Bmad follows the rule that once generated, these maps are never regener-
ated unless an element attribute is changed. To generate a Taylor map within an element irregardless
of the ele%tracking_method or ele%mat6_calc_method settings use the routine ele_to_taylor. This
routine will kill any old Taylor map before making any new one. To kill a Taylor map (which frees up
the memory it takes up) use the routine kill_taylor.

To test whether a taylor_struct variable has an associated Taylor map. That is, to test whether
memory has been allocated for the map, use the Fortran associated function:

type (bmad_taylor) taylor(6)
...
if (associated(taylor(1)%term)) then ! If has a map ...

...
To concatenate the Taylor maps in a set of elements the routine concat_taylor can be used

type (lat_struct) lat ! lattice
type (taylor_struct) taylor(6) ! taylor map
...
call taylor_make_unit (taylor) ! Make a unit map
do i = i1+1, i2

call concat_taylor (taylor, lat%ele(i)%taylor, taylor)
enddo

The above example forms the transfer Taylor map starting at the end of element i1 to the end of
element i2. Note: This example assumes that all the elements have a Taylor map. The problem with
concatenating maps is that if there is a constant term in the map “feed down” can make the result
inaccurate (§24.1. To get around this one can “track” a taylor map through an element using symplectic
integration.

type (lat_struct) lat ! lattice
type (taylor_struct) taylor(6) ! taylor map
...
call taylor_make_unit (taylor) ! Make a unit map
do i = i1+1, i2

call call taylor_propagate1 (taylor, lat%ele(i), lat%param)
enddo

Symplectic integration is typically much slower than concatenation. The width of an integration step
is given by %ele%value(ds_step$. The attribute %ele%value(num_steps$), which gives the number
of integration steps, is a dependent variable (§5.1) and should not be set directly. The order of the
integrator (§24.1) is given by %ele%integrator_order. PTC (§28) currently implements integrators of
order 2, 4, or 6.

36.14 Tracking Backwards

Tracking backwards happens when a particle goes in the direction of decreasing s. This is indicated in
the coord_struct by coord%direction = -1.
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The time_runge_kutta tracking_method is able to handle the situation where a particle would reverse
direction due to string electric or magnetic fields. All other tracking methods are not able to handle this
since they are position (s) based, instead of time based. With non time_runge_kutta tracking methods,
the equations of motion become singular when a particle “tries” to reverse direction. In such a situation,
the particle will be marked as lost and the coord_struct will have %status /= alive$.

The “problem” with tracking backwards is that the reference time t0(s) that is used to compute the z
phase space coordinate (Eq. (16.28)) is independent of the motion of any particle. That is, a particle
traveling backwards will have a large negative z. As an alternative to tracking backwards, reversing the
lattice and tracking forwards is possible (§36.15).

One restriction with backwards tracking is that, for simplicity’s sake, Bmad does not compute transfer
matrices for propagation in the backwards direction. Tracking with reversed elements does not have this
restriction.

36.15 Reversed Elements and Tracking

With a lattice element that is reversed (s:ele.reverse), the transfer map and transfer matrix that is
stored in the element is, just like for a non-reversed element, appropriate for a particle traveling in the
+s direction.

36.16 Beam (Particle Distribution) Tracking

Tracking with multiple particles is done with a beam_struct instance:
type beam_struct

type (bunch_struct), allocatable :: bunch(:)
end type

A beam_struct is composed of an array of bunches of type bunch_struct:
type bunch_struct

type (coord_struct), allocatable :: particle(:)
integer, allocatable :: ix_z(:) ! bunch%ix_z(1) is index of head particle, etc.
real(rp) charge_tot ! Total charge in bunch (Coul).
real(rp) charge_live ! Total charge of live particles in bunch (Coul).
real(rp) z_center ! Longitudinal center of bunch (m). Note: Generally, z_center of

! bunch #1 is 0 and z_center of the other bunches is negative.
real(rp) t_center ! Center of bunch creation time relative to head bunch.
integer species ! electron$, proton$, etc.
integer ix_ele ! Element this bunch is at.
integer ix_bunch ! Bunch index. Head bunch = 1, etc.

end type
The bunch_struct has an array of particles of type coord_struct (§36.1).

Initializing a beam_struct to conform to some initial set of Twiss parameters and emittances is done
using the routine init_beam_distribution:

type (lat_struct) lat
type (beam_init_struct) beam_init
type (beam_struct) beam
...
call init_beam_distribution (lat%ele(0), lat%param, beam_init, beam)
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The lat%ele(0) argument, which is of type ele_struct, gives the twiss parameters to initialize the
beam to. In this case, we are starting tracking from the beginning of the lattice. The beam_init
argument which is of type beam_init gives additional information, like emittances, which is needed to
initialize the beam. See chapter §12 for more details.

Tracking a beam is done using the track_beam routine
type (lat_struct) lat
type (beam_struct) beam
...
call track_beam (lat, beam)

or, for tracking element by element, track1_bunch can be used.

For analyzing a bunch of particles, that is, for computing such things as the sigma matrix from the
particle distribution, the calc_bunch_params routine can be used.

Notice that when a particle bunch is tracked to a given longitudinal position in the lattice, all the particles
of the bunch are at that longitudinal position (this is no different if particles are tracked individually
independent of the bunch). Given that the bunch has a non-zero bunch length, the current time t(s)
associated with the particles will be different for different particles (See Eq. (16.28)). If it is desired to
reconstruct the shape of the bunch at constant time, each particle must be tracked either forward or
backwards by an appropriate amount. Since this tracking generally involves only very short distances,
it is usually acceptable to ignore any fields and to propagate the particles as if they were in a field free
region.

36.17 Spin Tracking

See Section §6.3 for a list of spin tracking methods available. To turn spin tracking on, use the
bmad_com%spin_tracking_on flag. ele%spin_tracking_method sets the method used for spin tracking.
After properly initializing the spin in the coord_struct, calls to track1 will track both the particle
orbit and the spin.

The Sokolov-Ternov effect[Barber99] is the self-polarization of charged particle beams due to asymmetric
flipping of a particle’s spin when the particle is bent in a magnetic field. Whether this effect is included
in a simulation is determined by the setting of bmad_com%spin_sokolov_ternov_flipping_on. Also,
spin flipping will not be done if spin tracking is off or both radiation damping and excitation are off.

36.18 X-ray Targeting

X-rays can have a wide spread of trajectories resulting in many “doomed” photons that hit apertures
or miss the detector with only a small fraction of “successful” photons actually contributing to the
simulation results. The tracking of doomed photons can therefore result in an appreciable lengthening
of the simulation time. To get around this, Bmad can be setup to use what is called “targeting” to
minimize the number of doomed photons generated.

This is explained in detail in §26.5. The coordinates of the four or eight corner points and the center
target point are stored in:

gen_ele%photon%target%corner(:)%r(1:3)
gen_ele%photon%target%center%r(1:3)

where gen_ele is the generating element (not the element with the aperture).
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Chapter 37

Miscellaneous Programming

37.1 Custom and Hook Routines

Bmad calculations, like particle tracking through a lattice element, can be customized using what are
called “custom” and “hook” routines. The general idea is that a programmer can implement custom code
which is linked into a program and this custom code will be called at the appropriate time by Bmad.
For example, custom code can be created for Runge-Kutta tracking that calculates the electromagnetic
field of some complicated electromagnet. Prototype custom and hook routines are available in the
/bmad/custom directory and are discussed in detail below.

To enable Bmad to be able to call customized code, function pointers are defined, one for each custom
or hook routine. At certain places in the Bmad code, the appropriate function pointer will be checked.
If the funtion pointer is associated with a routine, that routine will be called. By default, the function
pointers are not associated with any functions and the only way there will be an association by user
code modification.

The function pointers are defined in the file /bmad/modules/bmad_routine_interface.f90. The con-
vention followed is that for any given custom or hook routine there is a base name, for example,
track1_custom, and in bmad_routine_interface.f90 there will be an abstract interface which with
the base name with a _def suffix (track1_custom_def for this example). Additionally the corresponding
function pointer uses a _ptr suffix and is defined like:

procedure(track1_custom_def), pointer :: track1_custom_ptr => null()

To implement custom code for, say, track1_custom:

• Copy the file /bmad/custom/track1_custom.f90 to the area where the program is to be compiled.

• Customize file as desired. The name of the routine can be changed if desired as long as that name
is used consistently throughout the program. In fact, multiple custom routines can be created and
switched in and out as desired in the program.

• In the program, define an interface for the custom routine like:
procedure(track1_custom_def) :: track1_custom

This procedure statement must go in the declaration section above the executable section of the
code. Note: If the custom routine has been put in a module this will not be needed.

• Somewhere near the beginning of the program (generally before bmad_parser is called), set the
function pointer to point to your custom routine:

525
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track_custom_ptr => track1_custom
• If needed modify the compile script(s) (typically named something like “cmake.XXX”) to compile

the file the custom routine is in.

• Compile the program using the mk command.

While coding a custom routine, it is important to remember that it is not permissible to modify any
routine argument that does not appear in the list of output arguments shown in the comment section
at the top of the file.

Note: Custom and hook entry points are added to Bmad on an as-needed basis. If you have a need that
is not met by the existing set of entry points, please contact a Bmad maintainer.

Note: The custom and hook routines in /bmad/custom/ are not compiled with the Bmad library. Their
only purpose is to surve as prototypes for code development.

37.2 Custom Calculations

There are essentially two ways to do custom (as opposed to hook) calculations. One way involves using
a custom element (§4.11). The other way involves setting the appropriate method component of an
element to custom. An appropriate method component is one of

tracking_method §6.1
mat6_calc_method §6.2
field_calc §6.4
aperture_type §5.8

There are eight routines that implement custom calculations:
check_aperture_limit_custom
em_field_custom
init_custom
make_mat6_custom
radiation_integrals_custom
track1_custom
track1_spin_custom
wall_hit_handler_custom

[Use getf for more details about the argument lists for these routines.]

The init_custom routine is called by bmad_parser at the end of parsing for any lattice element that
is a custom element or has set any one of the element components as listed above to custom. The
init_custom routine can be used to initialize the internals of the element. For example, consider a
custom element defined in a lattice file by

my_element: custom, val1 = 1.37, descrip = "field.dat", mat6_calc_method = tracking
In this example, the descrip (§5.3) component is used to specify the name of a file that contains
parameters for this element. When init_custom is called for this element (see below), the file can be
read and the parameters stored in the element structure. Besides the ele%value array, parameters may
be stored in the general use components given in §31.19.

The make_mat6_custom routine is called by the track1 routine when calculating the transfer matrix
through an element.

The track1_custom routine is called by the track1 routine when the tracking_method for the element
is set to custom. Further customization can be set by the routines track1_preprocess and track1_-
postprocess. See Section §37.3 for more details.
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A potential problem with track1_custom is that the calling routine, that is track1, does some work like
checking aperture, etc. (see the track1 code for more details). If this is not desired, the track1_preprocess
routine (§37.3) can be used to do custom tracking and to make sure that track1 does not do any extra
calculations. This is accomplished by putting the custom tracking code in track1_preprocess and by
setting the finished argument of track1_preprocess to True.

The check_aperture_limit_custom routine is used to check if a particle has hit an aperture in tracking.
It is called by the standard Bmad routine check_aperture_limit when ele%aperture_type is set to
custom$. A custom element has the standard limit attributes (§5.8) so a custom element does not have
to implement custom aperture checking code.

The em_field_custom routine is called by the electro-magnetic field calculating routine em_field_calc
when ele%field_calc is set to custom$. As an alternative to em_field_custom, a custom element can
use a field map (§5.16) to characterize the element’s electromagnetic fields.

Note: When tracking through a patch element, the first step is to transform the particle’s coordinates
from the entrance frame to the exit frame. This is done since it simplifies the tracking. [The criterion
for stopping the propagation of a particle through a patch is that the particle has reached the exit
face and the calculation to determine if a particle has reached the exit face is simplified if the particle’s
coordinates are expressed in the coordinate frame of the exit face.] Thus for patch elements, unlike all
other elements, the particle coordinates passed to em_field_custom are the coordinates with respect
to the exit coordinate frame and not the entrance coordinate frame. If field must be calculated in the
entrance coordinate frame, a transformation between entrance and exit frames must be done:

subroutine em_field_custom (ele, param, s_rel, time, orb, &
local_ref_frame, field, calc_dfield, err_flag)

use lat_geometry_mod
...
real(rp) w_mat(3,3), w_mat_inv(3,3), r_vec(3), r0_vec(3)
real(rp), pointer :: v(:)
...
! Convert particle coordinates from exit to entrance frame.
v => ele%value ! v helps makes code compact
call floor_angles_to_w_mat (v(x_pitch$), v(y_pitch$), v(tilt$), w_mat, w_mat_inv)
r0_vec = [v(x_offset$), v(y_offset$), v(z_offset$)]
r_vec = [orb%vec(1), orb%vec(3), s_rel] ! coords in exit frame
r_vec = matmul(w_mat, r_vec) + r0_vec ! coords in entrance frame

! Calculate field and possibly field derivative
...

! Convert field from entrance to exit frame
field%E = matmul(w_mat_inv, field%E)
field%B = matmul(w_mat_inv, field%B)
if (logic_option(.false., calc_dfield)) then

field%dE = matmul(w_mat_inv, matmul(field%dE, w_mat))
field%dB = matmul(w_mat_inv, matmul(field%dB, w_mat))

endif

The wall_hit_handler_custom routine is called when the Runge-Kutta tracking code odeint_bmad
detects that a particle has hit a wall (§5.12). [This is separate from hitting an aperture that is only
defined at the beginning or end of an lattice element.] The dummy wall_hit_handler_custom routine
does nothing. To keep tracking, the particle must be marked as alive

subroutine wall_hit_handler_custom (orb, ele, s, t)



528 CHAPTER 37. MISCELLANEOUS PROGRAMMING

...
orb%state = alive$ ! To keep on truckin’
...

Note: odeint_bmad normally does not check for wall collisions. To change the default behavior, the
runge_kutta_com common block must modified. This structure is defined in runge_kutta_mod.f90:

type runge_kutta_common_struct
logical :: check_wall_aperture = .false.
integer :: hit_when = outside_wall$ ! or wall_transition$

end type

type (runge_kutta_common_struct), save :: runge_kutta_com

To check for wall collisions, the %check_wall_aperture component must be set to true. The %hit_when
components determines what constitutes a collision. If this is set to outside_wall$ (the default),
then any particle that is outside the wall is considered to have hit the wall. If %hit_when is set to
wall_transition$, a collision occurs when the particle crosses the wall boundary. The distinction
between outside_wall$ and wall_transition$ is important if particles are to be allowed to travel
outside the wall.

37.3 Hook Routines

A hook routine is like a custom routine in that a hook routine can be used for customizing a Bmad
calculation by replacing the dummy version of a hook routine with customized code. The difference
is that the hook routine is always called at the appropriate time without regard to the type of lattice
element under consideration or what tracking method is being used. The hook routines that are available
are:

apply_element_edge_kick_hook
ele_geometry_hook
ele_to_fibre_hook
time_runge_kutta_periodic_kick_hook
track1_bunch_hook
track1_preprocess
track1_postprocess
track1_wake_hook

The apply_element_edge_kick_hook routine can be used for custom tracking through a fringe field.
See the documentation in the file apply_element_edge_kick_hook.f90 for more details.

The ele_geometry_hook routine can be used for custom calculations of the global geometry of an
element. This is useful, for example, for a support table on a kinematic mount since Bmad does not
have the knowledge to calculate the table orientation from the position of the mount points. See the
documentation in the file ele_geometry_hook.f90 for more details.

The ele_to_fibre_hook routine can be used to customize how the PTC fibre corresponding to a Bmad
lattice element is constructed.

The time_runge_kutta_periodic_kick_hook routine can be used to introduce a time dependent kick
when doing tracking with time_runge_kutta. This routine could be used, for example, to add the kick
due to a passing beam ! on a residual gas ion that is being tracked. See the documentation in the file
time_runge_kutta_periodic_kick_hook.f90 for more details.

The track1_bunch_hook routine can be used for custom bunch tracking through an element.
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The track1_preprocess and track1_postprocess routines are called by the track1 routine. [Addi-
tionally, if the element being tracked through has its tracking method set to custom, the track1_custom
routine is called.] The track1_preprocess and track1_postprocess routines are useful for a number
of things. For example, if the effect of an electron cloud is to be modeled, these two routines can be
used to put in half the electron cloud kick at the beginning of an element and half the kick at the end.

The routine track1_preprocess has an additional feature in that it has an argument radiation_included
that can be set to True if the routine track1_custom will be called and track1_custom will be handling
radiation damping and excitation effects.

The track1_wake_hook can be used to apply custom wakes.

37.4 Physical and Mathematical Constants

Common physical and mathematical constants that can be used in any expression are defined in the file:

sim_utils/interfaces/physical_constants.f90

The following constants are defined

pi = 3.14159265358979d0
twopi = 2 * pi
fourpi = 4 * pi
sqrt_2 = 1.41421356237310d0
sqrt_3 = 1.73205080757d0
complex: i_imaginary = (0.0d0, 1.0d0)

e_mass = 0.51099906d-3 ! DO NOT USE! In GeV
p_mass = 0.938271998d0 ! DO NOT USE! In GeV

m_electron = 0.51099906d6 ! Mass in eV
m_proton = 0.938271998d9 ! Mass in eV

c_light = 2.99792458d8 ! speed of light
r_e = 2.8179380d-15 ! classical electron radius
r_p = r_e * m_electron / m_proton ! proton radius
e_charge = 1.6021892d-19 ! electron charge

h_planck = 4.13566733d-15 ! eV*sec Planck’s constant
h_bar_planck = 6.58211899d-16 ! eV*sec h_planck/twopi

mu_0_vac = fourpi * 1e-7 ! Permeability of free space
eps_0_vac = 1 / (c_light**2 * mu_0_vac) ! Permittivity of free space

classical_radius_factor = r_e * m_electron ! Radiation constant

g_factor_electron = 0.001159652193 ! Anomalous gyro-magnetic moment
g_factor_proton = 1.79285 ! Anomalous gyro-magnetic moment
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37.5 Global Coordinates and S-positions

The routine lat_geometry will compute the global floor coordinates at the end of every element in a
lattice. lat_geometry works by repeated calls to ele_geometry which takes the floor coordinates at
the end of one element and calculates the coordinates at the end of the next. For conversion between
orientation matrix W (§16.2) and the orientation angles θ, ϕ, ψ, the routines floor_angles_to_w_mat
and floor_w_mat_to_angles can be used.

The routine s_calc calculates the longitudinal s positions for the elements in a lattice.

37.6 Reference Energy and Time

The reference energy and time for the elements in a lattice is calculated by lat_compute_ref_energy_-
and_time. The reference energy associated with a lattice element is stored in

ele%value(E_tot_start$) ! Total energy at upstream end of element (eV)
ele%value(p0c_start$) ! Momentum * c_light at upstream end of element (eV)
ele%value(E_tot$) ! Total energy at downstream end (eV)
ele%value(p0c$) ! Momentum * c_light at downstream end(eV)

Generally, the reference energy is constant throughout an element so that %value(E_tot_start$ =
%value(E_tot$ and %value(p0c_start$ = %value(p0c$. Exceptions are elements of type:

custom,
em_field,
hybrid, or
lcavity

In any case, the starting %value(E_tot_start$ and %value(p0c_start$ values of a given element will
be the same as the ending %value(E_tot$ and %value(p0c$ energies of the previous element in the
lattice.

The reference time and reference transit time is stored in
ele%ref_time ! Ref time at downstream end
ele%value(delta_ref_time$)

The reference orbit for computing the reference energy and time is stored in
ele%time_ref_orb_in ! Reference orbit at upstream end
ele%time_ref_orb_out ! Reference orbit at downstream end

Generally ele%time_ref_orb_in is the zero orbit. The exception comes when an element is a super_slave.
In this case, the reference orbit through the super_slaves of a given super_lord is constructed to be con-
tinuous. This is done for consistency sake. For example, to ensure that when a marker is superimposed
on top of a wiggler the reference orbit, and hence the reference time, is not altered.

group (§4.25), overlay (§4.40), and super_lord elements inherit the reference from the last slave in
their slave list (§32.5). For super_lord elements this corresponds to inheriting the reference energy of
the slave at the downstream end of the super_lord. For group and overlay elements a reference energy
only makes sense if all the elements under control have the same reference energy.

Additionally, photonic elements like crystal, capillary, mirror and multilayer_mirror elements
have an associated photon reference wavelength

ele%value(ref_wavelength$) ! Meters.
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37.7 Global Common Structures

There are two common variables used by Bmad for communication between routines. These are
bmad_com, which is a bmad_common_struct structure, and global_com which is a global_common_struct
structure. The bmad_com structure is documented in Section §11.4.

The global_common_struct is meant to hold common parameters that should not be modified by the
user.

type global_common_struct
logical mp_threading_is_safe = T ! MP threading safe?
logical exit_on_error = T ! Exit program on error?

end type

A global variable global_com is defined in the sim_utils library:
type (global_common_struct), save :: global_com

And various routines use the settings in global_com.

%mp_threading_is_safe
Toggle to prevent MP threading optimizations from being done. See Sec. §37.8 for more details.

%exit_on_error
The %exit_on_error component tell a routine if it is OK to stop a program on a severe error.
Stopping is generally the right thing when a program is simply doing a calculation and getting a
wrong answer is not productive. In control system programs and in interactive programs like Tao,
it is generally better not to stop on an error.

37.8 Parallel Processing

Bmad was initially developed without regard to parallel processing. When a demand for multithreading
capability arose, Bmad was modified to meet the need and uses both MP (Multi-Processing) and MPI
(Message Passing Interface) type threading. And sometimes both will be used within the same program.

The general rule at present is that Bmad can be run multi-threaded as long as either lattice parameters
are not varied or an array of lattices is used, one for each thread. Thus multi-threading with MPI is
generally thread safe since, by default, different MPI threads do not share memory. With MP, things
are more complicated. For example, tracking a particle through a lattice is generally thread safe with
MP. The exception is if there are ramper (§4.44) elements since ramping involves the modifying lattice
element parameters while tracking and is thus not MP thread safe. Another exception is that PTC code
(§28) is not thread safe.

In order to signal routines that have MP code whether it is safe to using threading, there is the global
switch global_com%mp_threading_is_safe. The default is True.
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Chapter 38

PTC/FPP Programming

The PTC/FPP library of Étienne Forest handles Taylor maps to any arbitrary order. this is also
known as Truncated Power Series Algebra (TPSA). The core Differential Algebra (DA) package used by
PTC/FPP was developed by Martin Berz[Berz89]. The PTC/FPP code is interfaced to Bmad so that
calculations that involve both Bmad and PTC/FPP can be done in a fairly seamless manner.

FPP
The “Fully Polymorphic Package” (FPP) library implements Differential Algebra (DA) for the ma-
nipulation of Taylor maps. Thus in FPP you can define a Hamiltonian and then generate the
Taylor map for this Hamiltonian. FPP is very general. It can work with an arbitrary number of
dimensions. FPP is purely mathematical in nature. It has no knowledge of accelerators, magnetic
fields, particle tracking, Twiss parameters, etc.

PTC
The “Polymorphic Tracking Code” PTC library is for accelerator simulation. It uses FPP as a back
end for calculating such things as one turn maps.

PTC is used by Bmad when constructing Taylor maps and when the tracking_method §6.1) is set to
symp_lie_ptc. All Taylor maps above first order are calculated via PTC. No exceptions.

For information on using PTC within Bmad, see Chapter §28. For more information on PTC/FPP in
general the PTC/FPP manual[Forest02].

38.1 Phase Space

PTC uses different longitudinal phase space coordinates compared to Bmad. Bmad’s phase space coor-
dinates are (§16.4.2)

(x, px, y, py, z, pz) (38.1)

In PTC one can choose between several different coordinate systems. The one that Bmad uses is

(x, px, y, py, pt, c∆t) (38.2)

where
pt =

∆E

cP0
(38.3)
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This choice of phase space is set in set_ptc. Specifically, the PTC global variable DEFAULT, which is of
type internal_states, has the %time switch set to True.

vec_bmad_to_ptc and vec_ptc_to_bmad are conversion routines that translate between the two. Actu-
ally there are a number of conversion routines that translate between Bmad and PTC structures. See
§43.33 for more details.

38.2 PTC Initialization

One important parameter in PTC is the order of the Taylor maps. By default Bmad will set this to 3.
The order can be set within a lattice file using the parameter[taylor_order] attribute. In a program
the order can be set using set_ptc. In fact set_ptc must be called by a program before PTC can
be used. bmad_parser will do this when reading in a lattice file. That is, if a program does not use
bmad_parser then to use PTC it must call set_ptc. Note that resetting PTC to a different order
reinitializes PTC’s internal memory so one must be careful if one wants to change the order in mid
program.

38.3 PTC Structures Compared to Bmad’s

Bmad uses a lat_struct structure to hold the information on a machine and a lat_struct has an
array of branch_structs (the %branch(:) component) with each branch_struct holding an array
of ele_structs (the %ele(:) component). The ele_struct holds the information on the individual
elements. An ele_struct holds information about both the physical element and the reference orbit
through it.

PTC has a somewhat different philosophy as illustrated in Fig. 38.1. A PTC mad_universe structure
is very roughly equivalent to a Bmad lat_struct. That is, both structures can contain the description
for an entire accelerator complex. Note that it is standard in PTC to use two mad_universe structures
called m_u and m_t. These two are defined globally. The difference between m_u and m_t is that m_u is
used as a bookkeeping device for convenient accessing of all lattice elements. On the other hand, m_t
contains the layouts that can be used for tracking.

equivalent to a Bmad branch_struct. A layout has a pointer to a linked list of fibre structures. Each
fibre has a pointer to a magnet structure which holds the information about the physical element and
each fibre holds information about the reference orbit through the element.

With PTC, The top level structure mad_universe has two components called %first and %last which
are pointers to the ends of an array of layout_array structures. Each layout_array holds a layout
structure. A layout structure has pointers to the previous and next layouts making a linked list
of layouts indicated by the horizontal arrows. Each layout has pointers to a linked list of fibre
structures. The fibre structures represent the reference trajectory through an element. Each fibre
structure has a pointer to a element and an elementp structures which represent the physical element.
With Bmad, the lat_struct roughly corresponds to the PTC layout_array(:), the branch_struct
roughly corresponds to the PTC layout and the element_struct roughly corresponds to the PTC
fibre, element and elementp structures.



38.4. VARIABLE INITIALIZATION AND FINALIZATION 535

mad_universe

magnet

lat_struct

BmadPTC

fibre

layout branch_struct

element_struct

%start %end

%end%start

%branch(:)

%ele(:)

Figure 38.1: Simplified diagram showing the organization of the major PTC structures involved in
defining a lattice contrasted with Bmad.

38.4 Variable Initialization and Finalization

PTC variables must be initialized and finalized. This is done with thealloc() and kill() routines. In
addition, the real_8_init routine can initialize a real_8 array:

type (real_8) y8(6)
...
call real_8_init (y8)
call kill (y8)

38.5 Correspondence Between Bmad Elements and PTC Fibres

.

When a PTC layout is created from a Bmad lat_struct instance using the routine lat_to_ptc_-
layout, the correspondence between the Bmad elements and the PTC fibres is maintained through the
ele%ptc_fibre pointer. The following rules apply:

1. There will be marker fibres at the beginning and end of the layout. The beginning fibre will
correspond to branch%ele(0). The end fibre will not have a corresponding Bmad element.

2. Generally there will be a one-to-one correspondence between fibres and branch%ele elements.
The exception is where a “hard edge” model is used for tracking. In this case, there will be three
fibres for the Bmad element: Two drift fibres with a fibre of the appropriate type in between.
In this case, ele%ptc_fibre will point to the last (drift) fibre.

Remember: The attributes like reference energy, etc. for a Bmad ele_struct instance are referenced
to the exit end of the element. For PTC the reference edge for a fibre is the entrance end.
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38.6 Taylor Maps

FPP stores its real_8 Taylor maps in such a way that it is not easy to access them directly to look at
the particular terms. To simplify life, Étienne has implemented the universal_taylorstructure:

type universal_taylor
integer, pointer :: n ! Number of coefficients
integer, pointer :: nv ! Number of variables
real(dp), pointer :: c(:) ! Coefficients C(N)
integer, pointer :: j(:,:) ! Exponents of each coefficients J(N,NV)

end type

Bmad always sets nv = 6. Bmad overloads the equal sign to call routines to convert between Étienne’s
real_8 Taylor maps and universal_taylor:

type (real_8) tlr(6) ! Taylor map
type (universal_taylor) ut(6) ! Taylor map
...
tlr = ut ! Convert universal_taylor -> real_8
ut = tlr ! Convert real_8 -> universal_taylor

38.7 Patches

There is a significant difference between how patches are treated in PTC and Bmad. In PTC, a patch
is just though of as a coordinate transformation for propagating a particle from one fibre to the next.
As such, the patch is part of a fibre. That is, any fibre representing tracking through quadrupoles,
bends, etc. will have patches for the entrance and exit ends of the fibre.

With Bmad, on the other hand, a patch is a “first class” element on par with all other elements be they
quadrupoles, bends, etc. When translating a patch from Bmad to PTC, the patch is represented in
PTC as a marker element with a patch at the exit end.

38.8 Number of Integration Steps & Integration Order

“Drift like” elements in PTC will use, by default, only one integration step. Bmad uses the default when
translating from Bmad lattice elements to PTC fibres. The Bmad lattice elements that are drift like are:

drift
ecollimator
instrument
monitor
pipe
rcollimator

When tracking, there is a trade-off between step size and integrator order. Higher order means fewer
steps are needed to get the same accuracy. But one higher order step is computationally more intensive
then one lower order step so what is the optimum order and number of steps is dependent upon various
factors like magnet strength and how fast the field is varying. Generally, when the field is varying, such
as in a wiggler, lower order and more steps are favored. Also spin tracking is always 2nd order in PTC.
So going to higher order for the orbital tracking with less steps will cause the spin tracking to be less
accurate.
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The way PTC “resplitting” routines work is that, for a given element, they start by assuming that the
tracking will be done using a 2nd order integrator, They then compute the number of steps needed based
upon the electric and magnetic field strengths. This number is compared to a crossover limit point here
named C1. If the number of steps is less than or equal to C1 then the resplitting routine stops and
tracking will thereafter be done with a 2nd order integrator with the calculated number of steps. On the
other hand, if the number of steps is greater than C1, the resplitting routine will redo the calculation
assuming 4th order integration. With 4th order integration, the number of calculated steps will compared
to a different crossover limit point here called C2. Again, if the number of steps is less than or equal
to C2, the routine will assign 4th order tracking to the element. Otherwise, the routine will assign 6th
order tracking to the element with an appropriate number of steps.

The default crossover limit points are

[C1, C2] = [30, 60] For wiggler type elements.
[C1, C2] = [4, 18] For all other elements.

The greater number for wigglers is a reflection of the fact that the wiggler field is not constant.

38.9 Creating a PTC layout from a Bmad lattice

For a programmer, it is sometimes useful to feed a Bmad lattice into PTC and then use PTC for all the
calculations. As an example of how to do this, the following minimal program creates a PTC layout
from a Bmad lattice:

use pointer_lattice, dummy => lat
use ptc_layout_mod, dum1 => dp
implicit none
type (lat_struct), target :: lat
type(layout), pointer:: als
!
call bmad_parser (’lat.bmad’, lat)
call lat_to_ptc_layout (lat, .true.)
als => lat%branch(0)%ptc%m_t_layout

38.10 Internal_State

The internal_state structure looks like:
type internal_state

integer totalpath ! total time or path length is used
logical(lp) time ! Time is used instead of path length
logical(lp) radiation ! Radiation damping (but not excitation) is turned on
logical(lp) nocavity ! Cavity is turned into a drift
logical(lp) fringe ! fringe fields are turned on (mainly for quadrupoles)
logical(lp) stochastic ! Random Stochastic kicks to x(5)
logical(lp) envelope ! Stochastic envelope terms tracked in probe_8
logical(lp) para_in ! If true, parameters in the map are included
logical(lp) only_4d ! REAL_8 Taylor in (x,p_x,y,p_y)
logical(lp) delta ! REAL_8 Taylor in (x,p_x,y,p_y,delta)
logical(lp) spin ! Spin is tracked
logical(lp) modulation ! One modulated family tracked by probe



538 CHAPTER 38. PTC/FPP PROGRAMMING

logical(lp) only_2d ! REAL_8 Taylor in (x,p_x)
logical(lp) full_way !

end type internal_state
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OPAL

OPAL (Object Oriented Parallel Accelerator Library) is a tool for charged-particle optic calculations in
large accelerator structures and beam lines including 3D space charge. OPAL is built from first principles
as a parallel application, OPAL admits simulations of any scale: on the laptop and up to the largest High
Performance Computing (HPC) clusters available today. Simulations, in particular HPC simulations,
form the third pillar of science, complementing theory and experiment.

OPAL includes various beam line element descriptions and methods for single particle optics, namely
maps up to arbitrary order, symplectic integration schemes and lastly time integration. OPAL is based
on IPPL (Independent Parallel Particle Layer) which adds parallel capabilities. Main functions inherited
from IPPL are: structured rectangular grids, fields and parallel FFT and particles with the respective
interpolation operators. Other features are, expression templates and massive parallelism (up to 8000
processors) which makes is possible to tackle the largest problems in the field.

The manual can be obtained at
amas.web.psi.ch/docs/opal/

39.1 Phase Space

OPAL uses different longitudinal phase space coordinates compared to Bmad. Bmad’s phase space
coordinates are

(x, px/p0, y, py/p0,−βc(t− t0), (p− p0)/p0) (39.1)

OPAL uses
(x, γβx, y, γβy, z, γβz) (39.2)

convert_particle_coordinates_s_to_t and convert_particle_coordinates_s_to_t are conversion
routines . . .
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Chapter 40

C++ Interface

To ease the task of using C++ routines with Bmad, there is a library called cpp_bmad_interface which
implements a set of C++ classes in one–to–one correspondence with the major Bmad structures. In
addition to the C++ classes, the Bmad library defines a set of conversion routines to transfer data values
between the Bmad Fortran structures and the corresponding C++ classes.

The list of all classes is given in the file
cpp_bmad_interface/include/cpp_bmad_classes.h

The general rule is that the equivalent class to a Bmad structure named xxx_struct will be named
CPP_xxx. Additionally, for each Bmad structure, there is a opaque class named Bmad_xxx_class
for use in the translation code discussed below. The names of these opaque classes have the form
Bmad_xxx_class and are used to define pointer instances in routine argument lists.

40.1 C++ Classes and Enums

Generally, The C++ classes have been set up to simply mirror the corresponding Bmad structures.
For example, the CPP_lat class has a string component named .version that mirrors the %version
component of the lat_struct structure. There are some exceptions. For example, structure components
that are part of PTC (§1.4) are not present in the classes.

While generally the same component name is used for both the Bmad structures and the C++ classes,
in the case where there is a C++ reserved word conflict, the C++ component name will be different.

A header file bmad_enums.h defines corresponding Bmad parameters for all C++ routine. The Bmad
parameters are in a namespace called Bmad. The convention is that the name of a corresponding C
++ parameter is obtained by dropping the ending $ (if there is one) and converting to uppercase. For
example, electron$ on the Fortran side converts to Bmad::ELECTRON in C++.

All of the C++ class components that are arrays or matrices are zero based so that, for example, the
index of the .vec[i] array in a CPP_coord runs from 0 through 5 and not 1 through 6 as on the
Fortran side. Notice that for a lat_struct the %ele(0:) component has a starting index of zero
so there is no off–by–one problem here. The exception to this rule is the %value(:) array of the
ele_struct which has a span from 1 to num_ele_attrib$. In this case, To keep the conversion of the
of constructs like ele%value(k1$) consistant, the corresponding ele.value[] array has goes from 0 to
Bmad::NUM_ELE_ATTRIB with the 0th element being unused.
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1 subroutine f_test
2 use bmad_cpp_convert_mod
3 implicit none
4
5 interface
6 subroutine cpp_routine (f_lat, c_coord) bind(c)
7 import f_lat, c_ptr
8 type (lat_struct) :: f_lat
9 type (c_ptr), value :: c_coord

10 end subroutine
11 end interface
12
13 type (lat_struct), target :: lattice // lattice on Fortran side
14 type (coord_struct), target :: orbit
15 type (c_ptr), value :: c_lat
16 ! ...
17 call lat_to_c (c_loc(lattice), c_lat) ! Fortran side convert
18 call cpp_routine (c_lat, c_loc(orbit)) ! Call C++ routine
19 call lat_to_f (c_lat, c_loc(lattice)) ! And convert back
20 end subroutine

Figure 40.1: Example Fortran routine calling a C++ routine.

1 #include "cpp_bmad_classes.h"
2
3 using namespace Bmad;
4
5 extern "C" cpp_routine (CPP_lat& c_lat, Bmad_coord_class* f_coord, f_lat) {
6 CPP_coord c_coord;
7 coord_to_c (f_coord, c_coord); // C++ side convert
8 // ... do calculations ...
9 cout << c_lat.name << " " << c_lat.ele[1].value[K1] << endl;

10 coord_to_f (c_coord, f_coord); // And convert back
11 }

Figure 40.2: Example C++ routine callable from a Fortran routine.

40.2 Conversion Between Fortran and C++

A simple example of a Fortran routine calling a C++ routine is shown in Figs. 40.1 and 40.2. Conversion
between structure and classes can happen on either the Fortran side or the C++ side. In this example,
the lat_struct / CPP_lat conversion is on the Fortran side and the coord_struct / CPP_coord is on
the C++ side.

On the Fortran side, the interface block defines the argument list of the C++ routine being called.

On the C++ side, f_coord is an instance of the Bmad_coord_class opaque class.

A C++ routine calling a Fortran routine has a similar structure to the above example. The interface
block in Fig. 40.1 can be used as a prototype. For additional examples of conversion between Fortran
and C++, look at the test code in the directory
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cpp_bmad_interface/interface_test
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Chapter 41

Quick_Plot Plotting

Quick Plot is an interface layer to either the PGPLOT[PGPLOT] or PLPLOT[PLPLOT] plotting libraries.
Whether PGPLOT or PLPLOT is used depends upon an environmental switch set when the Bmad library
and other associated libraries are compiled (§29.2). [Note: Quick Plot lives in the sim_utils library
which comes with the Bmad distribution.] A quick reference guide can be seen online by using the
command getf quick_plot. For identification in a program, all Quick Plot subroutines start with a
qp_ prefix. Also, by convention, all PGPLOT subroutines start with a pg prefix.

545



546 CHAPTER 41. QUICK_PLOT PLOTTING

1 program example_plot
2 use quick_plot
3 integer id
4 character(1) ans
5
6 ! Generate PS and X-windows plots.
7 call qp_open_page ("PS-L") ! Tell \quickplot to generate a PS file.
8 call plot_it ! Generate the plot
9 call qp_close_page ! quick_plot.ps is the file name

10 call qp_open_page ("X", id, 600.0_rp, 470.0_rp, "POINTS")
11 call plot_it
12 write (*, "(a)", advance = "NO") " Hit any class to end program: "
13 accept "(a)", ans
14
15 !----------------------------------------------------------------------
16 contains
17 subroutine plot_it ! This generates the plot
18 real(rp), allocatable :: x(:), y(:), z(:), t(:)
19 real(rp) x_axis_min, x_axis_max, y_axis_min, y_axis_max
20 integer x_places, x_divisions, y_places, y_divisions
21 character(80) title
22 logical err_flag
23 namelist / parameters / title
24
25 ! Read in the data
26 open (1, file = "plot.dat", status = "old")
27 read (1, nml = parameters) ! read in the parameters.
28 call qp_read_data (1, err_flag, x, 1, y, 3, z, 4, t, 5) ! read in the data.
29 close (1)
30
31 ! Setup the margins and page border and draw the title
32 call qp_set_page_border (0.01_rp, 0.02_rp, 0.2_rp, 0.2_rp, "%PAGE")
33 call qp_set_margin (0.07_rp, 0.05_rp, 0.05_rp, 0.05_rp, "%PAGE")
34 call qp_draw_text (title, 0.5_rp, 0.85_rp, "%PAGE", "CT")
35
36 ! draw the left graph
37 call qp_set_box (1, 1, 2, 1)
38 call qp_calc_and_set_axis ("X", minval(x), maxval(x), 4, 8, "ZERO_AT_END")
39 call qp_calc_and_set_axis ("Y", minval(z), maxval(z), 4, 8, "GENERAL")
40 call qp_draw_axes ("X\dlab\u", "\gb(\A)")
41 call qp_draw_data (x, y, symbol_every = 0)
42
43 call qp_save_state (.true.)
44 call qp_set_symbol_attrib (’times’, color = "blue", height = 20.0_rp)
45 call qp_set_line_attrib ("PLOT", color = "blue", style = "dashed")
46 call qp_draw_data (x, z, symbol_every = 5)
47 call qp_restore_state
48
49 ! draw the right graph. "star5_filled" is a five pointed star.
50 call qp_save_state (.true.)
51 call qp_set_box (2, 1, 2, 1)
52 call qp_set_graph_attrib (draw_grid = .false.)
53 call qp_set_symbol_attrib (’star5_filled’, height = 10.0_rp)
54 call qp_set_axis ("Y", -0.1_rp, 0.1_rp, 4, 2)
55 call qp_set_axis (’Y2’, 1.0_rp, 100.0_rp, label = "Y2 axis", &
56 draw_numbers = .true., ax_type = "LOG")
57 call qp_draw_axes ("\m1 \m2 \m3 \m4 \m5 \m6 \m7", "\fsLY\fn", title = "That Darn Graph")
58 call qp_draw_data (x, t, draw_line = .false., symbol_every = 4)
59 call qp_restore_state
60 end subroutine
61 end program

Figure 41.1: Quick Plot example program.
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Figure 41.2: Output of plot_example.f90.

41.1 An Example

An example of how Quick Plot can be used in a program is shown in Fig. 41.1. In the Bmad distribution
a copy of this program is in the file

sim_utils/plot_example/plot_example.f90
The plot_example.f90 program generates the figure shown in Fig. 41.2 from the input file named
plot.dat. The first few lines of the data file are

&parameters
title = "A Tale of Two Graphs"

/

Any junk here...

Col1 Col2 Col3 Col4 Col5
0 0.0000 0.1000 0.0000 -0.0125
1 0.0001 0.0995 0.0101 -0.0127
2 0.0004 0.0980 0.0203 -0.0130
3 0.0009 0.0955 0.0304 -0.0132
...

The program first creates a PostScript file for printing on lines 7 through 9 and then makes an X–
windows plot on lines 10 and 11. The write/accept lines 12 and 13 are to pause the program to prevent
the X-window from immediately closing upon termination of the program.

The heart of the plotting is in the subroutine plot_it beginning on line 17. The namelist read on line
27 shows how both parameters and data can be stored in the same file so that a plotting program can
be automatically told what the appropriate plot labels are. The qp_draw_text call on line 34 draws
the title above the two graphs.

The qp_read_data call on line 28 will skip any “header” lines (lines that do not begin with something
that looks like a number) in the data file. In this instance qp_read_data will read the first, third forth
and fifth data columns and put them into the x, y, z, and t arrays.
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qp_set_page_border, qp_set_box, and qp_set_margin sets where the graph is going to be placed.
qp_set_box(1, 1, 2, 1) on line 37 tells Quick Plot to put the first graph in the left box of a 2 box
grid. The qp_set_margin on line 33 sets the margins between the box and the graph axes.

qp_calc_and_set_axis on lines 38 and 39 are used to scale the axes. "ZERO_AT_END" ensures that the
x–axis starts (or stops) at zero. qp_calc_and_set_axis is told to restrict the number of major divisions
to be between 4 and 8. For the horizontal axis, as can be seen in Fig. 41.2, it chooses 5 divisions.

After drawing the first data curve (the solid curve) in the left graph, the routines qp_set_symbol_attrib
and qp_set_line_attrib are called on lines 44 and 45 to plot the next data curve in blue with a dashed
line style. By default, this curve goes where the last one did: in the left graph. To keep the setting of the
line and symbol attributes from affecting other plots the routines qp_save_state and qp_restore_state
on lines 43 and 47 are used. qp_save_state saves the current attributes in an attribute stack. qp_-
restore_state restores the saved attributes from the attribute stack. qp_draw_axes is called on line 40
to draw the x and y-axes along, and qp_draw_data is called on lines 41 and 46 to draw the two data
curves.

Lines 50 through 60 draw the third curve in the right hand graph. The qp_set_axis call on lines 55/56
sets a log scale for the y2 (right hand) axis. The syntax of the string arguments of qp_draw_axes in lines
40 and 57/58 comes from PGPLOT and allows special symbols along with subscripts and superscripts.

41.2 Plotting Coordinates

Quick Plot uses the following concepts as shown in Fig. 41.3
PAGE -- The entire drawing surface.
BOX -- The area of the page that a graph is placed into.
GRAPH -- The actual plotting area within the bounds of the axes.

In case you need to refer to the PGPLOT routines the correspondence between this and PGPLOT is:
QUICK_PLOT PGPLOT
---------- ------
PAGE VIEW SURFACE
BOX No corresponding entity.

x-axis

Page

Box

Box

Box

Graph
y-axis

Figure 41.3: A Graph within a Box within a Page.
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GRAPH VIEWPORT and WINDOW
Essentially the VIEWPORT is the region outside of which lines and symbols will be clipped (if clipping
is turned on) and the WINDOW defines the plot area. I’m not sure why PGPLOT makes a distinction,
but VIEWPORT and WINDOW are always the same region.

qp_open_page determines the size of the page if it is settable (like for X–windows). The page is divided
up into a grid of boxes. For example, in Fig. 41.3, the grid is 1 box wide by 3 boxes tall. The border
between the grid of boxes and the edges of the page are set by qp_set_page_border. The box that
the graph falls into is set by qp_set_box. The default is to have no margins with 1 box covering the
entire page. The qp_set_margin routine sets the distance between the box edges and the axes (See the
PGPLOT manual for more details).

41.3 Length and Position Units

Typically there is an optional units argument for Quick Plot routines that have length and/or position
arguments. For example, using getf one can see that the arguments for qp_draw_rectangle are

Subroutine qp_draw_rectangle (x1, x2, y1, y2, units, color, width, style, clip)
The units argument is a character string which is divided into three parts. The syntax of the units
argument is

unit_type/ref_object/corner
The first part unit_type gives the type of units

"%" -- Percent.
"DATA" -- Data units. (Draw default)
"MM" -- millimeters.
"INCH" -- Inches. (Set default)
"POINTS" -- Printers points. NOT PIXELS. (72 points = 1 inch).

Note: For displays with a resolution of 72 pixels / inch, POINTS corresponds to pixels but many displays
have a higher resolution. The second and third parts give the reference point for a position. The second
part specifies the reference object

"PAGE" -- Relative to the page (Set default).
"BOX" -- Relative to the box.
"GRAPH" -- Relative to the graph (Draw default).

The third part gives corner of the reference object that is the reference point
"LB" -- Left Bottom (Set and Draw default).
"LT" -- Left Top.
"RB" -- Right Bottom.
"RT" -- Right Top.

Notes:

• The DATA unit type, by definition, always uses the lower left corner of the GRAPH as a reference
point.

• For the % unit_type the / between unit_type and ref_object can be omitted.

• If the corner is specified then the ref_object must appear also.

• Everything must be in upper case.

• For some routines (qp_set_margin, etc.) only a relative distance is needed. In this case the
ref_object/corner part, if present, is ignored.
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• The units argument is typically an optional argument. If not present the default units will be
used. There are actually two defaults: The draw default is used for drawing text, symbols, or
whatever. The set default is used for setting margins, and other lengths. Initially the draw default
is DATA/GRAPH/LB and the set default is INCH/PAGE/LB. Use qp_set_parameters to change this.

Examples:
"DATA" -- This is the draw default.
"DATA/GRAPH/LB" -- Same as above.
"DATA/BOX/RT" -- ILLEGAL: DATA must always go with GRAPH/LB.
"%PAGE/LT" -- Percentage of page so (0.0, 1.0) = RT of page.
"%BOX" -- Percentage of box so (1.0, 1.0) = RT of box.
"INCH/PAGE" -- Inches from LB of page.

41.4 Y2 and X2 axes

The top and right axes of a graph are known as X2 and Y2 respectively as shown in Fig. 41.3. Normally
the X2 axis mirrors the X axis and the Y2 axis mirrors the Y axis in that the tick marks and axis numbering
for the X2 and Y2 axes are the same as the X and Y axes respectively. qp_set_axis can be used to disable
mirroring. For example:

call qp_set_axis ("Y2", mirror = .false.) ! y2-axis now independent of y.
qp_set_axis can also be used to set Y2 axis parameters (axis minimum, maximum, etc.) and setting
the Y2 or X2 axis minimum or maximum will, by default, turn off mirroring.

Note that the default is for the X2 and Y2 axis numbering not to be shown. To enable or disable axis
numbering again use qp_set_axis. For example:

call qp_set_axis ("Y2", draw_numbers = .true.) ! draw y2 axis numbers
To plot data using the X2 or Y2 scale use the qp_use_axis routine. For example:

call qp_save_state (.true.)
call qp_use_axis (y = "Y2")
! ... Do some data plotting here ...
call qp_restore_state

41.5 Text

PGPLOT defines certain escape sequences that can be used in text strings to draw Greek letters, etc.
These escape sequences are given in Table 41.2.

PGPLOT defines a text background index:
-1 - Transparent background.
0 - Erase underlying graphics before drawing text.

1 to 255 - Opaque with the number specifying the color index.

41.6 Styles

Symbolic constants have been defined for Quick Plot subroutine arguments that are used to choose
various styles. As an example of this is in lines 44 and 45 of Fig. 41.1. The numbers in the following are
the PGPLOT equivalents.

The Quick Plot line styles are:
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PGPlot

PLPlot

Figure 41.4: Continuous colors using the function pg_continuous_color in PGPlot and PLPlot. Typical
usage: call qp_routine(..., color = pg_continuous_color(0.25_rp), ...)

1 -- solid$ Solid
2 -- dashed$ Dashed
3 -- dash_dot$ Dash--dot
4 -- dotted$ Dotted
5 -- dash_dot3$ Dash--dot--dot--dot

The color styles in Quick Plot are:
0 -- White$ (actually the background color)
1 -- Black$ (actually the foreground color)
2 -- Red$
3 -- Green$
4 -- Blue$
5 -- Cyan$
6 -- Magenta$
7 -- Yellow$
8 -- Orange$
9 -- Yellow_Green$

10 -- Light_Green$
11 -- Navy_Blue$
12 -- Purple$
13 -- Reddish_Purple$
14 -- Dark_Grey$
15 -- Light_Grey$

Integers from [17, (largest integer)] represent continuous colors. The function pq_continuous_color
maps [0.0, 1.0] to these integers. See Fig. 41.4.

The fill styles are:
1 -- solid_fill$
2 -- no_fill$
3 -- hatched$
4 -- cross_hatched$

The symbol types are:
0 -- square_sym$
1 -- dot_sym$
2 -- plus_sym$
3 -- times_sym$
4 -- circle_sym$
5 -- x_sym$
7 -- triangle_sym$
8 -- circle_plus_sym$
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9 -- circle_dot_sym$
10 -- square_concave_sym$
11 -- diamond_sym$
12 -- star5_sym$
13 -- triangle_filled_sym$
14 -- red_cross_sym$
15 -- star_of_david_sym$
16 -- square_filled_sym$
17 -- circle_filled_sym$
18 -- star5_filled_sym$

Beside this list, PGPLOT maps other numbers onto symbol types. The PGPLOT list of symbols is:
-3 ... -31 - a regular polygon with abs(type) edges.

-2 - Same as -1.
-1 - Dot with diameter = current line width.

0 ... 31 - Standard marker symbols.
32 ... 127 - ASCII characters (in the current font).

E.G. to use letter F as a marker, set type = ICHAR("F").
> 127 - A Hershey symbol number.

Table 41.1 shows some of the symbols and there associated numbers. Note: At constant height PGPLOT
gives symbols of different size. To partially overcome this, Quick Plot scales some of the symbols to give
a more uniform appearance. Table 41.1 was generated using a height of 40 via the call

call qp_draw_symbol (0.5_rp, 0.5_rp, "%BOX", k, height = 40.0_rp)

Table 41.3 shows how the character string "\g<r>", where "<r>" is a Roman letter, map onto the Greek
character set.
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Table 41.1: Plotting Symbols at Height = 40.0
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\u Start a superscript or end a subscript
\d Start a subscript or end a superscript. \u and \d must always be used in pairs
\b Backspace (i.e., do not advance text pointer after plotting the previous character)
\fn Switch to Normal font (1)
\fr Switch to Roman font (2)
\fi Switch to Italic font (3)
\fs Switch to Script font (4)
\\ Backslash character (\)
\x Multiplication sign (×)
\. Centered dot (·)
\A Angstrom symbol (Å)
\gx Greek letter corresponding to roman letter x
\mn \mnn Graph marker number n or nn (1-31)

\(nnnn)

Character number nnnn (1 to 4 decimal digits) from the Hershey character set;
the closing parenthesis may be omitted if the next character is neither a digit
nor “)”. This makes a number of special characters (e.g., mathematical, musical,
astronomical, and cartographical symbols) available.

Table 41.2: PGPLOT Escape Sequences.

Roman

Greek

Roman

Greek

Roman

Greek

Roman

Greek

Table 41.3: Conversion for the string "\g<r>" where "<r>" is a Roman character to the corresponding
Greek character.
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41.7 Structures

Quick Plot uses several structures to hold data. The structure that defines a line is a qp_line_struct
type qp_line_struct

integer width ! Line width. Default = 1
character(16) color ! Line color. Default = "black"
character(16) pattern ! line pattern. Default = "solid"

end type

The qp_symbol_struct defines how symbols are drawn
type qp_symbol_struct

character(16) type ! Default = "circle_dot"
real(rp) height ! Default = 6.0 (points)
character(16) color ! Default = "black"
character(16) fill ! Default = "solid_fill"
integer line_width ! Default = 1

end type

The qp_axis_struct defines how axes are drawn
type qp_axis_struct

character(80) label ! Axis label.
real(rp) min ! Axis range left/bottom number.
real(rp) max ! Axis range right/top number.
real(rp) number_offset ! Offset in inches of numbering from the axis line.

! Default = 0.05
real(rp) label_offset ! Offset in inches of the label from the numbering.

! Default = 0.05
character(16) label_color ! Default = "black"
real(rp) major_tick_len ! Length of the major ticks in inches. Def = 0.10
real(rp) minor_tick_len ! Length of the minor ticks in inches. Def = 0.06
integer major_div ! Number of major divisions. Default = 5
integer major_div_nominal ! Nominal value. Def = 5.
integer minor_div ! Number of minor divisions. 0 = auto-choose. Default = 0
integer minor_div_max ! Maximum number for auto choose. Default = 5
integer places ! Places after the decimal point. Default = 0
character(16) type ! "LINEAR" (default), "LOG", or "CUSTOM".
character(16) bounds ! "GENERAL" (default), "ZERO_AT_END", etc.
integer tick_side ! +1 = draw to the inside (def), 0 = both, -1 = outside.
integer number_side ! +1 = draw to the inside, -1 = outside (default).
logical draw_label ! Draw the label? Default = True.
logical draw_numbers ! Draw the numbering? Default = True.

end type

The %bounds parameter sets how axis min and max values are calculated. Possible settings are:
"ZERO_AT_END" ! Min or max value is set to zero.
"ZERO_SYMMETRIC" ! Min and max chosen so that max = -min.
"GENERAL" ! No restrictions.
"EXACT" ! The inputted data min/max is used.

Finally, the qp_plot_struct is a container for the axis that make up a plot
type qp_plot_struct

character(80) :: title = " "
type (qp_axis_struct) x, y, x2, y2
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type (qp_axis_struct), pointer :: xx, yy ! Pointer to axes used for plotting.
logical :: draw_box = .true.
logical :: draw_title = .true.
logical :: draw_grid = .true.
logical :: x2_mirrors_x = .true.
logical :: y2_mirrors_y = .true.
logical :: xx_points_to_x
logical :: yy_points_to_y

end type
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HDF5

HDF5, which stands for “Hierarchical Data Format” version 5[HDF5], is a set of file formats designed to
store and organize large amounts of data. HDF5 has been developed by scientists from a number of
institutions including the National Center for Supercomputing Applications, the University of Illinois
at Urbana-Champaign, and Sandia National Laboratories. Tools for viewing and editing HDF5 files are
available from the HDF Group[HDF5]. Programs include h5dump and HDFView which can be used to
directly view files. Interfaces so that HDF5 files can accessed via Java or Python also exist.

Bmad uses HDF5 for storing beam particle (positions, spin, etc.) and grid_field (§5.16.4) data. Storage
details are given in sections §42.1 and §42.2 respectively. While HDF5 defines how data is formatted, HDF5
does not define the syntax for how data is to be stored. For that, Bmad uses the syntax defined by the
Beam Physics extension to the openPMD standard[OpenPMD]. To understand the rest of this chapter,
the reader should familiarize themselves with the openPMD and Beam Physics standards.

42.1 HDF5 Particle Beam Data Storage

The code for reading and writing beam data to/from HDF5 files is contained in the routines hdf5_-
read_beam and hdf5_write_beam.

As per the openPMD/Beam Physics standard, particle beam data is stored in a tree structure within a
data file. The root “group” (tree node) for each bunch of the beam has the path within the file:

/data/%T/particles/

where %T is an integer.

For any bunch, parameters (“attributes”) stored in the bunch root group are:
speciesType ! The name of the particle species using the SpeciesType syntax.
totalCharge ! Total bunch charge.
chargeLive ! Charge of live particles.
numParticles ! Number of particles.

The SpeciesType syntax defined by the SpeciesType extension to the openPMD standard is similar to
the Bmad standard (§10.1) but there are differences. For one, the SpeciesType standard does not have
an encoding for the charge state of atoms and molecules. Another difference is that for fundamental
particles the names are case sensitive while for Bmad they are not (Note that atom and molecule names
in Bmad are case sensitive).

557
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What per-particle data is stored is determined by whether the bunch particles are photons or not. The
following particle parameters are common for both types:

Beam Physics Parameter Bmad Equivalent Notes

time -%vec(5) / (c %beta) time - ref_time. See Eq. (16.28)
timeOffset %t - time (beam physics) reference time
totalMomentumOffset %p0c
sPosition %s See Fig. 16.2
weight %charge Macro bunch charge
branchIndex %ix_branch
elementIndex %ix_ele
locationInElement %location See below
particleStatus %state See the %state table in §36.1

The Bmad Equivalent column gives the conversion between the Beam Physics parameters and the
coord_struct (§36.1) structure components (the coord_struct structure contains the particle position
information). Parameters with a “%” suffix are coord_struct components and %vec(5) corresponds to
the phase space z coordinate. The particleState is an integer which corresponds to the coord_struct
%state component. A value of 1 indicates that the particle is alive (corresponding to the value of
alive$) and any other value indicates that the particle is dead.

The locationInElement Beam Physics parameter is related to the coord_struct %location parameter
via the following transformation:

locationInElement Value %location Value

-1 upstream_end$
0 inside$
1 downstream_end$

For photons, additional per-particle data is:

Beam Physics Parameter Bmad Equivalent

velocity/x, y, z (%vx, %vy, %vz)
position/x, y, z (%x, %y, %z)
pathLength %path_len
photonPolarizationAmplitude/x, y %field
photonPolarizationPhase/x, y %phase

For clarity’s sake, the %vec(1) through %vec(6) phase space coordinate components in the coord_struct
have been replaced by %x, %vx, . . ., %z, %vz in the above table

For non-photons, additional per-particle data is:

Beam Physics Parameter Bmad Equivalent

momentum/x, y, z %p0c×(%px, %py, sqrt((1 + %pz)2 - %px2 - %py2))
totalMomentum %p0c×%pz
position/x, y, z (%x, %y, 0)
spin/x, y, z %spin
chargeState Derived from %species
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For clarity’s sake, the %vec(1) through %vec(6) phase space coordinate components in the coord_struct
have been replaced by %x, %px, . . ., %z, %pz in the above table. Notice that the Beam Physics z position
(not to be confused with phase space z) is always zero by construction as shown in Fig. 16.2.

42.2 HDF5 Grid_Field Data Storage

The code for reading and writing grid_field data to/from HDF5 files is contained in the routines
hdf5_read_grid_field and hdf5_write_grid_field.

As per the openPMD/Beam Physics standard, grid_field (§5.16.4 data is stored in a tree structure
within a data file. The root “group” (tree node) for each grid_field has the path within the file:

/ExernalFieldmesh/%T/
where %T is an integer.

For any grid_field, parameters stored in the grid_field root group are:

Parameter in File Bmad Equivalent

gridGeometry %geometry
masterParameter %master_parameter
componentFieldScale %field_scale

fieldScale
ß

%field_scale×master param value If master parameter set.
%field_scale Otherwise.

harmonic %harmonic

RFphase
ß

%harmonic×%phi0_fieldmap For lcavity elements
%harmonic×(0.25 - %phi0_fieldmap) For all others.

eleAnchorPt %ele_anchor_pt
gridOriginOffset %r0
gridSpacing %dr
interpolationOrder %interpolation_order
gridLowerBound %ptr%pt lower bound
gridSize %ptr%pt size
fundamentalFrequency elegridCurvatureRadius ele

The Bmad Equivalent column gives the conversion between the Beam Physics parameters and the
grid_field_struct structure components (that have a “%” prefix). The value for gridCurvatureRadius
is set to the value of rho of the associated lattice element if %curved_ref_frame is True.

Notice that the masterParameter attribute is not part of the standard. If not present, which could
happen if a file is created by non-Bmad code, the default is a blank string indicating no master parameter.
If masterParameter is set in the data file, there is a potential problem in that it may not be possible
to calculate %field_scale if the value of the master parameter is not equal to the value when the data
was written. To get around this, if the non-standard masterParameter is present, the value of the non-
standard componentFieldScale (which has a default value of one) will be used to set %field_scale and
the fieldScale parameter will be ignored. If masterParameter is not present, componentFieldScale
is ignored and %field_scale is set from the value of fieldScale.

When reading a data file, the setting of grid_field%field_type is determined by what data is stored
in the file. If both electric and magnetic field data is present, %field_type is set to mixed$. Otherwise,
%field_type is set to magnetic$ if magnetic field data is present or electric$ if electric field data is
present.
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The correspondence between the gridGeometry parameter and the grid_field%geometry component
is

gridGeometry Value %geometry Value

"rectangular" xyz$
"cylindrical" rotationally_symmetric_rz$



Chapter 43

Bmad Library Routine List

Below are a list of Bmad and sim_utils routines sorted by their functionality. Use the getf and listf
(§29.3) scripts for more information on individual routines. This list includes low level routines that
are not generally used in writing code for a program but may be useful in certain unique situations.
Excluded from the list are very low level routines that are solely meant for Bmad internal use.
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Routine Type Section

Beam: Low Level Routines 43.1
Beam: Tracking and Manipulation 43.2
Branch Handling 43.3
Coherent Synchrotron Radiation (CSR) 43.4
Collective Effects 43.5
Custom and Hook Routines 43.6
Electro-Magnetic Fields 43.7
HDF Read/Write 43.8
Helper Routines: File, System, and IO 43.9
Helper Routines: Math (Except Matrix) 43.10
Helper Routines: Matrix 43.11
Helper Routines: Miscellaneous 43.12
Helper Routines: String Manipulation 43.13
Helper Routines: Switch to Name 43.14
Inter-Beam Scattering (IBS) 43.15
Lattice: Informational 43.18
Lattice: Element Manipulation 43.16
Lattice: Geometry 43.17
Lattice: Low Level Stuff 43.19
Lattice: Manipulation 43.20
Lattice: Miscellaneous 43.21
Lattice: Nametable 43.22
Lattice: Reading and Writing Files 43.23
Matrices 43.24
Matrix: Low Level Routines 43.25
Measurement Simulation Routines 43.26
Multipass 43.27
Multipoles 43.28
Optimizers (Nonlinear) 43.29
Overload Equal Sign 43.30
Particle Coordinate Stuff 43.31
Photon Routines 43.32
PTC Interface Routines 43.33
Quick Plot 43.34
Spin 43.35
Transfer Maps: Routines Called by make_mat6 43.36
Transfer Maps: Complex Taylor Maps 43.37
Transfer Maps: Taylor Maps 43.38
Transfer Maps: Driving Terms 43.39
Tracking: Tracking and Closed Orbit 43.40
Tracking: Low Level Routines 43.41
Tracking: Mad Routines 43.42
Tracking: Routines Called by track1 43.40
Twiss and Other Calculations 43.44
Twiss: 6-Dimensional 43.45
Wakefields 43.46
C/C++ Interface 43.47
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43.1 Beam: Low Level Routines

The following helper routines are generally not useful for general use.

bend_edge_kick (ele, param, particle_at, orb, mat6, make_matrix, track_spin)
Subroutine to track through the edge field of an sbend. Reverse tracking starts with the particle
just outside the bend and

init_spin_distribution (beam_init, bunch, ele)
Initializes a spin distribution according to init_beam%spin

order_particles_in_z (bunch)
Routine to order the particles longitudinally in terms of decreasing %vec(5). That is from large z
(head of bunch) to small z.

track1_bunch (bunch, ele, err, centroid, direction)
Routine to track a bunch of particles through an element.

track1_bunch_hom (bunch, ele, direction)
Routine to track a bunch of particles through an element.

43.2 Beam: Tracking and Manipulation

See §36.16 for a discussion of using a collection of particles to simulate a bunch.

bbi_kick (x_norm, y_norm, r, kx, ky)
Routine to compute the normalized kick due to the beam-beam interaction using the normalized
position for input.

calc_bunch_params (bunch, bunch_params, error, print_err, n_mat)
Finds all bunch parameters defined in bunch_params_struct, both normal-mode and projected

calc_bunch_params (bunch, bunch_params, plane, slice_center,
slice_spread, err, print_err)

Finds all bunch parameters for a slice through the beam distribution.

calc_bunch_sigma_matrix (particle, charge, bunch_params)
Routine to find the sigma matrix elements of a particle distribution.

calc_emit_from_beam_init (beam_init, ele, species)
Routine to calculate the emittances from the beam_init structure.

calc_emittances_and_twiss_from_sigma_matrix(sigma_mat, gamma,
bunch_params, error, print_err, n_mat)

Routine to calc emittances and Twiss function from a beam sigma matrix.

init_beam_distribution (ele, param, beam_init, beam, err_flag, modes)
Routine to initialize a distribution of particles matched to the Twiss parameters, centroid position,
and Energy - z correlation

init_bunch_distribution (ele, param, beam_init, ix_bunch, bunch, err_flag, modes)
Routine to initialize either a random or tail-weighted distribution of particles.
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read_beam_file (file_name, beam, beam_init, err_flag, ele)
Subroutine to read in a beam definition file.

reallocate_beam (beam, n_bunch, n_particle, save)
Routine to reallocate memory within a beam_struct.

reallocate_bunch (bunch, n_particle)
Subroutine to reallocate particles within a bunch_struct.

track_beam (lat, beam, ele1, ele2, err, centroid, direction)
Routine to track a beam of particles from the end of lat%ele(ix1) Through to the end of lat%ele(ix2).

track_bunch (lat, bunch, ele1, ele2, err, centroid, direction)
Subroutine to track a particle bunch from the end of ele1 Through to the end of ele2. Both must
be in the same lattice branch.

track_bunch_time (bunch, ele_in, t_end, s_end, dt_step, extra_field)
Routine to track a particle bunch for a given time step (or if the ! particle position exceeds s_end).

write_beam_file (file_name, beam, new_file, file_format, lat)
Routine to write a beam file.

write_beam_floor_positions (file_name, beam, ele, new_file)
Routine to write a file of beam positions in global floor coordinates.

43.3 Branch Handling Routines

allocate_branch_array (lat, upper_bound)
Routine to allocate or re-allocate an branch array. The old information is saved.

transfer_branch (branch1, branch2)
Routine to set branch2 = branch1. This is a plain transfer of information not using the overloaded
equal.

transfer_branches (branch1, branch2)
Routine to set branch2 = branch1. This is a plain transfer of information not using the overloaded
equal.

43.4 Coherent Synchrotron Radiation (CSR)

csr_bin_particles (ele, particle, csr, err_flag)
Routine to bin the particles longitudinally in s.

csr_bin_kicks (ele, ds_kick_pt, csr, err_flag)
Routine to cache intermediate values needed for the csr calculations.

i_csr (kick1, i_bin, csr) result (i_this)
Routine to calculate the CSR kick integral.
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43.5 Collective Effects

touschek_lifetime (mode, Tl, lat)
Routine to calculate the Touschek lifetime for a lat.

43.6 Custom Routines

apply_element_edge_kick_hook (orb, fringe_info, track_ele, param,
finished, mat6, make_matrix, rf_time)

Routine that can be customized to track through the edge field of an element. This routine is
always called by apply_element_edge_kick.

check_aperture_limit_custom (orb, ele, particle_at, param, err_flag)
Routine to check if an orbit is outside an element’s aperture. Used when ele%aperture_type is
set to custom$

ele_geometry_hook (floor0, ele, floor, finished, len_scale)
Routine that can be customized to calculate the floor position of an element.

ele_to_fibre_hook (ele, ptc_fibre, param)
Routine that can be customized for creating a PTC fibre from a Bmad element. This routine is
always called by ele_to_fibre.

em_field_custom(ele, param, s_rel, orbit, local_ref_frame, field,
calc_dfield, err_flag, calc_potential, use_overlap,
grid_allow_s_out_of_bounds, rf_time, used_eles)

Custom routine for calculating fields.

init_custom (ele, err_flag)
Routine for initializing custom elements or elements that do custom calculations.

make_mat6_custom (ele, param, start_orb, end_orb, err_flag)
Routine for custom calculations of the 6x6 transfer matrices.

radiation_integrals_custom (lat, ir, orb, rad_int1, err_flag)
User supplied routine to calculate the synchrotron radiation integrals for a custom element.

time_runge_kutta_periodic_kick_hook (orbit, ele, param, stop_time, init_needed)
Custom routine to add a kick to a particle at periodic times.

track1_bunch_hook (bunch, ele, err, centroid, direction, finished)
Routine that can be customized for tracking a bunch through a single element.

track1_custom (start_orb, ele, param, end_orb, err_flag, finished, track)
Dummy routine for custom tracking.

track1_postprocess (start_orb, ele, param, end_orb)
Dummy routine for post processing after the track1 routine is done.

track1_preprocess (start_orb, ele, param, err_flag, finished, radiation_included, track)
Dummy routine for pre processing at the start of the track1 routine.
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track1_spin_custom (start, ele, param, end, err_flag, make_quaternion)
Dummy routine for custom spin tracking. This routine needs to be replaced for a custom calcula-
tion.

track1_wake_hook (bunch, ele, finished)
Routine that can be customized for tracking through a wake.

wall_hit_handler_custom (orb, ele, s)
This routine is called by the Runge-Kutta integrator odeint_bmad when a particle hits a wall.

43.7 Electro-Magnetic Fields

em_field_calc (ele, param, s_pos, orbit, local_ref_frame, field, calc_dfield, err_flag,
calc_potential, use_overlap, grid_allow_s_out_of_bounds, rf_time,
used_eles, print_err)

Routine to calculate the E and B fields for an element.

em_field_custom(orbit, ele, param, s1_body, s2_body, err_flag, track, mat6,
make_matrix)

Custom routine for calculating fields.

43.8 HDF Read/Write

hdf5_write_attribute_string(root_id, attrib_name, string, error)
Routine to create an HDF5 attribute whose value is a string.

hdf5_open_file (file_name, action, file_id, error, verbose)
Routine to open an HDF5 file.

hdf5_open_object(root_id, object_name, info, error, print_error) result (obj_id)
Routine to open an existing group or dataset.

hdf5_close_object(obj_id, info)
Routine to close a group or dataset.

hdf5_exists (root_id, object_name, error, print_error) result (exists)
Routine to check if a object with object_name exists relative to root_id.

hdf5_open_group (root_id, group_name, error, print_error) result (g_id)
Routine to open an existing group.

hdf5_open_dataset(root_id, dataset_name, error, print_error) result (obj_id)
Routine to open an existing group or dataset.

hdf5_num_attributes(root_id) result (num)
Routine to return the number of attributes associated with a group or dataset.

hdf5_get_attribute_by_index(root_id, attrib_indx, attrib_id, attrib_name)
Routine to return the ID and name of an attribute given the attribute’s index number. This routine
is useful for looping over all the attributes in a group or dataset.

hdf5_attribute_info(root_id, attrib_name, error, print_error) result (info)
Routine to return information on an attribute given the attribute name and encompassing group.
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hdf5_object_info (root_id, obj_name, error, print_error) result (info)
Routine to get information on an object (group or dataset).

hdf5_read_attribute_int(root_id, attrib_name, attrib_value, error,
print_error, dflt_value)

Routine to read a integer attribute value or array.

hdf5_read_attribute_real(root_id, attrib_name, attrib_value, error,
print_error, dflt_value)

Routine to read a real attribute value or array.

hdf5_read_attribute_alloc_string(root_id, attrib_name, string, error, print_error)
Routine to read a string attribute. Also see: hdf5_read_attribute_string

hdf5_read_attribute_string(root_id, attrib_name, string, error, print_error)
Routine to read a string attribute. Also see: hdf5_read_attribute_alloc_string

hdf5_write_dataset_real(root_id, dataset_name, value, error)
Routine to create a dataset of reals.

hdf5_write_dataset_int(root_id, dataset_name, value, error)
Routine to create a dataset of integers.

hdf5_read_beam (file_name, beam, error, ele, pmd_header)
Routine to read a beam data file.

hdf5_write_grid_field (file_name, ele, g_field, err_flag)
Routine to create an hdf5 file encoding an array of grid_field structures. Note: Conventionally,
the file name should have an ".h5" suffix.

pmd_write_int_to_dataset (root_id, dataset_name, bmad_name, unit, array, error)

pmd_write_int_to_pseudo_dataset(root_id, dataset_name, bmad_name, unit,
value, v_shape, error)

pmd_write_real_to_dataset (root_id, dataset_name, bmad_name, unit, array, error)

pmd_write_real_to_pseudo_dataset (root_id, dataset_name, bmad_name, unit,
value, v_shape, error)

pmd_write_complex_to_dataset (root_id, dataset_name, bmad_name, unit, array, error)

pmd_write_units_to_dataset (root_id, dataset_name, bmad_name, unit, error)

pmd_read_int_dataset (root_id, name, conversion_factor, array, error)

pmd_read_real_dataset (root_id, name, conversion_factor, array, error)

pmd_read_complex_dataset (root_id, name, conversion_factor, array, error)
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hdf5_read_grid_field (file_name, ele, g_field, err_flag, pmd_header, combine)
Routine to read an hdf5 file that encodes an array of grid_field structures.

hdf5_write_beam (file_name, bunches, append, error, lat)
Routine to write particle positions of a beam to an HDF5 binary file.

43.9 Helper Routines: File, System, and IO

append_subdirectory (dir, sub_dir, dir_out, err)
Routine to combine a directory specification with a subdirectory specification to form a complete
directory

cesr_iargc ()
Platform independent function to return the number of command line arguments. Use this with
cesr_getarg.

cesr_getarg (i_arg, arg)
Platform independent function to return the i’th command line argument. Use this with cesr_iargc.

dir_close ()
Routine to close a directory that was opened with dir_open. Also see dir_read.

dir_open (dir_name) result (opened)
Routine to open a directory to obtain a list of its files. Use this routine with dir_read and dir_close.

dir_read (file_name) result (valid)
Routine to get the names of the files in a directory. Use this routine with dir_open and dir_close.

file_suffixer (in_file_name, out_file_name, suffix, add_switch)
Routine to add/replace a suffix to a file name.

get_tty_char (this_char, wait, flush)
Routine for getting a single character from the terminal. Also see: get_a_char

get_a_char (this_char, wait, ignore_this)
Routine for getting a single character from the terminal. Also see: get_tty_char

get_file_time_stamp (file, time_stamp)
Routine to get the "last modified" time stamp for a file.

lunget()
Function to return a free file unit number to be used with an open statement.

milli_sleep (milli_sec)
Routine to pause the program for a given number of milli-seconds.

out_io (...)
Routine to print to the terminal for command line type programs. The idea is that for programs
with a gui this routine can be easily replaced with another routine.

out_io_called (level, routine_name)
Dummy routine for linker. See out_io for more details.

out_io_end ()
Dummy routine for linker. See out_io for more details.
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out_io_line (line)
Dummy routine for linker. See out_io for more details.

output_direct (file_unit, print_and_capture, min_level, max_level, set, get)
Routine to set where the output goes when out_io is called. Output may be sent to the terminal
screen, written to a file, or both. Also can be used to restrict output verbosity.

read_a_line (prompt, line_out, trim_prompt, prompt_color, prompt_bold, history_file)

Routine to read a line of input from the terminal. The line is also add to the history buffer
so that the up-arrow

skip_header (ix_unit, error_flag)
Routine to find the first line of data in a file.

splitfilename(filename, path, basename, is_relative) result (ix_char)
Routine to take filename and splits it into its constituent parts, the directory path and the base
file name.

system_command (line, err_flag)
Routine to execute an operating system command from within the program.

type_this_file (filename)
Routine to type out a file to the screen.

43.10 Helper Routines: Math (Except Matrix)

complex_error_function (wr, wi, zr, zi)
This routine evaluates the function w(z) in the first quadrant of the complex plane.

cross_product (a, b)
Returns the cross product of a x b

linear_fit (x, y, n_data, a, b, sig_a, sig_b)
Routine to fit to y = A + B x

modulo2 (x, amp)
Function to return y = x + 2 * n * amp, n is an integer, such that y is in the interval [-amp, amp].

ran_engine (set, get, ran_state)
Routine to set what random number generator algorithm is used. If this routine is never called
then pseudo_random$ is used.

ran_gauss (harvest)
Routine to return a Gaussian distributed random number with unit sigma.

ran_gauss_converter (set, set_sigma_cut, get, get_sigma_cut, ran_state)
Routine to set what conversion routine is used for converting uniformly distributed random num-
bers to Gaussian distributed random numbers.

ran_seed_put (seed, ran_state, mpi_offset)
Routine to seed the random number generator.

ran_seed_get (seed, ran_state)
Routine to return the seed used for the random number generator.
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ran_uniform (harvest)
Routine to return a random number uniformly distributed in the interval [0, 1]. This routine uses
the same algorithm as ran from

spline_akima (spline, ok)
Given a set of (x,y) points we want to interpolate between the points. This routine computes the
semi-hermite cubic spline developed by akima

spline_evaluate (spline, x, ok, y, dy)
Routine to evaluate a spline at a set of points.

super_ludcmp (a,indx,d, err)
This routine is essentially ludcmp from Numerical Recipes with the added feature that an error
flag is set instead of bombing the program when there is a problem.

43.11 Helper Routines: Matrix

mat_eigen (mat, eigen_val, eigen_vec, error, print_err)
Routine for determining the eigen vectors and eigen values of a matrix.

mat_inverse (mat, mat_inv, ok, print_err)
Routine to take the inverse of a square matrix.

mat_make_unit (mat)
routine to create a unit matrix.

mat_rotation (mat, angle, bet_1, bet_2, alph_1, alph_2)
Routine to construct a 2x2 rotation matrix for translation from point 1 to point 2.

mat_symplectify (mat_in, mat_symp, p0_ratio, r_root)
Routine to form a symplectic matrix that is approximately equal to the input matrix.

mat_symp_error (mat, p0_ratio, err_mat) result (error)
Routine to check the symplecticity of a square matrix

mat_symp_conj (mat) result (mat_conj)
Routine to take the symplectic conjugate of a square matrix.

mat_symp_decouple (t0, stat, u, v,
ubar, vbar, g, twiss1, twiss2, gamma, type_out)

Routine to find the symplectic eigen–modes of the one turn 4x4 coupled transfer matrix T0.

mat_type (mat, nunit, header, num_form, lines, n_lines)
Routine to output matrices to the terminal or to a file

43.12 Helper Routines: Miscellaneous

date_and_time_stamp (string, numeric_month, include_zone)
Routine to return the current date and time in a character string.

err_exit(err_str)
Routine to first show the stack call list before exiting. This routine is typically used when a
program detects an error condition.
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integer_option (integer_default, opt_integer)
Function to return True or False depending upon the state of an optional integer.

is_false (param) result (this_false)
Routine to translate from a real number to a boolian True or False. Translation: 0 = False, nonzero
= True.

is_true (param) result (this_true)
Routine to translate from a real number to a boolian True or False. Translation: 0 = False, nonzero
= True.

logic_option (logic_default, opt_logic)
Function to return True or False depending upon the state of an optional logical.

re_allocate (ptr_to_array, n, exact)
Function to reallocate a pointer to an array of strings, integers, reals, or logicals.

re_associate (array, n)
Function to reassociate an allocatable array of strings, integers, reals, or logicals.

real_option (real_default, opt_real)
Function to return True or False depending upon the state of an optional real.

string_option (string_default, opt_string)
Routine to return True or False depending upon the state of an optional string.

43.13 Helper Routines: String Manipulation

all_pointer_to_string (a_ptr, err) result (str)
Routine to turn the value pointed to by an all_pointer_struct into a string for printing.

downcase (str_in) result (str_out)
Routine to convert a string to lower case.

downcase_string (string)
Routine to convert a string to lowercase:

index_nocase (string, match_str) result (indx)
Function to look for a sub-string of string that matches match_str. This routine is similar to the
fortran INDEX function

int_str(int, width) result (str)
Routine to return a string representation of an integer.

is_alphabetic (string, valid_chars) result (is_alpha)
Function to tell if a string has all alphabetical characters. Spaces are counted as not alphabetic

is_integer (string, int)
Function to tell if the first word in a string is a valid integer.

is_logical (string, ignore) result (good)
Function to test if a string represents a logical. Accepted possibilities are (individual characters
can be either case):
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is_real (string, ignore, real_num) result (good)
Function to test if a string represents a real number.

location_decode (string, array, ix_min, num, names, exact_case, print_err)
Subroutine to set a list of locations in a logical array to True.

location_encode1 (string, loc, exists, ix_min, names, separator, err_flag)
Routine to encode a list of locations. This routine is overloaded by the routine: location_encode.

logic_str(logic) result (str)
Routine to return a string representation (T/F) of a logical.

match_reg (str, pat)
Function for matching with regular expressions. Note: strings are trimmed before comparison.

match_wild (string, template) result (this_match)
Function to do wild card matches. Note: trailing blanks will be discarded before any matching is
done.

match_word (string, names, ix, exact_case, can_abbreviate, matched_name)
Routine to match the first word in a string against a list of names. Abbreviations are accepted.

on_off_logic (logic, true_str, false_str) result (name)
Function to return the string "ON" or "OFF".

ordinal_str(n) result (str)
Routine to return a string representing the ordinal position of n. EG n = 1 -> "1st", n = 2 ->
"2nd", etc.

parse_fortran_format (format_str, n_repeat, power, descrip, width, digits)
Routine to parse a Fortran edit descriptor. This routine assumes that format_str will be a edit
descriptor for a single entity like ’3f10.6’.

quote(str) result (q_str)
Function to put double quote marks (") around a string. The string will not be modified if there
are already quote marks of either kind.

quoten(str, delim) result (q_str)
Function to put double quote marks (") around each string in an array and return the concatenated
string with a delimitor between the strings.

real_num_fortran_format (number, width, n_blanks) result (fmt_str)
Routine to find a "nice" edit descriptor format for a real number. The format will either be "es"
for numbers that are very small or very large or "f".

real_str(r_num, n_signif, n_decimal) result (str)
Routine to return a string representing a real number. Trailing zeros will be supressed.

real_to_string (real_num, width, n_signif, n_decimal) result (str)
Routine to turn a real number into a string for printing. Printing the number without an explicit
exponent is preferred.

reals_to_string (real_arr, n_number, n_blank, n_signif, n_decimal) result (str)
Routine to turn a n array of reals into a string for printing.
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reals_to_table_row (real_arr, width, n_decimal, n_blank) result (str)
Routine to turn an array of real numbers into a string for printing tables. Fixed format is preferred
and floating format will only be used if necessary.

str_match_wild(str, pat) result (a_match)
Function to match a character string against a regular expression pattern.

str_set(str_out, str_in)
Routine to set a variable length string. Trailing blanks will be trimmed.

string_to_int (line, default, err_flag, err_print_flag)
Routine to convert a string to an integer.

string_to_real (line, default, err_flag, err_print_flag)
Routine to convert a string to an real.

string_trim(in_string, out_string, word_len)
Routine to trim a string of leading blanks and/or tabs and also to return the length of the first
word.

string_trim2 (in_str, delimitors, out_str, ix_word, delim, ix_next)
Routine to trim a string of leading delimiters and also to return the length of the first word.

str_downcase (dst, src)
Routine to convert a string to down case.

str_substitute (string, str_match, str_replace, do_trim, ignore_escaped)
Routine to substitute all instances of one sub-string for another in a string

to_str(num, max_signif) result (string)
Routine to return the string representation of a number.

unquote (str_in) result (str_out)
Routine to remove quotation marks at the ends of a string. Quotation marks will only be removed
if they match at both ends.

upcase (str_in) result (str_out)
Routine to convert a string to upper case.

upcase_string (string)
Routine to convert a string to uppercase:

43.14 Helper Routines: Switch to Name

coord_state_name (coord_state) result (state_str)
Routine to return the string representation of a coord%state state.

43.15 Inter-Beam Scattering (IBS)

bane1(ele, coulomb_log, rates, n_part)
This is an implementation of equations 10-15 from "Intrabeam scattering formulas for high energy
beams" Kubo,Mtingwa,Wolski.
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bjmt1(ele, coulomb_log, rates, n_part)
This is an implementation of equations 1-9 from "Intrabeam scattering formulas for high energy
beams" Kubo,Mtingwa,Wolski.

cimp1(ele, coulomb_log, rates, n_part)
This is an implementation of equations 34,38-40 from "Intrabeam scattering formulas for high
energy beams" Kubo,Mtingwa,Wolski.

ibs_lifetime(lat,ibs_sim_params,maxratio,lifetime,granularity)
This module computes the beam lifetime due to the diffusion process.

mpxx1(ele, coulomb_log, rates, n_part)
Modified Piwinski, further modified to treat Coulomb Log in the same manner as Bjorken-Mtingwa,
CIMP, Bane, Kubo & Oide, etc.

mpzt1(ele, coulomb_log, rates, n_part)
Modified Piwinski with Zotter’s integral. This is Piwinski’s original derivation, generalized to take
the derivatives of the optics functions.

43.16 Lattice: Element Manipulation

These routine are for adding elements, moving elements, etc.

add_lattice_control_structs (ele, n_add_slave, n_add_lord, n_add_slave_field,
n_add_lord_field, add_at_end)

Routine to adjust the control structure of a lat so that extra control elements can be added.

add_superimpose (lat, super_ele_in, ix_branch, err_flag, super_ele_out,
save_null_drift, create_jumbo_slave, ix_insert, mangle_slave_-

names, wrap)
Routine to make a superimposed element.

attribute_bookkeeper (ele, force_bookkeeping)
Routine to make sure the attributes of an element are self-consistent.

autoscale_phase_and_amp(ele, param, err_flag, scale_phase,
scale_amp, call_bookkeeper)

Routine to set the phase offset and amplitude scale of the accelerating field. This routine works
on lcavity, rfcavity and e_gun elements.

create_element_slice (sliced_ele, ele_in, l_slice, offset, param,
include_upstream_end, include_downstream_end, err_flag, old_slice)

Routine to transfer the %value, %wig_term, and %wake%lr information from a superposition lord
to a slave when the slave has only one lord.

create_field_overlap (lat, lord_name, slave_name, err_flag)
Subroutine to add the bookkeeping information to a lattice for an element’s field overlapping
another element.

create_group (lord, contrl, err)
Routine to create a group control element.

create_girder (lat, ix_girder, contrl, girder_info, err_flag)
Routine to add the controller information to slave elements of an girder_lord.
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create_overlay (lord, contrl, err)
Routine to add the controller information to slave elements of an overlay_lord.

create_wiggler_model (wiggler_in, lat)
Routine to create series of bend and drift elements to serve as a model for a wiggler. This routine
uses the mrqmin nonlinear optimizer to vary the parameters in the wiggler

insert_element (lat, insert_ele, ix_ele, ix_branch, orbit)
Routine to Insert a new element into the tracking part of the lat structure.

make_hybrid_lat (lat_in, lat_out, use_taylor, orb0_arr)
Routine to concatenate together elements to make a hybrid lat

new_control (lat, ix_ele, ele_name)
Routine to create a new control element.

pointer_to_attribute (ele, attrib_name, do_allocation,
a_ptr, err_flag, err_print_flag, ix_attrib)

Returns a pointer to an attribute of an element with name attrib_name.

pointers_to_attribute (lat, ele_name, attrib_name, do_allocation,
ptr_array, err_flag, err_print_flag, eles, ix_attrib)

Returns an array of pointers to an attribute with name attrib_name within elements with name
ele_name.

pointer_to_branch
Routine to return a pointer to a lattice branch.

pointer_to_next_ele (this_ele, offset, skip_beginning, follow_fork) result (next_ele)
Function to return a pointer to the Nt̂h element relative to this_ele in the array of elements in a
lattice branch.

pointer_to_ele (lat, ix_ele, ix_branch) result (ele_ptr)
pointer_to_ele (lat, ele_loc_id) result (ele_ptr)

Routine to point to a given element.

pointer_to_ele_multipole (ele, a_pole, b_pole, ksl_pole, pole_type)
Routine to point to the appropriate magnetic or electric poles in an element.

pointer_to_element_at_s (branch, s, choose_max, err_flag, s_eff, position,
print_err) result (ele)

Function to return a pointer to the element at position s.

remove_eles_from_lat (lat, check_sanity)
Routine to remove an elements from the lattice.

set_ele_attribute (ele, set_string, err_flag, err_print_flag, set_lords)
Routine to set an element’s attribute.

set_ele_status_stale (ele, status_group, set_slaves)
Routine to set a status flags to stale in an element and the corresponding ones for any slaves the
element has.

set_status_flags (bookkeeping_state, stat)
Routine to set the bookkeeping status block.

split_lat (lat, s_split, ix_branch, ix_split, split_done, add_suffix, check_sanity,
save_null_drift, err_flag, choose_max, ix_insert)

Routine to split a lat at a point.
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value_of_attribute (ele, attrib_name, err_flag, err_print_flag,
err_value) result (value)

Returns the value of an element attribute.

43.17 Lattice: Geometry

bend_shift(position1, g, delta_s, w_mat, ref_tilt) result(position2)
Function to shift a particle’s coordinates from one coordinate frame of reference to another within
a bend with curvature g and reference tilt ref_tilt.

coords_curvilinear_to_floor (xys, branch, err_flag) result (global)
Routine to find the global position of a local lab (x, y, s) position. s = position from beginning of
lattice branch.

coords_floor_to_curvilinear (floor_coords, ele0, ele1, status, w_mat) result (local_coords)

Given a position in global "floor" coordinates, return local curvilinear (ie element) coordinates
for an appropriate element, ele1, near ele0. That is, the s-position of local_coords will be within

coords_floor_to_relative (floor0, global_position,
calculate_angles, is_delta_position) result (local_position)

Returns local floor position relative to floor0 given a global floor position. This is an essentially
an inverse of routine coords_relative_to_floor.

coords_relative_to_floor (floor0, dr, theta, phi, psi) result (floor1)
Starting from a given reference frame and given a shift in position, return the resulting reference
frame.

coords_local_curvilinear_to_floor (local_position, ele, in_body_frame, w_mat,
calculate_angles, relative_to_upstream) result (global_position)

Given a position local to ele, return global floor coordinates.

coords_floor_to_local_curvilinear (global_position, ele, status, w_mat,
relative_to_upstream) result(local_position)

Given a position in global coordinates, return local curvilinear coordinates in ele relative to floor0

ele_geometry (floor_start, ele, floor_end, len_scale, ignore_patch_err)
Routine to calculate the physical (floor) placement of an element given the placement of the
preceding element. This is the same as the MAD convention.

ele_geometry_with_misalignments (ele, len_scale) result (floor)
Routine to calculate the element body coordinates (that is, coordinates with misalignments) for
an element at some distance s_offset from the upstream end.

ele_misalignment_l_s_calc (ele, l_mis, s_mis)
Calculates transformation vector L_mis and matrix S_mis due to misalignments for an ele Used
to transform coordinates and vectors relative to the center of the element

floor_angles_to_w_mat (theta, phi, psi, w_mat, w_mat_inv)
Routine to construct the W matrix that specifies the orientation of an element in the global "floor"
coordinates. See the Bmad manual for more details.

floor_w_mat_to_angles (w_mat, theta, phi, psi, floor0)
Routine to construct the angles that define the orientation of an element in the global "floor"
coordinates from the W matrix. See the Bmad manual for more details.
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lat_geometry (lat)
Routine to calculate the physical placement of all the elements in a lattice. That is, the physical
machine layout on the floor.

orbit_to_local_curvilinear (orbit, ele) result (local_position)
Routine to return the local curvilinear position and orientation of a particle.

patch_flips_propagation_direction (x_pitch, y_pitch) result (is_flip)
Routine to determine if the propagation direction is flipped in a patch. This is true if the tranfor-
mation matrix element S(3,3) = cos(x_pitch) * cos(y_pitch)

s_calc (lat)
Routine to calculate the longitudinal distance S for the elements in a lat.

update_floor_angles (floor, floor0)
Routine to calculate floor angles from its W matrix.

w_mat_for_bend_angle (angle, ref_tilt, r_vec) result (w_mat)
Routine to compute the W matrix for the angle transformation in a bend. Using the notation in
the Bmad manual:

w_mat_for_x_pitch (x_pitch, return_inverse)
Routine to return the transformation matrix for an x_pitch.

w_mat_for_y_pitch (y_pitch, return_inverse)
Routine to return the transformation matrix for an y_pitch.

w_mat_for_tilt (tilt, return_inverse)
Routine to return the transformation matrix for an tilt.

43.18 Lattice: Informational

attribute_free (ix_ele, attrib_name, lat, err_print_flag, except_overlay) result (free)
attribute_free (ele, attrib_name, lat, err_print_flag, except_overlay) result (free)
attribute_free (ix_ele, ix_branch, attrib_name, lat, err_print_flag, except_overlay)
result (free)

Overloaded function to check if an attribute is free to vary.

attribute_index (ele, name, full_name)
Function to return the index of an attribute for a given element type and the name of the attribute

attribute_name (ele, ix_att)
Function to return the name of an attribute for a particular type of element.

attribute_type (attrib_name, ele) result (attrib_type)
Routine to return the type (logical, integer, real, or named) of an attribute.

branch_name(branch) result (name)
Routine to return a string with the lattice branch name encoded. This routine is useful for error
messages.

check_if_s_in_bounds (branch, s, err_flag, translated_s, print_err)
Routine to check if a given longitudinal position s is within the bounds of a given branch of a
lattice.
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element_at_s (lat, s, choose_max, ix_branch, err_flag, s_eff, position) result (ix_ele)
Routine to return the index of the element at position s.

ele_loc_to_string (ele, show_branch0, parens) result (str)
Routine to encode an element’s location into a string.

equivalent_taylor_attributes (ele_taylor, ele2) result (equiv)
Routine to see if two elements are equivalent in terms of their attributes so that their Taylor Maps,
if they existed, would be the same.

find_element_ends (ele, ele1, ele2, ix_multipass)
Routine to find the end points of an element.

get_slave_list (lord, slaves, n_slave)
Routine to get the list of slaves for an element.

key_name (key_index)
Translate an element key index (EG: quadrupole$, etc.) to a character string.

key_name_to_key_index (key_str, abbrev_allowed) result (key_index)
Function to convert a character string (eg: "drift") to an index (eg: drift$).

lat_ele_locator (loc_str, lat, eles, n_loc, err, above_ubound_is_err,
ix_dflt_branch, order_by_index)

Routine to locate all the elements in a lattice that corresponds to loc_str.

lat_sanity_check (lat, err_flag)
Routine to check the control links in a lat structure, etc.

n_attrib_string_max_len () result (max_len)
Routine to return the maximum number of characters in any attribute name known to bmad.

num_lords (slave, lord_type) result (num)
Routine to return the number of lords of a given type for a given lattice element.

num_lords (slave, lord_type) result (num)
Routine to return the number of lords of a lattice element of a certain type.

pointer_to_indexed_attribute (ele, ix_attrib, do_allocation,
a_ptr, err_flag, err_print_flag)

Returns a pointer to an attribute of an element ele with attribute index ix_attrib.

pointer_to_lord (slave, ix_lord, control, ix_slave_back, field_overlap_ptr,
ix_control, ix_ic) result (lord_ptr)

Function to point to a lord of a slave.

pointer_to_multipass_lord (ele, ix_pass, super_lord) result (multi_lord)
Routine to find the multipass lord of a lattice element. A multi_lord will be found for:

pointer_to_slave (lord, ix_slave, control, field_overlap_ptr) result (slave_ptr)
Function to point to a slave of a lord.

rf_is_on (branch, ix_ele1, ix_ele2) result (is_on)
Routine to check if any rfcavity is powered in a branch.

switch_attrib_value_name (attrib_name, attrib_value, ele, is_default,
name_list) result (val_name)

Routine to return the name corresponding to the value of a given switch attribute.
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type_ele (ele, type_zero_attrib, type_mat6, type_taylor,
twiss_out, type_control, type_wake, type_floor_coords,
type_field, type_wall, type_rad_kick, lines, n_lines)

Subroutine to print or put in a string array information on a lattice element.

type_twiss (ele, frequency_units, compact_format, lines, n_lines)
Subroutine to print or put in a string array Twiss information from an element.

valid_tracking_method (ele, species, tracking_method) result (is_valid)
Routine to return whether a given tracking method is valid for a given element.

valid_mat6_calc_method (ele, species, mat6_calc_method) result (is_valid)
Routine to return whether a given mat6_calc method is valid for a given element.

43.19 Lattice: Low Level Stuff

bracket_index (s, s_arr, i_min, dr, restrict)
Routine to find the index ix so that s(ix) ≤ s < s(ix+1). If s < s(1) then ix = 0

check_controller_controls (ele_key, contrl, name, err)
Routine to check for problems when setting up group or overlay controllers.

deallocate_ele_pointers (ele, nullify_only, nullify_branch, dealloc_poles)
Routine to deallocate the pointers in an element.

re_allocate_eles (eles, n, save_old, exact)
Routine to allocate an array of ele_pointer_structs.

twiss1_propagate (twiss1, mat2, ele_key, length, twiss2, err)
Routine to propagate the twiss parameters of a single mode.

43.20 Lattice: Manipulation

allocate_element_array (ele, upper_bound)
Routine to allocate or re-allocate an element array.

allocate_lat_ele_array (lat, upper_bound, ix_branch)
Routine to allocate or re-allocate an element array.

control_bookkeeper (lat, ele, err_flag)
Routine to calculate the combined strength of the attributes for controlled elements.

deallocate_ele_array_pointers (eles)
Routine to deallocate the pointers of all the elements in an element array and the array itself.

deallocate_lat_pointers (lat)
Routine to deallocate the pointers in a lat.

init_ele (ele, key, sub_key, ix_ele, branch)
Routine to initialize an element.

init_lat (lat, n, init_beginning_ele)
Routine to initialize a Bmad lat.
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lattice_bookkeeper (lat, err_flag)
Routine to do bookkeeping for the entire lattice.

reallocate_coord (coord, n_coord)
Routine to reallocate an allocatable coord_struct array to at least: coord(0:n_coord).

reallocate_coord_array (coord_array, lat)
Routine to allocate an allocatable coord_array_struct array to the proper size for a lattice.

set_custom_attribute_name (custom_name, err_flag, custom_index)
Routine to add custom element attributes to the element attribute name table.

set_ele_defaults (ele, do_allocate)
Subroutine to set the defaults for an element of a given type.

set_on_off (key, lat, switch, orb, use_ref_orb, ix_branch, saved_values, attribute)
Routine to turn on or off a set of elements (quadrupoles, RF cavities, etc.) in a lat.

transfer_ele (ele1, ele2, nullify_pointers)
Routine to set ele2 = ele1. This is a plain transfer of information not using the overloaded equal.

transfer_eles (ele1, ele2)
Routine to set ele2(:) = ele1(:). This is a plain transfer of information not using the overloaded
equal.

transfer_ele_taylor (ele_in, ele_out, taylor_order)
Routine to transfer a Taylor map from one element to another.

transfer_lat (lat1, lat2)
Routine to set lat2 = lat1. This is a plain transfer of information not using the overloaded equal.

transfer_lat_parameters (lat_in, lat_out)
Routine to transfer the lat parameters (such as lat%name, lat%param, etc.) from one lat to
another.

zero_ele_kicks (ele)
Subroutine to zero any kick attributes like hkick, blvkick, etc. See also: ele_has_kick, ele_has_-
offset, zero_ele_offsets.

zero_ele_offsets (ele)
Routine to zero the offsets, pitches and tilt of an element.

43.21 Lattice: Miscellaneous

c_multi (n, m, no_n_fact, c_full)
Routine to compute multipole factors: c_multi(n, m) = +/- ("n choose m")/n!

ele_compute_ref_energy_and_time (ele0, ele, param, err_flag)
Routine to compute the reference energy and reference time at the end of an element given the
reference enegy and reference time at the start of the element.

lat_compute_ref_energy_and_time (lat, err_flag)
Routine to compute the reference energy for each element in a lattice.
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field_interpolate_3d (position, field_mesh, deltas, position0)
Function to interpolate a 3d field.

order_super_lord_slaves (lat, ix_lord)
Routine to make the slave elements of a super_lord in order.

release_rad_int_cache (ix_cache)
Routine to release the memory associated with caching wiggler values.

set_flags_for_changed_attribute (ele, attrib)
Routine to mark an element as modified for use with "intelligent" bookkeeping.

43.22 Lattice: Nametable

create_lat_ele_nametable (lat, nametable)
Routine to create a sorted nametable of element names for a lattice.

ele_nametable_index(ele) result(ix_nt)
Routine to return the index in the nametable corresponding to ele. The reverse routine is:
pointer_to_ele.

nametable_add (nametable, name, ix_name)
Routine to add a name to the nametable at index ix_name.

nametable_bracket_indexx (nametable, name, n_match) result (ix_max)
Routine to find the index ix_max such that: nametable%name(nametable%indexx(ix_max)) <=
name < nametable%name(nametable%indexx(ix_max+1))

nametable_change1 (nametable, name, ix_name)
Routine to change one entry in a nametable.

nametable_init(nametable, n_min, n_max)
Routine to initialize a nametable_struct instance.

nametable_remove (nametable, ix_name)
Routine to remove a name from the nametable at index ix_name.

43.23 Lattice: Reading and Writing Files

bmad_parser (lat_file, lat, make_mats6, digested_read_ok, use_line,
err_flag, parse_lat)

Routine to parse (read in) a Bmad input file.

bmad_parser2 (lat_file, lat, orbit, make_mats6, err_flag, parse_lat)
Routine to parse (read in) a Bmad input file to modify an existing lattice.

write_lattice_in_foreign_format (out_type, out_file_name, lat, ref_orbit,
use_matrix_model, include_apertures, dr12_drift_max,
ix_start, ix_end, ix_branch, converted_lat, err)

Routine to write a mad or sad lattice file.
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combine_consecutive_elements (lat, error)
Routine to combine consecutive elements in the lattice that have the same name. This allows
simplification, for example, of lattices where elements have been split to compute the beta function
at the center.

create_sol_quad_model (sol_quad, lat)
Routine to create series of solenoid and quadrupole elements to serve as a replacement model for
a sol_quad element.

create_unique_ele_names (lat, key, suffix)
Routine to give elements in a lattice unique names.

read_digested_bmad_file (digested_file, lat, inc_version,
err_flag, parser_calling, lat_files)

Routine to read in a digested file.

write_bmad_lattice_file (bmad_file, lat, err, output_form, orbit0)
Routine to write a Bmad lattice file using the information in a lat_struct.

write_digested_bmad_file (digested_name, lat, n_files, file_names, extra, err_flag)
Routine to write a digested file.

43.24 Matrices

c_to_cbar (ele, cbar_mat)
Routine to compute Cbar from the C matrix and the Twiss parameters.

cbar_to_c (cbar_mat, a, b, c_mat)
Routine to compute C coupling matrix from the Cbar matrix and the Twiss parameters.

clear_lat_1turn_mats (lat)
Clear the 1-turn matrices in the lat structure.

concat_transfer_mat (mat_1, vec_1, mat_0, vec_0, mat_out, vec_out)
Routine to concatinate two linear maps

determinant (mat) result (det)
Routine to take the determinant of a square matrix This routine is adapted from Numerical Recipes.

do_mode_flip (ele, err_flag)
Routine to mode flip the Twiss parameters of an element

make_g2_mats (twiss, g2_mat, g2_inv_mat)
Routine to make the matrices needed to go from normal mode coords to coordinates with the beta
function removed.

make_g_mats (ele, g_mat, g_inv_mat)
Routine to make the matrices needed to go from normal mode coords to coordinates with the beta
function removed.

make_mat6 (ele, param, start_orb, end_orb, err_flag)
Routine to make the 6x6 transfer matrix for an element.

make_v_mats (ele, v_mat, v_inv_mat)
Routine to make the matrices needed to go from normal mode coords to X-Y coords and vice versa.
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mat6_from_s_to_s (lat, mat6, vec0, s1, s2, ref_orb_in, ref_orb_out, ix_branch,
one_turn, unit_start, err_flag, ele_save)

Subroutine to calculate the transfer map between longitudinal positions s1 to s2.

mat6_to_taylor (vec0, mat6, bmad_taylor, ref_orb)
Routine to form a first order Taylor map from the 6x6 transfer matrix and the 0th order transfer
vector.

match_ele_to_mat6 (ele, start_orb, mat6, vec0, err_flag, twiss_ele,
include_delta_time, set_trombone)

Routine to make the 6 x 6 transfer matrix from the twiss parameters.

multi_turn_tracking_to_mat (track, n_var, map1, map0, track0, chi)
Routine to analyze 1-turn tracking data to find the 1-turn transfer matrix and the closed orbit
offset.

transfer_matrix_calc (lat, xfer_mat, xfer_vec, ix1, ix2, ix_branch, one_turn)
Routine to calculate the transfer matrix between two elements. If ix1 and ix2 are not present the
full 1–turn matrix is calculated.

one_turn_mat_at_ele (ele, phi_a, phi_b, mat4)
Routine to form the 4x4 1-turn coupled matrix with the reference point at the end of an element.

lat_make_mat6 (lat, ix_ele, ref_orb, ix_branch, err_flag)
Routine to make the 6x6 linear transfer matrix for an element

taylor_to_mat6 (a_taylor, r_in, vec0, mat6, r_out)
Routine to calculate the linear (Jacobian) matrix about some trajectory from a Taylor map.

transfer_mat2_from_twiss (twiss1, twiss2, mat)
Routine to make a 2 x 2 transfer matrix from the Twiss parameters at the end points.

transfer_mat_from_twiss (ele1, ele2, orb1, orb2, m)
Routine to make a 6 x 6 transfer matrix from the twiss parameters at the beginning and end of
the element.

twiss_from_mat2 (mat_in, twiss, stat, type_out)
Routine to extract the Twiss parameters from the one-turn 2x2 matrix

twiss_from_mat6 (mat6, orb0, ele, stable, growth_rate, status, type_out)
Routine to extract the Twiss parameters from the one-turn 6x6 matrix

twiss_to_1_turn_mat (twiss, phi, mat2)
Routine to form the 2x2 1-turn transfer matrix from the Twiss parameters.

43.25 Matrix: Low Level Routines

Listed below are helper routines that are not meant for general use.

sol_quad_mat6_calc (ks_in, k1_in, length, ele, orbit, mat6, make_matrix)
Routine to calculate the transfer matrix for a combination solenoid/quadrupole element.

tilt_mat6 (mat6, tilt)
Routine to transform a 6x6 transfer matrix to a new reference frame that is tilted in (x, Px, y, Py)
with respect to the old reference frame.
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43.26 Measurement Simulation Routines

Routines to simulate errors in orbit, dispersion, betatron phase, and coupling measurements

to_eta_reading (eta_actual, ele, axis, add_noise, reading, err)
Compute the measured dispersion reading given the true dispersion and the monitor offsets, noise,
etc.

to_orbit_reading (orb, ele, axis, add_noise, reading, err)
Calculate the measured reading on a bpm given the actual orbit and the BPM’s offsets, noise, etc.

to_phase_and_coupling_reading (ele, add_noise, reading, err)
Find the measured coupling values given the actual ones

43.27 Multipass

multipass_all_info (lat, info)
Routine to put multipass to a multipass_all_info_struct structure.

multipass_chain (ele, ix_pass, n_links, chain_ele, use_super_lord)
Routine to return the chain of elements that represent the same physical element when there is
multipass.

pointer_to_multipass_lord (ele, lat, ix_pass, super_lord) result (multi_lord)
Routine to find the multipass lord of a lattice element. A multi_lord will be found for:

43.28 Multipoles

ab_multipole_kick (a, b, n, ref_species, ele_orientation, coord, kx, ky, dk,
pole_type, scale)

Routine to put in the kick due to an ab_multipole.

multipole_kicks (knl, tilt, ref_species, ele, orbit, pole_type, ref_orb_offset)
Routine to put in the kick due to a multipole.

mexp (x, m) result (this_exp)
Returns x**m with 0**0 = 0.

multipole_ab_to_kt (an, bn, knl, tn)
Routine to convert ab type multipoles to kt (MAD standard) multipoles.

multipole_ele_to_ab (ele, use_ele_tilt, ix_pole_max, a, b, pole_type,
include_kicks, b1)

Routine to put the scaled element multipole components (normal and skew) into 2 vectors.

multipole_ele_to_kt (ele, use_ele_tilt, ix_pole_max, knl, tilt,
pole_type, include_kicks)

Routine to put the scaled element multipole components (strength and tilt) into 2 vectors.

multipole_init(ele, who, zero)
Routine to initialize the multipole arrays within an element.
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multipole_kick (knl, tilt, n, ref_species, ele_orientation, coord, pole_type, ref_orb_offset)

Routine to put in the kick due to a multipole.

multipole_kt_to_ab (knl, knsl, tn, an, bn)
Routine to convert kt (MAD standard) multipoles to ab type multipoles.

43.29 Nonlinear Optimizers

opti_lmdif (vec, n, merit, eps) result(this_opti)
Function which tries to get the merit function(s) as close to zero as possible by changing the values
in vec. Multiple merit functions can be used.

initial_lmdif()
Routine that clears out previous saved values of the optimizer.

suggest_lmdif (XV, FV, EPS, ITERMX, at_end, reset_flag)
Reverse communication routine.

super_mrqmin (y, weight, a,
chisq, funcs, storage, alamda, status, maska)

Routine to do non-linear optimizations. This routine is essentially mrqmin from Numerical Recipes
with some added features.

opti_de (v_best, generations, population, merit_func, v_del, status)
Differential Evolution for Optimal Control Problems. This optimizer is based upon the work of
Storn and Price.

43.30 Overloading the equal sign

These routines are overloaded by the equal sign so should not be called explicitly.

branch_equal_branch (branch1, branch2)
Routine that is used to set one branch equal to another.

bunch_equal_bunch (bunch1, bunch2)
Routine that is used to set one macroparticle bunch to another. This routine takes care of the
pointers in bunch1.

coord_equal_coord (coord1, coord2)
Routine that is used to set one coord_struct equal to another.

ele_equal_ele (ele_out, ele_in)
Routine that is used to set one element equal to another. This routine takes care of the pointers
in ele1.

lat_equal_lat (lat_out, lat_in)
Routine that is used to set one lat equal to another. This routine takes care of the pointers in lat1.

lat_vec_equal_lat_vec (lat1, lat2)
Routine that is used to set one lat array equal to another. This routine takes care of the pointers
in lat1(:).
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universal_equal_universal (ut1, ut2)
Routine that is used to set one PTC universal_taylor structure equal to another.

43.31 Particle Coordinate Stuff

angle_to_canonical_coords (orbit, coord_type)
Routine to convert from angle (x, x’, y, y’, z, z’) coordinates to canonical (x, px, y, py, z, pz)
coordinates.

convert_coords (in_type_str, coord_in, ele, out_type_str, coord_out, err_flag)
Routine to convert between lab frame, normal mode, normalized normal mode, and action-angle
coordinates.

convert_pc_to (pc, particle, E_tot, gamma, kinetic, beta, brho, beta1, err_flag)
Routine to calculate the energy, etc. from a particle’s momentum.

convert_total_energy_to (E_tot, particle, gamma, kinetic, beta, pc, brho,
beta1, err_flag, print_err)

Routine to calculate the momentum, etc. from a particle’s total energy.

init_coord (orb, vec, ele, element_end, particle, direction, E_photon,
t_offset, shift_vec6, spin)

Routine to initialize a coord_struct.

type_coord (coord)
Routine to type out a coordinate.

43.32 Photon Routines

bend_photon_init (g_bend_x, g_bend_y, gamma, orbit, E_min, E_max,
E_integ_prob, vert_angle_min, vert_angle_max,
vert_angle_symmetric, emit_probability)

Routine to initialize a photon generated by a charged particle in a bend.

bend_photon_vert_angle_init (E_rel, gamma, r_in, invert) result (r_in)
Routine to convert a "random" number in the interval [0,1] to a photon vertical emission angle for
a simple bend.

43.33 PTC Interface Routines

concat_real_8 (y1, y2, y3, r2_ref, keep_y1_const_terms)
Routine to concatenate two real_8 taylor series.

ele_to_fibre (ele, ptc_fibre, param, use_offsets, integ_order, steps,
for_layout, ref_in)

Routine to convert a Bmad element to a PTC fibre element.

kill_ptc_layouts (lat)
Routine to kill the layouts associated with a Bmad lattice.
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kind_name (this_kind)
Function to return the name of a PTC kind.

lat_to_ptc_layout (lat)
Routine to create a PTC layout from a Bmad lat.

map_coef (y, i, j, k, l)
Function to return the coefficient of the map y(:) up to 3rd order.

normal_form_rd_terms(one_turn_map, normal_form, rf_on, order)
Calculates driving terms à la [Bengt97] from the one-turn map.

ptc_transfer_map_with_spin (branch, t_map, s_map, orb0, err_flag, ix1, ix2, one_turn, unit_start)

Subroutine to calculate the transfer map between two elements. To calculate just the first or-
der transfer matrices see the routine:

remove_constant_taylor (taylor_in, taylor_out, c0, remove_higher_order_terms)
Routine to remove the constant part of a taylor series.

set_ptc (e_tot, particle, taylor_order, integ_order, n_step, no_cavity,
force_init)

Routine to initialize PTC.

sort_universal_terms (ut_in, ut_sorted)
Routine to sort the taylor terms from "lowest" to "highest".

taylor_to_genfield (bmad_taylor, ptc_genfield, c0)
Routine to construct a genfield (partially inverted map) from a taylor map.

taylor_to_real_8 (bmad_taylor, beta0, beta1, ptc_re8, ref_orb_ptc, exi_orb_ptc)
Routine to convert from a taylor map in Bmad to a real_8 taylor map in Étienne’s PTC.

type_layout (lay)
Routine to print the global information in a PTC layout.

type_map (y)
Routine to type the transfer maps of a real_8 array.

type_map1 (y, type0, n_dim)
Routine to type the transfer map up to first order.

type_fibre (ptc_fibre, print_coords, lines, n_lines)
Routine to print the global information in a fibre.

type_real_8_taylors (y)
Routine to type out the taylor series from a real_8 array.

universal_to_bmad_taylor (u_taylor, bmad_taylor)
Routine to convert from a universal_taylor map in Étienne’s PTC to a taylor map in Bmad.
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43.34 Quick Plot Routines

43.34.1 Quick Plot Page Routines

qp_open_page (page_type, i_chan, x_len, y_len, units, plot_file, scale)
Routine to Initialize a page (window) for plotting.

qp_select_page (iw)
Routine to switch to a particular page for drawing graphics.

qp_close_page()
Routine to finish plotting on a page.

43.34.2 Quick Plot Calculational Routines

qp_axis_niceness (imin, imax, divisions) result (score)
Routine to calculate how “nicely” an axis will look. The higher the score the nicer.

qp_calc_and_set_axis (axis_str, data_min, data_max, div_min, div_max,
bounds, axis_type, slop_factor)

Routine to calculate a "nice" plot scale given the minimum and maximum of the data.

qp_calc_axis_params (data_min, data_max, div_min,
div_max, axis)

Routine to calculate a "nice" plot scale given the minimum and maximum of the data. This is
similar to calc_axis_scale.

qp_calc_axis_places (axis)
Routine to calculate the number of decimal places needed to display the axis numbers.

qp_calc_axis_scale (data_min, data_max, axis, niceness_score)
Routine to calculate a "nice" plot scale given the minimum and maximum of the data.

qp_calc_minor_div (delta, div_max, divisions)
Routine to calculate the number of minor divisions an axis should have.

qp_convert_rectangle_rel (rect1, rect2)
Routine to convert a "rectangle" (structure of 4 points) from one set of relative units to another

43.34.3 Quick Plot Drawing Routines

qp_clear_box()
Routine to clear the current box on the page.

qp_clear_page()
Routine to clear all drawing from the page.

qp_draw_circle (x0, y0, r, angle0, del_angle,
units, width, color, line_pattern, clip)

Routine to plot a section of an ellipse.

qp_draw_ellipse (x0, y0, r_x, r_y, theta_xy,
angle0, del_angle, units, width, color, line_pattern, clip)

Routine to plot a section of an ellipse.



43.34. QUICK PLOT ROUTINES 589

qp_draw_axes(x_lab, y_lab, title, draw_grid)
Routine to plot the axes, title, etc. of a plot.

qp_draw_data (x_dat, y_dat, draw_line, symbol_every, clip)
Routine to plot data, axes with labels, a grid, and a title.

qp_draw_graph (x_dat, y_dat, x_lab, y_lab, title,
draw_line, symbol_every, clip)

Routine to plot data, axes with labels, a grid, and a title.

qp_draw_graph_title (title)
Routine to draw the title for a graph.

qp_draw_grid()
Routine to draw a grid on the current graph.

qp_draw_histogram (x_dat, y_dat, fill_color, fill_pattern, line_color, clip)
Routine to plot data, axes with labels, a grid, and a title.

qp_draw_curve_legend (x_origin, y_origin, units, line, line_length,
symbol, text, text_offset, draw_line, draw_symbol, draw_text)

Routine to draw a legend with each line in the legend having a line, a symbol, some text.

qp_draw_text_legend (text, x_origin, y_origin, units)
Routine to draw a legend of lines of text.

qp_draw_main_title (lines, justify)
Routine to plot the main title at the top of the page.

qp_draw_polyline (x, y, units, width, color, line_pattern, clip, style)
Routine to draw a polyline.

qp_draw_polyline_no_set (x, y, units)
Routine to draw a polyline. This is similar to qp_draw_polyline except qp_set_line_attrib is
not called.

qp_draw_polyline_basic (x, y)
Routine to draw a polyline. See also qp_draw_polyline

qp_draw_line (x1, x2, y1, y2, units, width, color, line_pattern, clip, style)
Routine to draw a line.

qp_draw_rectangle (x1, x2, y1, y2, units, color, width, line_pattern, clip, style)
Routine to draw a rectangular box.

qp_draw_symbol (x, y, units, type, height, color, fill_pattern, line_width, clip)
Draws a symbol at (x, y)

qp_draw_symbols (x, y, units, type, height, color,
fill_pattern, line_width, clip, symbol_every)

Draws a symbol at the (x, y) points.

qp_draw_text (text, x, y, units, justify, height, color, angle,
background, uniform_spacing, spacing_factor)

Routine to draw text.

qp_draw_text_no_set (text, x, y, units, justify, angle)
Routine to display on a plot a character string. See also: qp_draw_text.
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qp_draw_text_basic (text, len_text, x0, y0, angle, justify)
Routine to display on a plot a character string. See also: qp_draw_text.

qp_draw_x_axis (who, y_pos)
Routine to draw a horizontal axis.

qp_draw_y_axis (who, x_pos)
Routine to draw a horizontal axis.

qp_paint_rectangle (x1, x2, y1, y2, units, color, fill_pattern)
Routine to paint a rectangular region a specified color. The default color is the background color
(white$).

qp_to_axis_number_text (axis, ix_n, text)
Routine to form the text string for an axis number.

43.34.4 Quick Plot Set Routines

qp_calc_and_set_axis (axis, data_min, data_max,
div_min, div_max, bounds, axis_type, slop_factor)

Routine to calculate a "nice" plot scale given the minimum and maximum of the data.

qp_eliminate_xy_distortion(axis_to_scale)
This routine will increase the x or y margins so that the conversion between data units and page
units is the same for the x and y axes.

qp_set_axis (axis_str, a_min, a_max, div, places, label, draw_label,
draw_numbers, minor_div, minor_div_max, mirror, number_offset,
label_offset, major_tick_len, minor_tick_len, ax_type,
tick_min, tick_max, dtick, set_ticks, axis)

Routine to set (but not plot) the min, max and divisions for the axes of the graph.

qp_set_box (ix, iy, ix_tot, iy_tot)
Routine to set the box on the physical page. This routine divides the page into a grid of boxes.

qp_set_graph (title)
Routine to set certain graph attributes.

qp_set_graph_limits()
Routine to calculate the offsets for the graph. This routine also sets the PGPLOT window size
equal to the graph size.

qp_set_graph_placement (x1_marg, x_graph_len, y1_marg, y_graph_len, units)
Routine to set the placement of the current graph inside the box. This routine can be used in
place of qp_set_margin.

qp_set_layout (x_axis, y_axis, x2_axis, y2_axis,
x2_mirrors_x, y2_mirrors_y, box, margin, page_border)

Routine to set various attributes. This routine can be used in place of other qp_set_* routines.

qp_set_line (who, line)
Routine to set the default line attributes.

qp_set_margin (x1_marg, x2_marg, y1_marg, y2_marg, units)
Routine to set up the margins from the sides of the box (see QP_SET_BOX) to the edges of the
actual graph.
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qp_set_page_border (x1_b, x2_b, y1_b, y2_b, units)
Routine to set the border around the physical page.

qp_set_page_border_to_box ()
Routine to set the page border to correspond to the region of the current box. This allows qp_-
set_box to subdivide the current box.

qp_set_clip (clip)
Routine to set the default clipping state.

qp_set_parameters (text_scale, default_draw_units, default_set_units,
default_axis_slop_factor)

Routine to set various quick plot parameters.

qp_subset_box (ix, iy, ix_tot, iy_tot, x_marg, y_marg)
Routine to set the box for a graph. This is the same as qp_set_box but the boundaries of the
page are taken to be the box boundaries.

qp_set_symbol (symbol)
Routine to set the type and size of the symbols used in plotting data. See the pgplot documentation
for more details.

qp_set_symbol_attrib (type, height, color, fill_pattern, line_width, clip)
Routine to set the type and size of the symbols used in plotting data.

qp_set_line_attrib (style, width, color, pattern, clip)
Routine to set the default line attributes.

qp_set_graph_attrib (draw_grid, draw_title)
Routine to set attributes of the current graph.

qp_set_text_attrib (who, height, color,
background, uniform_spacing, spacing_factor)

Routine to set the default text attributes.

qp_use_axis (x, y)
Routine to set what axis to use: X or X2, Y or Y2.

43.34.5 Informational Routines

qp_get_axis_attrib (axis_str, a_min, a_max, div, places, label,
draw_label, draw_numbers, minor_div, mirror, number_offset,
label_offset, major_tick_len, minor_tick_len, ax_type,
tick_min, tick_max, dtick)

Routine to get the min, max, divisions etc. for the X and Y axes.

qp_get_layout_attrib (who, x1, x2, y1, y2, units)
Routine to get the attributes of the layout.

qp_get_line (style, line)
Routine to get the default line attributes.

qp_get_parameters (text_scale, default_draw_units, default_set_units,
default_axis_slop_factor)

Routine to get various quick_plot parameters.
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qp_get_symbol (symbol)
Routine to get the symbol parameters used in plotting data. Use qp_set_symbol or qp_set_-
symbol_attrib to set symbol attributes.

qp_text_len (text)
Function to find the length of a text string.

43.34.6 Conversion Routines

qp_from_inch_rel (x_inch, y_inch, x, y, units)
Routine to convert from a relative position (an offset) in inches to other units.

qp_from_inch_abs (x_inch, y_inch, x, y, units)
Routine to convert to absolute position (x, y) from inches referenced to the Left Bottom corner of
the page

qp_text_height_to_inches(height_pt) result (height_inch)
Function to convert from a text height in points to a text height in inches taking into account the
text_scale.

qp_to_inch_rel (x, y, x_inch, y_inch, units)
Routine to convert a relative (x, y) into inches.

qp_to_inch_abs (x, y, x_inch, y_inch, units)
Routine to convert an absolute position (x, y) into inches referenced to the Left Bottom corner of
the page.

qp_to_inches_rel (x, y, x_inch, y_inch, units)
Routine to convert a relative (x, y) into inches.

qp_to_inches_abs (x, y, x_inch, y_inch, units)
Routine to convert an absolute position (x, y) into inches referenced to the left bottom corner of
the page.

43.34.7 Miscellaneous Routines

qp_read_data (iu, err_flag, x, ix_col, y, iy_col, z, iz_col, t, it_col)
Routine to read columns of data.

43.34.8 Low Level Routines

qp_clear_box_basic (x1, x2, y1, y2)
Routine to clear all drawing from a box. That is, white out the box region.

qp_clear_page_basic()
Routine to clear all drawing from the page.

qp_close_page_basic()
Routine to finish plotting on a page. For X this closes the window.

qp_convert_point_rel (x_in, y_in, units_in, x_out, y_out, units_out)
Routine to convert a (x, y) point from from one set of relative units to another.
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qp_convert_point_abs (x_in, y_in, units_in, x_out, y_out, units_out)
Routine to convert a (x, y) point from from one set of absolute units to another.

qp_draw_symbol_basic (x, y, symbol)
Routine to draw a symbol.

qp_init_com_struct ()
Routine to initialize the common block qp_state_struct. This routine is not for general use.

qp_join_units_string (u_type, region, corner, units)
Routine to form a units from its components.

qp_justify (justify)
Function to convert a justify character string to a real value representing the horizontal justification.

qp_open_page_basic (page_type, x_len, y_len, plot_file,
x_page, y_page, i_chan, page_scale)

Routine to Initialize a page (window) for plotting.

qp_paint_rectangle_basic (x1, x2, y1, y2, color, fill_pattern)
Routine to fill a rectangle with a given color. A color of white essentially erases the rectangle.

qp_pointer_to_axis (axis_str, axis_ptr)
Routine to return a pointer to an common block axis.

qp_restore_state()
Routine to restore saved attributes. Use qp_save_state to restore the saved state.

qp_restore_state_basic (buffer_basic)
Routine to restore the print state.

qp_save_state (buffer_basic)
Routine to save the current attributes. Use qp_restore_state to restore the saved state.

qp_save_state_basic ()
Routine to save the print state.

qp_select_page_basic (iw)
Routine to switch to a particular page for drawing graphics.

qp_set_char_size_basic (height)
Routine to set the character size.

qp_set_clip_basic (clip)
Routine to set the clipping state. Note: This affects both lines and symbols.

qp_set_color_basic (ix_color, set_background)
Routine to set the color taking into account that GIF inverts the black for white.

qp_set_graph_position_basic (x1, x2, y1, y2)
Routine to set the position of a graph. Units are inches from lower left of page.

qp_set_line_width_basic (line_width)
Routine to set the line width.

qp_set_symbol_fill_basic (fill)
Routine to set the symbol fill style.
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qp_set_symbol_size_basic (height, symbol_type, uniform_size)
Routine to set the symbol_size

qp_set_text_background_color_basic (color)
Routine to set the character text background color.

qp_split_units_string (u_type, region, corner, units)
Routine to split a units string into its components.

qp_text_len_basic (text)
Function to find the length of a text string.

43.35 Spin

calc_spin_params (bunch, bunch_params)
Rotine to calculate spin averages

spinor_to_polar (spinor) result (polar)
Routine to convert a spinor into polar coordinates.

polar_to_vec (polar) result (vec)
Routine to convert a spin vector from polar coordinates to Cartesian coordinates.

polar_to_spinor (polar) result (coord)
Routine to convert a spin vector in polar coordinates to a spinor.

vec_to_polar (vec, phase) result (polar)
Routine to convert a spin vector from Cartesian coordinates to polar coordinates preserving the
complex phase.

spinor_to_vec (spinor) result (vec)
Routine to convert a spinor to a spin vector in Cartesian coordinates.

vec_to_spinor (vec, phase) result (coord)
Routine to convert a spin vector in Cartesian coordinates to a spinor using the specified complex
phase.

angle_between_polars (polar1, polar2)
Function to return the angle between two spin vectors in polar coordinates.

spin_omega (field, orbit, sign_z_vel, phase_space_coords), result (omega)
Return the modified T-BMT spin omega vector.

track1_spin (start_orb, ele, param, end_orb, make_quaternion)
Routine to track the particle spin through one element.

43.36 Transfer Maps: Routines Called by make_mat6

Make_mat6 is the routine for calculating the transfer matrix (Jacobin) through an element. The routines
listed below are used by make_mat6. In general a program should call make_mat6 rather than using these
routines directly.
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make_mat6_bmad (ele, param, start_orb, end_orb, err)
Routine to make the 6x6 transfer matrix for an element using closed formulas.

make_mat6_custom (ele, param, c0, c1, err_flag)
Routine for custom calculations of the 6x6 transfer matrices.

make_mat6_symp_lie_ptc (ele, param, start_orb, end_orb)
Routine to make the 6x6 transfer matrix for an element using the PTC symplectic integrator.

make_mat6_taylor (ele, param, start_orb, end_orb, err_flag)
Routine to make the 6x6 transfer matrix for an element from a Taylor map.

make_mat6_tracking (ele, param, start_orb, end_orb, err_flag)
Routine to make the 6x6 transfer matrix for an element by tracking 7 particle with different starting
conditions.

43.37 Transfer Maps: Complex Taylor Maps

complex_taylor_coef (bmad_taylor, expn)
Function complex_taylor_coef (bmad_complex_taylor, i1, i2, i3, i4, i5, i6, i7, i8, i9) Function to
return the coefficient for a particular complex_taylor term from a complex_taylor Series.

complex_taylor_equal_complex_taylor (complex_taylor1, complex_taylor2)
Subroutine that is used to set one complex_taylor equal to another. This routine takes care of the
pointers in complex_taylor1.

complex_taylor_make_unit (complex_taylor)
Subroutine to make the unit complex_taylor map: r(out) = Map * r(in) = r(in)

complex_taylor_exponent_index(expn) result(index)
Function to associate a unique number with a complex_taylor exponent.

complex_taylor_to_mat6 (a_complex_taylor, r_in, vec0, mat6, r_out)
Subroutine to calculate, from a complex_taylor map and about some trajectory: The 1st order
(Jacobian) transfer matrix.

complex_taylors_equal_complex_taylors (complex_taylor1, complex_taylor2)
Subroutine to transfer the values from one complex_taylor map to another: complex_taylor1 <=
complex_taylor2

init_complex_taylor_series (complex_taylor, n_term, save)
Subroutine to initialize a Bmad complex_taylor series (6 of these series make a complex_taylor
map). Note: This routine does not zero the structure. The calling

kill_complex_taylor (complex_taylor)
Subroutine to deallocate a Bmad complex_taylor map.

mat6_to_complex_taylor (vec0, mat6, complex_taylor)
Subroutine to form a first order complex_taylor map from the 6x6 transfer matrix and the 0th
order transfer vector.

sort_complex_taylor_terms (complex_taylor_in, complex_taylor_sorted)
Subroutine to sort the complex_taylor terms from "lowest" to "highest" of a complex_taylor
series.
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track_complex_taylor (start_orb, complex_taylor, end_orb)
Subroutine to track using a complex_taylor map.

truncate_complex_taylor_to_order (complex_taylor_in, order, complex_taylor_out)
Subroutine to throw out all terms in a complex_taylor map that are above a certain order.

type_complex_taylors (complex_taylor, max_order, lines, n_lines, file_id, out_type, clean)

Subroutine to output a Bmad complex_taylor map.

43.38 Transfer Maps: Taylor Maps

add_taylor_term (bmad_taylor, coef, expn, replace)
add_taylor_term (bmad_taylor, coef, i1, i2, i3, i4, i5, i6, i7, i8, i9, replace)

Overloaded routine to add a Taylor term to a Taylor series.

concat_ele_taylor (taylor1, ele, taylor3)
Routine to concatenate two taylor maps.

concat_taylor (taylor1, taylor2, taylor3)
Routine to concatenate two taylor series: taylor3(x) = taylor2(taylor1(x))

ele_to_taylor (ele, param, orb0, taylor_map_includes_offsets,
include_damping, orbital_taylor, spin_taylor)

Routine to make a Taylor map for an element. The order of the map is set by set_ptc.

equivalent_taylor_attributes (ele1, ele2) result (equiv)
Routine to see if to elements are equivalent in terms of attributes so that their Taylor Maps would
be the same.

init_taylor_series (bmad_taylor, n_term, save_old)
Routine to initialize a Bmad Taylor series.

kill_taylor (bmad_taylor)
Routine to deallocate a Bmad Taylor map.

mat6_to_taylor (mat6, vec0, bmad_taylor)
Routine to form a first order Taylor map from the 6x6 transfer matrix and the 0th order transfer
vector.

sort_taylor_terms (taylor_in, taylor_sorted, min_val)
Routine to sort the taylor terms from "lowest" to "highest" of a Taylor series.

taylor_coef (bmad_taylor, expn)
Function to return the coefficient for a particular taylor term from a Taylor Series.

taylor_equal_taylor (taylor1, taylor2)
Routine to transfer the values from one taylor map to another: Taylor1 ≤ Taylor2

transfer_map_calc (lat, t_map, err_flag, ix1, ix2, ref_orb, ix_branch,
one_turn, unit_start, concat_if_possible)

Routine to calculate the transfer map between two elements.

transfer_map_from_s_to_s (lat, t_map, s1, s2, ref_orb_in, ref_orb_out,
ix_branch, one_turn, unit_start, err_flag, concat_if_possible)

Subroutine to calculate the transfer map between longitudinal positions s1 to s2.
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taylor_minus_taylor (taylor1, taylor2) result (taylor3)
Routine to add two taylor maps.

taylor_plus_taylor (taylor1, taylor2) result (taylor3)
Routine to add two taylor maps.

taylors_equal_taylors (taylor1, taylor2)
Routine to transfer the values from one taylor map to another.

taylor_make_unit (bmad_taylor, ref_orbit)
Routine to make the unit Taylor map

taylor_to_mat6 (a_taylor, c0, mat6, c1)
Routine to calculate the linear (Jacobian) matrix about some trajectory from a Taylor map.

taylor_inverse (taylor_in, taylor_inv, err)
Routine to invert a taylor map.

taylor_propagate1 (bmad_taylor, ele, param, ref_in)
Routine to track a real_8 taylor map through an element. The alternative routine, if ele has a
taylor series, is concat_taylor.

track_taylor (start_orb, bmad_taylor, ref_orb)
Routine to track using a Taylor map.

transfer_ele_taylor (ele_in, ele_out, taylor_order)
Routine to transfer a Taylor map from one element to another.

truncate_taylor_to_order (taylor_in, order, taylor_out)
Routine to throw out all terms in a taylor map that are above a certain order.

type_taylors (bmad_taylor, max_order, lines, n_lines, file_id, out_style, clean)
Routine to output a Bmad taylor map.

43.39 Transfer Maps: Driving Terms

srdt_calc (lat, srdt_sums, order, n_slices_gen_opt, n_slices_sxt_opt, per_ele_out)
Calculates driving terms using summations over sextupole moments like those in [Bengt97] and
[Wang12]. Often called resonance driving terms (RDTs), though strictly speaking not all terms
drive resonances. Terms that are first and second order in sextupole moment are included. See
srdt_mod for a list of available driving terms.

make_srdt_cache(lat, n_slices_gen, n_slices_sxt, eles, cache)
Used to speed up calculation of the 2nd order driving terms. Makes an Nk2 ×Nk2 × 11 array that
contains the precomputed cross-products of the linear optics at each sextupole moment.

srdt_calc_with_cache(lat, srdt_sums, order, n_slices_gen_opt,
n_slices_sxt_opt, cache, per_ele_out)

Same as 43.39, but makes use of a cache precomputed by 43.39 to speed up the calculations.

srdt_lsq_solution(lat, var_indexes, ls_soln, n_slices_gen_opt,
n_slices_sxt_opt, chrom_set_x_opt, chrom_set_y_opt, weight_in)

Given a lattice and the indices of the sextupole moments to use as variables, finds the least squares
solution to the sextupole moments that minimize the 1st order driving terms. If there are more
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variables than driving terms, then the solution sets the driving terms to zero and minimizes the
sum of the squares of the variables. If there are fewer variables than driving terms, then the
solution is that which minimizes the sum of the squares of the driving terms.

43.40 Tracking and Closed Orbit

The following routines perform tracking and closed orbit calculations.

check_aperture_limit (orb, ele, particle_at, param, old_orb, check_momentum)
Routine to check if an orbit is outside an element’s aperture.

check_aperture_limit_custom (orb, ele, particle_at, param, err_flag)
Routine to check if an orbit is outside an element’s aperture. Used when ele%aperture_type is
set to custom$

closed_orbit_calc (lat, closed_orb, i_dim, direction, ix_branch, err_flag, print_err)
Routine to calculate the closed orbit at the beginning of the lat.

closed_orbit_from_tracking (lat, closed_orb, i_dim, eps_rel, eps_abs,
init_guess, err_flag)

Routine to find the closed orbit via tracking.

multi_turn_tracking_analysis (track, i_dim, track0, ele, stable, growth_rate,
chi, err_flag)

Routine to analyze multi-turn tracking data to get the Twiss parameters etc.

multi_turn_tracking_to_mat (track, i_dim, mat1, track0, chi)
Routine to analyze 1-turn tracking data to find the 1-turn transfer matrix and the closed orbit
offset.

offset_particle (ele, set, orbit, set_tilt, set_hvkicks, drift_to_edge,
s_pos, s_out, set_spin, mat6, make_matrix, spin_qrot)

Routine to effectively offset an element by instead offsetting the particle position to correspond to
the local element coordinates.

offset_photon (ele, orbit, set, offset_position_only, rot_mat)
Routine to effectively offset an element by instead offsetting the photon position to correspond to
the local crystal or mirror coordinates.

orbit_amplitude_calc (ele, orb, amp_a, amp_b, amp_na, amp_nb)
Routine to calculate the "invariant" amplitude of a particle at a particular point in its orbit.

particle_is_moving_backwards (orbit) result (is_moving_backward)
Routine to determine if a particle is moving in the backward -s direction. If not moving backward
it is dead or is moving backward.

particle_is_moving_forward (orbit) result (is_moving_forward)
Routine to determine if a particle is moving in the forward +s direction. If not moving forward it
is dead or is moving backward.

tilt_coords (tilt_val, coord, mat6, make_matrix)
Routine to effectively tilt (rotate in the x-y plane) an element by instead rotating the particle
position with negative the angle.
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track1 (start_orb, ele, param, end_orb, track, err_flag, ignore_radiation,
make_map1, init_to_edge)

Routine to track through a single element.

track1_bunch_csr (bunch, ele, centroid, err, s_start, s_end)
Routine to track a bunch of particles through the element lat%ele(ix_ele) with csr radiation effects.

track1_spin_custom (start, ele, param, end, err_flag, track, make_quaternion)
Dummy routine for custom spin tracking. This routine needs to be replaced for a custom calcula-
tion.

track_all (lat, orbit, ix_branch, track_state, err_flag, orbit0)
Routine to track through the lat.

track_from_s_to_s (lat, s_start, s_end, orbit_start, orbit_end, all_orb,
ix_branch, track_state)

Routine to track a particle between two s-positions.

track_many (lat, orbit, ix_start, ix_end, direction, ix_branch, track_state)
Routine to track from one element in the lat to another.

twiss_and_track (lat, orb, ok)
twiss_and_track (lat, orb_array, ok)

Routine to calculate the twiss parameters, transport matrices and orbit.

twiss_and_track_at_s (lat, s, ele_at_s, orb, orb_at_s, ix_branch, err,
use_last, compute_floor_coords)

Routine to calculate the Twiss parameters and orbit at a particular longitudinal position.

twiss_and_track_from_s_to_s (branch, orbit_start, s_end, orbit_end,
ele_start, ele_end, err, compute_floor_coords)

Routine to track a particle from one location to another.

twiss_and_track_intra_ele (ele, param, l_start, l_end, track_upstream_end,
track_downstream_end, orbit_start, orbit_end, ele_start, ele_end,

err, compute_floor_coords, reuse_ele_end)
Routine to track a particle within an element.

twiss_from_tracking (lat, ref_orb0, symp_err, err_flag, d_orb)
Routine to compute from tracking the Twiss parameters and the transfer matrices for every element
in the lat.

wall_hit_handler_custom (orb, ele, s)
This routine is called by the Runge-Kutta integrator odeint_bmad when a particle hits a wall.

43.41 Tracking: Low Level Routines

absolute_time_tracking (ele) result (is_abs_time)
Routine to return a logical indicating whether the tracking through an element should use absolute
time or time relative to the reference particle.

odeint_bmad (orbit, ele, param, s1_body, s2_body, err_flag, track,
mat6, make_matrix)

Routine to do Runge Kutta tracking.
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track_a_drift (orb, length, mat6, make_matrix, include_ref_motion)
Routine to track through a drift.

track_a_bend (orbit, ele, param, mat6, make_matrix)
Particle tracking through a bend element.

43.42 Tracking: Mad Routines

make_mat6_mad (ele, param, c0, c1)
Routine to make the 6x6 transfer matrix for an element from the 2nd order MAD transport map.
The map is stored in ele%taylor.

make_mad_map (ele, param, energy, map)
Routine to make a 2nd order transport map a la MAD.

mad_add_offsets_and_multipoles (ele, map)
Routine to add in the effect of element offsets and/or multipoles on the 2nd order transport map
for the element.

mad_drift (ele, energy, map)
Routine to make a transport map for a drift space. The equivalent MAD-8 routine is: TMDRF

mad_elsep (ele, energy, map)
Routine to make a transport map for an electric separator. The equivalent MAD-8 routine is:
TMSEP

mad_sextupole (ele, energy, map)
Routine to make a transport map for an sextupole. The equivalent MAD-8 routine is: TMSEXT

mad_sbend (ele, energy, map)
Routine to make a transport map for a sector bend element. The equivalent MAD-8 routine is:
TMBEND

mad_sbend_fringe (ele, energy, into, map)
Routine to make a transport map for the fringe field of a dipole. The equivalent MAD-8 routine
is: TMFRNG

mad_sbend_body (ele, energy, map)
Routine to make a transport map for the body of a sector dipole. The equivalent MAD-8 routine
is: TMSECT

mad_tmfoc (el, sk1, c, s, d, f)
Routine to compute the linear focusing functions. The equivalent MAD-8 routine is: TMFOC

mad_quadrupole (ele, energy, map)
Routine to make a transport map for an quadrupole element. The equivalent MAD-8 routine is:
TMSEXT

mad_rfcavity (ele, energy, map)
Routine to make a transport map for an rfcavity element. The equivalent MAD-8 routine is:
TMRF

mad_solenoid (ele, energy, map)
Routine to make a transport map for an solenoid. The equivalent MAD-8 routine is: TMSEXT
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mad_tmsymm (te)
routine to symmetrize the 2nd order map t. The equivalent MAD-8 routine is: tmsymm

mad_tmtilt (map, tilt)
Routine to apply a tilt to a transport map. The equivalent MAD-8 routine is: TMTILT

mad_concat_map2 (map1, map2, map3)
Routine to concatenate two 2nd order transport maps.

mad_track1 (c0, map, c1)
Routine to track through a 2nd order transfer map. The equivalent MAD-8 routine is: TMTRAK

track1_mad (start_orb, ele, param, end_orb)
Routine to track through an element using a 2nd order transfer map. Note: If map does not exist
then one will be created.

mad_map_to_taylor (map, energy, taylor)
Routine to convert a mad order 2 map to a taylor map.

taylor_to_mad_map (taylor, energy, map)
Routine to convert a Taylor map to a mad order 2 map. If any of the Taylor terms have order
greater than 2 they are ignored.

make_unit_mad_map (map)
Routine to initialize a 2nd order transport map to unity.

43.43 Tracking: Routines called by track1

Note: Unless you know what you are doing do not call these routines directly. Rather use track1.

symp_lie_bmad (ele, param, start_orb, end_orb, track, mat6,
make_matrix, offset_ele)

Symplectic integration through an element to 0th or 1st order.

track1_bmad (start_orb, ele, param, end_orb, err_flag, track, mat6, make_matrix)
Particle tracking through a single element BMAD_standard style.

track1_custom (start_orb, ele, param, end_orb, err_flag, finished, track)
Dummy routine for custom tracking.

track1_linear (start_orb, ele, param, end_orb)
Particle tracking through a single element using the transfer matrix..

track1_postprocess (start_orb, ele, param, end_orb)
Dummy routine for post processing after the track1 routine is done.

track1_preprocess (start_orb, ele, param, err_flag, finished, radiation_included, track)
Dummy routine for pre processing at the start of the track1 routine.

track1_radiation (orbit, ele, edge)
Routine to put in radiation damping and/or fluctuations.

track1_runge_kutta (start_orb, ele, param, end_orb, err_flag, track,
mat6, make_matrix)

Routine to do tracking using Runge-Kutta integration.
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track1_symp_lie_ptc (start_orb, ele, param, end_orb, track)
Particle tracking through a single element using a Hamiltonian and a symplectic integrator.

track1_taylor (start_orb, ele, param, end_orb, taylor, mat6, make_matrix)
Routine to track through an element using the elements taylor series.

track1_time_runge_kutta(start_orb, ele, param, end_orb, err_flag, track,
t_end, dt_step)

Routine to track a particle through an element using Runge-Kutta time-based tracking.

43.44 Twiss and Other Calculations

calc_z_tune (branch)
Routine to calculate the synchrotron tune from the full 6X6 1 turn matrix.

chrom_calc (lat, delta_e, chrom_x, chrom_y, err_flag, pz,
low_E_lat, high_E_lat, low_E_orb, high_E_orb, ix_branch)

Routine to calculate the chromaticities by computing the tune change when then energy is changed.

chrom_tune (lat, delta_e, target_x, target_y, err_tol, err_flag)
Routine to set the sextupole strengths so that the lat has the desired chromaticities.

radiation_integrals (lat, orbit, mode, ix_cache, ix_branch, rad_int_by_ele)
Routine to calculate the synchrotron radiation integrals, the emittance, and energy spread.

radiation_integrals_custom (lat, ir, orb, err_flag)
User supplied routine to calculate the synchrotron radiation integrals for a custom element.

relative_mode_flip (ele1, ele2)
Function to see if the modes of ELE1 are flipped relative to ELE2.

set_tune (phi_a_set, phi_b_set, dk1, eles, branch, orb, print_err)
Routine to Q_tune a lat. This routine will set the tunes to within 0.001 radian (0.06 deg).

set_z_tune (branch, z_tune, ok)
Routine to set the longitudinal tune by setting the RF voltages in the RF cavities.

transfer_twiss (ele_in, ele_out, reverse)
Routine to transfer the twiss parameters from one element to another.

twiss_and_track (lat, orb)
Routine to calculate the Twiss and orbit parameters. This is not necessarily the fastest routine.

twiss_at_element (ele, start, end, average)
Routine to return the Twiss parameters at the beginning, end, or the average of an element.

twiss_and_track_at_s (lat, s, ele, orb_, here)
Routine to calculate the Twiss parameters and orbit at a particular longitudinal position.

twiss_at_start (lat, status, ix_branch, type_out)
Routine to calculate the Twiss parameters at the start of the lat.

twiss_from_tracking (lat, closed_orb_, d_orb, error)
Routine to compute from tracking, for every element in the lat, the Twiss parameters and the
transfer matrices.
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twiss_propagate1 (ele1, ele2, err_flag)
Routine to propagate the Twiss parameters from the end of ELE1 to the end of ELE2.

twiss_propagate_all (lat, ix_branch, err_flag, ie_start, ie_end, zero_uncalculated)
Routine to propagate the Twiss parameters from the start to the end.

twiss_to_1_turn_mat (twiss, phi, mat2)
Routine to form the 2x2 1-turn transfer matrix from the Twiss parameters.

43.45 Twiss: 6 Dimensional

normal_mode3_calc (t6, tune, B, HV, above_transition)
Decompose a 2n x 2n symplectic matrix into normal modes. For more details see:

twiss3_propagate_all (lat, ix_branch)
Routine to propagate the twiss parameters using all three normal modes.

twiss3_propagate1 (ele1, ele2, err_flag)
Routine to propagate the twiss parameters using all three normal modes.

twiss3_at_start (lat, err_flag, ix_branch, tune3)
Routine to propagate the twiss parameters using all three normal modes.

43.46 Wakefields

init_wake (wake, n_sr_long, n_sr_trans, n_lr_mode, always_allocate)
Routine to initialize a wake struct.

randomize_lr_wake_frequencies (ele, set_done)
Routine to randomize the frequencies of the lr wake HOMs.

track1_sr_wake (bunch, ele)
Routine to apply the short range wakefields to a bunch.

track1_lr_wake (bunch, ele)
Routine to put in the long-range wakes for particle tracking.

zero_lr_wakes_in_lat (lat)
Routine to zero the long range wake amplitudes for the elements that have long range wakes in a
lattice.

43.47 C/C++ Interface

fscalar2scalar (f_scalar, n) result (c_scalar)
Function to translate a scalar from Fortran form to C form.

fvec2vec (f_vec, n) result (c_vec)
Function to translate a vector from Fortran form to C form.
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mat2vec (mat, n) result (vec)
Function to take a matrix and turn it into an array in C standard row-major order.

tensor2vec (tensor, n) result (vec)
Function to take a tensor and turn it into an array in C standard row-major order::

vec2mat (vec, mat)
Routine to take a an array in C standard row-major order and turn it into a matrix.

vec2tensor (vec, tensor)
Routine to take a an array in C standard row-major order and turn it into a tensor.

remove_null_in_string (str_in, str_out
Routine to convert a null character in a string to a blank.

f_logic (logic) result (f_log)
Function to convert from a C logical to a Fortran logical.

f_logic_int (logic) result (f_log)
Function to convert from a C logical to a Fortran logical. This function is overloaded by f_logic.

f_logic_bool (logic) result (f_log)
Function to convert from a C logical to a Fortran logical. This function is overloaded by f_logic.

remove_null_in_string_arr (str_in, str_out)
This routine overloaded by: remove_null_in_string

remove_null_in_string_char (str_in, str_out)
This routine overloaded by: remove_null_in_string

to_c_str (f_str, c_str)
Subroutine to append a null (0) character at the end of a string (trimmed of trailing blanks) so it
will look like a C character array.

to_f_str (c_str, f_str)
Subroutine to append a null (0) character at the end of a string (trimmed of trailing blanks) so it
will look like a C character array.
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ab_multipole_kick, 584
absolute_time_tracking, 599
add_lattice_control_structs, 574
add_superimpose, 501, 574
add_taylor_term, 596
all_pointer_to_string, 571
allocate_branch_array, 488, 564
allocate_element_array, 579
allocate_lat_ele_array, 488, 579
angle_between_polars, 594
angle_to_canonical_coords, 586
append_subdirectory, 568
apply_element_edge_kick_hook, 528, 565
attribute_bookkeeper, 478, 497, 574
attribute_free, 577
attribute_index, 477, 577
attribute_name, 477, 577
attribute_type, 477, 577
autoscale_phase_and_amp, 520, 574

bane1, 573
bbi_kick, 563
bend_edge_kick, 563
bend_photon_init, 586
bend_photon_vert_angle_init, 586
bend_shift, 576
bjmt1, 573
bmad_parser, 468, 469, 477, 483, 488, 505, 509,

526, 581
bmad_parser2, 505, 581
bracket_index, 579
branch_equal_branch, 585
branch_name, 577
bunch_equal_bunch, 585

c_multi, 580
c_to_cbar, 508, 582
calc_bunch_params, 523, 563
calc_bunch_params_slice, 563
calc_bunch_sigma_matrix, 563
calc_emit_from_beam_init, 563

calc_emittances_and_twiss_from_sigma_ma-
trix, 563

calc_spin_params, 594
calc_z_tune, 602
cbar_to_c, 582
cesr_getarg, 568
cesr_iargc, 568
check_aperture_limit, 519, 527, 598
check_aperture_limit_custom, 519, 526, 527,

565, 598
check_controller_controls, 579
check_if_s_in_bounds, 577
chrom_calc, 510, 602
chrom_tune, 510, 602
cimp1, 574
clear_lat_1turn_mats, 582
closed_orbit_calc, 598
closed_orbit_from_tracking, 598
combine_consecutive_elements, 581
complex_error_function, 569
complex_taylor_coef, 595
complex_taylor_equal_complex_taylor, 595
complex_taylor_exponent_index, 595
complex_taylor_make_unit, 595
complex_taylor_to_mat6, 595
complex_taylors_equal_complex_taylors, 595
concat_ele_taylor, 596
concat_real_8, 586
concat_taylor, 521, 596
concat_transfer_mat, 582
control_bookkeeper, 497, 579
convert_coords, 586
convert_pc_to, 586
convert_total_energy_to, 586
coord_equal_coord, 585
coord_state_name, 513, 573
coords_curvilinear_to_floor, 576
coords_floor_to_curvilinear, 576
coords_floor_to_local_curvilinear, 576
coords_floor_to_relative, 576
coords_local_curvilinear_to_floor, 576
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coords_relative_to_floor, 576
create_element_slice, 501, 518, 574
create_field_overlap, 574
create_girder, 574
create_group, 501, 574
create_lat_ele_nametable, 477, 581
create_overlay, 501, 574
create_planar_wiggler_model, 575
create_sol_quad_model, 582
create_uniform_element_slice, 518
create_unique_ele_names, 582
cross_product, 569
csr_bin_kicks, 564
csr_bin_particles, 564

date_and_time_stamp, 570
deallocate_ele_array_pointers, 579
deallocate_ele_pointers, 476, 478, 579
deallocate_lat_pointers, 488, 579
determinant, 582
dir_close, 568
dir_open, 568
dir_read, 568
do_mode_flip, 582
downcase, 571
downcase_string, 571

ele_compute_ref_energy_and_time, 580
ele_equal_ele, 476, 585
ele_geometry, 480, 530, 576
ele_geometry_hook, 528, 565
ele_geometry_with_misalignments, 576
ele_loc_name, 578
ele_misalignment_l_s_calc, 576
ele_nametable_index, 581
ele_to_fibre, 586
ele_to_fibre_hook, 528, 565
ele_to_taylor, 521, 596
element_at_s, 577
em_field_calc, 527, 566
em_field_custom, 526, 527, 565, 566
equivalent_taylor_attributes, 578, 596
err_exit, 570

f_logic, 604
f_logic_bool, 604
f_logic_int, 604
field_interpolate_3d, 580
file_suffixer, 568
find_element_ends, 578
floor_angles_to_w_mat, 530, 576
floor_w_mat_to_angles, 530, 576

fscalar2scalar, 603
fvec2vec, 603

get_a_char, 568
get_file_time_stamp, 568
get_slave_list, 578
get_tty_char, 568

hdf5_attribute_info, 566
hdf5_close_object, 566
hdf5_exists, 566
hdf5_get_attribute_by_index, 566
hdf5_num_attributes, 566
hdf5_object_info, 566
hdf5_open_dataset, 566
hdf5_open_file, 566
hdf5_open_group, 566
hdf5_open_object, 566
hdf5_read_attribute_alloc_string, 567
hdf5_read_attribute_int, 567
hdf5_read_attribute_real, 567
hdf5_read_attribute_string, 567
hdf5_read_beam, 557, 567
hdf5_read_grid_field, 559, 567
hdf5_write_attribute_string, 566
hdf5_write_beam, 557, 568
hdf5_write_dataset_int, 567
hdf5_write_dataset_real, 567
hdf5_write_grid_field, 559, 567

i_csr, 564
ibs_lifetime, 574
index_nocase, 571
init_beam_distribution, 522, 563
init_bunch_distribution, 563
init_complex_taylor_series, 595
init_coord, 498, 514, 586
init_custom, 526, 565
init_ele, 579
init_lat, 488, 579
init_spin_distribution, 563
init_taylor_series, 596
init_wake, 603
initial_lmdif, 585
insert_element, 501, 575
int_str, 571
integer_option, 570
is_alphabetic, 571
is_false, 571
is_false(param), 477
is_integer, 571
is_logical, 571



ROUTINE INDEX 615

is_real, 571
is_true, 571
is_true(param), 477

key_name, 578
key_name_to_key_index, 578
kill_complex_taylor, 595
kill_ptc_layouts, 586
kill_taylor, 521, 596
kind_name, 586

lat_compute_ref_energy_and_time, 497, 530,
580

lat_ele_locator, 468–470, 502, 578
lat_equal_lat, 488, 585
lat_geometry, 480, 497, 530, 576
lat_make_mat6, 469, 481, 497, 583
lat_sanity_check, 578
lat_to_ptc_layout, 535, 587
lat_vec_equal_lat_vec, 585
lattice_bookkeeper, 469, 470, 498, 579
linear_fit, 569
location_decode, 572
location_encode1, 572
logic_option, 571
logic_str, 572
lunget, 568

mad_add_offsets_and_multipoles, 600
mad_concat_map2, 601
mad_drift, 600
mad_elsep, 600
mad_map_to_taylor, 601
mad_quadrupole, 600
mad_rfcavity, 600
mad_sbend, 600
mad_sbend_body, 600
mad_sbend_fringe, 600
mad_sextupole, 600
mad_solenoid, 600
mad_tmfoc, 600
mad_tmsymm, 600
mad_tmtilt, 601
mad_track1, 601
make_g2_mats, 582
make_g_mats, 582
make_hybrid_lat, 575
make_mad_map, 600
make_mat6, 481, 497, 582
make_mat6_bmad, 594
make_mat6_custom, 526, 565, 595
make_mat6_mad, 600

make_mat6_symp_lie_ptc, 595
make_mat6_taylor, 595
make_mat6_tracking, 595
make_srdt_cache, 597
make_unit_mad_map, 601
make_v_mats, 508, 582
map_coef, 587
mat2vec, 603
mat6_from_s_to_s, 518, 582
mat6_to_complex_taylor, 595
mat6_to_taylor, 583, 596
mat_eigen, 570
mat_inverse, 570
mat_make_unit, 570
mat_rotation, 570
mat_symp_conj, 570
mat_symp_decouple, 570
mat_symp_error, 570
mat_symplectify, 570
mat_type, 570
match_ele_to_mat6, 583
match_reg, 572
match_wild, 572
match_word, 572
mexp, 584
milli_sleep, 568
modulo2, 569
mpxx1, 574
mpzt1, 574
multi_turn_tracking_analysis, 598
multi_turn_tracking_to_mat, 583, 598
multipass_all_info, 584
multipass_chain, 584
multipole_ab_to_kt, 584
multipole_ele_to_ab, 584
multipole_ele_to_kt, 584
multipole_init, 584
multipole_kick, 584
multipole_kicks, 584
multipole_kt_to_ab, 585

n_attrib_string_max_len, 578
nametable_add, 581
nametable_bracket_indexx, 581
nametable_change1, 581
nametable_init, 581
nametable_remove, 581
new_control, 501, 575
normal_form_rd_terms, 587
normal_mode3_calc, 508, 603
num_lords, 578
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odeint_bmad, 527, 599
offset_particle, 598
offset_photon, 598
on_off_logic, 572
one_turn_mat_at_ele, 583
opti_de, 585
opti_lmdif, 585
orbit_amplitude_calc, 598
orbit_to_local_curvilinear, 577
order_particles_in_z, 563
order_super_lord_slaves, 581
ordinal_str, 572
out_io, 568
out_io_called, 568
out_io_end, 568
out_io_line, 568
output_direct, 569

parse_fortran_format, 572
particle_is_moving_backwards, 598
particle_is_moving_forward, 514, 598
patch_flips_propagation_direction, 577
pmd_read_complex_dataset, 567
pmd_read_int_dataset, 567
pmd_read_real_dataset, 567
pmd_write_complex_to_dataset, 567
pmd_write_int_to_dataset, 567
pmd_write_int_to_pseudo_dataset, 567
pmd_write_real_to_dataset, 567
pmd_write_real_to_pseudo_dataset, 567
pmd_write_units_to_dataset, 567
pointer_to_attribute, 503, 575
pointer_to_branch, 575
pointer_to_ele, 575
pointer_to_ele_multipole, 575
pointer_to_element_at_s, 575
pointer_to_indexed_attribute, 578
pointer_to_lord, 493, 495, 578
pointer_to_multipass_lord, 578, 584
pointer_to_next_ele, 575
pointer_to_slave, 493, 495, 578
pointers_to_attribute, 503, 575
polar_to_spinor, 594
polar_to_vec, 594
ptc_transfer_map_with_spin, 587

qp_axis_niceness, 588
qp_calc_and_set_axis, 546, 548, 588, 590
qp_calc_axis_params, 588
qp_calc_axis_places, 588
qp_calc_axis_scale, 588

qp_calc_minor_div, 588
qp_clear_box, 588
qp_clear_box_basic, 592
qp_clear_page, 588
qp_clear_page_basic, 592
qp_close_page, 546, 588
qp_close_page_basic, 592
qp_convert_point_abs, 592
qp_convert_point_rel, 592
qp_convert_rectangle_rel, 588
qp_draw_axes, 546, 548, 588
qp_draw_circle, 588
qp_draw_curve_legend, 589
qp_draw_data, 546, 589
qp_draw_ellipse, 588
qp_draw_graph, 589
qp_draw_graph_title, 589
qp_draw_grid, 589
qp_draw_histogram, 589
qp_draw_line, 589
qp_draw_main_title, 589
qp_draw_polyline, 589
qp_draw_polyline_basic, 589
qp_draw_polyline_no_set, 589
qp_draw_rectangle, 549, 589
qp_draw_symbol, 589
qp_draw_symbol_basic, 593
qp_draw_symbols, 589
qp_draw_text, 546, 547, 589
qp_draw_text_basic, 589
qp_draw_text_legend, 589
qp_draw_text_no_set, 589
qp_draw_x_axis, 590
qp_draw_y_axis, 590
qp_eliminate_xy_distortion, 590
qp_from_inch_abs, 592
qp_from_inch_rel, 592
qp_get_axis_attrib, 591
qp_get_layout_attrib, 591
qp_get_line_attrib, 591
qp_get_parameters, 591
qp_get_symbol_attrib, 591
qp_init_com_struct, 593
qp_join_units_string, 593
qp_justify, 593
qp_open_page, 546, 549, 588
qp_open_page_basic, 593
qp_paint_rectangle, 590
qp_paint_rectangle_basic, 593
qp_pointer_to_axis, 593
qp_read_data, 546, 547, 592
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qp_restore_state, 546, 548, 593
qp_restore_state_basic, 593
qp_save_state, 546, 548, 593
qp_save_state_basic, 593
qp_select_page, 588
qp_select_page_basic, 593
qp_set_axis, 546, 550, 590
qp_set_box, 546, 548, 549, 590
qp_set_char_size_basic, 593
qp_set_clip, 591
qp_set_clip_basic, 593
qp_set_color_basic, 593
qp_set_graph, 590
qp_set_graph_attrib, 546, 591
qp_set_graph_limits, 590
qp_set_graph_placement, 590
qp_set_graph_position_basic, 593
qp_set_layout, 590
qp_set_line, 590
qp_set_line_attrib, 546, 548, 591
qp_set_line_width_basic, 593
qp_set_margin, 546, 548, 549, 590
qp_set_page_border, 546, 547, 549, 590
qp_set_page_border_to_box, 591
qp_set_parameters, 550, 591
qp_set_symbol, 591
qp_set_symbol_attrib, 546, 548, 591
qp_set_symbol_fill_basic, 593
qp_set_symbol_size_basic, 593
qp_set_text_attrib, 591
qp_set_text_background_color_basic, 594
qp_split_units_string, 594
qp_subset_box, 591
qp_text_height_to_inches, 592
qp_text_len, 592
qp_text_len_basic, 594
qp_to_axis_number_text, 590
qp_to_inch_abs, 592
qp_to_inch_rel, 592
qp_to_inches_abs, 592
qp_to_inches_rel, 592
qp_use_axis, 550, 591
quote, 572
quoten, 572

radiation_integrals, 509, 602
radiation_integrals_custom, 526, 565, 602
ran_engine, 569
ran_gauss, 569
ran_gauss_converter, 569
ran_seed_get, 569

ran_seed_put, 569
ran_uniform, 569
randomize_lr_wake_frequencies, 603
re_allocate, 571
re_allocate_eles, 579
re_associate, 571
read_a_line, 569
read_beam_file, 563
read_digested_bmad_file, 506, 582
real_num_fortran_format, 572
real_option, 571
real_str, 572
real_to_string, 572
reallocate_beam, 564
reallocate_bunch, 564
reallocate_coord, 515, 580
reallocate_coord_array, 515, 580
reals_to_string, 572
reals_to_table_row, 572
relative_mode_flip, 602
release_rad_int_cache, 581
remove_constant_taylor, 587
remove_eles_from_lat, 501, 575
remove_null_in_string, 604
remove_null_in_string_arr, 604
remove_null_in_string_char, 604
rf_is_on, 578

s_calc, 497, 530, 577
set_custom_attribute_name, 485, 580
set_ele_attribute, 503, 575
set_ele_defaults, 580
set_ele_status_stale, 575
set_flags_for_changed_attribute, 469, 498, 508,

581
set_on_off, 580
set_ptc, 521, 534, 587
set_status_flags, 575
set_tune, 509, 602
set_z_tune, 509, 602
skip_header, 569
sol_quad_mat6_calc, 583
sort_complex_taylor_terms, 595
sort_taylor_terms, 596
sort_universal_terms, 587
spin_omega, 594
spinor_to_polar, 594
spinor_to_vec, 594
spline_akima, 570
spline_evaluate, 570
split_lat, 501, 575
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splitfilename, 569
srdt_calc, 597
srdt_calc_with_cache, 597
srdt_lsq_solution, 597
str_downcase, 573
str_match_wild, 573
str_set, 573
str_substitute, 573
string_option, 571
string_to_int, 573
string_to_real, 573
string_trim, 573
string_trim2, 573
suggest_lmdif, 585
super_ludcmp, 570
super_mrqmin, 585
switch_attrib_value_name, 478, 578
symp_lie_bmad, 601
system_command, 569

taylor_coef, 521, 596
taylor_equal_taylor, 596
taylor_inverse, 597
taylor_make_unit, 597
taylor_minus_taylor, 596
taylor_plus_taylor, 597
taylor_propagate1, 597
taylor_to_genfield, 587
taylor_to_mad_map, 601
taylor_to_mat6, 583, 597
taylor_to_real_8, 587
taylors_equal_taylors, 597
tensor2vec, 604
tilt_coords, 598
tilt_mat6, 583
time_runge_kutta_periodic_kick_hook, 528, 565
to_c_str, 604
to_eta_reading, 584
to_f_str, 604
to_orbit_reading, 584
to_phase_and_coupling_reading, 584
to_str, 573
touschek_lifetime, 565
track1, 497, 514, 526, 529, 598
track1_bmad, 601
track1_bunch, 523, 563
track1_bunch_csr, 599
track1_bunch_hom, 563
track1_bunch_hook, 528, 565
track1_custom, 526, 565, 601
track1_linear, 601

track1_lr_wake, 603
track1_mad, 601
track1_postprocess, 526, 528, 565, 601
track1_preprocess, 526, 528, 565, 601
track1_radiation, 601
track1_runge_kutta, 601
track1_spin, 594
track1_spin_custom, 526, 565, 599
track1_sr_wake, 603
track1_symp_lie_ptc, 601
track1_taylor, 602
track1_time_runge_kutta, 602
track1_wake_hook, 528, 566
track_a_bend, 600
track_a_drift, 599
track_all, 515, 599
track_beam, 523, 564
track_bunch, 564
track_bunch_time, 564
track_complex_taylor, 595
track_from_s_to_s, 518, 599
track_many, 516, 599
track_taylor, 597
transfer_branch, 564
transfer_branches, 564
transfer_ele, 580
transfer_ele_taylor, 580, 597
transfer_eles, 580
transfer_lat, 580
transfer_lat_parameters, 580
transfer_map_calc, 596
transfer_map_from_s_to_s, 596
transfer_mat2_from_twiss, 583
transfer_mat_from_twiss, 583
transfer_matrix_calc, 583
transfer_twiss, 517, 602
truncate_complex_taylor_to_order, 596
truncate_taylor_to_order, 597
twiss1_propagate, 579
twiss3_at_start, 603
twiss3_propagate1, 603
twiss3_propagate_all, 603
twiss_and_track, 509, 599, 602
twiss_and_track_at_s, 509, 518, 599, 602
twiss_and_track_from_s_to_s, 518, 599
twiss_and_track_intra_ele, 509, 518, 599
twiss_at_element, 602
twiss_at_start, 468, 469, 508, 602
twiss_from_mat2, 583
twiss_from_mat6, 583
twiss_from_tracking, 599, 602
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twiss_propagate1, 508, 602
twiss_propagate_all, 468, 469, 508, 509, 603
twiss_to_1_turn_mat, 583, 603
type_complex_taylors, 596
type_coord, 586
type_ele, 468, 469, 473, 578
type_map, 587
type_map1, 587
type_ptc_fibre, 587
type_ptc_layout, 587
type_real_8_taylors, 587
type_taylors, 597
type_this_file, 569
type_twiss, 579

universal_equal_universal, 585
universal_to_bmad_taylor, 587
unquote, 573
upcase, 573
upcase_string, 573
update_floor_angles, 577

valid_mat6_calc_method, 520, 579
valid_tracking_method, 520, 579
value_of_attribute, 503, 575
vec2mat, 604
vec2tensor, 604
vec_to_polar, 594
vec_to_spinor, 594

w_mat_for_bend_angle, 577
w_mat_for_tilt, 577
w_mat_for_x_pitch, 577
w_mat_for_y_pitch, 577
wall_hit_handler_custom, 526, 527, 566, 599
write_beam_file, 564
write_beam_floor_positions, 564
write_bmad_lattice_file, 506, 582
write_digested_bmad_file, 506, 582
write_lattice_in_foreign_format, 506, 581

zero_ele_kicks, 580
zero_ele_offsets, 580
zero_lr_wakes_in_lat, 603
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! comment symbol, 35
$

character to denote a parameter, 465
& continuation symbol, 35

ab_kicker, 64
ab_multipole, 63, 193, 217, 220, 222
abs, 51
abs_tol_adaptive_tracking, 225, 254
abs_tol_tracking, 254
absolute time tracking, 405, 520
absolute_time_tracking, 254
ac_kicker, 329
accordion_edge, 110
acos, 51
action-angle, 377
alias, 164
alpha_a, 66, 251
alpha_a_strong, 67
alpha_angle, 83
alpha_b, 66, 251
alpha_b_strong, 67
an, see multipole, an
angle, 70, 71, 148, 163, 318
anomalous_moment_of, 48, 51
antimuon, 46
antimuon$, 491
antiproton, 46
antiproton$, 491
aperture, 174, 192, 478
aperture_at, 174, 176
aperture_limit_on, 255
aperture_type, 87, 88, 121, 174
apply_element_edge_kick_hook, 528
arithmetic expressions, 49

constants, 49
intrinsic functions, see intrinsic functions

asin, 51
Astra, 280
atan, 51
auto

mat6_calc_method, 219
auto_bookkeeper, 254
automatic field scaling, 204

b1_gradient, 73, 142, 152, 164
b2_gradient, 74, 151, 164
b3_gradient, 131, 164
b_field, 70, 71, 164
b_field_tot, 70
b_max, 159, 163
b_param, 83
bbi_constant, 66, 163
beam, 38, 355
beam initialization parameters, 263, 268
beam line, see line
beam statement, 250
beam tracking

list of routines, 563
beam_init, 270
beam_init_struct, 263
beambeam, 66, 163, 217, 220, 222, 249, 409, 490
beginning, 38
beginning element, 29, 42
beginning statement, 36, 251, 317
beginning_ele, 69, 103, 168
bendfringe, 213
beta_a, 66, 251
beta_a0, 123
beta_a1, 123
beta_a_strong, 67
beta_b, 66, 251
beta_b0, 123
beta_b1, 123
beta_b_strong, 67
bl_hkick, 164, 174
bl_kick, 164, 174
bl_vkick, 164, 174
Blender, 280
Bmad, 2

distribution, 461
error reporting, 3
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general parameters, 254
information, 3
lattice file format, 35
lattice format, see lattice file format
statement syntax, 35

bmad version number, 505
bmad_com, 259, 531
bmad_common_struct, 254

absolute_time_tracking, 520
aperture_limit_on, 519
auto_bookkeeper, 498
max_aperture_limit, 519

bmad_parser, 505
bmad_standard

mat6_calc_method, 219
tracking method, 325
tracking_method, 216

bn, see multipole, bn
bookkeeper_status_struct, 498
bookkeeping

automatic, 497
intelligent, 497

both_ends, 176
bragg_angle, 83
bragg_angle_in, 83
bragg_angle_out, 83
branch, 29, 30, 229, 251

root, 488
branch_struct, 488
bs_field, 148, 152, 164
bs_gradient, 153
bunch, 355
bunch initialization, 355

C++ interface, 541
classes, 541
Fortran calling C++, 542

C/C++ interface
list of routines, 603

calc_reference_orbit, 38
call, 38

inline, 54
call statement, 54
canonical coordinates, see phase space coordi-

nates
capillary, 76, 192, 217, 220, 222

wall, 188
cartesian_map, 194, 197, 333
cavity_type, 81, 116
ccylindrical map, 198
change, 270

charge, 66, 163
charge_of, 51
chromaticity, 510
closed, 248
closed orbit, 518
cmat_ij, 251
coherent synchrotron radiation, see CSR
coherent tracking, 435
combine_consecutive_elements, 38
comment symbol (!), 35
complex taylor map

list of routines, 595
constant_ref_energy, 93
constants, 48, 529
continuation symbol (&), 35
continuous, 176
control_struct, 494
controller element, 29
conversion to other lattice formats, 279
converter, 78, 416
coord_array_struct, 515
coord_struct, 511
coordinates, 311

global, see global coordinates
list of routines, 586
phase space, see phase space coordinates
reference, see reference orbit

cos, 51
coupler_angle, 203
coupler_at, 203
coupler_phase, 203
coupler_strength, 203
coupling, see normal mode
crab_cavity, 81
critical_angle_factor, 76
crotch chamber geometry, 189
crunch, 213
crunch_calib, 213
crystal, 83, 176, 192, 220, 222, 313, 320, 438,

439
tilt correction, 444

crystal_type, 83
CSR, 360, 363
csr and space charge methods, 224
csr_and_space_charge_on, 254
csr_method, 224
CSRTrack, 280
custom, 86, 217, 220, 222, 226, 525, 526

mat6_calc_method, 219
reference energy, 323, 530
spin_tracking_method, 222
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tracking_method, 216
custom_attributeN, 247
cylindrical map, 335
cylindrical_map, 194

d1_thickness, 129
d2_thickness, 129
d_orb(6), 254
d_spacing, 83
db_field, 70, 71, 164
dbragg_angle_de, 83
de optimizer parameters, 261
de_eta_meas, 213
debug_marker, 38
debug_marker statement, 59
default_ds_step, 254
default_integ_order, 254
default_tracking_species, 248, 252
delta_e, 163
delta_e_ref, 86
dependent attribute, 163
descrip, 164, 526
detector, 87, 213
dg, 70, 73, 164
diffraction_plate, 88, 176
digested files, 36, 505
dispersion, 359, 369, 378
downstream element end, 313
dphi_a, 123
dphi_b, 123
drift, 89, 217, 220, 222, 238, 420

superposition, 239
driving terms

list of routines, 597
ds_slice, 138
ds_step, 163, 224–226, 521
dynamic_aperture_struct, 262

e1, 70, 71, 148
e2, 70, 71, 148
E2_center, 139
E2_probability, 139
E_center, 139
E_center_relative_to_ref, 139
e_field, 92, 163
e_field_x, 139
e_field_y, 139
e_gun, 90, 168, 204, 249
e_loss, 81, 116, 163
e_tot, 163, 168, 246–248, 251
e_tot_offset, 134

e_tot_set, 134
e_tot_start, 168
ecollimator, 77, 174, 176, 217, 220, 222
ele

%status, 498
ele_geometry_hook, 528
ele_origin, 237
ele_pointer_struct, 468
ele_struct, 468, 473

%a, 479, 507
%a_pole(:), 484
%alias, 476
%aperture_type, 519
%b, 479, 507
%b_pole(:), 484
%bmad_logic, 485
%c, 507
%c_mat, 479, 507
%component_name, 479
%descrip, 476
%em_field, 482
%emit, 507
%field_master, 478
%floor, 480
%gamma_c, 479, 507
%ic1_lord, 479, 495
%ix1_slave, 479
%ix_branch, 478
%ix_ele, 478, 502
%ix_pointer, 484
%ixx, 485
%iyy, 485
%key, 469, 477
%lat, 478
%logic, 484
%lord_status, 479, 491, 492
%map_ref_orb_in, 481
%map_ref_orb_out, 481
%mat6, 481, 520
%mode3, 479, 508
%mode_flip, 479
%n_lord, 479, 493, 495
%n_lord_field, 479, 495
%n_slave, 479, 493
%n_slave_field, 479
%name, 476
%norm_emit, 507
%old_value(:), 478
%r, 484
%ref_time, 480
%s, 469, 480



624 INDEX

%sigma, 507
%sigma_p, 507
%slave_status, 479, 491, 492
%sub_key, 477
%tracking_method, 520
%type, 476
%value(:), 477
%vec0, 481
%wake, 482
%x, 469
%z, 479, 507
attribute values, 477
components not used by Bmad, 484
in lat_struct, 489
initialization, 476
multipoles, 484
pointer components, 476
Taylor maps, 481
transfer maps, 481

ele_to_fibre_hook, 528
electric fields, 329

map decomposition, 332
electric_dipole_moment, 248
electron, 46
electron$, 491
Elegant, 280
element, 29, 61

class, 215
matching to names, 39
name, 38
names, 38
table of class types, 217

element attribute, 163
dependent and independent, 163

Element attribute bookkeeping, 476
element attributes, 41

defining custom attributes, 44
element body coordinates, 321
element coordinates, 313, 407, 438
element reversal, 231
elliptical_curvature_x, 180
elliptical_curvature_y, 180
elliptical_curvature_z, 180
elseparator, 92, 163, 174, 217, 220, 222, 329,

420, 423
em_field, 93, 168, 204, 405

reference energy, 323
emittance_a, 249
emittance_b, 249
emittance_z, 249
end element, 29, 249

end_edge, 110
end_file, 38
end_file statement, 55
energy, 250
energy_distribution, 139
energy_probability_curve, 139
Enge function, 72
entrance element end, 313
entrance_end, 176, 313, 519
eps_step_scale, 148
eta_x, 251
eta_x0, 123
eta_y, 251
eta_y0, 123
etap_x, 251
etap_x0, 123
etap_y, 251
etap_y0, 123
exact_misalign, 226, 258
exact_model, 226
exact_multipoles, 70, 71, 332
exit element end, 313
exit_end, 176, 313, 519
exp, 51
expand_lattice, 38, 52, 55, 234, 243

F (multipole scale factor), 329
f1, 142, 148
f2, 142, 148
factorial, 51
feedback, 94
fftw

library, 462
fgsl

library, 462
fibre, 535
fiducial, 95, 103, 321
field maps, 194
field_calc, 86, 224, 225
field_master, 163
field_overlaps, 204, 241
field_scale, 195
field_scale_factor, 88, 121
field_type, 195
field_x, 249
field_y, 249
fint, 70, 72
fintx, 70, 72
fixed_step_runge_kutta

tracking_method, 216
fixed_step_time_runge_kutta
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tracking_method, 216
flexible, 134
flexible patch, 95, 135
floor coordinates, see global coordinates
floor_position_struct, 480
floor_shift, 97, 313

coordinate transformation, 320
foil, 99, 421
follow_diffracted_beam, 83
Forest, Étienne, see PTC/FPP
fork, 102, 103, 488, 517
FPP, see PTC/FPP
free$, 492
fringe fields, 210
fringe_at, 210
fringe_type, 148, 211
functions, see intrinsic functions

g, 70, 73, 148, 163, 164
g_max, 159
g_tot, 70
gang, 164
gap, 92, 163
gen_grad_map, 194, 202
generalized gradient field modeling, 339
geometry, 238, 247, 248, 252, 468
getf, 463
girder, 105, 110, 133, 192, 238, 321, 480, 489,

495
girder_lord, 31
girder_lord$, 491
gkicker, 108
global coordinates, 316, 530

in ele_struct, 480
list of routines, 576
reference orbit origin, 317

global_com, 531
parallel processing, 531

global_common_struct, 531
parallel processing, 531

GPT, 280
grad_loss_sr_wake, 254
gradient, 81, 90, 116, 163
gradient_err, 90
graze_angle, 129
grid field, 199
grid_field, 194
group, 50, 109, 133, 238, 479, 489, 495

reference energy, 530
syntax, 164

group_lord, 31, 491

gsl
library, 462

h1, 70, 73
h2, 70, 73
h_displace, 115
harmon, 145, 146, 148, 478
hdf5, 557

library, 462
hdf5 and grid_field data, 559
hdf5 and particle beam data, 557
hgap, 70
hgapx, 70, 72
high_energy_space_charge_on, 254
hkick, 92, 114, 115, 163, 164, 174
hkicker, 114, 174, 217, 220, 222, 329, 423
hybrid, 112

reference energy, 323, 530

incoherent tracking, 435
inflexible patch, 135
instrument, 113, 213, 217, 220, 222
integration methods, 224
integrator_order, 224, 226, 521
intrinsic functions, 51
is_on, 103, 120, 192

k1, 70, 73, 142, 152, 163, 164
k1x, 159
k1y, 159
k2, 74, 151, 164
k3, 131, 164
kick, 114, 164, 174
kicker, 115, 174, 217, 220, 222, 329, 423
kill_fringe, 148
knl, see multipole, knl
ks, 148, 152, 153, 164

l, 74, 83, 97, 126, 128, 163, 192
l_arc, 70, 74
l_chord, 70, 74, 163, 192
l_period, 159
l_pole, 159
l_rectangle, 74
l_sagitta, 70, 74
laboratory coordinates, 312, 321
lapack

library, 462
lapack95

library, 462
lat_param_struct, 490

%n_part, 490
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%stable, 490
%t1_no_RF, 490
%t1_with_RF, 490
%total_length, 490
end_lost_at, 519
ix_lost, 519
ix_track, 515
lost, 519

lat_struct, 468, 479, 487
%branch(:), 488
%control, 495
%ele(:), 469, 489
%ele_init, 488
%ic, 495
%ix1_slave, 495
%n_ele_max, 489
%n_ele_track, 489
%n_slave, 495
%n_slave_field, 495
%param, see lat_param_struct
%particle_start, 498
example use of, 469
initializing, 488
pointers, 488

lattice, 30, 247, 248
expansion, 55

lattice element, 29
lattice expansion, 50
lattice files, 35

MAD files, 506
name syntax, 36
parser debugging, 59
reading, 505
reading and writing routines, 581

lcavity, 116, 163, 168, 203, 204, 217, 220, 222,
246, 248, 249, 324, 325, 405, 409, 423,
482

and geometry, 248
and param%n_part, 490
reference energy, 323, 530

length of elements, 192
lens, 119
limit, 174
line, 37, 229, 469

with arguments, 232
line slice, 231
linear, 520

tracking_method, 217
linear_leading, 208
linear_trailing, 208
list, 229, 232

listf, 463
live_branch, 247, 248
log, 51
logicals, 46
lord, 491
lord_pad1, 241
lord_pad2, 241
lord_status, 31
lords

ordering, 494
lr_freq_spread, 483
lr_wakes_on, 254

machine, 248
macroparticles, 359

tracking, 355
MAD, 3, 61, 232, 250, 317, 318, 327, 506

beam statement, 250
conversion, 279
delayed substitution, 50
element rotation origin, 170
MAD-8, 506
mat6_calc_method, 219
phase space convention, 325
syntax compatibility with BMAD, 50
tracking_method, 217
units, 48

mad_tpsa
library, 462

magnetic fields, 327
map decomposition, 332

map, see transfer map
with radiation included, 366

marker, 90, 103, 120, 213, 217, 220, 222
mask, 121
mass_of, 48, 51
master_parameter, 195
mat6_calc_method, 86, 215, 219
match, 123, 217, 220, 222
material_type, 129
matrix

list of routines, 582
max_aperture_limit, 254
max_fringe_order, 212, 258
measurement, 453
measurement simulations

list of routines, 584
merge_elements, 38
Merlin, 280
minor_slave$, 492
mirror, 127, 176, 313, 320, 438, 439
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mode, 88, 121
mode3_struct, 508
modules, 466
monitor, 113, 213, 217, 220, 222
mp_threading_is_safe, 254
multilayer_mirror, 129, 176, 438
multipass, 38, 55, 116, 146, 243

list of routines, 584
multipass_lord, 31, 243, 494
multipass_lord$, 491
multipass_ref_energy, 246
multipass_slave, 31, 243, 494
multipass_slave$, 492
multipole, 128, 193, 217, 220, 222, 328

%scale_multipoles, 484
an, bn, 193, 328

in ele_struct, 484
KnL, Tn, 327, 328

in ele_struct, 484
knl, tn, 193
list of routines, 584

multipoles_on, 194
muon, 46
muon$, 491

n_cell, 81, 116, 129
n_part, 247, 249, 250

in BeamBeam element, 66
n_pole, 159
n_sample, 213
n_slice, 66
no_aperture, 176
no_digested, 38
no_digested statement, 59
no_end_marker, 247, 249
no_major_lord, 31
no_superimpose, 38
no_superimpose statement, 55
noise, 213
none, 208
normal mode

a–mode, 373
b–mode, 373
Coupling, 373

not_a_lord, 31
not_a_lord$, 491
null_ele, 90, 130
num_steps, 163, 224, 225

octupole, 131, 164, 217, 220, 222, 329, 424
tilt default, 170

offset, 237
offset_moves_aperture, 174
OPAL, 539

phase space, 539
open, 238, 248
open_spacecharge

library, 462
opti_de_param_struct, 261
orbit

measurement, 453
origin_ele, 95, 97, 105
origin_ele_ref_pt, 95, 97, 105
osc_amplitude, 213
overlay, 50, 107, 110, 132, 143, 238, 479, 489,

495, 504
reference energy, 530
syntax, 164

overlay_lord, 31

p0c, 168, 246–248, 251
p0c_set, 134
p0c_start, 168
parameter, 38
parameter statement, 35, 36, 163, 168, 247
parameter types, 46
paraxial approximation, 325
parser_debug, 38
parser_debug statement, 59
particle, 249, 250, 252
particle species name, 46
particle_start, 38, 498
particle_start statement, 249
patch, 95, 102, 134, 168, 192, 217, 220, 222, 248,

313, 315, 424, 494
and chamber wall, 189
coordinate transformation, 320
example, 273
reference energy, 323
reflection, 321

pendellosung_period_pi, 83
pendellosung_period_sigma, 83
permfringe, 213
pgplot

and Quick_Plot, 545
library, 462

phase space coordinates, 323, 324, 511
MAD convention, 325

phase_x, 249
phase_y, 249
phi0, 81, 116, 145, 146, 148
phi0_autoscale, 90
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phi0_multipass, 81, 116, 145, 146
phi_a, 251
phi_b, 251
phi_origin, 95, 105
phi_position, 251
photon, 46

phase space coordinates, 326
photon_fork, 102, 103, 488, 517
photon_init, 138
photon_type, 247, 249
photons

list of routines, 586
physical_source, 139
pion+, 46
pion-, 46
pion0, 46
pion_0$, 491
pion_minus$, 491
pion_plus$, 491
pipe, 113

superposition, 239
plplot

library, 463
polarity, 159
positron, 46
positron$, 491
print, 38
print statement, 53
programming

conventions, 465
example program, 467
precision (rp), 465

proton, 46
proton$, 491
psi_angle, 83, 445
psi_origin, 95, 105
psi_position, 251
PTC, 27

single element mode, 457
whole lattice mode, 458

PTC integration, 226
PTC/FPP, 457, 533

initialization, 534
library, 462
list of routines, 586
patch, 536
phase space, 533
real_8, 536
Taylor Maps, 536
universal_taylor, 536

PTC/FPP variable

initialization, 535
ptc_exact_model, 258
px, 249
px0, 125
px1, 125
px_kick, 108
py, 249
py0, 125
py1, 125
py_kick, 108
pz, 249
pz0, 125
pz1, 125
pz_kick, 108

qp_axis_struct, 555
qp_line_struct, 555
qp_symbol_struct, 555
quadrupole, 142, 164, 217, 220, 222, 329, 409,

425
tilt default, 170

quick plot
list of routines, 588

quick_plot, 545
axes, 550
color styles, 551
fill styles, 551
line styles, 550
position units, 549
structures, 555
symbol styles, 551
symbol table, 552

r0_mag, 193, 329
r_custom, 45
radiation

damping and excitation, 365
radiation damping and excitation, see

synchrotron radiation
radiation_damping_on, 254
radiation_fluctuations_on, 254
radiation_zero_average, 254
ramper, 489
ran, 37, 51, 55
ran_gauss, 37, 51, 55
ran_seed, 51, 247, 249
rbend, 70, 163, 164, 174, 192, 212, 217, 220, 222,

230, 313, 318, 329, 477, 501
coordinate transformation, 322

rcollimator, 77, 174, 176, 217, 220, 222
redef, 38
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ref, 237
ref_origin, 237
ref_tilt, 74, 320, 440, 445
ref_time, 251
ref_wave_length, 83, 168
reference energy, 192, 323, 496, 530
reference orbit, 192, 312

construction, 313
origin in global coordinates, 317

reference particle, 323
reference time, 323
reflection of elements, 230
rel_tol_adaptive_tracking, 225, 254
rel_tol_tracking, 254
relative time tracking, 405
remove_elements, 38
replacement list, see list
reserved names, 38
return, 38
return statement, 55
reversed elements, 522
RF field map, 147
RF fields, 341
rf fields, 337
rf_bend, 145, 217, 220
rf_frequency, 81, 116, 145, 146, 148
rfcavity, 146, 203, 204, 217, 220, 222, 324, 405,

409, 426, 482
rho, 73, 148, 163, 318
rigid patch, 135
roll, 70, 169

coordinate transformation, 322
roll_tot, 173
root, 38
root branch, 251, 313
root branches, 30
rp, 465
runge_kutta, 225, 226

and field maps, 147
and Taylor maps, 224
tracking_method, 217

s-positions, 530
SAD, 280
sad, 212
sad_mult, 148, 427
sample, 150, 176
sbend, 70, 163, 164, 174, 192, 212, 217, 220, 222,

230, 313, 318, 329, 411, 413, 477, 501
coordinate transformation, 322

scale_multipoles, 193

secondary lattice file, 56
sextupole, 151, 164, 217, 220, 222, 329, 409, 427

tilt default, 170
sig_E, 139
sig_E2, 139
sig_vx, 139
sig_vy, 139
sig_x, 66, 67, 140, 163
sig_y, 66, 67, 140, 163
sig_z, 66, 140
sim_utils library, 462
sin, 51
slave, 491

ordering, 494
slave_status, 31
slice_lattice, 38
slice_slave, 31
slice_slave$, 492
sol_quad, 152, 164, 217, 220, 222, 329, 427

conversion to MAD, 279
tilt default, 170

solenoid, 153, 164, 217, 220, 222, 329, 421, 429
space_charge_common_struct, 259
space_charge_mesh_size, 259
space_charge_method, 224
spatial_distribution, 140
species, 51
spherical_curvature, 180
spin, 381, 511
spin taylor map, 400
spin tracking

list of routines, 594
methods, 222

spin_fringe_on, 210, 222
spin_sokolov_ternov_flipping_on, 254
spin_tracking_method, 215, 222
spin_tracking_on, 254
spin_x, 249
spin_y, 249
spin_z, 249
sprint spin tracking, 430
sqrt, 51
sr_wakes_on, 254
ss:coher, 436
start_branch_at, 38
start_edge, 110
statement order, 52
strings, 46
structure, 253
structures, 466
super_lord, 31, 494
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super_lord$, 491
super_slave, 31, 494
super_slave$, 492
superimpose, 37, 38

example, 470
superposition, 235

reference energy, 530
surface, 176
surface grid, 182
switches, 46
symmetric_edge, 110
symp_lie_Bmad, 521

tracking_method, 217
symp_lie_bmad, 225, 226

and field maps, 147
and Taylor maps, 224
mat6_calc_method, 220

symp_lie_PTC, 521
symp_lie_ptc, 225

and Taylor maps, 224
mat6_calc_method, 220
spin_tracking_method, 222
tracking_method, 217

symplectic
conjugate, 374
integration, 225

symplectic integration, 399, 402, 409
symplectification, 401
symplectify, 227, 228
sympliectify, 219
synchrotron radiation

calculating, 520
integrals, 368

t_offset, 134
tags for Lines and Lists, 56
tags for lines and lists, 233
tan, 51
Tao, 25
taylor, 154, 217, 220, 222, 225, 521

and Taylor maps, 224
deallocating, 521
mat6_calc_method, 220
tracking_method, 217

taylor Map, 520
taylor map, 399

feed-down, 402
list of routines, 596
reference coordinates, 400
structure in ele_struct, 481
with digested files, 506

taylor_map_includes_offsets, 219, 228
taylor_order, 247, 249, 254
theta_origin, 95, 105
theta_position, 251
thick_multipole, 158
thickness, 83
tilt, 67, 97, 107, 113, 120, 131, 134, 142, 169,

176, 213, 318, 440, 480
coordinate transformation, 322

tilt_calib, 213
tilt_corr, 83, 440, 444
tilt_err_tot, 173
tilt_tot, 173, 480
time

phase space coordinates, 325
time_runge_kutta, 225

tracking_method, 217
title, 38
title statement, 53
tn, see multipole, tn
to_element, 103
Touschek Scattering, 358
track1_postprocess, 528
track1_preprocess, 528
tracking, 511

apertures, 519
backwards, 521
list of routines, 598
Macroparticles, 355
mat6_calc_method, 220
partial, 518
particle distributions, 522
spin, 523
spin_tracking_method, 222

tracking methods, 215
tracking_method, 86, 215
transfer map

in ele_struct, 481
mat6_calc_method, see mat6_calc_method
Taylor map, see Taylor map

translate_patch_drift_time, 259
tune

calculation, 508
setting, 509

twiss
list of routines, 602, 603

twiss parameters, 508
calculation, 508

twiss_struct, 507
type, 164
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undulator, 159
units

with MAD, 48
upstream element end, 313
use, 38
use statement, 35, 37, 233
use_local_lat_file, 38
use_local_lat_file_statement, 54

v1_unitcell, 129
v2_unitcell, 129
v_displace, 115
v_unitcell, 83
val1, ..., Val12, 86
variables, see lattice file format, variables
velocity_distribution, 140
vkick, 92, 114, 115, 163, 164, 174
vkicker, 114, 174, 217, 220, 222, 329, 423
voltage, 81, 90, 92, 116, 145, 146, 148, 163
voltage_err, 90

wake_lr_struct, 483
wake_sr_mode_struct, 483
wakefields, 351

in ele_struct, 482
list of routines, 603
long-range, 352
short-range, 351

wakes
short-range, 206

wall, 137, 184
wall_transition, 176
wig_term_struct, 484
wiggler, 159, 163, 192, 217, 220, 222, 312, 409,

477, 501
conversion to MAD, 279
reference time, 323
tracking, 432
types, 483

write_digested, 38
write_digested statement, 59

x, 249
x0, 125
x1, 125
x1_limit, 174, 478
x2_limit, 174, 478
x_axis, 208
x_gain_calib, 213
x_gain_err, 213
x_half_length, 138
x_kick, 108

x_limit, 174, 478
x_offset, 67, 97, 107, 113, 120, 134, 169, 174,

176, 213, 312, 439, 480
x_offset_calib, 213
x_offset_mult, 148
x_offset_tot, 173, 480
x_origin, 95, 105
x_pitch, 63, 67, 97, 107, 113, 134, 169, 176, 312,

439, 480
x_pitch_mult, 148
x_pitch_tot, 173, 480
x_position, 251
xraylib

library, 463
xy_disp_struct, 507

y, 249
y0, 125
y1, 125
y1_limit, 174
y2_limit, 174
y_axis, 208
y_gain_calib, 213
y_gain_err, 213
y_half_length, 138
y_kick, 108
y_limit, 174
y_offset, 67, 97, 107, 113, 120, 134, 169, 176,

213, 312, 439, 480
y_offset_calib, 213
y_offset_mult, 148
y_offset_tot, 173, 480
y_origin, 95, 105
y_pitch, 63, 67, 97, 107, 113, 134, 169, 176, 312,

439, 480
y_pitch_mult, 148
y_pitch_tot, 173, 480
y_position, 251

z, 249
z0, 125
z1, 125
z_kick, 108
z_offset, 67, 97, 110, 134, 169
z_offset_tot, 173, 439
z_origin, 95, 105
z_position, 251
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