
Dynamic_Aperture Program

David Sagan
June 28, 2024

Contents

1 Introduction . 1

2 Running the Dynamic Aperture Program . 2

3 Time Ramping — Time Varying Element Parameters 3

4 Fortran Namelist Input . 4

5 Master Input File . 5

6 Tracking Methods . 9

7 Map Tracking . 9

8 Tuning Map and PTC Tracking Parameters . 10

9 Correcting the Orbit when Radiation is Present 11

10 Data Output and Plotting . 12

1 Introduction

The dynamic_aperture program is for measuring the dynamic aperture. The concept of dynamic
aperture is that a particle reaching a certain amplitude will quickly be resonantly driven to large
amplitude where it is lost. This amplitude where the particle becomes unstable is the dynamic
aperture. This is to be contrasted by the physical aperture which is the aperture where a particle
strikes the wall of the beam chamber. The general idea in designing lattices is to make sure that
the dynamic aperture is large enough so that, in the normal course of events, particles in the
beam have a very small probability of getting lost due to their amplitude exceeding the dynamic
aperture. For long term stability, a common rule of thumb is to design lattices such that the

dynamic aperture is 10 times the beam sigma.1 For injection studies, the minimum dynamic
aperture will be determined in part by the size of the injected beam. In any case, if the dynamic
aperture is larger than the physical aperture, increasing the dynamic aperture further will not
help beam stability.

If there are no apertures set in lattice used by the dynamic_aperture program, the calculated
aperture will be the dynamic aperture. If apertures are set in the lattice, the calculated aperture
will be the minimum of the dynamic and physical apertures.

The dynamic_aperture program is built atop the Bmad software toolkit [1]. The Bmad toolkit is a
library, developed at Cornell, for the modeling relativistic charged particles in storage rings and
Linacs, as well as modeling photons in x-ray beam lines.

For historical reasons, the Tao program (another Bmad based program) is also capable of calcu-
lating the dynamic aperture. In fact both programs use the same underlying code for the aperture
analysis. The basic difference is that the dynamic_aperture program is more flexible in terms of
tracking. For example, the dynamic_aperture program can handle ramper elements and track
with maps.

2 Running the Dynamic Aperture Program

The dynamic_aperture program comes with the “Bmad Distribution” which is a package which
contains the Bmad toolkit library along with a number of Bmad based programs. See the Bmad
web site for more details.

If the Bmad Distribution is compiled with OpenMP enabled (see the documentation on the Bmad
Distribution “Off-Site” setup for more details), the dynamic_aperture program can be run parallel.
With OpenMP the computation load is distributed over a number of cores on the machine you
are using. To set the number of cores set the OMP_NUM_THREADS environment variable.
Example:

expor t OMP_NUM_THREADS=8

And run the program as normal as detailed below.

See the documentation for setting up the Bmad environment variables at

h t t ps : / / w i k i . c lasse . c o r n e l l . edu /ACC/ACL/ RunningPrograms

Once the Bmad environment variables have been set, the syntax for invoking the program is:

dynamic_aperture { < master_input_f i le_name >}

Example:

dynamic_aperture my_ inpu t_ f i l e . i n i t

1While this might seem excessive, this rule of thumb gives some safety margin which is desirable since designs are
never exact.

Dynamic_Aperture Program 2

The <master_input_file_name> optional argument is used to set the master input file name. The
default value is “dynamic_aperture.init”. The syntax of the master input file is explained in §5.

Example input files are in the directory (relative to the root of a Distribution):

bsim / dynamic_aperture / example

3 Time Ramping — Time Varying Element Parameters

“Ramping” is the situation where lattice parameters are changing as a function of time over
many turns. Ramping examples include changing magnet and RF strengths to ramp the beam
energy or changing magnet strengths to squeeze beta at the interaction pont of a colliding beam
machine.

Ramping is accomplished by defining ramper elements in the lattice file and setting ramping_on
to True in the master input file (§5). Ramper elements will be applied to each lattice element
in turn before particles are tracked through them. See the Bmad manual for documentation on
ramper syntax.

Example:

ramp_e : ramper = \ { * [e_ to t] : \ { 4 e+08 , 4.00532e+08 , 4.01982e+08 , . . . \ } \ } ,
var = \ { t ime \ } , x_knot = \ { 0 , 0.001 , 0.002 , . . . \ }

amp = 1e9 ; omega = 0.167; t0 = 0.053
ramp_rf : ramper = \ { r f c a v i t y : : * [vo l tage] : amp* s in (omega * (t ime + t0)) ,

r f c a v i t y : : * [phi0] :0 .00158* t ime ^2 + 2*q \ } , var = \ { t ime , q \ }

The “*[e_tot]” construct in the definition of ramp_e means that the ramper will be applied all ele-
ments (since the wild card character “*” will match to any element name), and it is the element’s
e_tot attribute (the element’s reference energy) that will be varied.

In the above example, the ramp_rf ramper will be applied to all rfcavity elements with the cavity
voltage and phase (phi0) being varied.

Important restriction: Only those ramper elements that have time as the first variable will be used
and it will be this variable that is varied over time.

In the case where the reference energy e_tot or reference momentum p0c is being varied, the
effect on an element will depend upon the setting of the element’s field_master parameter. For
example:

q1 : quadrupole , k1 = 0.3
q2 : quadrupole , k1 = 0.3 , f i e l d_mas te r = T

In this example, q1 will have its field_master parameter set to False since the quadrupole strength
was specified using the normalized strength k1. With q1, since field_master is False, varying
the reference energy or momentum will result in the normalized strength k1 remaining fixed

Dynamic_Aperture Program 3

and the unnormalized strength B1_gradient varying in proportion to the reference momentum.
With q2, since field_master is True, the unnormalized strength B1_gradient will remain fixed and
normalized k1 will vary inversely with the reference momentum.

Before a simulation, individual ramper elements may be toggled on or off by setting the element’s
is_on attribute in the lattice file:

ramp_rf : ramper = . . . ! Ramper element def ined .
ramp_rf [is_on] = F ! Ramper element turned o f f .

4 Fortran Namelist Input

Fortran namelist syntax is used for parameter input in the master input file. The general form of
a namelist is

&<namelist_name >
<var1 > = . . .
<var2 > = . . .
. . .

/

The tag "&<namelist_name>" starts the namelist where <namelist_name> is the name of the
namelist. The namelist ends with the slash "/" tag. Anything outside of this is ignored. Within
the namelist, anything after an exclamation mark "!" is ignored including the exclamation mark.
<var1>, <var2>, etc. are variable names. Example:

&place
sec t ion = 0.0 , " arc_std " , " e l l i p t i c a l " , 0.045 , 0.025

/

here place is the namelist name and section is a variable name. Notice that here section is a
“structure” which has five components – a real number, followed by two strings, followed by two
real numbers.

Everything is case insensitive except for quoted strings.

Logical values are specified by True or False or can be abbreviated T or F. Avoid using the dots
(periods) that one needs in Fortran code.

Dynamic_Aperture Program 4

y

xO
θ

Figure 1: The calculation of a dynamic aperture curve in the x-y plane at a given initial pz value
involves calculating aperture curve points (blue dots) along a set of “rays” (dashed lines) having
a common origin point (O) which is taken to be the reference orbit. The line segments between
points is simply for visualization purposes. The calculation of an aperture curve point along a
given ray involves iteratively tracking particles with different starting (x, y) position values to find
the boundary between stable (green dots) and unstable (red dots) motion.

5 Master Input File

The master input file holds the parameters needed for running the dynamic_aperture program.
The master input file must contain a single namelist (§4) named params. Example:

¶ms
d a t _ f i l e = " da . dat "

l t t%l a t _ f i l e = " l a t . bmad" ! Bmad l a t t i c e f i l e
l t t%ramping_on = False
l t t%ramping_star t_ t ime = 0
l t t%r f c a v i t y _ o n = True
l t t%tracking_method = "BMAD"
l t t%e l e _ s t a r t = " "
l t t%map_order = 5
l t t%random_seed = 0
l t t%ptc_aper tu re = 0.1 , 0.1
l t t%exclude_from_maps = "beambeam : : * "
l t t%symplect ic_map_track ing = False
l t t%set_beambeam_z_crossing = False
l t t%use_r f_c lock = F

bmad_com%radiat ion_damping_on = F
bmad_com%r a d i a t i o n _ f l u c t u a t i o n s _ o n = F

Dynamic_Aperture Program 5

pz = 0.000 , 0.005 , 0.010
da_param%min_angle = 0
da_param%max_angle = 3.1415926
da_param%n_angle = 0
da_param%n_turn = 2000
da_param%x _ i n i t = 1e−3
da_param%y _ i n i t = 1e−3
da_param%re l_accuracy = 1e−2
da_param%abs_accuracy = 1e−5

/

Note: The parameters beginning with “ltt” are parameters that are common with the long_term_-
tracking program. The parameters beginning with “da_param” are parameters that are common
with the dynamic aperture tracking in the Tao program

The parameters in the master input file are:

bmad_com%...
The bmad_com structure contains various parameters that affect tracking. For example,
whether radiation damping is included in tracking. A full list of bmad_com parameters
is detailed in the Bmad reference manual. Note: bmad_com parameters can be set in
the Bmad lattice file as well. Bmad_com parameter set in the master input file will take
precedence over parameters set in the lattice file.

da_param%n_turn
Number of turns to track. The number of turns should be set as small as possible to
minimize computation time but large enough so that the results are fairly independent if the
number of turns is increased.

da_param%n_angle
The number of boundary points calculated for a scan is set by the da_param%n_angle
parameter.

da_param%min_angle, da_param%max_angle
These parameters set the ray minimum and maximum angles, labeled θ in Fig 1, in a scan.
In the example above the angle ranges from 0 to pi. That is, the upper half-plane. These
are typical settings since typically storage rings are vertically symmetric so the aperture
curves should vertically symmetric as well.

The angles between adjacent rays is not uniform but are rather calculated to give a roughly
equal spacing between boundary points. This is done by looking at the aperture points on
a horizontal and a vertical ray and then scaling the ray angles appropriately).

da_param%rel_accuracy, da_param%abs_accuracy
These parameters set the relative and absolute accuracies that determine when the search
for a boundary point is considered accurate enough.

If r =
√

(x− x0)2 + (y − y0)2 is the distance along any ray of the computed boundary point,
where (x0, y0) are the coordinates of the origin point, the search for the boundary point will

Dynamic_Aperture Program 6

stop then the accuracy of the boundary point is below the desired accuracy σcut which is
computed from

σcut = σa + r σr (1)

with σa begin the absolute accuracy and σr being the relative accuracy.

da_param%x_init, da_param%y_init
These parameters set the initial x and y values used in the first two boundary point searches.
The values of these parameters will not affect significantly affect the computed curve but
will affect the computation time. If not set, these parameters will default to 0.001 meter.

dat_file
Name of the data output file. This name is required.

pz
The pz parameter array is a list of pz values to use. The number of scans (dynamic aperture
curves) that are produced is equal to the number of pz values. Note: pz used to be named
dpz. The program is backwards compatible and will accept the old name.

ele_start
Name or element index of the element to start the tracking. Examples:

e l e _ s t a r t = "Q3##2" ! 2nd element named Q3 i n the l a t t i c e .
e l e _ s t a r t = 37 ! 37 th element i n the l a t t i c e .

The default is to start at the beginning of the lattice. Notice that the tracking starts at the
downstream end of the element so the first element tracked through is the element after
the chosen one.

ltt%ele_start
Name or element index of the element to start the tracking. Examples:

e l e _ s t a r t = "Q3##2" ! 2nd element named Q3 i n the l a t t i c e .
e l e _ s t a r t = 37 ! 37 th element i n the l a t t i c e .

The default is to start at the beginning of the lattice. Notice that the tracking starts at the
downstream end of the element so the first element tracked through is the element after
the chosen one. Also see ltt%ele_stop.

ltt%exclude_from_maps
List of elements to exclude when constructing maps for SLICK tracking. These elements
will be individually tracking. The default value is "beambeam::*" which excludes any beam-
beam element. See the Bmad manual section on “Matching to Lattice Element Names” for
details on the format for such lists.

ltt%lat_file
Name of the Bmad lattice file to use. This name is required. Note: In an old, deprecated
format this parameter was called lat_file.

Dynamic_Aperture Program 7

ltt%map_order
Map order. See Section §6. The default is what is set in the lattice file and if not set in the
lattice file the default is 3. Note: ltt%map_order is only used when generating a map. When
a map is read in from a file, the order of this map is independent of the current setting of
ltt%map_order.

ltt%ptc_aperture
The PTC code does not have apertures. This being the case, for ltt%tracking_method set
to "MAP" or "PTC", ltt%ptc_aperture, which is a 2-vector, defines x and y apertures. The
default is 0.1 meter in both the horizontal and vertical. When used, the aperture is applied
at the beginning/end of the lattice. PTC has an internal aperture of 1.0 meter. To be safe,
the long_term_tracking program will additionally impose a 0.9 meters aperture independent
of the setting of ltt%ptc_aperture.

ltt%ramping_on
If set to True, ramper control elements will be use to modify the lattice during tracking (§3).
Default is False. Note: In an old, deprecated format this parameter was called ramping_on.

ltt%ramping_start_time
The starting (offset) time used to set ramper elements. This enables simulations to start in
the middle of a ramp cycle. Default is 0.

ltt%random_seed
The random number seed used by the random number generator. If set to 0, the system
clock will be used. That is, if set to 0, the output results will vary from run to run.

ltt%rfcavity_on
If set to False, the voltage on all RF cavity elements will be turned off. Default is True. Note:
In an old, deprecated format the corresponding parameter was called set_rf_off.

ltt%set_beambeam_z_crossing
If True (default is false), set the z_crossing parameter of any beambeam element in the
lattice to the phase space z value of the closed orbit? See the Bmad manual for a discus-
sion of the z_crossing parameter. Generally, ltt%set_beambeam_z_crossing should be set
True.

ltt%symplectic_map_tracking
If False (the default), the maps used for tracking will be a set of truncated Taylor series
polynomials. If True, the tracking maps will be derived from the Taylor map by partially
inverting it forming an implicit symplectic map. The advantage of the symplectic map is
that it is symplectic. The disadvantage is that, being an implicit map, the computation time
will be longer.

ltt%use_rf_clock
The ltt%use_rf_clock logical is only relavent if Bmad tracking is being used in conjunction
with absolute time tracking and the discussion here assumes Bmad tracking with absolute
time tracking.2 If ltt%use_rf_clock is set to False (the default), the time used to calculate

2See the Bmad manual for a discussion of absolute versus relative time tracking.

Dynamic_Aperture Program 8

the phase of any varying fields is the absolute time which increases turn-by-turn. Over
many turns this may lead to round-off error. For example, with a 10 GHz cavity, if the
phase needs to be measured to one part in 105, it will not be possible to run a simulation
past 10 seconds since the double precision numbers used in the code have an accuracy
of 10−16.

There are several possible ways to avoid this round-off problem. If all the frequencies of
all the time varying fields are commensurate with the length of the lattice, relative time
tracking can be used which uses the particle’s z phase space coordinate as the effective
clock.3 If all frequencies are commensurate with each other, but are not commensurate
with the lattice length, time patches (patch elements that shift the reference time) can be
used with relative time tracking. Finally, if all the frequencies are commensurate, the “RF
clock” can be used with absolute time tracking by setting ltt%use_rf_clock to True. The
RF clock is simply a clock whose time is reset periodically to be in the range [0, trf] where
trf is a time period chosen by Bmad to be commensurate with the frequencies of the time
varying fields.4

6 Tracking Methods

The setting of the parameter ltt%tracking_method determines how particles are tracked. Possible
settings are:

"MAP" ! Track ing using maps .
"PTC" ! Element−by−element t r a c k i n g wi th PTC. Slow .
"BMAD" ! Element−by−element t r a c k i n g using Bmad. De fau l t . Slow .

which is used to determine if tracking is done using a map or not. If a map is used, the order
of the map (the degree at which the Taylor series comprising the map are truncated) is given
by ltt%map_order parameter. A larger map order will mean better accuracy at the expense of
more computation time. Tracking using a map will be extremely quick compared to element-by-
element tracking. However, map tracking can be inaccurate if the map order is too small or the
particle amplitude is too large.

Only the BMAD method is able to handle a machine that is being ramped (§3). That is, when
ltt%ramping_on set to True. The program will detect if there is a conflict and issue an error
message and stop.

7 Map Tracking

The long_term_tracking program uses the PTC/FPP library of Étienne Forest to handle Taylor
maps which can be constructed to any arbitrary order. In particular, PTC is used for constructing

3Note: Absolute time tracking is not available with PTC. That is, any PTC based tracking is relative time tracking.
4If not all the frequencies are commensurate, Bmad will make a best choice and the fields that have frequencies that

are not commensurate with the RF clock will use the standard clock instead.

Dynamic_Aperture Program 9

the map(s) used for tracking when the ltt%tracking_method parameter is set to "MAP" (§??).
PTC tracking is also used when ltt%tracking_method is set to "PTC". In this case, tracking is
done element-by-element using symplectic integration.

Note: Using maps is not compatible when a machine is being ramped (§3).

Sometimes it is convenient to exclude certain lattice elements from a map. For example, the
beam-beam interaction is highly non-linear so excluding any beambeam elements can improve
map accuracy at larger amplitudes. Which elements are excluded is determined by the setting
of ltt%exclude_from_maps which is a list of what elements are to be excluded. Elements can
be excluded for a number of reasons. When an element is excluded, multiple maps are created,
one for each of the sections of the lattice where there are no excluded elements. In this case,
tracking consists of using a map to track from one excluded element to the next followed by
tracking through the excluded element.

Important! Maps cannot model RF elements that have a frequency not commensurate with the
one-turn frequency. The reason for this is that a map is just a function that maps the particle’s
starting phase space coordinates to the particle’s ending coordinates independent of how many
turns the particle has been tracked. But if an RF element has a frequency not commensurate
with the one-turn frequency the kick given a particle going through the element will depend upon
the turn index. Maps can be used to model a lattice with such RF elements, but in this case such
elements must be excluded from be incorporated in any map by setting ltt%exclude_from_maps
appropriately.

Depending upon how things are setup, a PTC map can include radiation damping and fluctua-
tions effects. 5 Damping and excitation are controlled by two parameters that can be set in the
master input file:

bmad_com%radiat ion_damping_on
bmad_com%r a d i a t i o n _ f l u c t u a t i o n s _ o n

Maps are saved to a file for use if the program is rerun. For linear maps, an ASCII file can be
produced by setting ltt%map_ascii_output_file.

8 Tuning Map and PTC Tracking Parameters

When tracking using maps or element-by-element with PTC there are a few points to keep in
mind. First is that PTC tracks through a lattice element step by step. This is true for both map
creation and symplectic integration. This means that the setting of the element parameter inte-
grator_order6 or num_steps (or ds_step) for each element will affect the accuracy and speed of
the computations. Bmad tries to choose reasonable default settings for the integrator order and
number of steps however the calculation is not perfect. To make sure that the integrator order and
number of steps is set properly, vary both and choose values (which can be different for different

5Radiation fluctuations are included by actually using two maps to track a particle from one point to the next. One
map represents the transport with damping and the second map represents the fluctuations. When a particle is tracked,
the first map with damping is applied and then the second map is applied using six random numbers.

6Note: Valid settings for integrator_order are 2, 4, and 6

Dynamic_Aperture Program 10

elements) such that the number of steps and integrator order is minimal (to minimize computation
time) while at the same time is large enough so that results do not change significantly if the
number of steps or is varied. Generally it is much better to use a large integrator order and
a small step size rather than vice versa with the proviso that for elements with a longitudinally
varying field (think wigglers or undulators), the step size must be small compared to the typical
longitudinal length scale over which the field is varying (this length scale is the pole period length
with with wigglers and undulators).

Another thing to keep in mind is that whether a map will give accurate results is dependent on
a number of factors. One factor is the order of the map. Generally higher order is better but will
take more computation time. When the lattice is tracked using a single map, the tracking is only
valid when the tracked particles are far from any strong resonances. That is, if you are interested
in tracking halo particles, you probably should not be using a single map.

In terms of speed, using maps will be the fastest, using standard Bmad tracking will be much
slower, and using PTC element-by-element tracking will be slowest.

In terms of symplecticity, both the PTC tracking and map tracking will be symplectic. Bmad is not
symplectic but the deviation from symplecticity is generally fairly small. If the radiation effects are
large enough, the radiative stochastic noise will negate any non-symplectic effects and standard
Bmad tracking can be used. A very rough rule of thumb is that if the damping times or the number
of turns tracked are under 100,000 turns then Bmad standard tracking can be used.

PTC element-by-element tracking cannot be done when using the MPI version of the long_-
term_tracking program.

9 Correcting the Orbit when Radiation is Present

In storage rings, When radiation damping is simulated, the orbit that is flat when there is no
radiation will show a “sawtooth" pattern” in a plot of beam energy versus position. This will lead
to a nonzero orbit. In an actual ring, the non-zero orbit will be compensated using steerings.
Thus, to simulate the actual ring, compensating steerings should be added to the simulated
lattice as well. How to do this is covered in the Bmad and Tao Cookbook available from the
Bmad web site.

Dynamic_Aperture Program 11

	0

	0.01

	0.02

	0.03

	0.04

	0.05

	0.06

	0.07

	0.08

-0.08 -0.06 -0.04 -0.02 	0 	0.02 	0.04 	0.06 	0.08 	0.1

Dpz	=		0.000000
Dpz	=		0.005000
Dpz	=		0.010000

Figure 2: Example dynamic aperture plot using gnuplot.

10 Data Output and Plotting

The data output file whose name is set by dat_file will look like:

l a t _ f i l e = chess_arc_pretzel_20150106 . l a t
s e t _ r f _ o f f = T
da_param%min_angle = 0.0000000
da_param%max_angle = 3.1415926
da_param%re l_accuracy = 1.00E−02
. . . e tc
da_param%n_angle = 37
gnuplo t p l o t t i n g command :
p l o t f o r [IDX =1:3] " da . dat " index (IDX−1) u 1:2 w l i n e s . . .

" pz = 0.000000"
" x_re f_orb = 0.000124"
" y_re f_orb = 0.000037"

0.068125 0.000000 544 H i t +X Side Q11E
0.033668 0.002675 442 H i t −Y Side Q06E
0.033807 0.005414 717 H i t +Y Side Q26W
0.033673 0.008195 410 H i t +X Side B28W
0.033759 0.011160 119 H i t −X Side SEX_08E
0.034006 0.014403 855 H i t +Y Side SEX_21W

. . . e tc

pz = 0.005000"

Dynamic_Aperture Program 12

" x_re f_orb = 0.006591"
" y_re f_orb = 0.006591"

0.073979 0.000000 904 H i t −Y Side SEX_16W
0.050379 0.004234 554 H i t −Y Side SEX_19E
0.038989 0.006603 987 H i t −X Side SEX_39E
0.038242 0.009842 447 H i t +Y Side SEX_15W
0.037746 0.013196 365 H i t +X Side SEX_41E

. . . e tc

The top part of the data file will be a record of input parameter values. This is followed by a
number of data blocks, one for each setting of pz. The five columns of these data blocks are:

1 & 2: x_aperture , y_aper ture
3 : Number o f tu rns a p a r t i c l e i n i t i a l l y a t the aper tu re l i m i t surv ived .
4 : Transverse l o c a t i o n where p a r t i c l e died .
5 : L a t t i c e element where p a r t i c l e died .

Note that a particle will “die” if it hits an aperture or its amplitude is beyond the setting of
bmad_com%max_aperture_limit. The default value of this maximum aperture is 1000 meters.

One way to plot the data is to use the gnuplot program (documentation for gnuplot is available
using a web search). Run gnuplot and use the command printed in the top section of the data
file. An example of what such a plot looks like is shown in Fig. 2.

References

[1] D. Sagan, “Bmad: A Relativistic Charged Particle Simulation Library” Nuc. Instrum. & Meth-
ods Phys. Res. A, 558, pp 356-59 (2006).

Dynamic_Aperture Program 13

	Contents
	1 Introduction
	2 Running the Dynamic Aperture Program
	3 Time Ramping — Time Varying Element Parameters
	4 Fortran Namelist Input
	5 Master Input File
	6 Tracking Methods
	7 Map Tracking
	8 Tuning Map and PTC Tracking Parameters
	9 Correcting the Orbit when Radiation is Present
	10 Data Output and Plotting

