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QQ: a multiscale System

2S+1
LJ

ΛQCD

and
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Difficult also
for the lattice! 
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EFTs for Quarkonium



NRQCD



Weakly coupled pNRQCD 

Pineda, Soto 97  Brambilla Pineda Soto Vairo 99
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In this framework we can obtain 
          

Precision determinations of QCD parameters 
(of interest for SM and BSM physics)

information on QCD vacuum and low energy 
properties (of interest for theories beyond QCD)

information on the transition region from 
high  energy to low energy (of interest for the 
behaviour of perturbative series)



Low energy (nonperturbative) effects always exist
but their form depend on the size of the system



To extract SM parameters

consider systems or observables with 
suppressed nonperturbative effects

(typically quarkonia with small radius)

get under control the perturbative series 
and resum all large contributions



Mass determination 



Mass determination 

Example:  mass extraction from 1S energy 
level (e.g. Y(1s))
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• 1)Sum large beta0 (removing the renormalon of 
the series) Beneke et al., Hoang et al.,Brambilla et al, Pineda    

• 2)Sum the logs of v (coming from the ratio of scales:
mv^2/mv, mv/m) RG correlated scales Luke and Savage; Manohar and 

Stewart; Pineda Soto

• 3) Deal with the nonperturbative corrections

Take n=1S, to    obtain a precise 
extraction for the mass one has to:
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1)Bad behaviour of the perturbative series (the renormalon   O(ΛQCD)

2mpole + Vo

It   was found that (Hoang et al., Pineda 99)

Is well behaved (the renormalon cancels between the two when one 
eliminates m_pole in terms of msbar or threshold mass)  

main obstacle to precise extractions!
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1)after renormalon cancellation one gets a well 
behaved series and good agreement with the lattice:

2)large logs of v are RG resummed--> great 
improvement in stability and scale independence

(LL, NLL, NNLL...)

3)nonperturbative corrections are neglected (when 
suppressed)
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NR Sum Rules (full NLL ,partial NNLL accuracy):

semileptonic B decays

lattice (unquenched)

mb(mb) = 4.19 ± 0.06 GeV
Pineda Signer 06

Hoang Manohar 05

Gray et al 05

mc(mc) = 1.224 ± 0.017 ± 0.054 GeV

More recent determinations:

mb(mb) = 4.4 ± 0.030 GeV



alpha_s determination 



0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

! decays

Z width

Fragmentation

Spectroscopy (Lattice)

ep event shapes

Photo-production

" decay

e+e- rates

#s(MZ)

αs(MZ)

αs(MZ) = 0.1176 ± 0.002

from PDG06 



0

0.1

0.2

0.3

1 10 102

µ GeV

!
s(µ

)

Running of αs from PDG06 



0

0.1

0.2

0.3

1 10 102

µ GeV

!
s(µ

)

Upsilon
decay

Running of αs from PDG06 



New extraction of αs (Brambilla, Garcia, Soto, Vairo 07)

from

Rγ ≡

Γ(Υ(1S) → γX)

Γ(Υ(1S) → X)

based on: 



New extraction of αs (Brambilla, Garcia, Soto, Vairo 07)

from

Rγ ≡

Γ(Υ(1S) → γX)

Γ(Υ(1S) → X)

based on: 

• new  data from CLEO (hep-ex/0512061)



New extraction of αs (Brambilla, Garcia, Soto, Vairo 07)

from

Rγ ≡

Γ(Υ(1S) → γX)

Γ(Υ(1S) → X)

based on: 

• new  data from CLEO (hep-ex/0512061)

•Combined use of NRQCD, pNRQCD and SCET 



New extraction of αs (Brambilla, Garcia, Soto, Vairo 07)

from

Rγ ≡

Γ(Υ(1S) → γX)

Γ(Υ(1S) → X)

based on: 

• new  data from CLEO (hep-ex/0512061)

•Combined use of NRQCD, pNRQCD and SCET 

•accurate estimates of the octet contributions 
from the lattice (bodwin, lee, Sinclair 05) and  from 

continuum (Garcia, Soto 05)
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accurate at NLO in alpha_s and v
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We obtain

αs(MΥ(1S)) = 0.184+0.015
−0.014

corresponding to 

αs(MZ) = 0.119+0.006
−0.005

main uncertainty from systematic error in  

R
exp

γ = 0.0245 ± 0.0001 ± 0.0013

discussion of previous 
determinations CLEO/PDG



0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

! decays

Z width

Fragmentation

Spectroscopy (Lattice)

ep event shapes

Photo-production

" decay

e+e- rates

#s(MZ)



0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

! decays

Z width

Fragmentation

Spectroscopy (Lattice)

ep event shapes

Photo-production

" decay

e+e- rates

#s(MZ)

The alpha_s
from quarkonium 
is now consistent 

with the other 
determinations 



0.1 0.12 0.14

Average

Hadronic Jets

Polarized DIS

Deep Inelastic Scattering (DIS)

! decays

Z width

Fragmentation

Spectroscopy (Lattice)

ep event shapes

Photo-production

" decay

e+e- rates

#s(MZ)

the  new determination of alpha_s 
will move up the alpha_s average!

The alpha_s
from quarkonium 
is now consistent 

with the other 
determinations 



M1 Transitions



radiative transitions

Magnetic Dipole transitions

In potential models

Eichten QWG 02



EFTheory of  radiative transitions

• No nonperturbative  physics at order 

• Exact relations from Poincare invariance

• No large anomalous magnetic moment

pNRQCD with singlet, octet, US gluons and photons
Brambilla, Jia, Vairo 05
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Improvement requires:

mb(mb) = 4.22 ± 0.05 GeV mc(mc) = 1.28 ± 0.05 GeV

QWG  extraction of c and b mass (2005)

For 1S mass extraction: Lattice  calculation of
 <E E(t)> (full NNNLO and LL in pert)

In NRSM: -NNLL and NNNLO; for low moments SR, from 
experiments: R for bb above threshold, new R for cc is 

good input

For lattice: th error in lattice -->MS conversion, 
need 2 loop matching in NRQCD and Fermilab;

nonperturbative matching desirable 

Outlook: bottom and charm masses 
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ttbar system: extraction of  m_t  at the ILC.
Present undetermination around 100 MeV.

Needed: complete NNLL and  complete NNNLO; 
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alphas da j/psi ->gamma X
need both theory calculations and 

experimental measurement
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Outlook
Effective  field theories provide a systematic tool to 
investigate a wide range of heavy quark observables    
inside QCD

They need to be complemented by lattice calculations 

These theory tools can match some of the intense 
experimental  progress  of the last few years and of 
the near future, but more has to be done: 

Heavy quark bound states  are a unique lab for the study 
of the strong interactions from the high energy scales where 
precision studies can be made to the low energy region where
confinement and nonperturbative physics are dominant 

Perturbative calculations at higher order
(fixed order and logs summation)
Lattice calculations of local and nonlocal condensates
(or equivalently NRQCD matrix elements)
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Under  search at Fermilab and CLEO

eta_b




