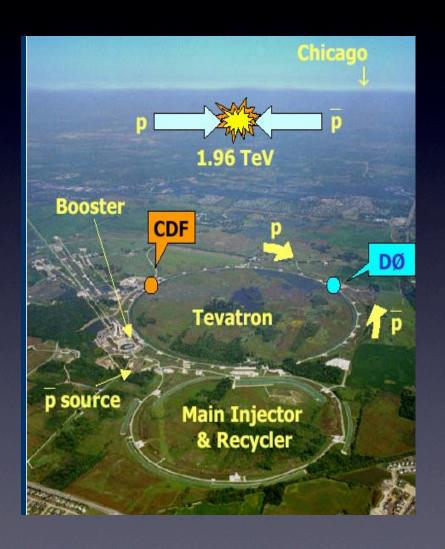

Heavy Flavour Production at the Tevatron

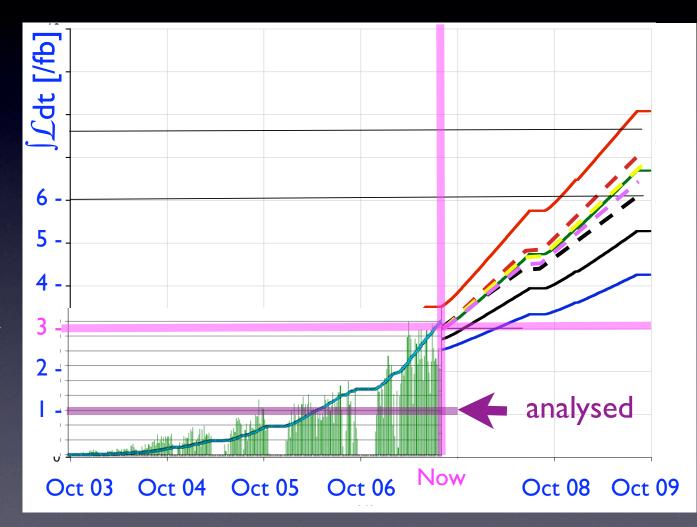
Theory hits Reality in Tevatron Run I

Measured and predicted b production cross section as function of pt at CDF and DØ (B+, and incl b respectively). Measurement > theory.

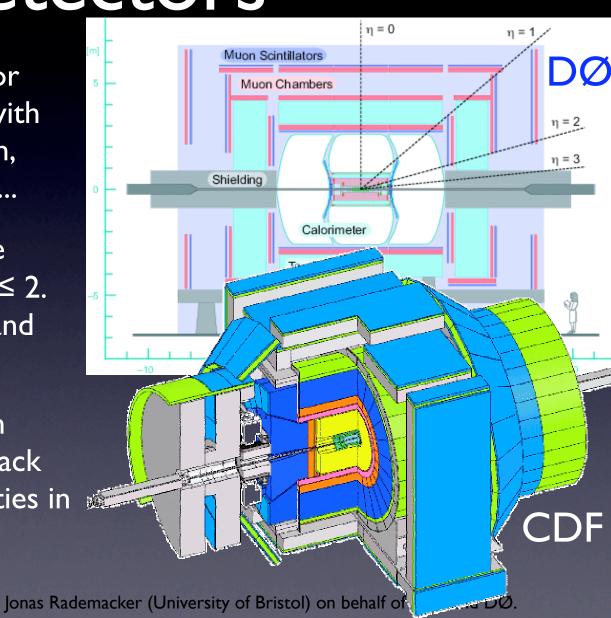


Since then: better theory (e.g. FONLL). And a better experiment: Tevatron RunII, upgraded collider and detectors

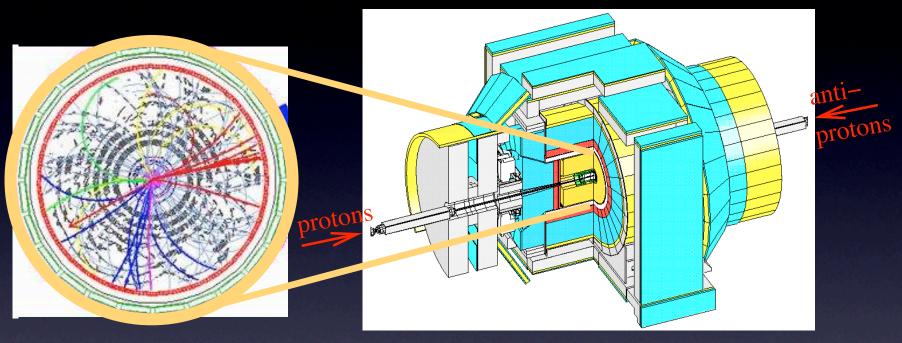
CHARM 07, Ithaca NY, 05 Aug 2007


Tevatron Run II

- Run II started in 2001
- Tevatron collides protons and anti-protons at cm energy I.96TeV
- 2.5 M times per second.
- Huge b and charm x-section.
- Detector upgrades for heavy flavour physics, e.g. highresolution Si vtx trackers, trigger upgrades.

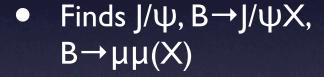

Tevatron Luminosity

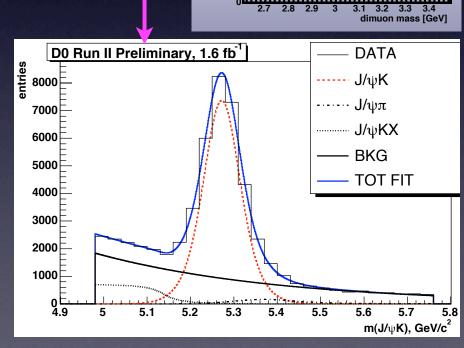
- 3/fb delivered
- ca I/fb of those analysed
- (all numbers per experiment)



Detectors

- Both detectors good for heavy flavour physics, with excellent vtx resolution, muon coverage, trigger...
- DØ's special skill: Large muon coverage, to |η| ≤ 2.
 Excellent for leptonic and semileptonic modes.
- CDF's special skill: High bandwidth displaced-track trigger. Unique capabilities in fully hadronic modes.


Tevatron Events


- One (usually very busy) event every 396ns
- Write to tape only ~0.003% (CDF).
- Which ones? Trigger crucial.
- Two strategies for heavy flavour: Leptons, or displaced tracks.

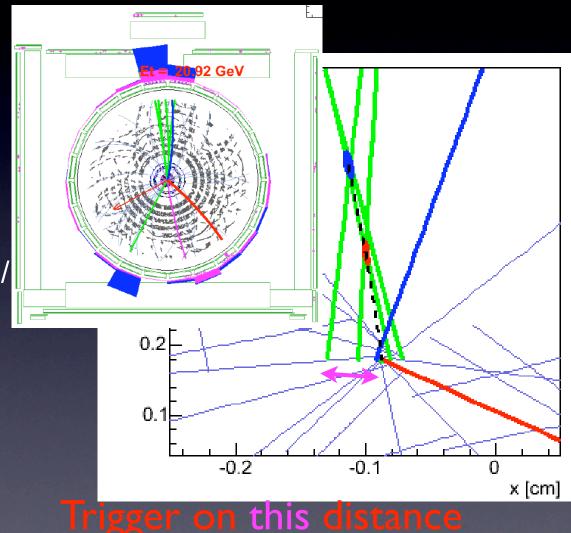
Di-µ trigger

I80,000 J/ ψ →μμ in 0.1 I/fb 28,000 B→J/ ψ K in 1.6/fb at DØ

- Very clean trigger in hadron environment.
- Especially powerful at DØ with its excellent µ coverage.

€ 16000

14000

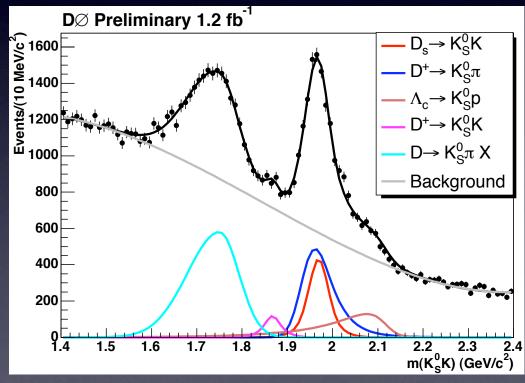

⊆12000

10000

6000 4000 2000 DØ Runll preliminary

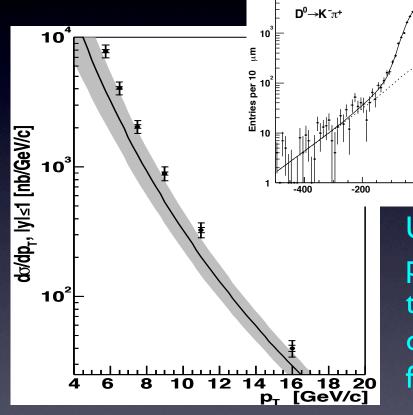
Displaced Track Trigger

- Requires two tracks with pt > 2GeV IP > ~0.1mm
- Finds fully hadronic B and D decays (the majority)
- Designed for B, but also good for Charm. E.g. in 1.1/fb at CDF: 13 M D°→Kπ,
 0.3M Ds→Φ(KK)π.
- CDF's two-track trigger has enough bandwidth to run w/o additional lepton requirements.



CHARM 07, Ithaca NY, 05 Aug 2007

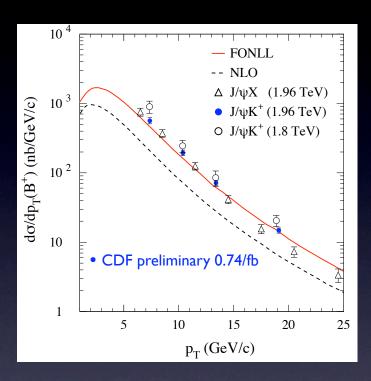
Track + lepton

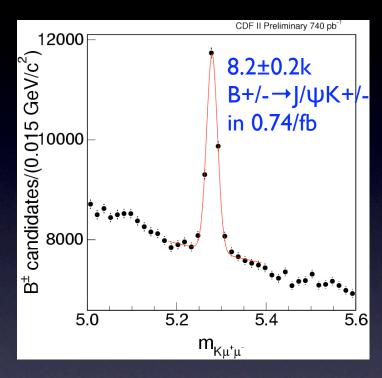

- A mixture between the above
- Requires (at least) one displaced track, and one lepton (e or µ).
- Finds $B \rightarrow D\ell V$

D mass in $B \rightarrow D(K_sX) \ell v$

Direct Charm Meson production x-section

- Fully reconstructed D meson, hadronic modes from 5.8/pb.
- Plot shows σ(|y|≤1) for D°. Grey band shows FONLL prediction.
 Plots for D*, D+, Ds look similar.
- Measured/FONLL
 ~1.5–2, but OK within uncertainties.




Use impact parameters to distinguish direct charm from B

Impact Parameter [µm]

$$\sigma(\mathsf{D^0}, \mathsf{p_T} > 5.5 \mathsf{GeV}, |\mathsf{y}| \le 1) = \\ (13.3 \pm 0.2(stat) \pm 1.5(sys)) \,\mu b$$

B x-section

- Inclusive $B \rightarrow J/\psi X$, $B \rightarrow D\ell v X$ [not in this plot] and excl $B + \rightarrow J/\psi K +$ agree well with each other, Run I, and FONLL.
- Latest result: exclusive B+ \rightarrow J/ ψ K+ more numbers in backup slides $\sigma(p\bar{p}\to B^+,p_t>6 \text{GeV},|y|<1)=(2.64\pm0.12(\text{stat})\pm0.21(\text{sys}))\mu b$

correlated b-b x-section

- For correlated b-b x-section (both b quarks within a certain, central rapidity and pt range), higher order terms expected to be smaller, NLO should work better.
- Past Tevatron results inconclusive/contradictory.
- Table shows ratio of previously measured σ/NLOprediction. (New result on next slides.)

channel		R_{2b} for $p_T^{ m mi}$	$^{n} (GeV/c) =$	
	6 - 7	10	15	$\simeq 20$
$b + \bar{b}$ jets			1.2 ± 0.3	
$b + \bar{b}$ jets				1.0 ± 0.3
$\mu + b$ jet		1.5 ± 0.2		
$\mu^+ + \mu^-$	3.0 ± 0.6			
$\mu^{+} + \mu^{-}$	2.3 ± 0.8			

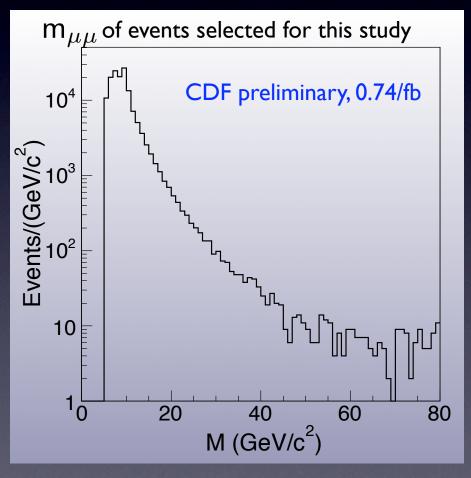
Fabio Happacher showed this table at DIS-06 (http://www-conf.kek.jp/dis06/doc/WG5/hfl20-happacher.ps)

[I modified they ways the uncertainties are presented, possibly adding mistakes and rounding errors in the process]

Note: Table 2: Ratio R_{2b} of $\sigma_{b\bar{b}}$, the observed cross section for producing both b and \bar{b} quarks, centrally and above a given p_T^{\min} threshold, to the exact NLO prediction.

Correlated bb and $c\bar{c}$ x-section using $\mu\mu$

Reconstruct µµ pairs with


$$p_T \geq 3GeV$$

$$|\eta| \leq 0.7$$

$$m_{\mu\mu} \in [5, 80]GeV$$

Corresponds to bb pairs with

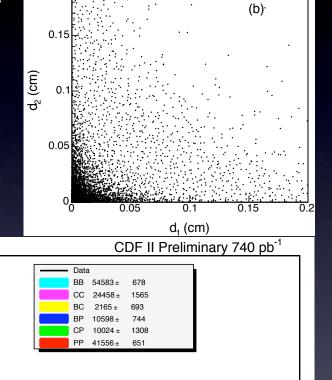
$$\begin{array}{ccc} p_T & \geq & 2GeV \\ |y| & \leq & 1.3 \end{array}$$

CHARM 07, Ithaca NY, 05 Aug 2007

Correlated bb and $c\bar{c}$ x-

section using µµ

 Use impact parameters to distinguish


$$b
ightarrow \mu$$
 , $b
ightarrow \mu$

$$b \rightarrow \mu$$
 , $c \rightarrow \mu$

$$c
ightarrow \mu$$
 , $c
ightarrow \mu$

and contributions with one or more prompt μ .

Fit done in 2-D. This is the I-D projection of 2-D IP distribution and fit

CDF II Preliminary 740 pb

Jonas Rademacker (University of Bristol) on behalf of CDF and DØ.

0.10 d (cm)

0.05

muons/(0.008 cm)

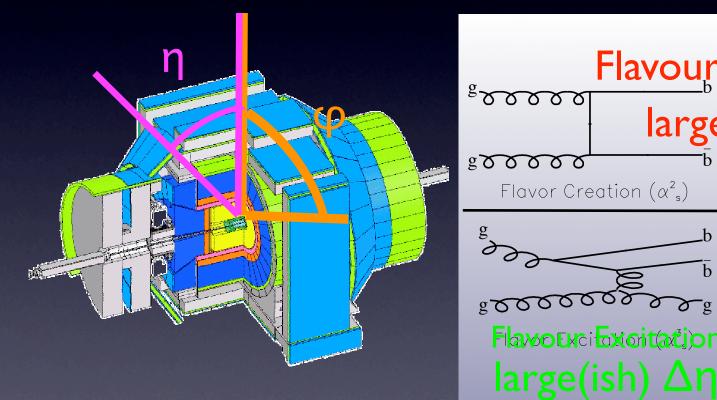
10³

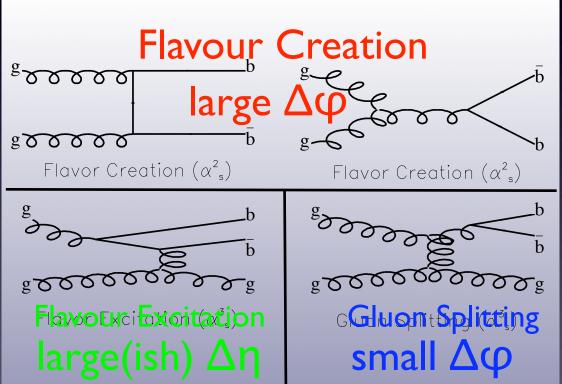
0.00

Correlated bb and $c\bar{c}$ x-section: results

• x-sections: $\sigma_{b \to \mu, \bar{b} \to \mu} = (1549 \pm 133) \text{pb}$ $\sigma_{c \to \mu, \bar{c} \to \mu} = (624 \pm 104) \text{pb}$ $\sigma_{b\bar{b}} \, (\text{p}_{\text{T}} \geq 6 \text{GeV}, \, |\text{y}| \leq 1) = (1618 \pm 148 \pm [\sim 400 \, \text{fragmentation}]) \, \text{nb}$

Ratios (includes both exp. and theory error):

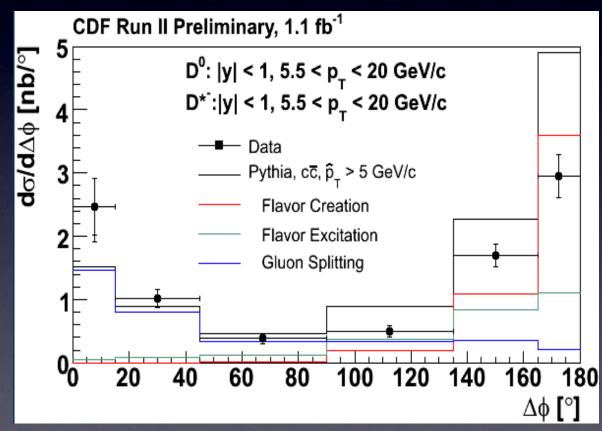

With Peterson fragmentation parameter....

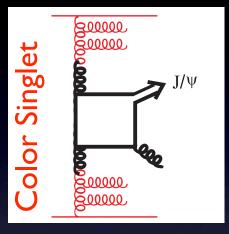

$$\epsilon$$
=0.006 $\sigma_{
m b
ightarrow \mu}^{
m measured} = 1.2 \pm 0.2 \ \sigma_{
m b
ightarrow \mu}^{
m MLO} = 1.2 \pm 0.2 \ \sigma_{
m b
ightarrow \mu}^{
m measured} = 2.7 \pm 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 2.7 \pm 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m NLO} = 0.6 \ \sigma_{
m c
ightarrow \mu}^{
m$

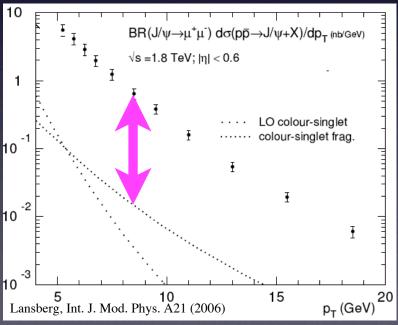
*Cacciari and Nason,
$$\epsilon$$
=0.002* Phys. Rev. Lett. 89, $\sigma^{\text{measured}}_{b \to \mu} = 1.0 \pm 0.2$ $\sigma^{\text{measured}}_{b \to \mu} \bar{b} \to \mu$ $\sigma^{\text{measured}}_{c \to \mu} \bar{c} \to \mu$ $\sigma^{\text{measured}}_{c \to \mu} \bar{c} \to \mu$ $\sigma^{\text{NLO}}_{c \to \mu} \bar{c} \to \mu$ $\sigma^{\text{NLO}}_{c \to \mu} \bar{c} \to \mu$

CHARM 07, Ithaca NY, 05 Aug 2007

Charm pair x-section kinematic separation of production mechanisms

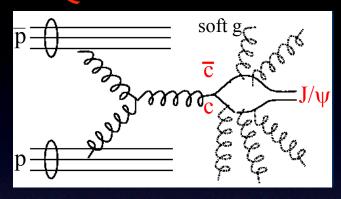



Charm pair x-section

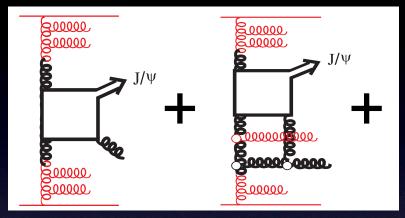

- Collinear production as important as backto-back.
- Pythia (tune A, LO +parton shower):
 Overall OK but under-estimates collinear, and overestimates back-to-back production.
- Similar for D+D*

 $D^{\circ} D^*$ x-section vs $\Delta \Phi$

Charmonium/Bottomium



- Can't produce colour-neutral $J^P = 1^-$ pair by simple gluon fusion.
- Simplest solution: produce a coloured state and "bleach" by radiating off one (hard) gluon.
- Dramatically fails to predict x-sections (meas/predict ~ 30 for J/ ψ).


Charmonium/Bottomium

NRQCD - Colour Octet

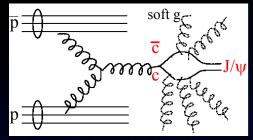
- colour radiated off by soft gluons.
- Adjustable hadronisation parameters allow match to observed p_t spectra and xsections.
- Predicts transverse polarisation of J/ψ

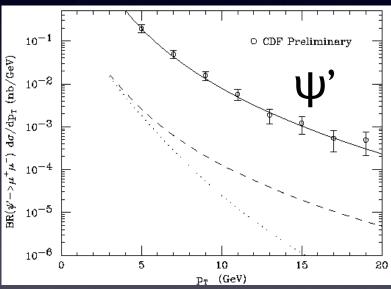
PQCD

- Include 2nd order diagrams of the type shown above.
- LO pQCD calculation matches observed p_t spectra and xsection.
- Predicts longitudinal polarisation of J/ψ , increasing with pt.

V.A. Khoze, A.D. Martin, M.G. Ryskinand W.J. Sterling Eur.

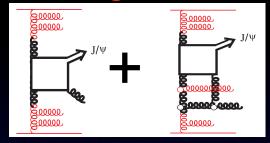
Phys. J. C 39, 163-171 (2005) hep-ph/0410020.

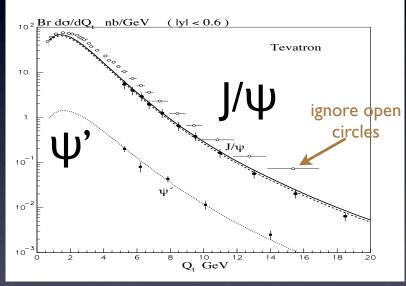

Jonas Rademacker (University of Bristol) on behalf of CDF and DØ.


E.L. Berger, J. Qiu, Y. Wang hep-ph/0411026

CHARM 07, Ithaca NY, 05 Aug 2007

Charmonium/Bottomium


NRQCD - Colour Octed

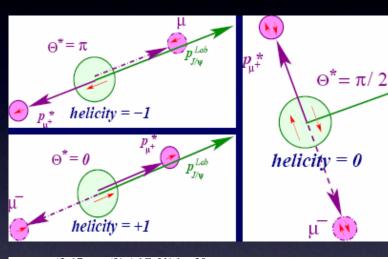


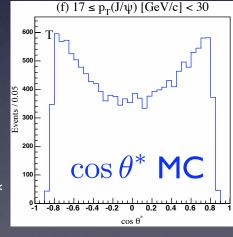
E. Braaten and S. Fleming, Phys. Rev. Lett. 74 (1995) 3327 [arXiv:hep-ph/9411365]

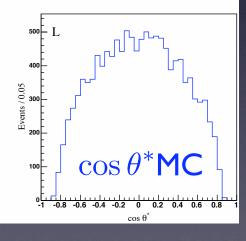
QCD with higher order terms

Khoze et al, Eur. Phys. J. C 39, 163-171 (2005) hep-ph/0410020

Both models describe differential x-sections well (data from Runl)

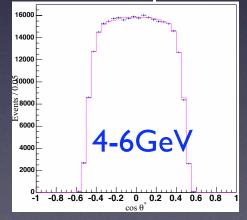

But they predict different polarisations - see next slide


CHARM 07, Ithaca NY, 05 Aug 2007

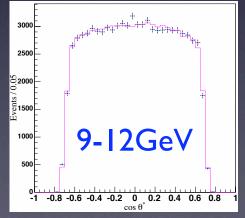

Measuring onium polarisation

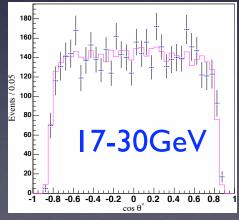
- Measure $lpha \equiv rac{\sigma_{\mathsf{T}} 2\sigma_{\mathsf{L}}}{\sigma_{\mathsf{T}} + 2\sigma_{\mathsf{L}}}$
- α=0 if all helicity states equally likely.
- Extract from angular distribution. θ^* is the angle between J/ ψ and μ in J/ ψ restframe.

$$rac{\mathsf{dN}}{\mathsf{d}(\mathsf{cos} heta^*)} \propto 1 + lpha \cos^2 heta^*$$

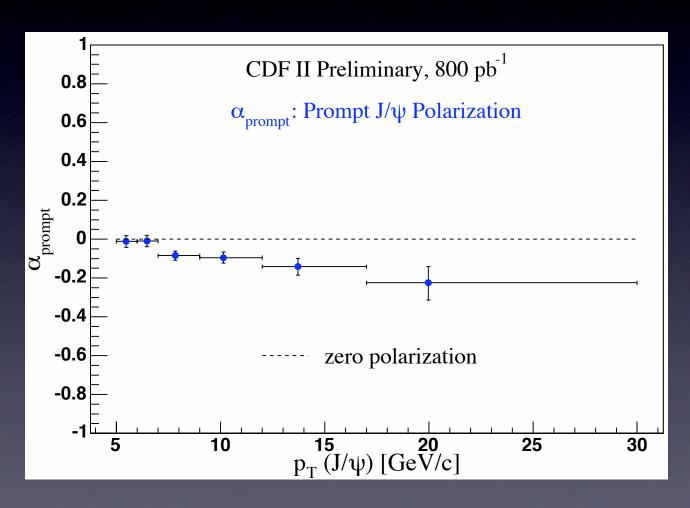



J/ψ polarisation

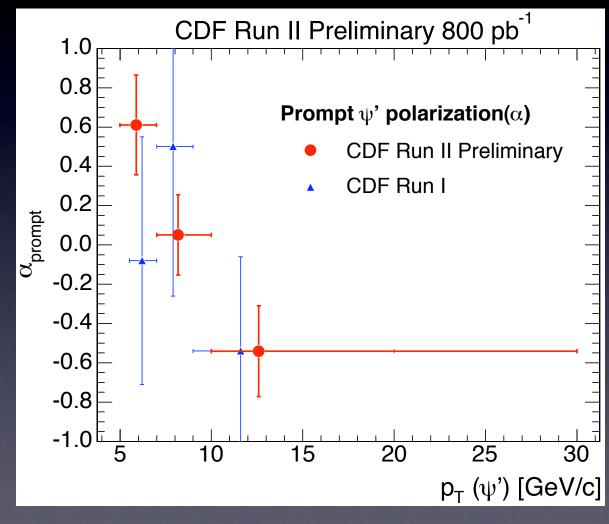

Select ca 0.8M
 prompt J/ψ in 0.8/fb
 (B→J/ψX removed by
 IP-significance cuts)


• Fit $\cos \theta^*$ distribution in bins of pt - below are 3 examples:

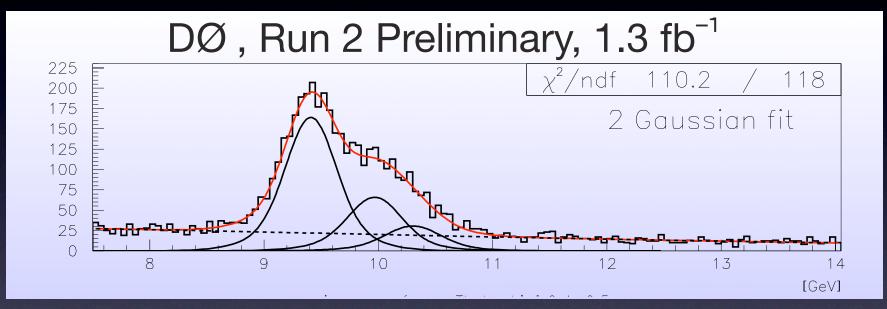
CHARM 07, Ithaca NY, 05 Aug 2007



Jonas Rademacker (University of Bristol) on behalf of CDF and DØ.


J/ψ polarisation

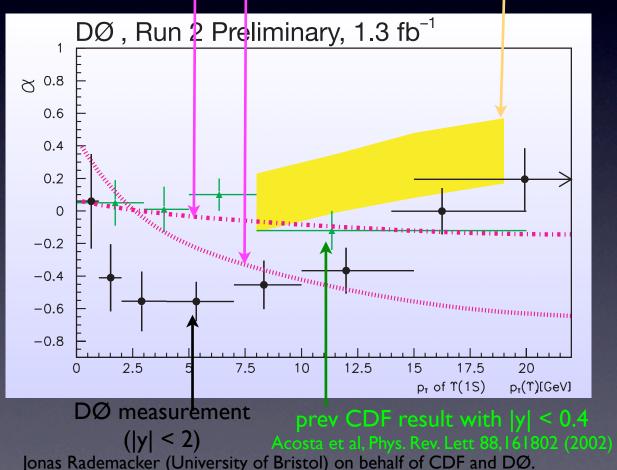
 Significant longitudinal polarisation, in contradition to to NRQCD/ colour octet prediction.


ψ(2S) polarisation

- Theoretically cleaner because no feed-down from higher states
- Also observe significant longitudinal polarisation

07

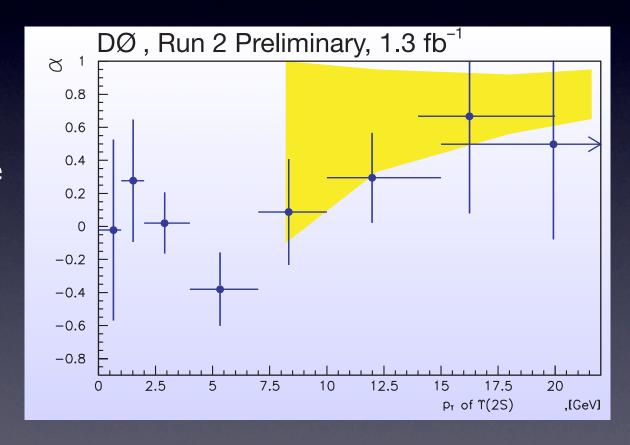
$\Upsilon(IS), \Upsilon(2S)$ polarisation



- DØ find 420,000 Y(nS).
- Single-trigger selection reduces this to 170,000 $\Upsilon(nS)$ from di- μ trigger.

Y(IS) polarisation

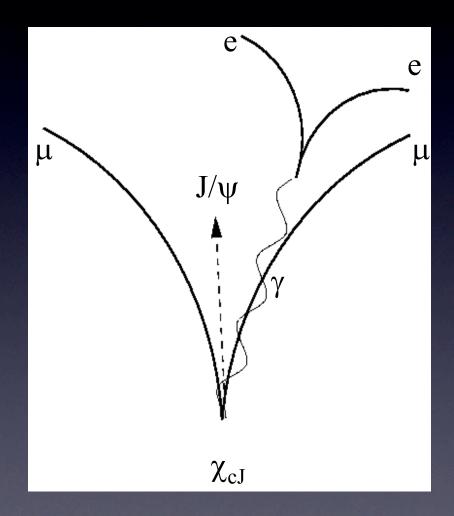
kt-factorisation [Baranov, hep-ph/0707.0253] NROCD with quark-spin conservation Braaten, Lee, Phys. Rev. D63, with full quark-spin depolarisation 071501 (R) (2001)


- Find significant, pt dependent longitudinal polarisation.
- Incompatible with NRQCD/ colour-octet

CHARM 07, Ithaca NY, 05 Aug 2007

Y(2S) polarisation

- Same study for Y
 (2S)
- Not incompatible with NRQCD/ colour-octet within (lower) stats.


Measuring $\sigma(\chi_{c2})/\sigma(\chi_{c1})$.

- Experimentally tricky because of soft γ in $\chi_{cJ} \to J/\psi \gamma$. Soft photons give bad energy resolution.
- Good lumi at Tevatron allows use of conversion

 conversion

 conversion to e e.

 lt's inefficient, but has good energy resolution.

Measuring $\sigma(\chi_{c2})/\sigma($ Entries/2 MeV/c² 220 320 320 320

- Excellent mass resolution.
- Separate prompt from B using decay distance
- Find:

$$rac{\sigma(\chi_{c2})}{\sigma(\chi_{c1})} = 0.70 \pm 0.04 (ext{stat}) \pm 0.03 (ext{sys}) \pm 0.06 (ext{BF})$$

Colour octet predicts 5/3 (counting of spin states).

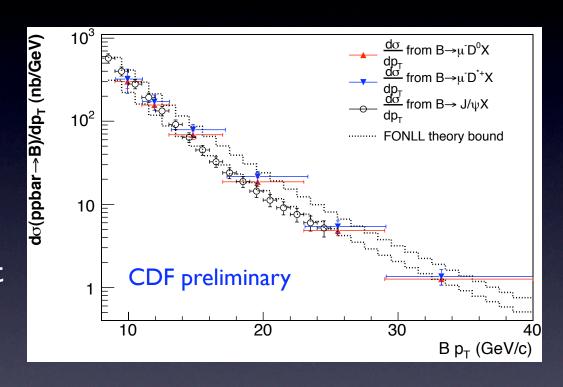
for $p_t(\chi_{cJ}) \in [4, 20] \text{GeV}$

Total χ₁: 2526±69

Total χ₂: 1104±43

200

150


Conclusions

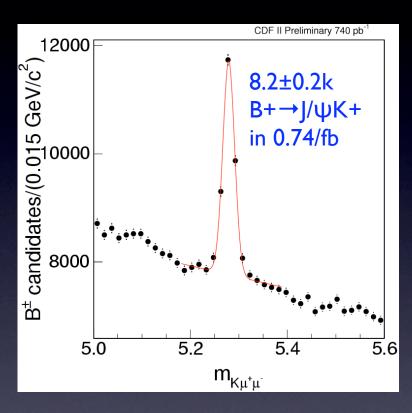
- Plenty of heavy flavour produced at Tevatron. Triggers originally designed for beauty find loads of that - and charm.
- Active field at Tevatron, most results shown < Iy old.
- Keep challenging theory with measurements beyond 'just $d\sigma/dp$ ': angular correlations, polarisation, first precision measurement of $\sigma(\chi_{c2})/\sigma(\chi_{c1})$.
- There are 3× as much data on tape, and the machine is doing better than ever, so there's more to come.

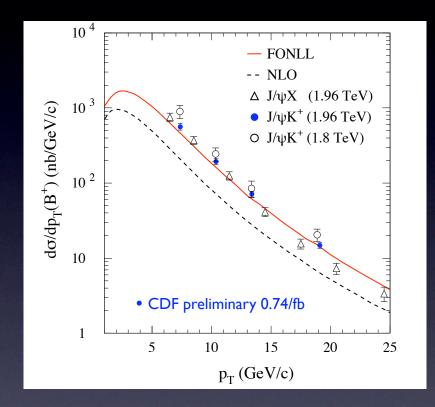
Backup

Inclusive B x-section

- $\sigma(p\overline{p} \rightarrow H_b)$ from B \rightarrow D $\mu\nu$ X decays.
- Using only 83/pb but systematics-limited.
- Consistent with prev. result using J/ψ, and FONLL.

For pt > 9 GeV, |y| < 0.6:

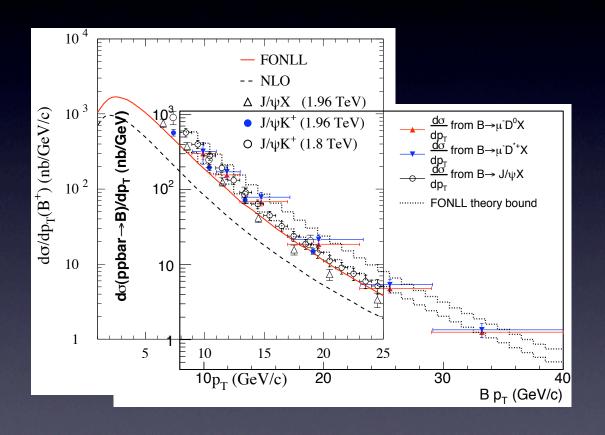

$$\sigma\left({\sf p\bar p} \to {\sf H_b} \right) = \left(1.34 \pm 0.08 ({\sf stat})^{+0.13}_{-0.14} ({\sf sys}) \pm 0.07 ({\sf BR}) \right) \mu {\sf b} \; ({\sf from} \; {\sf D^0})$$

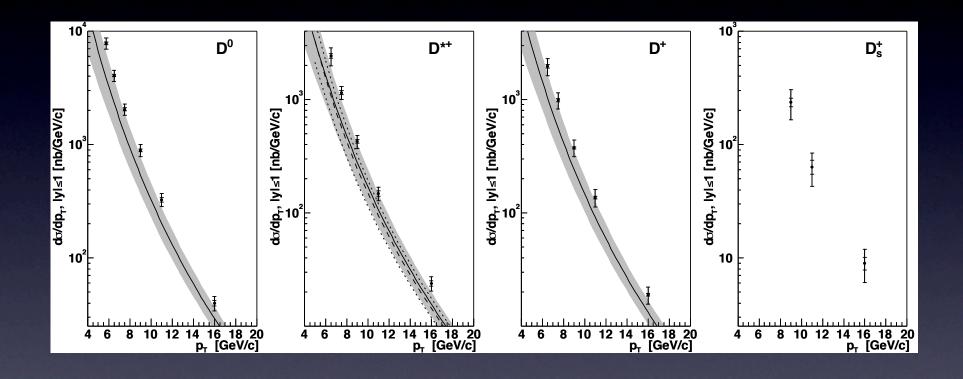

$$\sigma \left(\mathsf{p} \bar{\mathsf{p}} \to \mathsf{H}_\mathsf{b} \right) = \left(1.47 \pm 0.18 (\mathsf{stat})^{+0.17}_{-0.19} (\mathsf{sys}) \pm 0.11 (\mathsf{BR}) \right) \mu \mathsf{b} \ \left(\mathsf{from} \ \mathsf{D}^{*+} \right).$$

$$\sigma\left(\mathsf{p}\mathsf{\bar{p}} \to \mathsf{H}_\mathsf{b}\right) = \left(1.39^{+0.49}_{-0.34}\right)\mu\mathsf{b}\left(\mathsf{FONLL}\right)$$

CHARM 07, Ithaca NY, 05 Aug 2007

excl B+ x-section

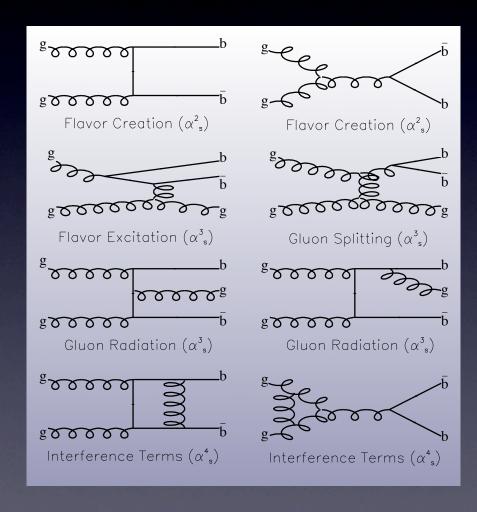




$$\sigma\left(\mathsf{p_t} > \mathsf{6GeV}, |\mathsf{y}| < 1
ight) = \left(2.65 \pm 0.12 (\mathsf{stat}) \pm 0.21 (\mathsf{sys})
ight) \mu \mathsf{b}$$

- Measurement/NLO = 2.67 ± 0.23
- Agrees with other J/ ψ -based analyses and FONNL.

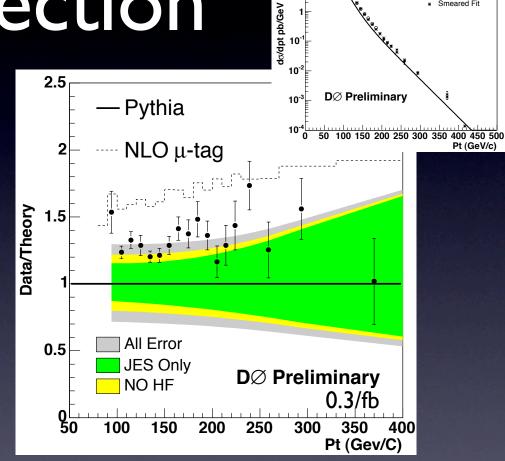
CHARM 07, Ithaca NY, 05 Aug 2007



p_T range	Central p_T	D^0	D^{*+}	D^+	D_s^+
$[\mathrm{GeV}/c]$	$[\mathrm{GeV}/c]$				
5.5 - 6	5.75	$7837 \pm 220 \pm 884$	_	_	_
6 - 7	6.5	$4056 \pm 93 \pm 441$	$2421 \pm 108 \pm 424$	$1961 \pm 69 \pm 332$	_
7 - 8	7.5	$2052\pm58\pm227$	$1147 \pm 48 \pm 145$	$986 \pm 28 \pm 156$	_
8 - 10	9.0	$890\pm25\pm107$	$427\pm16\pm54$	$375 \pm 9 \pm 62$	$236 \pm 20 \pm 67$
10 - 12	11.0	$327\pm15\pm41$	$148 \pm 8 \pm 18$	$136 \pm 4 \pm 24$	$64 \pm 9 \pm 19$
12 - 20	16.0	$39.9 \pm 2.3 \pm 5.3$	$23.8 \pm 1.3 \pm 3.2$	$19.0 \pm 0.6 \pm 3.2$	$9.0 \pm 1.2 \pm 2.7$

TABLE I: Summary of the measured prompt charm meson differential cross sections and their uncertainties at the center of each p_T bin. The first error is statistical and the second systematic. The products of the branching fractions [11] used are $(3.81 \pm 0.09)\%$, $(2.57 \pm 0.06)\%$, $(9.1 \pm 0.6)\%$ and $(1.8 \pm 0.5)\%$ for D^0 , D^{*+} , D^+ and D_s^+ , respectively.

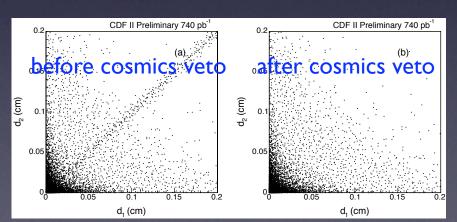
The total cross sections are obtained by summing over all p_T bins. However, the last p_T bin is replaced by an inclusive bin with $p_T > 12 \,\text{GeV}/c$. We find $\sigma(D^0, p_T \ge 5.5 \,\text{GeV}/c, |y| \le 1) = 13.3 \pm 0.2 \pm 1.5 \,\mu\text{b}$, $\sigma(D^{*+}, p_T \ge 6.0 \,\text{GeV}/c, |y| \le 1) = 5.2 \pm 0.1 \pm 0.8 \,\mu\text{b}$, $\sigma(D^+, p_T \ge 6.0 \,\text{GeV}/c, |y| \le 1) = 4.3 \pm 0.1 \pm 0.7 \,\mu\text{b}$ and $\sigma(D_s^+, p_T \ge 8.0 \,\text{GeV}/c, |y| \le 1) = 0.75 \pm 0.05 \pm 0.22 \,\mu\text{b}$, where the first uncertainty is statistical and the second systematic. To calculate the



U-tagged (heavy flavour)

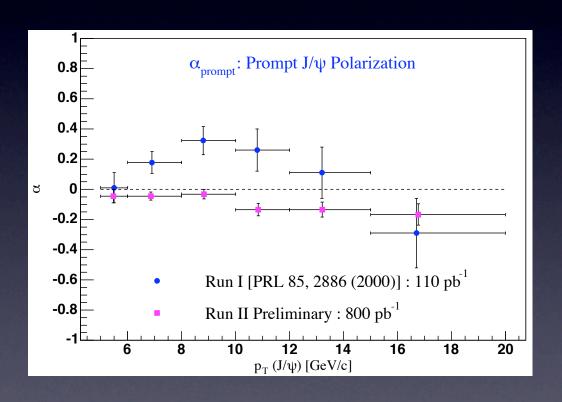
et x-section

 Find jets with muons; estimate heavy flavour content from MC simulation.


- No attempt yet to separate heavy flavour in data (no IP cut or so).
- dpt generally higher than NLO prediction, but compatible within errors.

green: σ(Jet-energy-scale) only

yellow: all σ except σ (heavy-flavour fraction)


grey: all systematics

CDF II Preliminary 740 pb⁻¹ 10⁵ BB 54583 ± CC 24458 ± BC # muons/(0.008 cm) 10⁴ 1308 10024 ± PP 41556 ± 10³ 10² 10 0.10 0.00 0.05 0.15 0.20 d (cm) pull -1 0.00 0.05 0.10 0.15 0.20

CHARM 07, Ithaca NY, 05 Aug 2007

Jonas Rademacker (University of Bristol) on behalf of CDF and DØ.

Correlated bb and $c\bar{c}$ x-section: results

• x-sections: $\sigma_{\mathsf{b} \to \mu, \bar{\mathsf{b}} \to \mu} = (1549 \pm 133) \mathsf{pb}$

$$\sigma_{
m bar{b}}\,(
m p_T \geq 6 GeV,\,|
m y| \leq 1) = (1618 \pm 148 \pm [\sim 400 \; {
m fragmentation}])\,{
m nb}$$

$$\sigma_{\mathsf{c} o \mu, ar{\mathsf{c}} o \mu} = (624 \pm 104) \mathsf{pb}$$

 Ratios (includes both exp. and theory error):

$$rac{\sigma_{ extbf{b}
ightarrow\mu}^{ ext{measured}}}{\sigma_{ extbf{b}
ightarrow\mu}^{ ext{NLO}}}=1.20\pm0.21$$

$$rac{\sigma_{ ext{c}
ightarrow\mu}^{ ext{measured}}{ar{\sigma}_{ ext{c}
ightarrow\mu}^{ ext{NLO}}} = 2.71 \pm 0.64$$

Error contributions in % of measured x-section					
	$b\rightarrow\mu, b\rightarrow\mu$	$c \rightarrow \mu, c \rightarrow \mu$			
$\int \mathcal{L} dt$	6%	6%			
acceptance	3%	3%			
fake muons	4%	11%			
fit model	3%	8%			
stat	1.2%	6.4%			
Total	8.6%	17%			