CHARM2007@CORNELL AUG/2007 1

(Recent studies of) Charmonium Decay at CLEO

Hajime Muramatsu

University of Rochester For the CLEO Collaboration

$\psi(2S)$ samples

- We had 3M $\psi(2S)$ samples previously.
- Took 24M more (Aug'06 Sep'06).
- Total: 27M $\psi(2S)$ decays (54 pb⁻¹).
- allows us to do studies of;
 - Multi-body χ_{cJ} decays
 (2, 3, 4..... ~10 or more (? Yes with CLEO-c detector).
 Survey all the observable decays of χ_{cJ} states.
 - o Direct decays of $\psi(1,2S)$.
 - o $\eta_c(')/h_c$ properties.
 - o η properties.
 - o etc...etc.... See the next slide.

But today's topics are

- χ_{cJ} → 2, 3, and 4-body (3M ψ(2S) data)
 Charmonium-like states above DD threshold

 Y(4260) (scan data 3970-4260MeV: 13 pb⁻¹)
 - $_{\circ}$ M(D⁰) (" ψ (3770)" data : 281 pb⁻¹)
- $B(\eta \rightarrow X)$ and $M(\eta)$ (27M $\psi(2S)$ data)

Factory of $\chi_c(1^3P_J)$ states

- For each of χ_{cJ} states we have ~2~2.5M samples in all the $\psi(2S)$ data (27M).
- But today, results based on $3M \psi(2S)$ sample.
- $\chi_{cJ} \rightarrow 2 \text{ body}$ (combo of η and η ')
- $\chi_{cJ} \rightarrow 3 \text{ body}$ (h+h-h⁰: 8 modes)
- $\chi_{cJ} \rightarrow 4 \text{ body (preliminary)}$ (h⁺h⁻h⁰ π^{0})

- η(²) • Two body decay. No substructure.
- $B(\chi_{c0} \rightarrow \eta \eta) =$ (0.31±0.05±0.04)% $B(\chi_{c0} \rightarrow \eta' \eta') =$ (0.17±0.04±0.02)%
- ULs were set for other modes. PRD75, 071101(R) (2007).
- According to the model of Qiang Zhou (PRD72,074001(2005)), this result indicates SOZI suppression is favored over DOZI suppression.

$$\chi_{cJ} \rightarrow h^+h^-h^0$$
 (8 modes)

- Signals were seen in most of the modes PRD75, 032002 (2007).
- For $\chi_{c1} \rightarrow \pi^+\pi^-\eta$, $K^+K^-\pi^0$, and $K_SK\pi$, significant signals were seen. \rightarrow use them for Dalitz plot analysis (interference effects and polarization of χ_{c1} were ignored $\rightarrow \sim 20(15)\%$ variations in Fit Fractions for $\pi\pi\eta(KK\pi)$ mode).

Mode	χ_{c0}	χ_{c1}	χ_{c2}
$\pi^+\pi^-\eta$	< 0.21	$5.0 \pm 0.3 \pm 0.4 \pm 0.3$	$0.49 \pm 0.12 \pm 0.05 \pm 0.03$
$K^+K^-\eta$	< 0.24	$0.34 \pm 0.10 \pm 0.03 \pm 0.02$	< 0.33
$p\bar{p}\eta$	$0.39 \pm 0.11 \pm 0.04 \pm 0.02$	< 0.16	$0.19 \pm 0.07 \pm 0.02 \pm 0.01$
$\pi^+\pi^-\eta'$	< 0.38	$2.4 \pm 0.4 \pm 0.2 \pm 0.2$	$0.51 \pm 0.18 \pm 0.05 \pm 0.03$
$K^+K^-\pi^0$	< 0.06	$1.95 \pm 0.16 \pm 0.18 \pm 0.14$	$0.31 \pm 0.07 \pm 0.03 \pm 0.02$
$p\bar{p}\pi^0$	$0.59 \pm 0.10 \pm 0.07 \pm 0.03$	$0.12 \pm 0.05 \pm 0.01 \pm 0.01$	$0.44 \pm 0.08 \pm 0.04 \pm 0.03$
$\pi^+ K^- \overline{K}^0$	< 0.10	$8.1 \pm 0.6 \pm 0.6 \pm 0.5$	$1.3 \pm 0.2 \pm 0.1 \pm 0.1$
$K^+ \bar{p} \Lambda$	$1.07 \pm 0.17 \pm 0.10 \pm 0.06$	$0.33 \pm 0.09 \pm 0.03 \pm 0.02$	$0.85 \pm 0.14 \pm 0.08 \pm 0.06$

CHARM2007@CORNELL AUG/2007 8

•

Mode

CHARM2007@CORNELL AUG/2007 11

4- b	ody (h+h-	h ⁰ π ⁰) - II	3NI W(2S) Sam
Mode	χ_{c0}	χ_{c1}	
	B.F.(%)	B.F.(%)	B.F.(%)
$\pi^+\pi^-\pi^0\pi^0$	$3.54 \pm 0.10 \pm 0.43 \pm 0.18$	$1.28 \pm 0.06 \pm 0.16 \pm 0.08$	$1.87 \pm 0.07 \pm 0.23 \pm 0.13$
$\rho^+\pi^-\pi^0$	$1.48 {\pm} 0.13 {\pm} 0.18 {\pm} 0.08$	$0.78 {\pm} 0.09 {\pm} 0.09 {\pm} 0.05$	$1.12{\pm}0.08{\pm}0.14{\pm}0.08$
$\rho^{-}\pi^{+}\pi^{0}$	$1.56{\pm}0.13{\pm}0.19{\pm}0.08$	$0.78 {\pm} 0.09 {\pm} 0.09 {\pm} 0.05$	$1.11 {\pm} 0.09 {\pm} 0.13 {\pm} 0.08$
$K^{+}K^{-}\pi^{0}\pi^{0}$	$0.59{\pm}0.05{\pm}0.08{\pm}0.03$	$0.12 {\pm} 0.02 {\pm} 0.02 {\pm} 0.01$	$0.21 {\pm} 0.03 {\pm} 0.03 {\pm} 0.01$
$p\bar{p}\pi^{0}\pi^{0}$	$0.11 {\pm} 0.02 {\pm} 0.02 {\pm} 0.01$	< 0.05	$0.08 {\pm} 0.02 {\pm} 0.01 {\pm} 0.01$
$K^+K^-\eta\pi^0$	$0.32 {\pm} 0.05 {\pm} 0.05 {\pm} 0.02$	$0.12 {\pm} 0.03 {\pm} 0.02 {\pm} 0.01$	$0.13 {\pm} 0.04 {\pm} 0.02 {\pm} 0.01$
$K^{\pm}\pi^{\mp}K^{0}\pi^{0}$	$2.64 \pm 0.15 \pm 0.31 \pm 0.14$	$0.92 \pm 0.09 \pm 0.11 \pm 0.06$	$1.41 \pm 0.10 \pm 0.16 \pm 0.10$
$K^{*0}K^0\pi^0 \times K^{*0} \to K^{\pm}\pi^{\mp}$	$0.37 {\pm} 0.09 {\pm} 0.04 {\pm} 0.02$	$0.25 {\pm} 0.06 {\pm} 0.03 {\pm} 0.02$	$0.39 {\pm} 0.07 {\pm} 0.05 {\pm} 0.03$
$K^{*0}K^{\pm}\pi^{\mp} \times K^{*0} \to K^0\pi^0$			$0.30 {\pm} 0.07 {\pm} 0.04 {\pm} 0.02$
$K^{*\pm}K^{\mp}\pi^0 \times K^{*\pm} \to \pi^{\pm}K^0$	$0.49{\pm}0.10{\pm}0.06{\pm}0.03$		$0.38 {\pm} 0.07 {\pm} 0.04 {\pm} 0.03$
$K^{*\pm}\pi^{\mp}K^{0} \times K^{*\pm} \to K^{\pm}\pi^{0}$	$0.32{\pm}0.07{\pm}0.04{\pm}0.02$		$0.30 {\pm} 0.07 {\pm} 0.04 {\pm} 0.02$
$\rho^{\pm}K^{\mp}K^{0}$	$1.28 {\pm} 0.16 {\pm} 0.15 {\pm} 0.07$	$0.54 {\pm} 0.11 {\pm} 0.06 {\pm} 0.03$	$0.42 {\pm} 0.11 {\pm} 0.05 {\pm} 0.03$

□ π⁰π⁰ J/ w

3.8

3.9

√s (GeV)

4.2

4.3

Ο.

3.7

Y(4260)

- BaBar discovered in Y(4260) $\rightarrow \pi^+\pi^- J/\psi$ in ISR. PRL95, 142001 (2005)
- We confirmed this at $E_{cm} = 4260 MeV (>6\sigma)$. PRL96, 162003 (2006)
- We also confirmed it in ISR production based on data taken at $\sim E_{cm} = M(\Upsilon(1,2,3,4S))$. PRD74, 091104 (2006)
- Also saw $Y(4260) \rightarrow \pi^0 \pi^0 J/\psi$ (5.1 σ)
 - inconsistent with " $\chi_{cJ}\rho^{0}$ " molecule model.
 - Baryonium model expects $B(Y(4260) \rightarrow \pi^0 \pi^0 J/\psi)/B(Y(4260) \rightarrow \pi^+ \pi^- J/\psi) \sim 1$.
- $Y(4260) \rightarrow K^+K^-J/\psi$ is seen (3.7 σ) which disagrees with the above two models.
- 12 additional modes were also searched for (transitions to $\psi(2S)$, χ_{cJ} , and J/ψ). No evidence of strong signals.

does not behave like for rest of the ψ states above DD threshold

CHARM2007@CORNELL AUG/2007 13

3851206-00

X(3872) and $M(D^0)$

- Belle discovered X(3872) (PRL91, 262001 (2003)), followed by others (BaBar, Belle, D0, and CDF)
- One suggestion: A bound state of D⁰D⁰*?
- $E_{bind} = M(D^0) + M(D^{0*}) M(X(3872)) = -0.9 \pm 2.1 MeV$ (PDG06 ave $M(D^0) = 1864.1 \pm 1.0 MeV$).
- Need to know M(D⁰) more precisely.
- From $D^0 \to K_S \phi$, $M(D^0) = 1864.847 \pm 0.150 \pm 0.095 MeV$.

→ $E_{bind} = 0.6 \pm 0.6 MeV$ (PRL98, 092002 (2007)). We now need a more precise measurement of M(X(3872)): PDG07 ave M(X(3872)) = 3871.4±0.6MeV

$B(\eta \rightarrow X)$

- η was discovered a long time ago (even before I was born).
- mple use Since then, 43 measurements by many experiments.
- **CLEO** alone can measure most of the major modes (99.9% of generic η decays) simultaneously.
- This allows us to measure all branching fractions.
- Obtain η via $\psi(2S) \rightarrow \eta J/\psi, J/\psi \rightarrow l^+l^-.$
- Method: •
 - Constrain $M(l^+l^-) \equiv M(J/\psi)$.
 - Constrain $M(l+l-\eta) \equiv M(\psi(2S))$.

CHARM2007@CORNELL AUG/2007 16

Μ(η)

- Recent measurements are very accurate.
- One of them deviates from the other two GEM's result is 6.5σ away from NA48's result.

- CLEO: 547.785±0.017±0.057MeV (arXiv:0707.1810v1:just accepted for PRL publication)
- KLOE (new): 547.873±0.007±0.031MeV (arXiv:0707.4616 for LP07)

Summary

- Confirmation in di-pion transition from Y(4260) to J/ψ. Also observed neutral di-pion transition. Confirmation in ISR production.
- Precision measurement of M(D⁰)
 ⇒ provides constraint for theoretical predictions of properties of X(3872) if it is D⁰D^{*0} molecule.
- χ_{cJ} → 2, 3, and 4 body decays (many substructures were seen in 3 and 4 body decays).
 Dalitz analysis was done for 3 body case.
 More detailed analyses can be done with 27M ψ(2S) sample.
- Precision measurements on $B(\eta \rightarrow X)$ and $M(\eta)$.

Stay tuned!

More exciting results will come soon based on the 27M $\psi(2S)$ sample.