
Synrad3D Photon Tracking Program

David Sagan and Gerry Dugan

August 8, 2018



Contents

1



Chapter 1

Introduction

Synrad3D is a program which simulates the production and scattering of synchrotron radia-
tion generated by an electron beam in a high energy machine. The program was written by
David Sagan and the photon scattering model was developed by Gerry Dugan, both of Cornell
University.

Synrad3D is built atop the the Bmad software library [?]. The Bmad library, developed at
Cornell, has been developed for modeling relativistic charged particles in storage rings and
Linacs, as well as modeling photons in x-ray beam lines.

The motivation for developing Synrad3D was to estimate the energy and position distribution of
where SR photons are absorbed. This is a critical input to codes which model the growth of elec-
tron clouds. Synrad3D has also been used to model radiation mask efficiency. Synrad3D includes
scattering from the vacuum chamber walls, based on X-ray data from an LBNL database [?]
for the smooth-surface reflectivity, and an analytical model [?, ?] for diffuse scattering from
a surface with finite roughness. Synrad3D can handle a wide variety of vacuum chamber pro-
files. Synrad3D also handles a wide variety of machines including machines whose geometry
is not planar and machines using electrons or positrons as well as machines using protons or
antiprotons.

Synrad3D is not to be confused with an older program called Synrad. The Synrad program
is used for calculating wall heating from the primary beam. Synrad only tracks photons in
the horizontal plane and does not simulate the scattering of the photons from the wall. The
advantage of Synrad is that it is fast and directly gives wall heating numbers. The advantage
of Synrad3D is that it tracks photons in three dimensions and it does simulate scattering.

2



Chapter 2

Running Synrad3D

2.1 Syntax

Syntax for invoking Synrad3D:

synrad3d {options} {<master_input_file_name>}

The <master_input_file_name> optional argument is used to set the master input file name.
The default is “synrad3d.init”.

The command line options for Synrad3D are:

-out <index> ! For creating a file of the starting position of the
! photon with index <index> (§??.

-plot <what> ! For viewing diagnostic plots (§??).
-test <what> ! For generating diagnostic files (§??).

Examples:

synrad3d my_input_file.init
synrad3d -plot xy my_input_file.init

2.2 -plot Option

The -plot <what> option is used for diagnostic purposes. When the -plot option is used, no
photon tracking is done and instead a plot window is displayed and Synrad3D will ask for the
appropriate parameters for making a plot. One of four types of plots is chosen by the setting of
<what>:

-plot reflect ! Plot photon reflection probability curves.
-plot xy ! Plot cross-sections in the x-y plane.
-plot xs ! Plot cross-section in the x-s plane.
-plot ys ! Plot cross-section in the y-s plane.

3



The -plot reflect option is for viewing photon reflection probability curves.

The -plot xy option is for viewing of wall cross-sections in the x-y plane at any point in the
machine. The -plot xs option plots the wall outline in the x-s plane at y = 0. The -plot ys
option plots the wall outline in the y-s plane at x = 0.

When plotting x-s or y-s cross-sections, if the Master Input file specifies a photon_track_file,
this file will be read and the photon trajectories plotted. If the photon_track_file does not
exist, and a wall_hit_file file does, the wall_hit_file will be read and the photon trajectories
plotted. Since photon tracking is not done when there is plotting done, the wall_hit_file must
be generated in a previous run of Synrad3D prior to using the -plot option.

When plotting x-y cross-sections, symbols will be drawn at the vertex points v(i) that define
the cross-section.

plot_param structure, which can be set in the synrad3d_parameters namelist (§??), can be
used to to set the size of the plot window, or to vary the number of points used to construct
curves. The components of the plot_param structure are:

plot_param%n_pt = 1000 ! Num points used for plot curves.
plot_param%window_width = 800 ! Plot window width in pixels.
plot_param%window_height = 400 ! Plot window height in pixels.

The default values are shown.

2.3 -test Option

The -test <what> option is for generating diagnostic data. Tests are also useful for generating
data for plotting reflection statistics. Possible tests are:

-test monte_carlo_reflection ! §??
-test specular_reflection ! §??
-test diffuse_probability ! §??

See Chapter §?? for more details.

4



Chapter 3

Simulation Technique and Physics
Models

3.1 Overview

The diffuse scattering theory used in Synrad3D is discussed by Dugan and Sagan[?] modified as
discussed in §??.

The Synrad3D program uses the Monte Carlo method for photon generation, scattering, and
absorption calculations.

For photon generation, a section of the machine (which may be the complete machine) is desig-
nated for photon generation. The total number of photons generated is set by the user. Synrad3D
calculates how many photons need to be generated within each machine element. Both circular
and “linear” (that is, non-circular) machines can be simulated. In both cases, the orbit of the
charged particle beam, which may be non-zero, sets the centroid position and angular orienta-
tion of the generated photons. The local bending field at the beam orbit is used to determine the
photon spectrum. Thus, for example, radiation for an offset beam in a quadrupole is included.

The photon is tracked from the point of origin to the point at which it hits the vacuum chamber
wall. The angle of incidence relative to the local normal to the vacuum chamber is computed.
A scattering probability is computed, based on this angle and the photon’s energy. Depending
on the value of this probability, the photon is either absorbed at this location, or scattered. If it
is scattered, the scattering is taken to be elastic. That is, photon energy does not change. This
ignores any florescence. Surface roughness, on the other hand is taken into account so there is
a diffuse component to the scattering.

The photon is then tracked to the next encounter with the vacuum chamber wall, and the
probability of scattering is again computed. This process continues until the photon is absorbed.

5



3.2 Photon Generation

Photon generation is based on the standard synchrotron radiation formulas, applicable for
dipoles quadrupoles, and wigglers. The radiation is assumed to be incoherent, so this program
cannot treat undulator radiation. Polarization of the photon is ignored.

Synrad3D slices up each element longitudinally and generates photons from each slice. The
number of photons generated in a slice weighted by the local probability of photon emission
which depends on the local orbit curvature.

Both circular and “linear” (that is, non-circular) machines can be simulated. In both cases, the
orbit of the charged particle beam, which may be non-zero, sets the centroid position and angular
orientation of the generated photons. Photon generation is based upon the local field along
the beam orbit. Thus, for example, off-axis photons in a quadrupole will produce radiation.
The beam orbit is calculated from such things as the settings of steering elements, element
misalignments, etc. as given in the lattice file. For circular machines, the beam orbit is the
closed orbit. For linear machines, the starting beam position as set in the lattice file is used in
the orbit calculation.

When a photon is generated at a given longitudinal position, the beam’s emittances and centroid
are used so that the resulting photon distribution mirrors the Gaussian positional distribution
of the beam. Horizontal/vertical coupling is taken into account in this calculation. The photon
energy distribution will be the standard energy spectrum of photons generated in a bend.

A photon’s initial angular orientation is generated by first using a random number generator
to generate an angular orientation using a probability function that corresponds to the beam’s
angular distribution. To this orientation, an angular offset out of the plane of the bend is added
where the offset is calculated using a random number generator with a probability distribution
based on the standard angular spectrum of photons generated in a bend. There is no angular
offset added to the angle in the plane of the bend. The generated photons will have the proper
correlation between photon energy and photon angle. Note that the bending plane of the charged
particle beam need not be horizontal. For example, the bend plane orientation for an offset beam
in a quadrupole will depend upon the offset.

3.3 Photon Scattering

Simulated photons are tracked until they hit the wall, where the probability of being scattered,
and the scattering angle, are determined by their energy and angle of incidence. This section
describes the scattering model.

Generally, the probability of specular reflection of a photon from a rough surface depends on
the the rms surface roughness σ, the photon wavelength λ, and the grazing angle. An explicit
formula for this probability is [?]

Pspec = e−g(x,x), (3.1)

6



0 20 40 60 80 100 120 140
0.0

0.2

0.4

0.6

0.8

1.0

Energy HeVL

Pr
ob

ab
ili

ty
of

sp
ec

ul
ar

re
fl

ec
tio

n
Specular reflection probability vs. energy and angle, for Σ = 200 nm

10

5

2

1

0.5

Incident grazing angle HdegL

Figure 3.1: Specular reflection probability [?], vs. photon energy and angle, for an rms surface
roughness of 200 nm.

in which

g(x, y) =
4π2σ2(x+ y)2

λ2
(3.2)

where x is the cosine of the incident polar angle, and y is the cosine of the scattered polar
angle. For a typical technical vacuum chamber surface, the rms surface roughness σ & 200
nm is greater than most of the X-ray wavelengths of interest, for all except the lowest energy
photons. In this regime, except at very small grazing angles, diffuse scattering from the surface
dominates over specular reflection. This is illustrated in Fig. ??. The theory of diffuse scattering
of electromagnetic waves from random rough surfaces is a well-developed subject, and is covered
in detail in references [?] and [?]. The model we use assumes a Gaussian distribution for both the
surface height variations (rms σ) and for the transverse distribution (equal in both transverse
directions, with autocorrelation coefficient T ).

The most general expression for the diffusely scattered power is complex, and involves an infinite
sum. However, the expression simplifies substantially in the limit g(x, y) � 1. For very rough
surfaces corresponding to technical vacuum chambers, for which typically σ � λ, this condition
is satisfied over much of the region of interest. In this limit, the diffusely scattered power per
unit solid angle is given by

dPdiff
dΩ

= P0
〈R〉
4πy

(1 + xy)2

(x+ y)4
τ2e−

(2−x2−y2)τ2

4(x+y)2 (1− a cosφ)2eb cosφ, (3.3)

7



0 100 200 300 400
0.0

0.1

0.2

0.3

0.4

0.5

Photon Energy HeVL

R
ef

le
ct

iv
ity

Diffuse scattering into detector: Σ = 200 nm, T = 5500 nm
5 deg grazing angle
Points: Daphne data

blue line: surface film 10 nm C on Al substrate
red line: surface film 4 nm Al2O3 on Al substrate

Figure 3.2: Diffuse scattering at 5 deg from a surface layer on an aluminum substrate: com-
parison of data and model

30 40 50 60 70 80
0.000

0.005

0.010

0.015

0.020

Photon Energy HeVL

R
ef

le
ct

iv
ity

Diffuse scattering into detector: Σ = 200 nm, T = 5500 nm
45 deg grazing angle
Points: Daphne data

blue line: surface film 10 nm C on Al substrate
red line: surface film 4 nm Al2O3 on Al substrate

Figure 3.3: Diffuse scattering at 45 deg from a surface layer on an aluminum substrate:
comparison of data and model

8



30 40 50 60 70 80
0.000

0.001

0.002

0.003

0.004

0.005

Photon Energy HeVL

R
ef

le
ct

iv
ity

Diffuse scattering into detector: Σ = 200 nm, T = 5500 nm
85 deg grazing angle
Points: Daphne data

blue line: surface film 10 nm C on Al substrate
red line: surface film 4 nm Al2O3 on Al substrate

Figure 3.4: Diffuse scattering at 85 deg from a surface layer on an aluminum substrate:
comparison of data and model

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

Photon Energy HeVL

R
ef

le
ct

iv
ity

Smooth 10 nm C layer on Al substrate

90
75
60
45
30
20
15
10
7
6
5
4
3
2
1

Incident grazing angle HdegL

Figure 3.5: Smooth surface reflectivity for a 10 nm C film on Al substrate: from [?]

9



-2 -1 0 1 2
0

100

200

300

400

500

Out-of-plane angle HdegL

R
el

at
iv

e
di

ff
us

e
po

w
er

�s
ol

id
an

gl
e

at
sp

ec
ul

ar
an

gl
e

Very rough diffuse scattering: Σ = 200 nm,
T

Σ
= 27.5, energy = 30. eV

1

2

3

5

10

20

45

85

Incident grazing angles HdegL

Figure 3.6: Diffuse scattering out-of-plane angular distributions for 30 eV photons

0 10 20 30 40
0

200

400

600

800

1000

Scattered angle HdegL

R
el

at
iv

e
di

ff
us

e
po

w
er

�s
ol

id
an

gl
e

at
Φ

=
0

Very rough diffuse scattering: Σ = 200 nm,
T

Σ
= 27.5, energy = 30. eV

1

2

3

5

10

20

45

85

Incident grazing angles HdegL

Figure 3.7: Diffuse scattering polar angular distributions for 30 eV photons

10



0 10 20 30 40
0

200

400

600

800

Scattered angle HdegL

R
el

at
iv

e
di

ff
us

e
po

w
er

�s
ol

id
an

gl
e

at
Φ

=
0

Very rough diffuse scattering:
T

Σ
= 27.5, High energy approximation

1

2

3

5

10

20

45

85

Incident grazing angles HdegL

Figure 3.8: Diffuse scattering polar angular distributions for high energy photons

-2 -1 0 1 2
0

200

400

600

800

Out-of-plane angle HdegL

R
el

at
iv

e
di

ff
us

e
po

w
er

�s
ol

id
an

gl
e

at
sp

ec
ul

ar
an

gl
e

Very rough diffuse scattering:
T

Σ
= 27.5, High energy approximation

1

2

3

5

10

20

45

85

Incident grazing angles HdegL

Figure 3.9: Diffuse scattering out-of-plane angular distributions for high energy photons

11



with

a =
h(x, y)

1 + xy
, (3.4)

b =
2h(x, y)τ2

4(x+ y)2
, (3.5)

h(x, y) =
√

1− (x2 + y2) + x2y2. (3.6)

In this expression, P0 is the incident power, and 〈R〉 is the smooth-surface reflectivity, which is
determined by the atomic structure of the surface material. φ is the scattering angle out of the
plane of incidence. Note that the relative power depends on the ratio τ = T/σ, and not on the
T or σ separately.

The smooth-surface reflectivity 〈R〉 depends on the atomic structure of the surface materials
(including any thin layers which may be deposited on the surface). The surface roughness pa-
rameters σ and T depend on the geometry of the surface deviations from a perfect plane. These
parameters may be determined from inspection of the vacuum chamber surface, for example,
using an atomic force microscope.

To derive a working model for the smooth surface reflectivity and the surface parameters for a
typical vacuum chamber surface, we have relied on measurements [?] of X-ray scattering from an
aluminum vacuum chamber surface made at DAPHNE. For these measurements, the rms surface
roughness of the sample was reported to be 200 nm.

The theory of diffuse scattering discussed above has been used, together with smooth surface
reflectivity results taken from an X-ray database [?], to predict the scattering and compare with
the measurements. From these comparisons, the best-fit value for the transverse autocorrelation
parameter, T , was found to be 5500 nm. As discussed by Dugan and Sagan[?], it was found that
the smooth-surface reflectivity corresponding to a 10 nm carbon film on an aluminum substrate
was needed to fit the data. The assumption of an aluminum oxide surface film was not consistent
with the data. The data and the corresponding fits are shown in Fig. ??, ??, and ??.

With the smooth-surface reflectivity determined, and the surface parameters established, the
scattering model in Synrad3D is completely determined. The model currently in use has a
smooth-surface reflectivity illustrated in Fig. ??. Diffuse scattering distributions for 30 eV
photons are shown in Fig. ?? and Fig. ??. At this low photon energy, the approximation
g(x, y)� 1 does not hold in general, and the full diffuse scattering formalism is used to compute
these distributions. Diffuse scattering distributions for high energy photons, for which g(x, y)�
1 are shown in Fig. ?? and Fig. ??. These distributions have been computed from Eq. ??.

12



Chapter 4

Master Input File

4.1 Fortran Namelist

Fortran namelist syntax is used for parameter input by Synrad3D. The general form of a namelist
is

&<namelist_name>
<var1> = ...
<var2> = ...
...

/

The tag "&<namelist_name>" starts the namelist where <namelist_name> is the name of the
namelist. The namelist ends with the slash "/" tag. Anything outside of this is ignored. Within
the namelist, anything after an exclamation mark "!" is ignored including the exclamation
mark. <var1>, <var2>, etc. are variable names. Example:

&place section = 0.0, "arc_std", "elliptical", 0.045, 0.025 /

here place is the namelist name and section is a variable name. Notice that here section is
a “structure” which has five components – a real number, followed by two strings, followed by
two real numbers.

Everything is case insensitive except for quoted strings.

Logical values are specified by True or False or can be abbreviated T or F. Avoid using the dots
(periods) that one needs in Fortran code.

4.2 Example Master Input File

The master input file can be specified on the command line invoking Synrad3D. If not given,
the default name for the master input file is “synrad3d.init”.

13



Fortran namelist syntax is used (§??). A synrad3d_parameters namelist holds parameters for
Synrad3D. Example:

&synrad3d_parameters
ix_ele_track_start = 1 ! Radiation region start lattice element.
ix_ele_track_end = 912 ! Radiation region end lattice element.
photon_direction = 1 ! 1 = Forward generation, -1 = Backward generation.
num_photons = 50000 ! Target number of surviving photons.
num_photons_per_pass = -1 ! photons generated per pass. -1 => num_photons/5.
ds_step_min = 0.01 ! Photons are generated at discrete points.

! Multiple photons can be generated at each point.
! This is minimum distance between points.

emit_a = -1 ! Horizontal emit. Meters. If < 0 -> Calc from lattice.
emit_b = 7.52E-11 ! Vertical emit. Meters. If < 0 -> Calc from lattice.
sig_pz = -1 ! Sigma pz. If < 0 -> Calc from lattice.

lattice_file = "../lattice/cesr/bmad/bmad_6wig_8nm_2085.lat"
wall_file = "synrad3d.wall" ! Vacuum chamber wall file.
dat_file = "synrad3d.dat" ! Output data file.
wall_hit_file = "" ! Photon wall hit output data file.
photon_track_file = "" ! Photon track output data file
lat_ele_file = "" ! Write lattice element data file.
photon_start_input_file = "" ! File for initializing the photons
photon_start_output_file = "" ! File recording photon start positions

random_seed = 123456 ! 0 -> Use sys clock.
e_init_filter_min = -1 ! Min initial energy filter param.
e_init_filter_max = -1 ! Max initial energy filter param.
vert_angle_init_filter_min = -2 ! Min initial vertical angle filter.
vert_angle_init_filter_max = 2 ! Max initial vertical angle filter.
vert_angle_symmetric_init_filter = F ! Symmetrize vertical angle filter?
e_filter_min = -1 ! Min final energy filter param.
e_filter_max = -1 ! Max final energy filter param.
s_filter_min = -1 ! Min S position filter param.
s_filter_max = -1 ! Max S position filter param.
filter_phantom_photons = T ! Filter photons striking a phantom wall?
num_ignore_generated_outside_wall = 0 !
turn_off_kickers_in_lattice = F ! Zero the closed orbit?
surface_roughness_rms = -1 ! Roughness for diffuse scattering.
roughness_correlation_len = -1 ! Roughness correlation length.
surface_reflection_file = "" ! File for default reflection table.
chamber_end_geometry = "" ! Wall at the lattice ends.
sr3d_params%ds_track_step_max = 3 ! Photon propagation step size
sr3d_params%dr_track_step_max = 0.1 ! Photon propagation step size
sr3d_params%specular_reflection_only = F ! For testing diffuse scattering.
sr3d_params%allow_reflections = T ! For testing purposes.

14



sr3d_params%allow_absorption = T ! For testing purposes.
sr3d_params%max_reflections = 10000 ! For avoiding endless loop problems.
plot_param%n_pt = 1000 ! Num points used for plot curves.
plot_param%window_width = 800 ! Plot window width in pixels.
plot_param%window_height = 400 ! Plot window height in pixels.

/

4.3 Master Input File Parameters

chamber_end_geometry
The chamber_end_geometry sets how the chamber ends at the ends of the lattice are
treated. chamber_end_geometry may be set to one of:

"" ! Use lattice geometry (default).
"closed" ! The chamber ends connect together.
"open" ! The chamber end are not connected together.

If chamber_end_geometry is set to blank (""), the setting of the lattice geometry will be
used as the chamber geometry (the lattice geometry is set in the lattice file, see the Bmad
manual[?] for more details). For a "closed" geometry, the chamber ends at the ends of
the lattice are connected together so a photon hitting one end will reappear at the other
end. For an "open" geometry, the camber ends at the ends of the lattice are not connected
so a photon hitting an end will be reflected or absorbed.

Note: the setting of chamber_end_geometry only affects branch 0 (the root branch) of
the lattice. If The lattice has other branches, the chamber end geometry for chambers in
these branches is always determined by the geometry setting for the branch.

dat_file
This string gives the name of the output data file (§??). See below for more details.

ds_step_min
This parameter establishes the minimum distance to track the particle beam between
emission points. The thought was that if Synrad3D decided to make very small steps
between emission points, this might slow the calculation down. This has not been tested.
This parameter does not influence photon tracking. Default is 0.001 meters.

e_init_filter_min, e_init_filter_max
Minimum and maximum filter values for a photon’s initial energy (§??). A negative filter
value (which is the default) indicates that the particular filter is not used.

e_filter_min, e_filter_max
Minimum and maximum filter values for a photon’s final energy (§??). A negative filter
value (which is the defaults) indicates that the particular filter is not used.

emit_a, emit_b, sig_pz
These parameters set the particle beam size and so will affect the starting coordinates

15



of the photons. A negative value (which is the default) of any of these parameters will
result in Synrad3D using the value for the parameter from a calculation of the synchrotron
radiation integrals.

filter_phantom_photons
Phantom photons are photons that have hit a “phantom” wall (§??). That is, a wall
whose surface name is set to “PHANTOM”. If filter_phantom_photons is set the True
(the default) a filter test is used to exclude phantom photons from the output. If set to
False, the filter will not be applied. Default is True.

ix_ele_track_start, ix_ele_track_end
The parameters ix_ele_track_start and ix_ele_track_end establish the region where
radiation is produced. These are the index numbers of elements in the lattice. The radia-
tion region boundary is taken to be at the exit end of the elements so no radiation is pro-
duced in the element with index ix_ele_track_start. If ix_ele_track_end is negative,
the end of the radiation region is taken to be end of the lattice. If ix_ele_track_end is
positive and less than ix_ele_track_start, the track region will be from ix_ele_track_start
through the end of the lattice and from the beginning of the lattice to ix_ele_track_end.
Defaults are 0 for ix_ele_track_start and -1 for ix_ele_track_end.

lat_ele_file
This string, if not blank "" (and blank is the default), will create a data file listing the
lattice elements within the emission region. For each element the following are given.

1. The element name

2. The element type (quadrupole, etc.)

3. Longitudinal position at the exit end of the element

4. Element length.

5. I0 radiation integral through the element.

6. The nominal (not actual) number of photons to be generated based upon the I0
integral, the total I0 integral, and the setting of num_photons

7. The longitudinal step size between photon emission points.

lattice_file
This file defines the machine optics. See the Bmad manual for more details.

num_ignore_generated_outside_wall
Photons may be generated outside of the beam chamber for various reasons. For example,
the beam chamber can be too small or the closed orbit may lie near or outside the chamber.
Another possibility is that the beam emittance is large enough so that, from time-to-time,
a photon generated at large amplitude will be generated outside the wall. Synrad3D
will ignore photons generated outside the wall, and generate another one at the same
longitudinal position, up to the number set by num_ignore_generated_outside_wall.
If the number of photons generated outside the wall exceeds this number, Synrad3D will
print an error message and stop. Default is 0.

16



num_photons
num_photons establishes the minimum number of “surviving” photons that need to be
generated before Synrad3D will stop the simulation. The actual number of surviving
photons will be between num_photons and num_photons+num_photons_per_pass. See
§??. [A surviving photon is a photon that passes all filter requirements (§??) and is
recorded in the output statistics.]

num_photons_per_pass
num_photons_per_pass sets the number of photons generated per “pass”. A “pass” is the
act of generating photons throughout the radiation production region. If num_photon_per_pass
is negative (the default), the number of photons generated per pass is taken to be num_photons/5.
The actual number of surviving photons will be between num_photons and num_photons+num_photons_per_pass
See below for more details.

photon_direction
The photon_direction parameter determines in what direction the photons are traveling
when initially created. A value of +1 (the default) indicates the photons are created
traveling in the +s direction and a value of -1 indicates that the photons are created in
the −s direction.

photon_start_output_file
This string, if not blank (and blank is the default), will cause Synrad3D to create an output
file, with a name given by the value of photon_start_output_file, of the photon starting
positions along with the state of the random number generator. The format for this file is
compatible with the format of the photon_start_input_file. This file is generally used
for debugging purposes and is not of general interest. Note: If photon_start_input_file
is set, photon_start_output_file will be ignored (no output file is generated). Also note
that the file will have the starting coordinates of all photons generated, not just the photons
that pass any filtering tests. Thus, if any of the filter parameters are set, the size of the file
may be very large. See §?? for the syntax of this file. Alternatively, the -out command
line option (§??) may be used to create a starting position file for a particular photon.

photon_start_input_file
If not blank (and blank is the default), the file named by photon_start_input_file
will be read by Synrad3D and used to initialize photon starting positions. See §?? for the
syntax of this file. The state of the random number generator at the time of a photon’s ini-
tialization can also be specified in the file. In this case, the random number generator state
will also be set along with the state of the photon. This is useful for diagnostic purposes
when one wishes to compare the results of different versions of the Synrad3D program.
Note: Starting position files may be generated by setting photon_start_output_file or
by using the -out command line option (§??).
If photon_start_input_file is set to “CUSTOM”, instead of reading from a file, custom
code is used to generate the initial photon position. Details of how this works is given in
Sec. §??.

photon_track_file
This string, if not blank (and blank is the default), will create a data file with a table of

17



points along the photon tracks. This file is useful for plotting photon trajectories since
it records intermediate points between points where the photon hits a wall. See §?? for
more details

plot_param%...
The plot_param structure contains parameters used with the -plot option when starting
Synrad3D. See Section §?? for more details.

random_seed
Random number seed used in by the random number generator. If set to 0 (the default),
the system clock will be used. That is, if set to 0, the output results will vary from run to
run and if non-zero the results will be the same from run to run.

roughness_correlation_len
This parameter sets the surface roughness correlation length in meters for the default
surface (§??). This is used for diffuse scattering. If negative (the default), the value of
5.5 µm will be used.

s_filter_min, s_filter_max
Minimum and maximum longitudinal position filter values of the final photon position. A
negative filter value (the default) indicates that the particular filter is not used. See §??.

sr3d_params%allow_absorption
This parameter, if set False, will cause Synrad3D suppress absorption and to always reflect
photons when they hit the chamber wall. Default is True. Setting to False is only used
for testing purposes.

sr3d_params%allow_reflections
This parameter, if set False, will cause Synrad3D to stop tracking a given photon once it
hits the chamber wall. This can be used to generate data on where the primary photons
are striking. Default is True.

sr3d_params%ds_track_step_max, sr3d_params%dr_track_step_max
These parameters determine the maximum distance a photon is tracked in a given “step”
see §?? for more details. Defaults are 3 meters for sr3d_params%ds_track_step_max and
0.1 meter for sr3d_params%dr_track_step_max.

sr3d_params%max_reflections
This parameter sets the maximum number of reflections that a photon can have. If
a photon is reflected more times than this parameter, Synrad3D will stop tracking the
photon, print an error message, and then go on to the next photon. The offending
photon will not be included in the output data file statistics. The default value for
sr3d_params%max_reflections is 10000. Normally no photon will ever have so many
reflections. sr3d_params%max_reflections serves as a “sanity checker” just in case, for
example, some inaccuracy in the tracking causes photons not to be absorbed.

sr3d_params%specular_reflection_only
This parameter can be used to test whether diffuse scattering is important. If set to True,
photons will always be specularly reflected. Default is False.

18



surface_reflection_file
This parameter is used to change the default reflection probability curves used in the
simulation. See §?? for details. To define multiple surfaces with differing reflectivities, see
§??.

surface_roughness_rms
This parameter sets the surface roughness RMS in meters for the default surface (§??).
This is used for diffuse scattering. If negative (the default), the value 200 nm will be used.

turn_off_kickers_in_lattice
If turn_off_kickers_in_lattice is set to True (the default is False), then all kicks from
steering elements in the lattice will be zeroed.

vert_angle_init_filter_min, vert_angle_init_filter_max
Minimum and maximum filter values for a photon’s initial vertical angle (§??). Without fil-
tering photon angles will be in the range [−π/2, π/2]. If vert_angle_init_filter_min is
less than−π/2 (which is the default) a value of−π/2 is used for it. If vert_angle_init_filter_max
is greater than π/2 (which is the default) a value of π/2 is used for it. Also see vert_angle_symmetric_init_filter.
Note: If vertical angle filters are used, e_init_filter_min must be set. This is mandated
to avoid problems that occur at zero photon energy where the inital photon distribution
from a bend has infinite probability density per unit of energy and an infinite vertical
angle width.

vert_angle_symmetric_init_filter
Sets if the photon’s initial vertical angle vertical angle (§??) filtering is symmetric about
0. If set to False (the default), the filter angular range is

[vert_angle_init_filter_min, vert_angle_init_filter_max]

If set to True, photons will be accepted for tracking if they are in one of the ranges

[-vert_angle_init_filter_max, -vert_angle_init_filter_min], or
[vert_angle_init_filter_min, vert_angle_init_filter_max]

wall_file
This string gives the name of the vacuum chamber wall definition file. See §?? for more
details.

wall_hit_file
This string, if not blank (which is the default), will create a data file listing the points
where the photons hit the wall including all the reflection points. This will be in addition
to the regular output file. See §?? for more details.

19



Chapter 5

Vacuum Chamber

5.1 Subchambers

The shape of the vacuum chamber is described by a number of “subchambers” (the reason
for dividing the vacuum chamber into subchambers is discussed in §??). This is illustrated
in Figure ??. The entire vacuum chamber is the union of all the subchambers. That is, a
photon is considered within the vacuum chamber if, and only if, it is inside at least one of the
subchambers. It is perfectly fine for subchambers to overlap one another. In fact, some overlap
is desirable to prevent abutting subchambers from appearing to be separated due to round-off
errors in the calculation.

5.2 Wall_file Syntax

The vacuum chamber is defined in the wall_file. The name of the wall_file is specified
in the master input file §??. The syntax for specifying the vacuum chamber follows Fortran
namelist input as explained in §??.

Each subchamber is defined by specifying the subchamber cross-section at a number of longi-
tudinal positions as illustrated in Figure ??. Each cross-section is specified using a namelist
named place. The general form of a place namelist is:

&place
section = <s>, "<section_name>", "<section_id>"
surface = "<surface_name>", <is_local>

/

The optional surface parameter, which is used to specify a particular surface, is explained in
§??. Example:

&place section = 0.0, "arc_std", "beam:dipole_shape" /
&place section = 74.3, "Near_IR" "left_ante:shape-A@START" /
&place section = 82.9, "wig1", "left_ante:shape-B@END"

20



Figure 5.1: The vacuum chamber is the union of a number of subchambers. This figure illustrates
this showing two subchambers – one colored green and the other colored red. A photon is
considered within the vacuum chamber if, and only if, it is inside at least one of the subchambers.

s x

y

V(1)

V(5)
V(4)

V(3)

V(2)A) B)

(x0, y0)

Figure 5.2: A subchamber is defined by a number of cross-sectional slices. A) A subchamber
(red) and two cross-sectional slices (blue). B) A given cross-section is defined by a number of
vertices.

&place section = 91.1, "IR1", "rectangle" /

The <s> values for the cross-sections of a given subchamber must be in increasing order.

The <section_name> is a descriptive name that can be, for example, used in plotting. The
<section_name> is ignored for any calculation. The <section_name> may be blank.

The <section_id> identifies the section. The general format for <section_id> is:

<sub_chamber_id>:<shape_id>@<edge-sec>

For example, if a section is placed like:

&place section = 74.3, "Near_IR" "left_ante:shape-A@START" /

the <sub_chamber_id> component is "left_ante", the <shape_id> component is "shape-A",
and the <edge-sec> component is "START". The <shape_id> must always be present but
<sub_chamber_id> and <edge-sec> may be omitted. If <sub_chamber_id> is omitted, the

21



colon after the <sub_chamber_id>may be omitted too. If <edge-sec> is omitted, the ampersand
before the <edge-sec> may be omitted too.

The <sub_chamber_id> component specifies which subchamber is being specified. If <sub_chamber_id>
is omitted, the subchamber name is blank. For example, ":chamC@", which is equivalent to
"chamC", is associated with the subchamber whose name is blank. Omitting the <sub_chamber_id>
can always be done if there is only one subchamber.

The <edge-sec> component specifies if a subchamber is beginning or ending at a certain longi-
tudinal position. If present, <edge-sec> must be:

"START" or
"END"

For every "START" there must be an "END". A subchamber begins with the section with
<edge-sec> set to "START" and ends with the section with <edge-sec> set to "END". Example:

&place section = 5.0, "", "left_ante:shape-B@END" /
&place section = 174.0, "" "left_ante:shape-A@START" /
&place section = 182.0, "", "left_ante:shape-B@END"
&place section = 936.0, "" "left_ante:shape-A@START" /

With a closed geometry (set by chamber_end_geometry (§??), there are two subchambers,
both with the same same: left_ante. One subchamber begins at s = 174 meters and ends at
182 meters. The other subchamber that begins at s = 936 meters, wraps around the end of the
lattice back to the beginning, and ends at 5 meters. With a open geometry the above example
would produce and error since subchambers are not wrapped around the ends of the lattice.

Subchambers with the same name may not overlap longitudinally. That is, “nested” start/end
groups are not allowed since there is an ambiguity as to how to pair the cross-sections. For
example, the following is not allowed:

&place section = 173.0, "" "left_ante:shape-A@START" /
&place section = 174.0, "" "left_ante:shape-A@START" /
&place section = 182.0, "", "left_ante:shape-B@END" /
&place section = 183.0, "", "left_ante:shape-B@END" /

A subchamber does not have to have START and END end sections. Such subchambers are called
“open-ended”. Open-ended subchambers extend along the entire length of the machine. For a
lattice with an open geometry, an open-ended subchamber must have the longitudinal s-position
of its first and last sections be at the ends of the lattice. For a lattice with a closed geometry,
Synrad3D will naturally extend the wall from the last section around the ends of the lattice to
the fist section. In fact, it is perfectly legitimate to define an open-ended subchamber in an
closed geometry with just one section.

The <shape_name> component of <section_id> identifies the exact shape of the cross-section.
The <shape_name> is matched with a shape_def namelist of the same name. The shape_def
namelist has the format:

&shape_def

22



name = <shape_name> ! Name of this shape.
r0 = <x_center>, <y_center> ! Center of section.
absolute_vertices = <T/F> ! Vertex nums relative to r0 or abs? Default = F.
v(1) = <x1> <y1> <radius_x1> <radius_y1> <tilt1>
v(2) = <x2> <y2> <radius_x2> <radius_y2> <tilt2>
v(3) = <x3> <y3> <radius_x3> <radius_y3> <tilt3>
... etc ...

/

Example:

! Anything outside the namelists is ignored.
&place section = 65.7, "Near_IR" "rectangular1" /
&place section = 74.3, "Arc" "dipole_shape" /
&place section = 100.3, "Arc" "dipole_shape" /

&shape_def
name = "rectangular1"
v(1) = 0.045, 0.025

/
&shape_def

name = "dipole_shape"
v(1) = 0.045, 0.025, 0.3, 0.9
v(2) = -0.045, 0.025
v(3) = -0.045, 0.025, 0.3, 0.9
v(4) = -0.045, 0.025

/

There are three place namelists in this example. The first place namelist refers to the first
shape_def namelist whose name is "rectangular1". The other two place namelists refer to the
second shape_def namelist named "dipole_shape". As seen in this example, multiple places
may refer to the same shape_def.

For a shape_def namelist, the name labels the shape for use by a place namelist. A shape_def
is specified by a “central point” r0 and a list of connected vertices. Each vertex is specified by
it’s (x, y) coordinates that are with respect to r0 except if absolute_vertices is set to True in
which case the vertex numbers are absolute. The vertices must “wind” counter-clockwise around
the central point. That is, if (x, y) coordinates of the vertices are expressed in terms of polar
(r, θ) coordinates with respect to the central point, the vertices must be in order of increasing
θ. If all the vertex points have non-negative y values, it is assumed that the gen_shape is
symmetric with respect to the x-axis and that only half the vertex points are being specified. If
all the vertex points have both non-negative x and y values, it is assumed that the gen_shape
is symmetric with respect to both the x and y axes.

Between vertices, the wall is assumed to be a straight line except if a <radius_x> is given. If
<radius_x> is set to a non-zero value for a given vertex, the wall segment between that vertex
and the vertex before it is the arc of a circle with the given radius. If, in addition, <radius_y>

23



is given, the arc will be a section of an ellipse. If, in addition to <radius_x> and <radius_y>,
<tilt> is given, then the ellipse will be tilted.

If <radius_x> is positive, the arc of the wall is convex. If it is negative, the arc is concave. Note
that when the wall cross-section is concave, there can be problems with the photon tracking.
See §?? for more details.

In the example above, the cross-section at s = 65.7 meters is a gen_shape whose definition is
given by the shape_def with name “rectangular1”. This shape_def defines a rectangle with
half width 0.045 meters and half height 0.025 meters.

In the above example, “the dipole_shape” shape is similar to the rectangular1 shape except
the right and left sides are sections of an ellipse.

5.3 Multi-Section Cross-Section

The multi-section cross-section is not actually a single cross-section but a repeating pattern
of cross-sections. The basic repeat pattern is specified by a multi_place namelist of the form

&multi_place
name = "<multi_name>"
section(1) = 0.0, "<section0_name>", "<section0_id>", ...
section(2) = <s1>, "<section1_name>", "<section1_id>", ...
section(3) = <s2>, "<section2_name>", "<section2_id>", ...
...

/

The syntax for any of the section(n) sections is the same as described above for rectangular,
elliptical, and gen_shape. shapes. The first section, section(1), must have <s0> set to
0 and the <s> of the other cross-sections represent an offset from this 0th section. The last
section(N) section must have <sectionN_name> set to one of

open
closed

and the last section(N) must have <sectionN_id> set to

end_marker

This last “end_marker” section is not a real cross-section but simply serves as a marker for the
end of the basic repeat pattern. The significance of the <sectionN_name> of the end_marker
section is discussed below. Example:

&multi_place
name = "zig_zag"
section(1) = 0.000, "in_zig", "ellipse1",
section(2) = 0.002, "out_zag", "ellipse2",
section(3) = 0.003, "open", "end_marker"

/

24



Here the basic repeat pattern is 0.003 meters long and is made up of two cross-sections called
in_zig and out_zag.

To position a series of cross-sections, a place namelist is used general syntax for this is:

&place
section = <s>, "<section_name>", "<section_id>", <repeat_count>
surface = "<surface_name>", <is_local>

/

The optional surface variable, which is used to specify a particular surface, is explained in §??.

<s> is the longitudinal starting position of the series of cross-sections, <section_name> is not
used but must be present to keep the format the same as other places. The cross-sections
in the multi_place namelist will be repeated <repeat_count> times when the subchamber is
constructed. Example:

&place section = 10.0, "", "zig_zag", 1000 /

With this place, coupled with the multi_place example above, an in_zig cross-section will
be placed at s = 10 meters at the starting point. The basic pattern will repeat 1000 times and
the series of cross-sections will be:

S Name
10.000 in_zig
10.002 out_zag
10.003 in_zig
10.005 out_zag
...
12.997 in_zig
12.999 out_zag

Since the end_marker section is “open”, the basic pattern is repeated exactly 1000 times and
there will be 2 * 1000 cross-sections. If the end_marker section is “closed”, an extra section(1)
cross-section would be added at the end to make the ending cross-section the same as the
beginning cross-section. In this case, if the end_marker section is set to “closed”, a in_zig
cross-section would be added at s = 13.000 meters.

5.4 Fast and Slow Subchambers

When a subchamber has many cross-sections (which can easily happen when a multi-section
(§??) is used), the computation time for photon tracking may become large due to the neces-
sity of stopping the photon at each cross-section to check whether the photon has crossed the
subchamber boundary. This can be ameliorated by defining an associated “fast” subchamber
with only a few cross-sections that is contained withing the “slow” subchamber with the large
number of cross-sections as illustrated in Figure ??.

As explained in §??, when a photon is tracked that is contained in both a slow and an associated
fast subchamber, Synrad3D can ignore the slow subchamber and track the photon through the

25



Figure 5.3: A “fast” subchamber (green), which uses fewer cross-sections to describe it, resides
within another “slow” (blue) subchamber with many cross-sections. The fast subchamber enables
Synrad3D to speed up tracking. The two subchambers have been cut in the illustration to better
show the geometry.

fast subchamber until the photon exits the fast subchamber. Tracking will be quicker since there
will be fewer cross-sections to stop the photon at.

To associate two subchambers as a fast/slow pair, a fast_slow namelist instance is used. The
syntax of this namelist is:

&fast_slow
fast = "<fast_subchamber_name>"
slow = "<slow_subchamber_name>"

/

A fast_slow namelist instance establishes a single association. So to make multiple associations,
multiple fast_slow namelist instances need to be used.

A subchamber can have multiple associated slow or fast subchambers. A subchamber can also
have an associated fast subchamber and an associated slow subchamber although in practice
this is to be avoided since it will, if anything, slow down tracking.

A fast subchamber may extend beyond the slow subchamber it is associated with. The entire
vacuum chamber is the union of all subchambers including the fast ones. That is, in terms
of defining the vacuum chamber, fast subchambers are no different than the slow ones or the
“normal” subchambers that do not have any fast or slow associations.

5.5 Lattices with Branches

To describe things like injection lines or a ring attached to a X-ray beam line, a lattice will have
multiple “branches”. [See the Bmad manual[?] for more details on lattice branches.] By default,

26



FK Fork

B1 Branch

BND Bend

RING Branch

Figure 5.4: Branch line illustration. Here a branch line named b1 is connected to the root
branch, named ring, via a fork element named fk.

subchambers will be associated with the “root” branch (branch 0). A subchamber_branch
namelist is used to associate a subchamber with a given branch. The form of this namelist is:

&subchamber_branch
subchamber_name = <name>
branch_name = <name-or-index>

/

The subchamber_name is the name of the subchamber to be associated and branch_name is
name or index of the associated branch.

As an example, consider the following lattice:

parameter[E_tot] = 1e9
bnd: sbend, l = 2.0, g = 0.1
fk: fork, superimpose, ref = bnd, offset = -0.2, to_line = b1
dd: drift, l = 3
ring: line = (..., b, ...)
b1: line = (dd, ...)
b1[geometry] = open
use, ring

This lattice is illustrated in Figure ??. This lattice has two branches. The root branch is named
ring and this branch contains a bend called bnd. Superimposed upon bnd is a fork element
called fk which forks to the second branch called b1.

The wall file for this example is:

&place section = 0.0, "", "main:sdef" /
&place section = 2.0, "", "main:sdef" /
&place section = 0.0, "", "x_wall:sdef" /
&place section = 3.0, "", "x_wall:sdef" /

&shape_def
name = "sdef"

27



v(1) = 0.01, 0.01
/

&subchamber_branch
subchamber_name = "x_wall"
branch_name = "b1"

/

There are two subchambers. One subchamber named main is, by default, associated with the
root branch – ring. The other subchamber, named x_wall, is associated with the b1 branch.

5.6 Subchamber Surface Interpolation

Once a set of subchamber cross-sections have been defined, the cross-section of the subchamber
at a given longitudinal position is computed using linear interpolation.

For a given subchamber, and at a given s position, the r, θ coordinate system in the transverse
x, y plane is defined with respect to an origin rO(s) given by a linear interpolation of the origins
of the cross-sections to either side of the given s position. Let s1 denote the position of the
cross-section just before s and s2 denote the position of the cross-section just after s. Let r01
be the (x0, y0) origin defined for the cross section at s1 and r02 be the (x0, y0) origin defined for
the cross section at s2. Then

rO(s) = (1− s̃) r01 + s̃ r02 (5.1)

where
s̃ ≡ s− s1

s2 − s1
(5.2)

Let rc1(θ) and rc2(θ) be the radiusus of the sub-section boundary as a function of θ for the
cross-sections at s = s1 and s = s2 respectively. The sub-section boundary rc(θ, s) at any point
s between s1 and s2 is then defined by the equation

rc(θ, s) = (1− s̃) rc1(θ) + s̃ rc2(θ) (5.3)

A photon at (r, θ, s) is inside the subchamber if

r < rw(θ, s) (5.4)

5.7 Subchamber Surface and Patch Elements

A patch element, which shifts the reference coordinate system complicates the calculation of
where a photon hits the wall. The Bmad manual has a full explanation but the essential factor
is that, since the reference orbit is discontinuous in a patch, to avoid a discontinuity in the
subchamber surface, wall interpolation is done using the global reference system. This can lead
to non-intuitive behavior when the region between two wall sections contains both a bend and

28



a patch since, without the patch, the center of the subchamber follows the curved reference
orbit but with the patch the subchamber surface center follows a straight line between the wall
sections.

To avoid this non-intuitive behavior, if a region between wall sections contains both a patch and
a bend, extra sections will be added to eliminate this situation.

To simplify matters, Synrad3D does not allow wall cross-sections to be defined whose longitudinal
position overlaps any patch element.

5.8 Chamber Surface Reflectivity

By default, the photon reflectivity of the vacuum chamber wall is based on the reflectivity of a 10
nm C film on an Al substrate. This default can be changed by setting the following parameters
in the master input file (§??):

surface_reflection_file
surface_roughness_rms
roughness_correlation_len

If the chamber wall is made up of sections of differing material, additional surface types can be
defined using surface_def namelists in the chamber wall file. The syntax for this namelist is

&surface_def
reflectivity_file = "<file_name>"

/

reflectivity_file is a file that specifies the surface reflectivity as explained in (§??).

To associate a particular material with a particular region of the chamber wall, the optional
surface variable is set for the place namelist (§??), at the downstream (maximal s) end of the
region of interest. The syntax is:

&place
section = ...
surface = "<name>", <is_local>

/

The <name> here must match the name in the surface reflectivity file The two exceptions are if
<name> is set to

ABSORBER ! Case sensitive
PHANTOM ! Case sensitive

The ABSORBER setting makes the surface a perfect absorber. The PHANTOM setting is for surfaces
where, if filter_phantom_photons (§??) is True, if a photon hits the phantom surface, it is not
counted in the final statistics. This is useful for situations like simulating an X-ray beam pipe
where, for the purposes of the simulation, the pipe is terminated at some point and photons
intersecting the end of the pipe are not to be considered to have hit a wall but rather to have

29



safely gone through to the experimental end station. Effectively, photons intersecting a phantom
wall is treated as any other photon that fails a filter test (§??). Note that, independent of the
setting of filter_phantom_photons, a phantom surface acts like a perfect absorber. That is,
there are never any reflections from a phantom surface.

If <is_local> is True, then the surface material only spans the region from the previous cross-
section to this one. If <is_local> is False or not present, the surface material spans from the
closest previous cross-section where there is a surface variable set to this cross-section. If a
place instance refers to a multi_section (§??), and <is_local> is True then the material only
spans the multi_section region.

Note: For any given region with finite area of the vacuum chamber wall, if there are multiple
subchambers whose surfaces overlap the region, it is important to make sure that the surface
types of these subchambers are all the same since, for a photon striking this region, which
subchamber is used to compute the surface properties is ill-defined. As an example, consider
Figure f:vac-chamber. The overlap between the two subchamber surfaces are the two lines
where the subchamber surfaces intersect. Since the overlap has zero area, it is OK to have the
two subchambers have different surface types.

If a region of the vacuum chamber wall is defined by multiple subchambers (that is, multipole
subchamber surfaces coincide in this region), which subchamber is used to select the surface type
can vary from photon to photon. Therefore, it is important to make sure that for any given
point on the vacuum chamber wall, that the local surface type is the same for all subchambers
that have walls that coincide with the point in question.

Example:

&place section = 0.0, "elliptical", ... /
&place section = 1.0, "elliptical", ... /
&place

section = 3.0, "elliptical", ... /
surface = "ss", True

/
&place

section = 5.0, "multi_section:ms", ...
section = "ni", True

/
&place

section = 7.0 "elliptical", ...
surface = "cu"

/
&place 10.0 section = ... /

&surface_def
name = "ss"
reflectivity_file = "ss_burnished.reflect"

/

30



Assuming the multi_section spans the region from 5 meters to 6 meters, the materials associated
with different regions of the chamber are:

S_begin Surface S_end
------- ------- -----

0.0 cu 1.0
1.0 ss 3.0
3.0 cu 5.0
5.0 ni 6.0
6.0 cu 7.0
7.0 default 10.0

5.9 Old Wall Format

Originally, Synrad3D did not have the concept of subchambers. That is, there was only one
chamber and that chamber was allowed to be concave. This was problematical, as discussed
above, and motivated the development of the subchamber concept. This section discusses the
old format to facillitate conversion from the old format to the new. Example of the old format:

&section_def section = 0.0, "arc_std", "elliptical", 0.045, 0.025 /
&section_def section = 74.3, "Near_IR" "gen_shape:dipole_shape", /
&section_def section = 82.9, "wig1", "rectangular", 0.045, 0.025 /
&section_def section = 91.1, "IR1", "rectangular", 0.045, 0.025,

-1, -1, 0.08, 0.01 /

The <section_id> can have one of five values:

elliptical
rectangular
gen_shape:<shape_name>
multi_section:<shape_name>

Historically, the elliptical and rectangular shapes where developed first. The gen_shape
was developed later and is a generalization of the original two shapes. The elliptical and
rectangular cross-sections are explained in the next section. Gen_shape is explained in the
section after and multi_section is explained in the section after that.

An example elliptical cross-section is shown in Figure ??. The format for an elliptical or
rectangular cross-section is

&section_def
section = <s>, <section_name> <section_id>, <width2>, <height2>, <width2_plus>,

<ante_height2_plus>, <width2_minus>, <ante_height2_minus> /
surface = "<surface_name>", <is_local>

The first five parameters – <s>, <section_name> <section_id>, <width2>, and <height2> –
must be specified. Values for the other parameters are optional and default to the “unset” value
of -1.

31



x

y

height2

width2_minus
width2_plus 

ante_height2_plus 

width2

P
rw(θ)

θ

Figure 5.5: Example vacuum chamber cross-section for an elliptical chamber with an an-
techamber on the +x side of the chamber and an aperture on the −x side.

The optional surface variable is explained in §??.

For elliptical or rectangular shapes, the parameters needed to specify the chamber are:

<s> ! Longitudinal position
<section_name> ! Descriptive Name of the cross-section.
<section_id> ! Either "elliptical" or "rectangular"
<width2> ! Half width ignoring antechamber.
<height2> ! Half height ignoring antechamber.
<width2_plus> ! Distance from pipe center to +x side edge.
<ante_height2_plus> ! Antechamber half height on +x side of the wall
<width2_minus> ! Distance from pipe center -x side edge.
<ante_height2_minus> ! Antechamber half height on -x side of the wall

For both "rectangular" and "elliptical" shapes, <width2> and <height2> define the half-
height and half-width of the shape.

Antechambers on the +x side and/or −x side of the chamber can be added to the basic shape.
On the +x side, an antechamber is formed if the <ante_height2_plus> parameter is set to
a positive value. If <ante_height2_plus> is set to a positive value, as shown in Figure ??,
the parameter <width2_plus> specifies the horizontal distance from the chamber center to
the far end of the +x side antechamber. In this case, the value of <width2_plus> must be
large enough so that the antechamber far wall does not stick back into the basic shape. For a
rectangular shape, this translates to <width2_plus> being larger than <width2>. Similarly, if
<ante_height2_minus> is set to a positive value, an antechamber is formed on the −x side. In
this case, <width2_minus> is the (positive) horizontal distance from the chamber center to the
far end of the −x antechamber.

32



If <ante_height2_plus> is not set, a set of <width2_plus> defines an aperture on the +x
side of the chamber. In this case, the value of <width2_plus> must be less than the value of
<width2>. Similarly, if <ante_height2_minus> is not set, a set of <width2_minus> defines an
aperture on the −x side of the chamber. A −x aperture is shown in Figure ??.

Example:

! Anything outside the namelists is ignored.
&section_def section = 0.0, "arc_std", "elliptical", 0.045, 0.025 /
&section_def section = 82.9, "wig1", "rectangular", 0.045, 0.025 /
&section_def section = 91.1, "IR1", "rectangular", 0.045, 0.025,

-1, -1, 0.08, 0.01 /

Prescription for converting:

1. If there are &section_def namelists that use rectangular or elliptical shapes. That is,
no "gen_shape:..." is present then the appropriate &shape_def namelists will have to be
created. If the shape is not convex, the shape will need to be split into subchambers.

2. rename: "gen_shape:..." to "..." in &section_def namelists. If the shape is not convex,
the shape will need to be split into subchambers.

3. If present, remove “ix_vertex_ante1” and “ix_vertex_ante2” lines from &gen_shape_def.
To get the correct antechamber absorbtion, use a separate subchamber for the antechamber
regions.’

4. rename: “&section_def” to “&place”.

5. rename: “&gen_shape_def” to “&shape_def”.

6. If a shape_def has a name that has a colon “:”, replace this by some other character.

33



Chapter 6

Photon Tracking & Reflections

6.1 Photon Tracking

[Note: Parameters like num_photons_per_pass mentioned in here are set in the master input
file (§??).

Synrad3D will generate a set of approximately num_photons_per_pass photons in the radiation
production region. This is called a “pass”. After any filtering, Synrad3D will check to see if the
number of surviving photons is at least num_photons. If so, photon generation will stop. If not
enough photons have been generated, Synrad3D will generate another num_photons_per_pass,
and so on, until at least num_photons surviving photons have been generated. Thus the actual
number of surviving photons will be between num_photons and num_photons_per_pass. [A
surviving photon is a photon that passes all filter requirements (§??) and is recorded in the
output statistics.]

When a photon is created, Synrad3D checks to see if the photon is within any subchamber. If
the photon is not within any subchamber, that is, if it is outside the vacuum chamber wall,
Synrad3D will generate an error message if the number of photons that have been generated up
to this point exceed num_ignore_generated_outside_wall. If the generated photon is within
the vacuum chamber wall, the phton is “associated” with one of the subchambers that it is
within. The photon will be tracked through the associated subchamber until it reaches the edge
of the subchamber.

When the photon reaches the edge of the associated subchamber it is going through, Synrad3D
checks if there is a suitable alternative subchamber to switch association to. A suitable sub-
chamber is any subchamber that the photon is within or a subchamber where the photon is at
the edge and has velocity directed inward.

If there is a suitable alternative, Synrad3D will associate the photon with the alternative sub-
chamber and keep tracking until the photon gets to the edge of this subchamber. This process
of reassociating the photon to a second subchamber when the photon reaches the edge of the
current associated subchamber will continue until there is no suitable alternative. At this point

34



x 

y 

a 

b 

x 

y 

x 

y 

x 

y 
A) B1)

B2)

B3)

S = 0

S = 0.5

S = 1

Figure 6.1: A) A convex cross-section can lead to problems with linear interpolation since it
is assumed that if the beginning and ending points of a step are inside the subchamber the
entire track is inside the subchamber. The track shown violates this assumption. B) With
linear interpolation, convex cross-sections are not a guarantee that intermediate cross-sections
are convex. B1 and B3 are the defined cross sections at s = 0 and s = 1 respectively. These
cross sections are ellipses with 5:1 aspect ratio. The interpolated cross-section B2 at s = 0.5 is
seen to be concave.

the photon has hit the vacuum chamber wall.

When tracking a photon through its associated subchamber, Synrad3D can ignore all other
subchambers since, by definition, if the phton is inside its associated subchamber, it is inside
the vacuum chamber.

The exception to the above process happens when the subchamber associated with a photon
itself has an associated “fast” chamber (§??). In this case, Synrad3D, while tracking through the
slow subchamber, will periodically check to see if the photon is also within the fast subchamber,
if it is, the photon’s associated subchamber will be switched to the fast subchamber.

Photons are tracked in “steps”. A step consists of propagating a photon from it’s current position
to some new position that is a certain distance away. The length to propagate the photon in a
given step is determined by a number of factors. The maximum length for a step is set by the
input parameters

sr3d_params%ds_track_step_max
sr3d_params%dr_track_step_max

These set longitudinal (%ds_track_step_max) and transverse (%dr_track_step_max) distances.
Additionally, a single step will always be terminated at, and never cross over, a defined cross-
section plane of the subsection associated with the photon. Steps will also be terminated at
the boundaries of bend magnets and at the point in a bend where a trajectory is closest to the
center of the bending radius.

After a step, the new photon position is checked to see if it is still inside the associated sub-
chamber. If it is not, the point where it has crossed the subchamber surface is calculated via a
root finding algorithm.

35



If the new photon position is inside the associated subchamber, there is still the question as
to whether the photon trajectory between the beginning step point and the end step point is
inside the subchamber. Synrad3D assumes that the subchamber is “locally convex”. That is,
given the two end points of a step with points inside the subchamber, it is assumed that the
line drawn between these two points never touches or goes outside the subchamber. This locally
convex assumption will be true if every cross-section rw(θ, s) for fixed s is convex where s is in
the range of longitudinal s positions covered by the step in question.

Synrad3D assumes that if the beginning and ending points of a step are inside the subchamber,
the entire track is inside the subchamber. This assumption my be violated if the cross-section of a
subchamber is concave as illustrated in Fig. ??A. Furthermore, even if two defined cross-sections
are themselves convex, an intermediate cross-section can be concave as shown in Fig. ??B.

A subchamber “region” is the volume of the subchamber between two adjacent cross-sections.
The total subchamber volume is thus the sum of all the regions of the subchamber. Since
Synrad3D always limits steps so that the beginning and ending points of a step cannot be
in different regions, there is no problem with Synrad3D failing to detect photons crossing the
chamber wall as long as each region indivdually is convex in shape. This is true even if the
subchamber considered as a whole is not convex.

How much of a problem the possibility that Synrad3D will not detect some photons leaving and
then entering the chamber will, of course, depend upon the specifics of the chamber geometry
and what is being calculated. One way to test if this is a problem this is to reduce the track
step length limits:

sr3d_params%ds_track_step_max
sr3d_params%dr_track_step_max

This will reduce the possibility of mis-tracking at the cost of increased computation time. If the
results do not change significantly when the track limits are reduced, this is good evidence that
the results are valid.

Notice that if all the subchambers are convex there will be no problem even if the union of the
subchambers – which defines the entire vacuum chamber – is concave. To put it another way,
given a concave vacuum chamber, if the vacuum chamber can be constructed using a number
of convex subchambers, there will be no problem with Synrad3D not detecting photons leaving
and entering the vacuum chamber in a single step.

6.2 Photon Filtering

Filters (set in the main parameter file §??) are used to discard uninteresting photons from being
recorded in output files. There are two types of filters. Initialization filters are applied when
a photon is being generated and end filters are applied at the end of photon tracking. The
initialization filters are

e_init_filter_min ! Min initial energy filter.
e_init_filter_max ! Max initial energy filter.

36



vert_angle_init_filter_min ! Min vertical angle filter.
vert_angle_init_filter_max ! Max vertical angle filter.
vert_angle_symmetric_init_filter ! Logical: Symmetric angle filtering?

The use of initialization filters will also speed up the simulation since it eliminates tracking of
uninteresting photons.

Note: If vertical angle filters are used, e_init_filter_min must be set. This is mandated to
avoid problems that occur at zero photon energy where the inital photon distribution from a
bend has infinite probability density per unit of energy and an infinite vertical angle width.

The four end of photon tracking filters are:

e_filter_min ! Min Energy filter.
e_filter_max ! Max energy filter.
s_filter_min ! Min longitudinal position filter.
s_filter_max ! Max longitudinal position filter.

The s-filters can wrap around s = 0: That is, if both s_filter_min and s_filter_max have
been set, and if s_filter_min is greater than s_filter_max, the region for keeping a photon
is from s_filter_min through the end of the lattice along with the region from the start of the
lattice to s_filter_max.

Note: Processes like florescence can create photons with an energy that is different from the
energy of the photon that initiates the process. Currently, Synrad3D does not model such
processes so the final photon energy will be equal to the initial photon energy. This being
the case, e_init_filter_min and e_init_filter_max are equivalent to e_filter_min and
e_filter_max respectively except that the inital filters will speed up the simulation.

See §?? for more details.

6.3 photon_start_input_file

Instead of having Synrad3D generate photons randomly, starting photon positions may be read
in from a file. This is done typically for debugging purposes.

The name of this file of starting positions is given by the photon_start_input_file parameter
in the synrad3d_parameters namelist (§??).

The photon_start_input_file file contains a number of &start namelists. One for each
photon starting position. The format for a &start namelist is:

&start
orbit%vec = <x>, <vx/c>, <y>, <vy/c>, 0.0, <vz/c> ! Photon position
orbit%s = <s> ! Longitudinal distance from start of lattice.
orbit%p0c = <ev> ! Photon energy
ran_state = <random_state_struct>
random_seed = <num>
ix_branch = <num> ! Lattice branch index to start photon in. Default is 0.

37



/

The fifth component of orbit%vec is not used and should be set to zero. The orbit%s compo-
nent is the longitudinal distance from the start of the lattice. If needed, The ran_state and
random_seed parameters can be used to initialize the random number generator.

The magnitude of the velocity,
√
v2x + v2y + v2z/c must be 1.

Note: Files of photon starting positions may be generated by setting the photon_start_output_file
parameter in the synrad3d_parameters namelist or by using the -out command line option
(§??).

6.4 Surface Reflection File

A surface reflectivity file is used to redefine the default chamber wall surface reflectivity (By
setting surface_reflection_file in the master input file (§??)) or to define the surface re-
flectivity for a particular wall material (§??).

There is a script for downloading surface reflectivity data from the LBNL x-ray data base at

http://henke.lbl.gov/optical_constants/layer2.html

and creating reflectivity files for use with Synrad3D. The script is in the directory

bsim/synrad3d/lbl_reflectivity_downloader

See the README file in this directory for more instructions.

The probability for a photon reflecting from a wall is dependent upon the grazing angle and the
photon energy. For a given graze angle and photon energy, there are two reflection probabilities
called p_reflect and rel_p_specular These determine the probabilities that the photon will
be reflected either diffusely or specularly, or that the photon will be absorbed. In particular

probability of absorption = 1 - p_reflect
probability of reflection = p_reflect
probability of specular reflection = p_reflect * rel_p_specular
probability of diffuse reflection = p_reflect * (1 - rel_p_specular)

Generally, p_reflect will be near unity at small grazing angles and fall off with increasing angle.
At the smaller photon energies (E . 100 eV), the reflection probabilities will still be substantial
at grazing angles of 10 degrees or more. At the larger photon energies (E & 1000 eV), The
reflection probabilities are quite peaked and are small above a few degrees.

rel_p_specular is given by Equations (1) and (2) in Reference [?] and so rel_p_specular is
not specified in a reflection file.

In the reflection probability file, the reflection probability p_reflect is specified at a number of
different angles and energies. Synrad3D will interpolate as needed. Reflections probabilities are
specified over some energy range from Emin to Emax. If a photon has an energy below Emin,
reflection probability is taken to be the same as the probability at Emin. If a photon has an

38



energy Ep that is above Emax, it is assumed that the reflection probability is the same as the
reflection probability at energy Emax and angle θg(eff) = θg ∗ Ep/Emax where θg is the photon
grazing angle. If θg(eff) is grater than 90 degrees, 90 degrees is used for θg(eff).

For specifying the reflection probabilities, the energy range from Emin to Emax is broken up into
a number of “tables” each covering some energy interval. The tables are ordered in increasing
energy so that table 1 starts from Emin and the last table goes up to Emax. The energy intervals
for the tables abut one another so that the upper energy of one table is the lower energy of the
next. Each table specifies the reflection probabilities at a number of energies Ei, i = 1, . . . , NE

and a number of grazing angles θj , j = 1, . . . , Nθ. The energies Ei must be equally spaced and
in ascending order but the grazing angles θj do not only have to be in ascending order with
θ1 = 0 and θNθ = 90. Except for the restriction that the energy intervals of the tables abut
one another, the tables are independent in the sense that, for example, the spacing between the
Ei, the particular θj chosen, etc. can vary from table to table. The reason for having multiple
tables is for compactness. That is, the particular choice of the spacing between the Ei and
the particular thetaj chosen can be optimized for each energy interval to give the maximum
accuracy with the least amount of input data.

The probability file must start with a namelist named general that specifies the number of
tables and roughness numbers. Example:

&general
name = "ConCu" ! Case sensitive
description = "50um C layer on Cu substrate"
n_table = 5 ! 5 tables
surface_roughness_rms = 200e-9 ! meters
roughness_correlation_len = 5.5e-6 ! meters

/

The name parameter is used to identify the surface in the vacuum chamber wall file (§??). The
description parameter is an optional description string that Synrad3D prints when plotting
reflectivity curves.

Next, each table is specified in turn starting from the table for the lowest energy interval. A
table is specified starting with a table namelist. There are two different syntaxes that can be
used here An example of the first syntax is:

&table
energy_min = 600 ! eV
energy_max = 1400 ! eV
energy_delta = 20 ! eV
angles = 0.0, 0.4, 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, 90.0

/

In this example, the energy range is from 600 eV to 1400 eV in steps of 20 eV and the reflection
probability is specified at 9 different grazing angles (in degrees). Angles must start at 0 and end
at 90 degrees.

An example of the second table namelist syntax is:

39



&table
energies = 7, 10, 31, 45
angles = 0.0, 0.4, 0.8, 1.0, 1.5, 2.0, 3.0, 4.0, 90.0

/

In this example, the angle points are the same but the energy points are specified point by point.
This second syntax is useful when the reflection data is not evenly spaced.

After the table namelist, for each energy “row”, p_reflect is specified by a row namelist.
Example:

&row
ix_row = 2 ! 620 eV
p_reflect = 1.00, 0.941, 0.882, 0.852, 0.771, 0.669, 0.514, 0.056, 0.0

/

There must one row namelist for each energy value in the table. For this example there would
be 41 row namelists. The row namelists must be in order of increasing energy and each row
namelist has a ix_row component which must be set to 1 for the first row namelist, 2 for the
second, etc. Synrad3D uses ix_row as a sanity check when reading in the table. The p_reflect
component of the row namelist give the reflection probabilities at the Nθ angle points.

There must be no gaps between the energy ranges of the tables. That is, the lowest energy of
one table must be at most the highest energy of the previous table. On the other hand, it is
permitted for the energy ranges of the tables to overlap.

40



Chapter 7

Output Files

7.1 Main Output File

The dat_file (whose name is specified in the master input file (§??)) is divided into two parts.
the top part essentially echos the information provided in the main input file. It looks like:

# photon_number_factor = 8.155E-01
# num_photons = 10 ! Target number of unfiltered photons.
# num_photons_generated = 123 ! Total including filtered photons.
# num_photons_generated_eff = 123 ! Total including filtered photons.
# num_photons_passed_test = -1 ! As set in the input file.
# I0_tot_ring = 5.6e7 ! I0 radiation integral for the ring
# I0_tot = 5.6e7 ! I0 radiation integral for emit region
# I0_tot_eff = 2.3e7 ! Effective I0 including filters
# ix_ele_track_start = 103
# ix_ele_track_end = 104
# photon_direction = 1
# random_seed = 123456
# lattice_file = "../tao/examples/cesr/lat.bmad"
# photon_start_input_file = ""
# wall_file = "synrad3d.wall"
# dat_file = "synrad3d.dat"
# chamber_end_geometry = ""
# ds_step_min = 1.000E-02
... etc ...

The first line gives the photon_number_factor which is computed via the formula

photon_number_factor =
5
√

3 e2 I0,eff
4π ε0 ~ cNsim

(7.1)

where Nsim is the number of photons generated in the simulation run, and I0,eff is the effective
synchrotron radiation integral. If there is no initial filtering (§??), I0,eff is given by the standard

41



radiation integral for I0
I0 =

∫
emit

ds γ0 g(s) (7.2)

with g(s) being the bending strength (equal to 1/ρ, with ρ being the bending radius), and the
integral is done over the region where photons are emitted in the simulaiton. If there is inital
filtering applied, I0,eff is

I0,eff = fp ∗ I0 (7.3)

where fp is the fraction of photons that will pass the initial filter tests. If the filtering is too
stringent, and the value of fp falls below 10−16 or so, round-off error will make the calculated
value of I0,eff zero. In this case, Synrad3D will not be able to run.

The photon_number_factor is related to Nγ , the total number of photons per beam particle
emitted in one revolution in the actual machine via

photon_number_factor =
Nγ

Nsim
(7.4)

Thus, if Nr(sim) is the number of simulated photons absorbed in a particular region, the actual
number of photons Nr(actual) absorbed in this region per beam particle per turn is

Nr(actual) = photon_number_factor ·Nr(sim) (7.5)

The second part of the file is a table. Each row is the data for one photon. Only photons that
pass the filter tests are shown. The table looks like:

1 2 6.981783E+02 -0.000221 0.001255 0.000052 ... etc.
2 1 4.705803E+03 0.000605 0.001255 0.000050 ... etc.
3 2 6.883773E+02 0.001430 0.001255 0.000048 ... etc.
4 2 3.463312E+02 0.002255 0.001255 0.000046 ... etc.
5 1 2.104224E+01 0.003080 0.001255 0.000043 ... etc.
6 2 1.393605E+02 0.003904 0.001254 0.000041 ... etc.
7 5 1.979004E+01 0.004729 0.001254 0.000039 ... etc.
8 2 4.288703E+02 0.005553 0.001253 0.000037 ... etc.
9 12 1.493411E+01 0.006377 0.001253 0.000034 ... etc.

10 2 1.297799E+02 0.007200 0.001252 0.000032 ... etc.

The columns of the file are:

1: Photon index number.
2: The number of times the photon has struck the vacuum

chamber wall including the final hit.
3: The photon energy (in eV).
4-9: Initial photon position (x, Vx/c, y, Vy/c, s, Vs/c).
10 Index of the lattice branch where the photon was created
11-16: Final photon position (x, Vx/c, y, Vy/c, s, Vs/c).
17: sin(graze_angle). 0 = Grazing incidence, 1 = perpendicular incidence.
18: Photon travel length

42



19: Photon longitudinal travel length - beam travel length
in the same time period.

20: Index of the lattice branch where the photon is absorbed.
21: Lattice element index where photon is absorbed.
22: Lattice element type (Eg: quadrupole, etc.) where photon is absorbed.
23: sub-chamber name where photon is absorbed.

x is the horizontal position (direction along the local normal to the closed orbit, in the bend
plane, zero on the closed orbit, positive to the outside of the machine, ), y is the vertical position
(direction perpendicular to the bend plane, zero on the closed orbit, positive up), and s is the
longitudinal position (direction tangent to the closed orbit, zero at the beginning of the lattice,
positive in the direction of motion of the beam).

7.2 Wall Hit Output File

If the switch wall_hit_file is non-blank, an additional output file is generated, which contains
more detailed information on where photons are hitting the vacuum chamber wall. Example:

1 0 0.0 -0.0008 0.0000 67.7857 0.0000 ... etc.
1 1 698.2 0.0450 -0.0002 70.5150 0.0323 ... etc.
1 2 698.2 -0.0393 -0.0138 71.2168 -0.1152 ... etc.
2 0 0.0 -0.0007 0.0000 67.8515 0.0000 ... etc.
2 1 4705.8 0.0450 0.0001 70.5782 0.0322 ... etc.
3 0 0.0 -0.0006 0.0000 67.9172 0.0000 ... etc.
3 1 688.4 0.0450 0.0004 70.6414 0.0322 ... etc.
3 2 688.4 -0.0450 -0.0020 71.0368 -0.2197 ... etc.
4 0 0.0 -0.0005 0.0000 67.9829 0.0000 ... etc.
4 1 346.3 0.0450 -0.0003 70.7046 0.0322 ... etc.
4 2 346.3 -0.0450 -0.0014 71.2347 -0.1643 ... etc.
5 0 0.0 -0.0004 0.0000 68.0487 0.0000 ... etc.
5 1 21.0 0.0450 0.0003 70.7678 0.0321 ... etc.

The columns of this file are:

1: photon_index
2: wall_hit_index
3: photon_energy ! When wall_hit_index = 0 this is 0]
4-6: (x, y, s) ! Coordinates of photon at wall
7: ix_branch ! Index of lattice branch where photon is.
8-10: (vx, vy, vs) ! Velocity before bounce.
11-13: (vx, vy, vs) ! Velocity after bounce.
14-16: (perp_x, perp_y, perp_z) ! Wall perpendicular.
17: cos_perp_in ! Cos of photon incoming direction wrt wall.
18: cos_perp_out ! Cos of photon outgoing direction wrt wall.
19: reflectivity ! Reflectivity coef.
20: sub-chamber ! Subchamber name where photon hits.

43



The photon_index is the same index as in the main output file. The wall_hit_index starts at
0 for the emission point and increases up to the value for n_wall_hits in the main file. The
photon_energy will be the same as in the main file.

Columns 4 through 6 give the coordinates of the photon where it strikes the wall. except that
the entry for wall_hit_index = 0 gives the emission point coordinates.

Columns 8 through 10 gives the velocity of the photon just before it bounces and columns 11
through 13 gives the velocity just after it bounces (or what would be its velocity if it does not
get absorbed).

Columns 14 through 16 give the perpendicular vector to the wall at the point of photon impact.

Columns 17 and 18 give the cosine of the angle between the wall perpendicular and the photon
velocity just before and just after the bounce. 0 = photon velocity parallel to wall, ±1 = photon
velocity perpendicular to wall.

Column 18 gives reflectivity which is a function of the type of surface and the photon orientation
with respect to the wall.

If the photon is “adsorbed” due to reflections being disallowed, columns 10 and higher will be
zero.

In the example given above, the first photon is absorbed after reflecting once. and the second
photon is not reflected at all being absorbed on the first hit.

Note: If the beam emittances are zero, photons will be generated on the central orbit. If there
are no steerings powered, the central orbit will be the zero orbit and in this case all photons
will start with x = vx = y = 0.

Note: Since the (x, y, s) coordinates are curved in bend elements, the photon trajectory in
(x, y, s) coordinates is not, in general, a straight line between hit points. For more accurate
plotting, a photon_track_file (§??) should be generated. Caution: photon_track_files are
over an order of magnitude larger than wall_hit_files.

7.3 Photon Track Output File

A photon track file records the photon position after each propagation step. A photon track file
is generated if the photon_track_file parameter is set to something that is not blank in the
master input file (§??).

This file is useful for plotting photon trajectories since it records intermediate points between
points where the photon hits a wall. However, if a large number of photons are generated, this
file can be very large.

Example track file output:

1 1 -0.00082 0.00005 67.78576 0 0.00000 0.00000 0.00000
1 1 0.04500 -0.00022 70.51507 0 0.03230 -0.00010 0.99947
1 1 -0.03930 -0.01381 71.21681 0 -0.11528 -0.01921 0.99314

44



2 4 -0.00074 0.00005 67.85150 0 0.00000 0.00000 0.00000
2 4 0.04500 0.00012 70.57826 0 0.03227 0.00002 0.99947
3 5 -0.00065 0.00005 67.91725 0 0.00000 0.00000 0.00000
3 5 0.04500 0.00046 70.64145 0 0.03224 0.00015 0.99948
3 5 -0.04500 -0.00206 71.03689 0 -0.21972 -0.00623 0.97554
4 7 -0.00057 0.00005 67.98299 0 0.00000 0.00000 0.00000
4 7 0.04500 -0.00037 70.70463 0 0.03221 -0.00015 0.99948
4 7 -0.04500 -0.00149 71.23479 0 -0.16439 -0.00208 0.98639
5 9 -0.00049 0.00005 68.04873 0 0.00000 0.00000 0.00000
5 9 0.04500 0.00039 70.76781 0 0.03218 0.00012 0.99948

The columns of this file are

1: Photon index
2: Generated photon index.
3-5: (x, y, s) ! Coordinates of photon
7: ix_branch ! Index of lattice branch photon is in.
7-9: (vx, vy, vs) ! Velocity of the photon

Column 1 gives the photon index which gives a count of the photons that have been tracked
and passed the filter restrictions. Only photons that have passed the filter restriction have their
tracks recorded in the file. Thus the photon index numbers will be consecutive.

Column 2 gives the photon generation index. Each tracked photon is given a unique generation
index starting from 1. Thus for the example above, photons with generation index 1, 4, 5, 7
and 9 passed the filter tests and thus are present in the file. Photons with generation index 2,
3, 6, and 8 did not pass the filter tests and are not shown in the file.

Columns 3 through 5 give the position of the photon.

Columns 7 through 9 gives the velocity of the photon.

45



Chapter 8

Test Modes

Test modes are used to generate diagnostic data files. tests are also useful for generating data
for plotting reflection statistics.Test modes are specified using the -test <what> option on the
command line (§??).

-test monte_carlo_reflection ! §??
-test specular_reflection ! §??
-test diffuse_probability ! §??

These test modes are explained below. In all cases, the synrad3d_parameters namelist in the
master input file (§??) is ignored and instead another namelist is read in from the master input
file as specified in the documentation below.

8.1 Monte Carlo Reflection Test

The monte_carlo_reflection test mode, invoked by using the -test monte_carlo_refleciton
on the command line (§??). The output of this test are a number of lines recording the direction
of the outgoing scattered photon under the conditions where the photon energy and incoming
graze angle are fixed.

The parameters used for the test are read in from the master input file specified on the com-
mand line (§??). The namelist used for the input parameters for the reflection test is called
reflection_test. Example:

&reflection_test
surface_reflection_file = "" ! Reflection probability file
graze_angle_in = 0.12 ! Incident grazing angle in radians.
energy = 100 ! Photon energy in eV
surface_roughness_rms = -1 ! Roughness for diffuse scattering.
roughness_correlation_len = -1 ! Roughness correlation length.
n_photons = 1000 ! Number of reflections simulated
random_seed = 0 ! Random number seed.

46



include_specular_reflections = F ! Diffuse reflections only?
output_file = "" ! Blank => Use default name.

/

The surface_reflection_file specifies the reflection probability file to be used. If no file is
specified then the default surface is used (§??).

The graze_angle_in is the incident grazing angle in radians and energy in the photon energy
in eV. n_photons are the number of reflections to simulate, and output_file is the name of the
output data file. The default data file name is "test_monte_carlo_reflection.dat". The other
parameters are explained in §??.

If the include_specular_reflections parameter is set to True, specular reflection is allowed.
Otherwise only diffuse reflections are simulated. The default is False.

The surface_roughness_rms parameter sets the surface roughness. If negative then the rough-
ness specified by the surface is used.

The roughness_correlation_len parameter sets the surface roughness correlation. If negative
then the correlation specified by the surface is used.

random_seed is the random number seed used in by the random number generator. If set to 0,
the system clock will be used. That is, if set to 0, the output results will vary from run to run.

The output contains a header with the input parameters followed by n_photon lines. Each line
is of the form:

theta_out phi_out

where theta_out is the grazing angle of the reflected photon in radians. theta_out = 0 means
the photon is traveling parallel to the surface. The phi_out angle is the azimuthal angle in
radians with zero phi_out indicating that the incident ray, the surface normal, and reflected
rays are in the same plane.

8.2 Specular Reflection Test

Specular reflection test mode (§??), invoked using the -test specular_reflection option on
the command line, is used for studying specular (angle in = angle out) reflections from a given
set of photon initial conditions using the chamber wall specified by the wall_file parameter
in the Master Input file. Each photon is allowed a single specular reflection and the initial and
final photon position and velocity are recorded in the output file.

The parameters used for the test are read in from the master input file specified on the com-
mand line (§??). The namelist used for the input parameters for the reflection test is called
specular_reflection_test. Example:

&specular_reflection_test
photon_start_input_file = "photon.start" ! Photon starting positions
lattice_file = "lat.bmad" ! Lattice file

47



wall_file = "synrad3d.wall" ! Wall definition file
output_file = "" ! Default is "test_specular_reflection.dat"

/

The photon_start_input_file is the file of initial photon positions. The format of this file is
given in s:photon.start. Note that for the specular test, values for the photon energy and the
random number generator state in the initial photon position file do not affect the results and
do not have to be set. Also: The if the magnitude of the velocity

√
v2x + v2y + v2z/c is not too

far off from 1 then Synrad3D will renormalize so that
√
v2x + v2y + v2z/c will be 1.

lattice_file give the name of the lattice. See the Bmad manual for more details.

The wall_file gives the name of the vacuum chamber wall definition file. See §?? for more
details.

The output_file gives the name of the output data file. See §?? for details of the syntax for
this file.

8.3 Diffuse Probability Test

The diffuse_probability test mode, invoked using the -test diffuse_probability option
on the command line, creates a table of diffuse reflection probabilities.

The parameters used for the test are read in from the master input file specified on the com-
mand line (§??). The namelist used for the input parameters for the reflection test is called
diffuse_probability_test. Example:

&diffuse_probability_test
surface_reflection_file = "" ! Reflection probability file
graze_angle_in = 0.12 ! Incident grazing angle in radians.
energy = 100 ! eV
surface_roughness_rms = -1 ! Roughness for diffuse scattering.
roughness_correlation_len = -1 ! Roughness correlation length.
prob_normalization = "1" ! Probability normalization.
output_file = "" ! Blank => Use default name.

row_type = "energy" ! Table row type.
row_min = 10 ! Min row value
row_max = 1000 ! Max row value
row_n_pts = 101 ! Number of row lines.
row_log_scale = T ! Use log scale?
row_values = 0.001, 0.003, 0.01 ! Alternative way to

! specify row values.

graze_angle_out_min = 0.001 ! Minimal value in radians
graze_angle_out_max = 0.010 ! Maximal value

48



graze_angle_out_n_pts = 10 ! Number of graze angle columns.
graze_angles_out = 0.001, 0.003, 0.01 ! Alternative way to

! specify outgoing graze angles.
/

The output is a table. Each row shows the reflection probability for different values of the
parameter specified by row_type. Possible row_type settings are:

"azimuth_angle_out" ! Outgoing azimuth angle of the photon.
"energy" ! Photon energy rows.
"roughness" ! Surface roughness.
"correlation" ! Surface correlation length.
"graze_angle_in" ! Incoming photon graze angle.

The output table has a number of columns. The first column is an index number from 1 to the
number of rows in the table. The second column is the value of what row_type is being used.
The other columns will be the diffuse reflection probability for a certain value of outgoing graze
angle.

If the row_type is set to "azimuth_angle_out", the rows will be the outgoing azimuth angle φ
of the photon. In this case, the probabilities shown in the table will be the probability P (x, φ)
of scattering a photon with outgoing orientation x and φ where x = sin(θg,out) with θg,out is the
outgoing graze angle (see Equation A138 of [?]).

If row_type is set to anything else but "azimuth_angle_out", the probabilities shown in the
table will be the probability Px(x) which is the scattering probability integrated over φ (see
Equation A140 of [?]).

The values used for the parameter specified by row_type can be set in one of two ways. One
way is to specify an explicit list of values using the row_values parameter. Example:

row_values = 0.001, 0.003, 0.01

The alternative way is to set row_min, row_max, row_n_pts and row_log_scale. This will create
row_n_pts number of rows with the row_type parameter ranging from row_min to row_max. The
points will be evenly spaced if row_log_scale is set to False and will be evenly spaced on a
log scale if row_log_scale is set to True. Note: If row_n_pts is positive then this alternative
is used. Otherwise the values from row_values are used.

Similar to specifying row values, the column values for the outgoing graze angle can be set
either by setting graze_angles_out to a list of values or by setting graze_angle_out_min,
graze_angle_out_max, and graze_angle_out_n_pts.

The surface_reflection_file specifies the reflection probability file to be used. If no file is
specified then the default surface is used (§??).

The graze_angle_in parameter sets the incoming graze angle but is ignored if row_type is set
to "graze_angle_in".

The energy parameter sets the photon energy but is ignored if row_type is set to "energy".

49



The surface_roughness_rms parameter sets the surface roughness. If negative then the rough-
ness specified by the surface is used. This parameter is ignored if row_type is set to "roughness".

The roughness_correlation_len parameter sets the surface roughness correlation. If negative
then the correlation specified by the surface is used. This parameter is ignored if row_type is
set to "correlation".

The prob_normalization parameter sets how the displayed probabilities are normalized. Pos-
sible settings are:

"1"
"reflect"
"all"

A setting of "1" means that the displayed probability integrated over all outgoing angles (and
keeping everything else fixed) is 1. That is, absorption and specular reflection probabilities are
ignored. A setting of "reflect" means that the integrated probability will be the probability of
being diffusely reflected relative to the probability of being reflected and not absorbed. That
is, absorption is ignored. Finally, a setting of "all" means that the integrated probability will
be the probability of being diffusely reflected taking into account both absorption and specular
reflection probabilities.

The default file name for the output data file is test_diffuse_probability.dat.

50



Appendix A

Spline Fit of the Diffuse Probability
Function

The diffuse scattering theory used in Synrad3D is discussed by Dugan and Sagan[?] (D&S) with
one change pertaining to how the integrated diffuse probability function Cx(x) (D&S Eq. A144)
is evaluated.

In D&S, Cx was evaluated using a Chebyshev fit to the probability function Px(x) in the interval
[0, 1]. While this gives good results with relatively rough surfaces where Px is fairly broad smooth
function, the fit will be poor when the surface roughness is small and Px is a peaked function
with the peak centered at x = y. [That is, the diffuse reflection becomes specular like (angle
out = angle in) in the limit where the surface is smooth.] The reason why the Chebyshev fit
becomes poor when Px becomes peaked is due to the fact that a Chebyshev fit is a polynomial
fit and it takes a polynomial of large degree to fit a peaked function well.

As a replacement, a spline fit with adaptive point selection was implemented. The Akima spline
used[?] has the advantage of locality (the calculated slope at a knot point is only affected by
the local knot points around it) and the ability to better handle large changes in slope since
an Akima spline does not try to maintain a continuous second derivative. The adaptive point
selection is used to better fit peaked functions. The basic idea here is to find at what knot
point the estimated integrated area error is largest and then to add knot points to either side of
this knot point. The integrated area error at a given knot point is estimated by the difference
between the integrated area from the previous knot point to the next knot point using the spline
fit and the integrated area as calculated from a cubic fit to the three knot points (previous point,
point under consideration and the next point). Adding points is stopped when the estimated
error for the total integral is below some fraction of the total integral.

51



Appendix B

Default Reflectivity Tables.

The default reflectivity used by Synrad3D is based on a calculation for a 10 nm C film on an Al
substrate. Figure ?? shows the parameters used to generate the reflectivity tables. The tables
are from the LBNL X-ray data base found at:

http://henke.lbl.gov/optical_constants/layer2.html

The polarization choice, P = −1, was made since this corresponds to the polarization direction
of the direct synchrotron radiation striking the chamber surface, on the first encounter. It is
probably not really correct for subsequent scatterings. However the polarization dependence of
the reflectivity is not very strong.

The default surface roughness for diffuse scattering is 200 nm and the default surface roughness
correlation length is 5.5 µm. These values can be modified by setting surface_roughness_rms
and roughness_correlation_len in the master input file (§??).

Note: There is a script for downloading surface reflectivity data and creating reflectivity files
for use with Synrad3D. See section §??.

52



Layered Mirror Reflectivity
Layer Material: C  (enter chemical formula).
Layer Density: -1  gm/cm^3 (enter negative value to use tabulated values.)
Layer Thickness: 10  nm
Top Surface Roughness: 0  nm (Sigma).
Substrate Material: Al  (enter chemical formula).
Substrate Density: -1  gm/cm^3 (enter negative value to use tabulated values.)
Substrate Roughness: 0  nm (Sigma).
Polarization: -1  (-1 < pol < 1) where s=1, p=-1 and unpolarized=0.
Scan Photon Energy (eV)  from 30  to 300  in 27  steps (< 500). 
(NOTE: Energies must be in the range 30 eV < E < 30,000 eV, Wavelength between 0.041 nm <
Wavelength < 41 nm, and Angles between 0 & 90 degrees.)
At fixed Angle (deg) = 1

To request a Linear  Plot  press this button: Submit Request

To reset to default values, press this button: Reset .

Explanation of Tables
Material

The chemical formula is required here. Note that this is case sensitive (e.g. CO for Carbon Monoxide
vs Co for Cobalt).

Density
If a negative value is entered, the chemical formula is checked against a list of some common
materials. If no match is found then the density of the first element in the formula is used.

Grazing Angle
In keeping with the standard notation for the x-ray region the incidence angle is measured relative to
the surface (NOT the surface normal).

Polarization
Pol = 1 corresponds to s-polarization (electric field perpendicular to the plane of incidence). Pol=-1
corresponds to p-polarization (electric field in the plane of incidence). Pol=0 for unpolarized radiation.

Output
A GIF plot is generated for viewing the results. For numerical values, follow the link above the GIF
plot to an ASCII text file. For a nice looking printed copy, you might try using the EPS file.

Figure B.1: Input parameters for the default reflectivity curves used by Synrad3D.

53



Appendix C

Customizing Synrad3D

Synrad3D is designed so that custom code, created by you, can be used for generating photons.
This custom code is compiled with the Synrad3D library to create a custom executable.

C.1 Setup

Creating a custom version of Synrad3D involves creating custom code that is put in a direc-
tory that is distinct from the bsim directory which is the directory that contains the standard
Synrad3D code files.

It is important to remember that the code in the bsim directory is not to be modified.
This ensures that, as time goes on, and as Synrad3D is developed, changes to the
code in the bsim directories will have a minimal chance to break your custom code.
If you do feel you need to change something in the bsim directory, please seek help first.

To setup a custom Synrad3D version do the following:

1. Establish a base directory in which things will be built. This directory can have any
name. Here we will call this directory ROOT. This base directory can be located anywhere.
It is recommended that if you have a local Bmad Distribution, that you keep the base
directory separate from the Distribution

2. Make a subdirectory of ROOT that will contain the custom code. This directory can have
any name. Here this directory will be called synrad3d_custom.

3. Copy the files from the directory bsim/synrad3d/custom to ROOT/synrad_custom. The
bsim directory is part of the Bmad Distribution package. If you do not know where to
find it, ask your local Guru where it is.

There are three files in the bsim/synrad3d/custom directory. One file is a template file
for creating custom code called

photon_init_custom.f90

54



There is documentation in this file on how to customize it. To have this custom routine
called, the photon_start_input_file (§??) must be set to “CUSTOM”.

The other two files are CMake1 script files which do not have to be modified. These files
are

CMakeLists.txt
cmake.custom_synrad3d

These scripts are setup to make an executable called custom_synrad3d. This name can
be changed by modifying the cmake.custom_synrad3d file.

4. Copy the file bsim/synrad3d/synrad3d.f90 to ROOT/synrad3d_custom. This file should
not be modified.

5. Go to the ROOT/synrad3d_custom directory and use the command mk to create the exe-
cutable

ROOT/production/bin/custom_synrad3d.

Similarly, the command mkd will create a debug executable

ROOT/debug/bin/custom_synrad3d

A debug executable only needs to be created if you a debugging the code.

1CMake is a program used for compiling code

55



Bibliography

[1] D. Sagan, “Bmad: A Relativistic Charged Particle Simulation Library” Nuc. Instrum. &
Methods Phys. Res. A, 558, pp 356-59 (2006).

[2] B.L. Henke, E.M. Gullikson, and J.C. Davis. X-ray interactions: photoabsorption, scattering,
transmission, and reflection at E=50-30000 eV,=1-92, Atomic Data and Nuclear Data Tables
Vol. 54 (no.2), 181-342 (July 1993) http://henke.lbl.gov/optical_constants/

[3] P. Beckmann & A. Spizzichino, The Scattering of Electromagnetic Waves from Rough Sur-
faces, Pergamon Press, New York (1963).

[4] J. A. Ogilvy, Theory of Wave Scattering from Random Rough Surfaces, Hilger, Bristol (1993).

[5] G. Dugan and D. Sagan, “Simulating Synchrotron Radiation in Accelerators Including Diffuse
and Specular Reflections”, Phys. Rev. Accel. Beams, 20, 020708, (2017).

[6] G.Dugan and D.Sagan, “SYNRAD3D: Photon Propagation and Scattering Simulations,” “
INFN-LNF/INFN-Pisa/CERN-LER/EuCARD-AccNet Joint Workshop on Electron-Cloud
Effects (ECLOUD12)”, (2012).

[7] N. Mahne et. al., “Experimental Determination of ECLOUD Simulation Input Parameters
for DAΦNE”, EuroTev-Report-2005-013 (2005).

[8] J. D. Jackson, Classical Electromagnetism, third edition, Wiley, New York (1999)

[9] H. Akima, “A New Method of Interpolation and Smooth Curve Fitting Based on Local
Procedures,” J.ACM, vol. 17, no. 4, pp. 589-602, (1970).

56


