BBU: Beam Breakup Instability Simulation in Bmad

David Sagan, dcs16@cornell.edu
William Lou, wi528@cornell.edu
November 17, 2024

1 Overview

bbu is a program in Bmad which simulates the beam breakup instability (BBU) [1]. BBU occurs
in recirculating accelerators due to interaction between the beam bunches and the Higher Order
Modes (HOMs) in the accelerating cavities. When beam bunches go through a cavity, they are
kicked by the HOM wakefields, and the kick generates orbit distortion. When the bunches return
to the same cavity, their off-axis orbit through the cavity create additional wake fields. If the HOM
voltage is not properly damped, this positive feedback can lead to instabilities. BBU is therefore
a primary limiting factor of the maximum achievable current, the threshold current (1) in an
Energy Recovery Linac. The point of BBU simulation is compute the I;y,.

2 Simulation detail

The bbu consists of two main parts: the core part written in Fortran, and the shell part written in
Python. The user usually sets both BBU Fortran and Python parameters in the Python shell to
run the simulations. The user rarely modifies the Fortran core.

2.1 Fortran core

The core part determines the stability of a single test current by direct simulation. A train of
bunches is tracked though a lattice whose cavity elements can contain HOMs (long-range wake-
fields). In the program, time (t) is measured in “turns” (abbreviated T'). One turn is the time it
takes a bunch to travel from the beginning of the lattice to the end. At the start of a simulation,
t = 0, and the HOM voltages in the cavities are set to zero. Bunches are then started at the
beginning of the lattice and tracked through to the end. To minimize computation time, a single
particle is used to represent each bunch.

Bunches that are initialized in the first turn period, with 0 < ¢ < 17, are given a random transverse
offset. The offset distribution is Gaussian with default ¢ = 10nm . All bunches initialized after
the first turn period will have zero transverse offset. In the tenth turn period (97 < t < 107, the
“averaged maximum HOM voltage”, V,,..(10), which is the average of the strongest HOM in all
the cavities within this turn, is taken as a baseline to determine whether the voltages are growing
or decaying in longer turns. The reason we don’t choose one of the first few turns as the baseline
is because HOM voltage variation can be unstable right after initial population of the bunches.
Of course, the stability of the test current should be physically independent of the choice. Also,
the test current is unstable as long as one HOM voltage is growing. Therefore numerically, we
only need to keep track of the strongest HOM voltage, instead of all HOM voltages.

Simulation ends when time hits the n*" turn (t = nT), in which n is a integer parameter set by
the user (n > 10 required). The current is declared stable or unstable depending on whether
the ratio V,,,4.(n)/Vinez(10) is less than or greater than 1 (or a number slightly above 1, say
1.01, to account for numerical noise), where n is the number of turns simulated (must be > 10)
set by the parameter bbu_param%simulation_turns_max. (Strictly speaking, the Fortran core
only outputs the ratio, and the Python shell determines the stability solely using this value.) In
order to shorten simulation time, "limit_factor’ and “hybridization” are implemented, and both are
described below.

The main input file for the Fortran core is “bbu.init’, which looks like:

&bbu_params

bbu_param%lat_file_name = ‘erl.lat’ | Bmad Lattice file name.
bbu_param%lat2_filename = ‘lat2.lat’ ! For DR-scan only.
bbu_param¥%simulation_turns_max = 50 | Maximum simulation turn n
bbu_param%bunch_freq = 1.3e9 ! Injector bunch frequency (Hz).

Unstable limit to abort simulation.
Combine non-HOM elements?

Keep all Icavities when hybridizing?
Injected test current value (A).

Set specific seed, 0 uses system clock.
Limit ran_gauss values within No

Shift z to be in range [0, rf_wavelength]?
Current ramp on/ off.

Bunch index to start ramp at.

Ramp pattern.

bbu_param%limit_factor = 3
bbu_param¥%hybridize = .true.
bbu_param¥%keep_all_lcavities = F
bbu_param%current = 0.1
bbu_param%ran_seed = 100
bbu_param?%ran_gauss_sigma_cut =
bbu_param%normalize_z_to_rf = F
bbu_param¥%ramp_on
bbu_param%n_start_ramp
bbu_param¥%ramp_pattern
/

3

!
!
!
!
!
!
!
!
0 !
!

Fortran namelist input is used. The namelist begins on the line starting with "&bbu_params"
and ends with the line containing the slash “/”. Anything outside of this is ignored. Within the
namelist, anything after an exclamation mark “!" is ignored, including the exclamation mark.
Typically bbu.init specifies the essential BBU parameters, but not all of them. All BBU parameters
(and their default values) are defined in ‘bsim,code/bbu_track_mod.f90'. If the user includes extra
parameters in bbu.init, the user-defined values will overwrite the default values. The main BBU
Fortran parameters are described below, in alphabetical order:

BBU: Beam Breakup Instability Simulation in Bmad 2

bunch_by bunch_info_file (string)
If not empty, the BBU program will output orbit information of all bunches at all tracking
stages. The file can be large, and is usually for debugging.

bunch_freq (float)
The injector bunch-to-bunch frequency in Hz.

current (float)
The injected test current in Ampere. With bunch frequency specified, this number equiv-
alently specifies the charge of the bunches (Q = I/f). Note that if the bunch charge is
ramped (See %ramp_on), this value is NOT the actual time-averaged current. Instead, this
value determines the “reference charge” (Q,.; = I/f). The user must compute the actual
current based on the ramping scheme.

drscan (boolean)
Obsolete. The dr-scan functionality has been moved to Python shell. The associated
Fortran parameters (including einame, begdr, enddr, and nstep) are also obsolete. See
the section below on DR-SCAN mode for more details.

ele_track_end (string)
If specified, this is the final element in the lattice the bunches will be tracked to. The
associated Fortran variable ix_ele_track_end is for internal use and should not be set by
user.

hom_order_cutoff (integer)
If positive, ignore HOMs with order greater than this value. Default is zero.

hybridize (boolean)
Hybridization is a process of combining all the (non-cavity) elements between any two cav-
ities into one hybridized Taylor element. The default tracking through a hybridized element
is a linear transport (see use_taylor_for_hybrids). This can significantly speed up calcu-
lation, with possible loss of accuracy.

init_particle_offset (float)
This is the 10 half width, in meters, of the distribution of the initial transverse coordinates
for bunches initialized during the first turn period. The default value is 1E-10, or 10 nm.

keep_all_cavities (boolean)
Relevant only if hybridize is set to True. When hybridizing, if this is set to False, then
Icavity elements that do not have HOM elements will also be hybridized. This will further
speed up the simulation but can lead to inaccurate results. The recommended setting is
True (see normalize_z_to_rf).

keep_overlays_and_groups (boolean)
Relevant only if hybridize is set to True.

lat_file_name (string)
The lattice file (in Bmad standard format [2]) to be used for BBU simulation. The lattice
must include at least one multipass line with at least one Icavity assigned with at least one
HOM. See Bmad manual for details on lattice specification.

BBU: Beam Breakup Instability Simulation in Bmad 3

limit_factor (float)
This number has to be greater than 2. For any intermediate turn m (10 < m < n), if
the ratio Va2 (m)/Vinas(10) is above limit_factor, the test current is declared unstable. If

Vinaz (M) /Vimaz (10) is below 1/limit_factor, the test current is declared stable. In either case,
the program aborts so shorten simulation time.

lat2_filename (float)
This file is used for DR-scan only. It specifies the varied length for the ‘arc’ element in the
lattice. See DR-scan mode in the Python shell section below.

normalize_z_to_rf (boolean)
Normally, with normaiize_z_to_rf set to False (the default), the starting phase space z of a
particle will reflect the time the bunch that the particle is in is launched. If RF elements are
to be hybridized, the hybrid transfer map will not work with the large z values. If normai-

ize_z_to_rfis set to True, the starting =z values will be set to be in the range [0, A, ;] where
Ary is the longest RF wavelength of all the cavities. In this case all the cavities must have
commensurate wavelengths.

ramp_n_start (integer)
Bunch index to start ramp at. The bunch index for the first emitted bunch is zero and
increases by one for each following bunch. For example, if ramp_n_start is 5, the ramp

pattern set by ramp_pattern will start at the bunch with index 5.

ramp_on (boolean)
If set to True, the injector bunch charges will be varied as set by ramp_patternand n_start_ramp.

ramp_pattern (float array)
Pattern of beam current relative to the current without ramping and starting at ramp_n_start.

Also see ramp_on. Example:
bbu)ramp_on = True

bbu/ramp_n_start = 4
bbu_paramj;ramp_pattern = 2, 3, 4, 3, 2, 1
The pattern will repeat ad infinitum. In this example, the beam current relative to the current
without ramping would be
1,1, 1, 2, 3, 4, 3, 2,1, 2, 3, 4, 3,
ran_seed (integer)
Random number seed. If set to 0, the system clock will be used, and the output results will
vary from run to run.

ran_gauss_sigma_cut (float)
Any randomized value in the lattice, such as initial orbit offset, is limited to a maximum
deviation of ran_gauss sigma_cut rms deviations. This is to prevent extreme values from
being chosen, which can be un-physical. A typical value is between 3 to 5. The default
value is -1, which means no cutoff.

regression (boolean)
Obsolete. The BBU regression test has been moved to be with other regression tests under
the bmad-ecosystem.

BBU: Beam Breakup Instability Simulation in Bmad 4

simulation_turns_max (integer)
The maximum number of simulation turn the program runs up to when no particle loss
is detected. Must be greater than 10. A large number slows down the computation, but
increases accuracy. A typical choice is between 50 to 300.

stable_orbit_anal (boolean)
If True, write stable_orbit.out and hom_voltage.out (for debugging).

use_taylor_for_hybrids (boolean)
Relevant only if hybridize is set to True. Use taylor map for hybrids when True, otherwise
the tracking method is linear. Default is False.

write_digested_hybrid_lat (boolean)
For debugging purposes.

write_voltage vs_time_dat (boolean)
For debugging purposes. If true, write a (large) output file which contains the maximum_-
HOM_voltage data at every tracking step. The user can plot the data to visually check the
stability of the test current. This is probably the most reliable way to check whether the test
current is stable, because the stability behavior can be unclear if total simulation time is too
short, or if the no clear divergence or steady-state occurs to the program.

2.2 Python Shell/Wrapper

Since the Fortran core program only determines the stability of ONE test current, multiple runs
of the core (with different test currents) are required to pin down the I;;,. This can be done with
the developed Python shell which interacts calls the core program. Besides finding the I, of
a specific design, the shell can also generate statistics of I;;, by introducing small variations to
either the lattice or the HOM assignments. Each type of variation is considered as a “simulation
mode” (See Section below).

The main file for the Python shell is test run.py, in which the user specifies all the BBU (For-
tran) parameters and additional Python parameters. Other associated Python codes are under
the $DIST_BASE_DIR/bsim/bbu/python/ directory. The user should make sure this directory is
included in the environment variable PYTHONPATH.

The most important Python parameters which are common to all the simulation modes are:

exec_path
The exact path of the compiled BBU Fortran program. Typically this is under the .../produc-

tion/bin/ directory.

threshold_start_curr
Initial guess of the test current. An educational guess based on the lattice design and HOM
assignments can reduce the total simulation time.

BBU: Beam Breakup Instability Simulation in Bmad 5

final_rel _tol
Python shell iteratively calls the Fortran core to pin down the I;;,. This value determines
accuracy of the I, found.

The existing Python shell has limited functionalities, so users are encouraged to write their own

wrapper with external programs for independent BBU studies. For instance, multiple BBU runs

with different test currents can be run in parallel. Also, by importing data from the write_voltage vs_time_dat
output, one can write their own function to determine the BBU stability.

3 Simulation Modes

The user can run different simulation modes by adjust the arguments passed to test_run.py. The

details of each mode and their additional Python parameters are described below. Note that
regardless of the mode, original lattice MUST have a valid initial HOM assignment.

3.1 DR-SCAN mode

Number of argument: 0

Run this command under $DIST BASE DIR/bsim/bbu/examples :
python $DIST_BASE_DIR/bsim/bbuy/test_run.py

Obtain (I3, v.s t,/ty) for a lattice with a varying arc length. (¢, is the recirculation time, and ¢,
is 1/bunch_freq). The lattice must have a unique element named “arc’ of which the length (¢, x
speed of light) is varied. This mode produced the plot for Fig.3 in [2] and Fig.14 in [3], for which
one dipole HOM is assigned to one cavity in a lattice with one recirculation pass (the simplest
BBU model). This mode is commonly used to check if the simulation agrees with the theory, as
shown in the two papers.

Python Parameters:
1) start_dr_arctime: t,. (in seconds) of the first data point.
2) end_dr_arctime: t,. (in seconds) of the final data point.

3) n_data_pts DR: number of data points. Must be a positive integer. If equalto 1, end_dr_arctime
is ignored. Decrease this for fast result with fewer evaluation points.

4) plot_drscan: If True, the Python program will produce a plot of (I, v.s t,./t;). The user must
exit the plot to obtain the data in an output file. This must be set to False for grid job submission.

Output file: thresh_v_trotb.txt

BBU: Beam Breakup Instability Simulation in Bmad 6

3.2 THRESHOLD mode

Number of argument: 3

Command: python $DIST_BASE DIR/bsim/Ebu/test_run.py N fn output dir

Compute the Iy for N times with a fixed lattice, each time with a (random) set of HOM assign-
ment. It is recommended to set N =1 and use external parallel computation. fnis the string used

to distinguish between the simulation runs, and can be set to the job number ($JOB_ID) during
grid submission.

Python Parameters:

(1) random_homs: If True, the original HOM assignment to the lattice will be over-written by a

HOM assignment file randomly chosen from “hom_dir’. The simulation result (7;;, found) will be
generally different over multiple runs. If False, the program will be seeking a file in the working
directory (the directory where the user calls the Python program) named “assignHOMs.bmad’ in

attempt to over-write the original assignment. If “assignHOMs.bmad” is not present, the program
will bomb.

(2) hom_dir. The exact path of the HOM assignment files to be randomly assigned. Each file
must be named “cavity_l.datf’, in which [is a positive integer.

Output file: (1) bbu_threshold _N_fn.dat, which includes the I s, if found, for all N runs. If not
found, the numbers are the final test currents which is stable for each of the N runs.

(2) HOMassignment_N_fn.dat which includes the the HOM assignment scheme for all N runs.

3.3 PHASE_SCAN mode

Number of argument: 1

Command: python $DIST_BASE_DIR/bsim/Ebu/test _run.py PHASE

Obtain (I, v.s. ¢) for a lattice with a varying horizontal phase-advance ¢. The phase advance
is changed via a zero-length first-order Taylor element (See Bmad manual for detail.) named
“taylorW”, which is equivalent to a 2x2 transfer matrix M (¢) in the horizontal phase space:

[(cos ¢+ agsin @) By sin ¢
M(¢) = < Y Sin ¢ (cos ¢ — a sin gzﬁ))

The user must include “taylorW” in the lattice in order to run the phase_scan mode. To preserve
the beam optics of the original lattice, the Twiss parameters (3., a.) at where taylorW locates
must be extracted from the lattice, and set in .../bsim/bbu/python/bbu/phase _scan.py. Due to
periodicity, ¢ is only needs to be scanned from 0 to 2.

BBU: Beam Breakup Instability Simulation in Bmad 7

Python Parameters:
1) start_phase: ¢ of the first data point for n_data pts PHASE >= 2. Default is zero.
2) end_phase: ¢ of the final data point for n_data pts PHASE >= 2. Default is 2.

3) n_data_pts PHASE: number of data points. Must be a positive integer. If equal to 1, only the
input PHASE is scanned. If >= 2, the input PHASE is ignored.

4) ONE_phase: will store the input value of PHASE. No need to modify.

5) plot_phase_scan: If True, the Python program will produce a plot of (I; v.s ¢). The user must
exit the plot to obtain the data. This must be set to False for grid jobs.

Output file: thresh_v_phase PHASE.ixt

3.4 PHASE_SCAN_XY mode
Number of argument: 2
Command: python3 .../bsim/bbu/test_run.py PHASE_X PHASE_Y

(1) Decoupled case: Obtain (I, v.s. (¢4, ¢,)) for a lattice with varying phase-advances in both X
and Y (optics decoupled).

(2) Coupled case: Obtain (I, v.s. (¢1, ¢2)) for a lattice with two varying phases with X-Y coupling.

Similar to the PHASE_SCAN mode, talylorW is introduced, but this time as a 4x4 matrix:

Taccoupted(Pz, by) = (MWS (¢=) °)

My‘—y(gﬁy)
Tcoupled(¢1a¢2) = (]\/[W_(l((b2) Mze&,(%))

, in which M (¢) is a the 2x2 transfer matrix in terms of the Twiss parameters:

Mico(d) = \//ﬁ%(cosd)—&-ao sin ¢) VB1Bo sin ¢
140 ﬁ[(ao —aq)cos ¢ — (1 + apaq)sin @] \/gj;(cos ¢ — oy sin @)

For the decoupled case, the two phases are the conventional transverse phase advances. If
PHASE Y = 0, this is equivalent to the phase scan mode. For the coupled case, the input
argument PHASE X s used as ¢, and PHASE Y is used as ¢,. To use either the decoupled
or coupled case, the user must extract the Twiss parameters (5;, o, By,) at where taylorW
locates, and set them in .../bsim/bbu/python/bbu/phase_scan.py.

For a complete scan of over the two phases (both from 0 to 2x), parallel computation is recom-
mended.

BBU: Beam Breakup Instability Simulation in Bmad 8

Python Parameters:
1) phase_x: will store the input value of PHASE_X. No need to modify.
2) phase_y: will store the input value of PHASE_Y. No need to modify.

3) xy_coupled: (important) 0 for the decoupled case; 1 for the coupled case.

Output file: thresh_v_phase PHASE X _PHASE_ Y.ixt

4 Important files

4.1 BBU Fortran codes

The files with core computation.
1)$DIST_BASE_DIR/bsim/bbu/bbu_program.f90: Main BBU program.

2)$DIST_BASE_DIR/bsim/code/bbu_track_mod.f90: BBU tracking and computation modules.

4.2 Python main user interface

The Python wrapper which interacts with the Fortran core.

1) $DIST_BASE_DIR/bsim/bbu/test_run.py: The TOP interface file which defines all BBU Fortran
and Python parameters (to be modified by the user). When run, a temporary directory is cre-

ated, which contains bbu.init and associated filed to run the Fortran core for multiple times. The
directory is cleaned up at the end of the Python program. The user can deliberately terminate
the Python program to investigate the temporary files (for debugging).

4.3 Python package
These files are for intermediate organization and communication between test run.py and the
Fortran core.

(Location: .../bsim/bbu/python/bbu/)(Make sure .../bsim/bbu/pyhton/ is included in the environ-
ment variable $PYTHONPATH.)

1) bbu_main.py: Parse results from the Fortran code. Calls other Python codes.

2) find_threshold.py: Calculates new test current (or reference charge). Prepare temporary files
to run the Fortran core.

3) drscan.py: Prepares drscan files (/at2./at) and plot.

BBU: Beam Breakup Instability Simulation in Bmad 9

4) phase_scan.py: Prepares phase_scan (or phase_xy_scan) files (/at2.lat) and plot.

4.4 Others

Potentially useful files.

1) collect_thresholds.py: this Python program summarizes the calculated threshold currents
stored in the local "bbu_thresholds_*" output files. The output file is bbu_combined_thresh-
olds.txt.

2) assignHOMs.bmad: If this file exists in the directory which the user calls test_run.py (not nec-
essarily the directory where test _run.py locates), the HOM assignment from the original lattice
will be over-written, unless the user has specified py_par/‘random_homs’] to be True.

References
[1] David Sagan. The Bmad Reference Manual,
https.://www.classe.cornell.edu/bmad/manual.html

[2] G.H. Hoffstaetter, I.V. Bazarov, Beam-Breakup Instability Theory for Energy Recovery
Linacs, Phys. Rev. ST-AB 7, 054401 (2004).

[38] W. Lou, G.H. Hoffstaetter, BBeam breakup current limit in multiturn energy recovery linear
accelerators, Phys. Rev. ST-AB 22, 112801 (2019).

BBU: Beam Breakup Instability Simulation in Bmad 10

	1 Overview
	2 Simulation detail
	2.1 Fortran core
	2.2 Python Shell/Wrapper

	3 Simulation Modes
	3.1 DR-SCAN mode
	3.2 THRESHOLD mode
	3.3 PHASE_SCAN mode
	3.4 PHASE_SCAN_XY mode

	4 Important files
	4.1 BBU Fortran codes
	4.2 Python main user interface
	4.3 Python package
	4.4 Others

