HFAG Mixing Averages

Brian Aagaard Petersen Stanford University For Charm subgroup of HFAG http://www.slac.stanford.edu/xorg/hfag/charm/index.html

Charm 2007 Sunday, August 5, 2007

HFAG Charm Group

Formed summer 2006 to provide averages of charm results

<u>Members from most recent charm experiments:</u>

- Milind Purohit (chair) (BaBar+E791)
- Brian Petersen (BaBar)
- Bostjan Golob (Belle)
- Alan Schwartz (Belle)
- Changzhen Yuan (BES)
- Mark Mattson (CDF)
- David Asner (CLEO-c)
- Lawrence Gibbos (CLEO-c)
- Brendan Casey
- Daniele Pedrini (Focus)

Ongoing efforts:

Average mixing results

Average CP violation in decay results

(D0)

Average absolute charm branching fractions

*...

Averaging Charm Mixing Results

Have measurements of many different mixing related parameters: $y_{CP}, x'^2, y', R_M, \dots$

Combine results to extract best possible constraints on fundamental mixing parameters: x, y, q/p, ...

Combination approach:

Obtain likelihood distributions for measurements

- Allows for non-Gaussian uncertainties
- Combine results by adding likelihood distributions
 First combine measurements of same parameters
- Convert combined likelihoods into functions of the fundamental mixing parameters and add together

For CP violating case, we currently do not have all likelihoods

- Instead use a simple χ^{2} combination
- Ignores the non-Gaussian errors

KK/ $\pi\pi$ Lifetime Ratio Measurements

Many measurements of y_{CP}

Assume Gaussian uncertainties and no correlation between experiments, e.g. we do not normalize to the same the $\tau_{K\pi}$

Combined Result: $y_{
m CP} = (1.12 \pm 0.32)\%$

If no CPV: $y_{CP}=y$

Semileptonic Charm Decays

More Measurements of R_{M}

Have more precise measurements of R_M from hadronic D^0 decays Combine these with semileptonic result

Use full likelihood for $K\pi\pi^0$ to account for asymmetric errors

Combined Result: $R_M = (2.1 \pm 1.1) \times 10^{-4}$

R_M(%)

$K_s\pi\pi$ Dalitz Plot Analysis

Combine 2005 CLEO and 2007 Belle results for $D^0 \rightarrow K_s \pi \pi$ decays (using Gaussian errors) Combined Result:

 $x = (0.81 \pm 0.33)\%$ $y = (0.31 \pm 0.28)\%$

Combining y_{CP} , R_{M} and $K_{S}\pi\pi$

Combine likelihood contours assuming CP conservation:

Averaging WS $K\pi$ Mixing Results

In WS $K\pi$ mixing analyses, fitted parameters are highly correlated We combine 3-dimensional likelihoods in (x'^2, y', R_D)

(x,y) from WS K π Mixing

Transform likelihood from (x'^2, y') into $(x, y, \delta_{K\pi})$

Without further input, this maps out circles when projected over $\delta_{K\pi}$:

Note that in this procedure we ignore the $x'^2 < 0$ part of the likelihood

Combining all CP Conserving Results

Adding $K\pi$ result does not change central values much, but it further excludes solutions around (x,y)=(0,0)

 $\delta_{\text{K}\pi}$ Measurement

Combination of measurements \vec{z} also gives value for $\delta_{K\pi}$

<u>Combined Result:</u> $\delta_{K\pi} = (0.33^{+0.26}_{-0.29})$ rad

This is driven mainly by the "matching" of y' and y

Measurement of $\delta_{K\pi}$ from CLEO-c lifts a degeneracy in solutions for $\delta_{K\pi}$

Allowing for CP Violation

Currently combined using χ^2 minimization with 7 free parameters for 22 measurements (we use the combined y_{CP} and semileptonic R_M) $2y_{CP}$

Covariance matrices from the measurements are used, but non-Gaussian uncertainties are not taken into account (Mainly affects $K_s\pi\pi$ and $K\pi$)

Relations used:

$$R_{_{M}} \;=\; rac{1}{2}(x^{2}+y^{2})$$

 $2y_{CP} = (|q/p| + |p/q|)y\cos\phi - (|q/p| - |p/q|)x\sin\phi$ $2A_{\Gamma} = (|q/p| - |p/q|)y\cos\phi - (|q/p| + |p/q|)x\sin\phi$

$$egin{array}{rcl} x_{K^0\pi\pi} &=& x & |q/p|_{K^0\pi\pi} &=& |q/p|_{K^0\pi\pi} \ y_{K^0\pi\pi} &=& y & \operatorname{Arg}{(q/p)_{K^0\pi\pi}} &=& \phi \end{array}$$

$$\begin{aligned} x'^{\pm} &= \left(\frac{1 \pm A_M}{1 \mp A_M}\right)^{1/4} (x' \cos \phi \pm y' \sin \phi) \qquad A_M = \frac{|q/p|^2 - |p/q|^2}{|q/p|^2 + |p/q|^2} \\ y'^{\pm} &= \left(\frac{1 \pm A_M}{1 \mp A_M}\right)^{1/4} (y' \cos \phi \mp x' \sin \phi) \qquad \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \delta & \sin \delta \\ -\sin \delta & \cos \delta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \end{aligned}$$

$$\begin{split} \frac{1}{2} \left[R(D^0 \!\rightarrow\! K^+ \pi^-) + \overline{R}(\overline{D}{}^0 \!\rightarrow\! K^- \pi^+) \right] &= R_D \\ \frac{R(D^0 \!\rightarrow\! K^+ \pi^-) - \overline{R}(\overline{D}{}^0 \!\rightarrow\! K^- \pi^+)}{R(D^0 \!\rightarrow\! K^+ \pi^-) + \overline{R}(\overline{D}{}^0 \!\rightarrow\! K^- \pi^+)} &= A_D \end{split}$$

Combined Fit Results

Allowing for CP violation:

$$(\chi^2 \text{ fit})$$

 $x = (0.84^{+0.32}_{-0.34})\%$
 $y = (0.69 \pm 0.21)\%$
 $\left|\frac{q}{p}\right| = (0.88^{+0.23}_{-0.20})$
 $\varphi = (-0.09^{+0.17}_{-0.19}) \text{ rad}$

 $R_D = (0.335 \pm 0.011)\%$ $\delta_{K\pi} = (0.38^{+0.27}_{-0.29}) \text{rad}$ $A_D = (-0.8 \pm 3.1)\%$ No CP violation: (Likelihood fit) $x = (0.87^{+0.30}_{-0.34})\%$ $y = (0.66 \pm 0.21)\%$ $R_D = (0.330^{+0.014}_{-0.012})\%$

 $\delta_{K\pi} = (0.33^{+0.26}_{-0.29}) \text{rad}$

Little difference in non-CP parameters and no hints of CP violation

Contributions to χ^{2}

χ^2 =14.4 for 7 d.o.f.	Observable	χ ²	$\Sigma \chi^2$
Ρ(χ²)=4.4%	<i>(</i> , op)	1.00	1.00
	tly_CP	= 1.83	1.83
Clickt dies average	f[A_Gamma]	= 0.27	2.10
Slight disagreement	f[x]	= 0.01	2.11
between y_{CP} and y	f[y]	= 1.87	3.98
	f[q/p]	= 0.00	3.98
	f[Arg(q/p)]	= 0.22	4.20
	f[R_M(semilept)]	= 0.09	4.29
	f[R_M(K+p-p0)]	= 0.85	5.14
	f[R_M(K+p-p+p-)]	= 0.66	5.80
Slight disagreement	f[R_M(psi_3770)]	= 1.20	6.99
between BaBar and	f[K+pi- BaBar+]	= 2.21	9.20
Belle $K\pi$ results	f[K+pi- BaBar-]	= 1.47	10.67
	f[K+pi- Belle+]	= 2.52	13.19
Brian Petersen	f[K+pi- Belle-]	= 1.25	14.44

15

(x,y) Confidence Level Contours

16

CP Violation Parameters

Confidence levels for the CP violating parameters show evidence of two solutions

This is found to be due to degeneracy in $\delta_{K\pi}$ as CLEO-c results currently is not used in this average

Degenerate Solutions

 $\delta_{K\pi}$ <-1 rad

 $\delta_{\kappa\pi} > -0.6$ rad

Summary

We have combined most measurements in D^0 - \overline{D}^0 mixing x and y appear to be 0.5-1.0% while there is no CP violation

http://www.slac.stanford.edu/xorg/hfag/charm/index.html
Brian Petersen