CP violation in charm

Alexey A. Petrov
Wayne State University

Table of Contents:

• Introduction
• CP-violation in charmed mesons
 • Observables
 • Expectations in the Standard and New Physics Models
• CP-violation in charmed baryons
• Conclusions and outlook
Murphy’s law:

Modern charm physics experiments acquire ample statistics; many decay rates are quite large.

THUS:

It is very difficult to provide model-independent theoretical description of charmed quark systems.

Now, this does not apply to CP-violation in charm: both measurements and predictions are hard...
In any quantum field theory CP-symmetry can be broken

1. Explicitly through dimension-4 operators ("hard")

 Example: Standard Model (CKM): \[\bar{\psi}_i \psi_k \overset{CP}{\to} \bar{\psi}_k \psi_i, \quad \varphi \overset{CP}{\to} \varphi \]

 \[\mathcal{L}_{Yuk} = \zeta_{ik} \bar{\psi}_i \psi_k \varphi + \text{H.c.} \overset{CP}{\not=} \mathcal{L}_{Yuk} \]

2. Explicitly through dimension <4 operators ("soft")

 Example: SUSY

3. Spontaneously (CP is a symmetry of the Lagrangian, but not of the ground state)

 Example: multi-Higgs models, left-right models

These mechanisms can be probed in charm transitions
Possible sources of CP violation in charm transitions:

- CPV in $\Delta c = 1$ decay amplitudes (“direct” CPV)
 \[A(D \to f) \equiv A_f = |A_1| e^{i\delta_1} e^{i\phi_1} + |A_2| e^{i\delta_2} e^{i\phi_2}, \quad \Delta \delta \neq 0, \Delta \phi \neq 0 \]

- CPV in $D^0 - \bar{D}^0$ mixing matrix ($\Delta c = 2$)
 \[R_m^2 = \frac{|p|^2}{q^2} = \frac{2M_{12} - i\Gamma_{12}}{2M_{12}^* - i\Gamma_{12}^*} \neq 1 \]

- CPV in the interference of decays with and without mixing
 \[\lambda_f = \frac{q}{p} \frac{\overline{A}_f}{A_f} = R_m e^{i(\phi + \delta)} \frac{|\overline{A}_f|}{A_f} \]

One can separate various sources of CPV by customizing observables.
Comment

➢ Generic expectation is that CP-violating observables in the SM are small

\[\Delta c = 1 \text{ amplitudes} \]

\[V_{ud} V_{cd}^* + V_{us} V_{cs}^* + V_{ub} V_{cb}^* = 0 \]

\[\sim \lambda \sim \lambda \sim \lambda^5 \]

Penguin amplitude

➢ The Unitarity Triangle for charm:

\[\text{With } b\text{-quark contribution neglected: only 2 generations contribute} \]

\[\Rightarrow \text{real } 2\times2 \text{ Cabibbo matrix} \]

Any CP-violating signal in the SM will be small, at most \(O(V_{ub} V_{cb}^* / V_{us} V_{cs}^*) \sim 10^{-3} \)

Thus, \(O(1\%) \) CP-violating signal can provide a "smoking gun" signature of New Physics
There exists a variety of CP-violating observables

1. "Static" observables, such as electric dipole moment

2. "Dynamical" observables:
 a. Transitions that are forbidden in the absence of CP-violation
 \[CP[\text{initial state}] \neq CP[\text{final state}] \]
 b. Mismatch of transition probabilities of CP-conjugated processes
 \[\Gamma(D \rightarrow f) \neq \Gamma(\bar{D} \rightarrow \bar{f}) \]
 c. Various asymmetries in decay distributions, etc.

Depending on the initial and final states, these observables can be affected by all three sources of CP-violation
a. Transitions forbidden w/out CP-violation

Recall that CP of the states in $D^0 \bar{D}^0 \rightarrow (F_1)(F_2)$ are anti-correlated at $\psi(3770)$:

- a simple signal of CP violation: $\psi(3770) \rightarrow D^0 \bar{D}^0 \rightarrow (CP\pm)(CP\pm)$

\[
\begin{align*}
CP[f_1] &= CP[f_2] \\
\{ \begin{array}{c}
\bar{f}_1 \\
\bar{f}_2 \\
f_2 \\
f_1 \\
\end{array} \} & \quad CP \text{ eigenstate } f_2 \\
\{ \begin{array}{c}
\bar{f}_1 \\
f_1 \\
\end{array} \} & \quad CP \text{ eigenstate } f_1
\end{align*}
\]

\[
\left| D^0 \bar{D}^0 \right>_L = \frac{1}{\sqrt{2}} \left[\left| D^0(k_1) \bar{D}^0(k_2) \right> + (-1)^L \left| D^0(k_2) \bar{D}^0(k_1) \right> \right]
\]

\[
\Gamma_{F_1F_2} = \frac{\Gamma_{F_1} \Gamma_{F_2}}{2 R_m} \left[\left(2 + x^2 + y^2 \right) \left| \lambda_{F_1} - \lambda_{F_2} \right|^2 + \left(x^2 + y^2 \right) \left| 1 - \lambda_{F_1} \lambda_{F_2} \right|^2 \right]
\]

- CP-violation in the rate \rightarrow of the second order in CP-violating parameters.
- Cleanest measurement of CP-violation!
What if \(f_1 \) or \(f_2 \) is not a CP-eigenstate

- If CP violation is neglected: mass eigenstates = CP eigenstates
- CP eigenstates do NOT evolve with time, so can be used for “tagging”

\[
\begin{align*}
&\text{CP Eigenstate (-)} \\
&\begin{cases}
K_S \\
\pi^0
\end{cases}
\end{align*}
\]

\[
\begin{align*}
&\frac{1}{\sqrt{2}} \left[D^0(k_1) \bar{D}^0(k_2) \right] + (-1)^L \left[D^0(k_2) \bar{D}^0(k_1) \right]
\end{align*}
\]

- \(\tau \)-charm factories have good CP-tagging capabilities
 - CP anti-correlated \(\psi(3770) \): CP(tag) \((-1)^L = [\text{CP}(K_S) \text{CP}(\pi^0)] (-1) = +1 \)
 - CP correlated \(\psi(4140) \)

Can measure \((y \cos \phi)\):

\[
B^l_{\pm} = \frac{\Gamma(D_{CP\pm} \rightarrow X l \nu)}{\Gamma_{tot}}
\]

\[
y \cos \phi = \frac{1}{4} \left(\frac{B^l_+}{B^-} - \frac{B^-}{B^+_+} \right)
\]

D. Atwood, A.A.P., hep-ph/0207165
D. Asner, W. Sun, hep-ph/0507238
b. Mismatch of transition probabilities

- At least two components of the transition amplitude are required

Look at charged D's:

\[A(D^+ \rightarrow f) \equiv A_f = |A_1|e^{i\delta_1}e^{i\phi} + |A_2|e^{i\delta_2}e^{i\phi_2} \]

Then, a charge asymmetry will provide a CP-violating observable

\[
a_f = \frac{\Gamma(D^+ \rightarrow f) - \Gamma(D^- \rightarrow f)}{\Gamma(D^+ \rightarrow f) + \Gamma(D^- \rightarrow f)} = \frac{2 \text{Im} A_1 A_2^* \sin(\delta_1 - \delta_2)}{|A_1|^2 + |A_2|^2 + 2 \text{Re} A_1 A_2^* \cos(\delta_1 - \delta_2)}
\]

...or, introducing \(r_f = |A_2/A_1| \):

\[a_f = 2r_f \sin \phi \sin \delta \]

- Same formalism applies if one of the amplitudes is generated by New Physics

need \(r_f \sim 1\% \) for \(O(1\%) \) charge asymmetry
b. Mismatch of transition probabilities - II

- This can be generalized for neutral D-mesons too:

\[
 a_f = \frac{\Gamma(D \to f) - \Gamma(D \to \bar{f})}{\Gamma(D \to f) + \Gamma(D \to \bar{f})} \quad \text{and} \quad a_{\bar{f}} = \frac{\Gamma(D \to \bar{f}) - \Gamma(D \to f)}{\Gamma(D \to f) + \Gamma(D \to \bar{f})}
\]

- Each of those asymmetries can be expanded as

\[
a_f = a_f^d + a_f^m + a_f^i
\]

- direct mixing interference

\[
a_f^d = 2r_f \sin \phi_f \sin \delta_f
\]

\[
a_f^m = -R_f \frac{y_f'}{2} (R_m - R_m^{-1}) \cos \phi
\]

\[
a_f^i = R_f \frac{x_f'}{2} (R_m + R_m^{-1}) \sin \phi
\]

1. similar formulas available for \(\bar{f} \)
2. for CP-eigenstates: \(f = \bar{f} \) and \(y_f' \to y \)

Those observables are of the first order in CPV parameters, but require tagging.
What to expect?

- **Standard Model asymmetries (in 10^{-3}):**

<table>
<thead>
<tr>
<th>Final state</th>
<th>$\pi^+\eta$</th>
<th>$\pi^+\eta'$</th>
<th>$K^+\overline{K}^0$</th>
<th>$\pi^+\rho^0$</th>
<th>$\pi^0\rho^+$</th>
<th>$K^*+\overline{K}^0$</th>
<th>$K^\overline{K}^$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$a_f, \cos\delta > 0$</td>
<td>-1.5±0.4</td>
<td>0.04±0.01</td>
<td>1.0±0.3</td>
<td>-2.3±0.6</td>
<td>2.9±0.8</td>
<td>-0.9±0.3</td>
<td>2.8±0.8</td>
</tr>
<tr>
<td>$a_f, \cos\delta < 0$</td>
<td>-0.7±0.4</td>
<td>0.02±0.01</td>
<td>0.5±0.3</td>
<td>-1.2±0.6</td>
<td>1.5±0.8</td>
<td>-0.5±0.3</td>
<td>1.4±0.7</td>
</tr>
</tbody>
</table>

- **New Physics (in new tree-level interaction and new loop effects):**

<table>
<thead>
<tr>
<th>Model</th>
<th>r_f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extra quarks in vector-like rep</td>
<td>< 10^{-3}</td>
</tr>
<tr>
<td>RPV SUSY</td>
<td>< 1.5×10^{-4}</td>
</tr>
<tr>
<td>Two-Higgs doublet</td>
<td>< 4×10^{-4}</td>
</tr>
</tbody>
</table>

HFAG provides the following averages from BaBar, Belle, CDF, E687, E791, FOCUS, CLEO collaborations

<table>
<thead>
<tr>
<th>Decay mode</th>
<th>CP asymmetry</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D^0 \to K^+ K^-$</td>
<td>+ 0.0136 ± 0.012</td>
</tr>
<tr>
<td>$D^0 \to K_S^0 K_S^0$</td>
<td>− 0.23 ± 0.19</td>
</tr>
<tr>
<td>$D^0 \to \pi^+ \pi^-$</td>
<td>+ 0.0127 ± 0.0125</td>
</tr>
<tr>
<td>$D^0 \to \pi^0 \pi^0$</td>
<td>+ 0.001 ± 0.048</td>
</tr>
<tr>
<td>$D^0 \to \pi^+ \pi^- \pi^0$</td>
<td>+ 0.01 ± 0.09</td>
</tr>
<tr>
<td>$D^0 \to K_S^0 \pi^0$</td>
<td>+ 0.001 ± 0.013</td>
</tr>
<tr>
<td>$D^0 \to K^- \pi^+ \pi^0$</td>
<td>− 0.031 ± 0.086</td>
</tr>
<tr>
<td>$D^0 \to K^- \pi^- \pi^0$</td>
<td>− 0.001 ± 0.052</td>
</tr>
<tr>
<td>$D^0 \to K_S^0 \pi^+ \pi^-$</td>
<td>− 0.009 ± 0.042</td>
</tr>
<tr>
<td>$D^0 \to K^- \pi^- \pi^+ \pi^-$</td>
<td>− 0.018 ± 0.044</td>
</tr>
<tr>
<td>$D^0 \to K^+ K^- \pi^+ \pi^-$</td>
<td>− 0.082 ± 0.073</td>
</tr>
</tbody>
</table>

Most measurements are at the percent sensitivity
Time-dependent observables

Time dependent $D^0(t) \rightarrow K^+K^-$ (lifetime difference analysis):
separate datasets for D^0 and \bar{D}^0

\[
\Delta Y_{KK} = \frac{\Gamma'(D^0 \rightarrow K^+K^-) - \Gamma'(\bar{D}^0 \rightarrow K^+K^-)}{\Gamma'(D^0 \rightarrow K^+K^-) + \Gamma'(\bar{D}^0 \rightarrow K^+K^-)} = \frac{A_m}{2} y \cos \phi - x \sin \phi
\]

$\Delta Y_{KK} = a_{KK}^m + a_{KK}^i$ universal for all final states

This analysis requires

1. time-dependent studies
2. initial flavor tagging ("the D^* trick")

BaBar [2003]: $\Delta Y=(-0.8 \pm 0.6 \pm 0.2) \times 10^{-2}$
Belle [2003]: $\Delta Y=(+0.20 \pm 0.63 \pm 0.30) \times 10^{-2}$

World average: $\Delta Y=(-0.35 \pm 0.47) \times 10^{-2}$
Untagged observables

Look for CPV signals that are

1. first order in CPV
2. do not require flavor tagging

Consider the final states that can be reached by both \(\bar{D}^0 \) and \(D^0 \), but are not CP eigenstates (\(\pi \rho, K K^*, K \pi, K \rho, \ldots \))

\[
A_{CP}^U(f, t) = \frac{\Sigma_f - \Sigma_{\bar{f}}}{\Sigma_f + \Sigma_{\bar{f}}}
\]

where

\[
\Sigma_f = \Gamma(D^0 \to f)[t] + \Gamma(\bar{D}^0 \to f)[t]
\]

A.A.P., PRD69, 111901(R), 2004
hep-ph/0403030
CP violation: untagged asymmetries

Expect time-dependent asymmetry...

\[A_{CP}^{U}(f,t) = \frac{1}{D(t)} e^{-\Gamma t} \left[A + B (\Gamma t) + C (\Gamma t)^2 \right] \]

... and time-integrated asymmetry

\[A_{CP}^{U}(f,t) = \frac{1}{D} [A + B + 2C] \]

... whose coefficients are computed to be

\[
A = \left| A_f \right|^2 \left[\left(1 - \left| \overline{A_f} \right|^2 / \left| A_f \right|^2 \right) + R \left(1 - \left| A_f \right|^2 / \left| \overline{A_f} \right|^2 \right) \right],
\]

\[
B = -2y \sqrt{R} \sin \phi \sin \delta \left(\left| \overline{A_f} \right|^2 + \left| A_f \right|^2 \right) - \cos \phi \cos \delta \left(\left| \overline{A_f} \right|^2 - \left| A_f \right|^2 \right),
\]

\[
C = \frac{x^2}{2} A.
\]

This is true for any final state \(f \)
CP violation: untagged asymmetries ($K^+\pi^-$)

For a particular final state $K\pi$, the time-integrated asymmetry is simple

\[A_{CP}^{U}(K^+\pi^-) = -y \sin \delta \sin \phi \sqrt{R} \]

This asymmetry is

1. non-zero due to large SU(3) breaking
2. contains no model-dependent hadronic parameters (R and δ are experimental observables)
3. could be as large as 0.04% for NP

Note: larger by $O(100)$ for SCS decays ($\pi\rho$, ...) where $R \sim 1$
Other observables can be constructed for baryons, e.g.

\[A(\Lambda_c \rightarrow N\pi) = \bar{u}_N(p,s)[A_S + A_P\gamma_5]u_{\Lambda_c}(p_{\Lambda_c},s_{\Lambda_c}) \]

These amplitudes can be related to “asymmetry parameter”

\[\alpha_{\Lambda_c} = \frac{2 \text{Re}(A_S^*A_P)}{|A_S|^2 + |A_P|^2} \]

... which can be extracted from

\[\frac{dW}{d\cos\theta} = \frac{1}{2}(1 + P\alpha_{\Lambda_c}\cos\theta) \]

If CP is conserved \(\alpha_{\Lambda_c}^{CP} \Rightarrow -\alpha_{\Lambda_c} \), thus CP-violating observable is

\[A_f = \frac{\alpha_{\Lambda_c} + \bar{\alpha}_{\Lambda_c}}{\alpha_{\Lambda_c} - \bar{\alpha}_{\Lambda_c}} \]

FOCUS[2006]: \(A_{\Lambda\pi} = -0.07\pm0.19\pm0.24 \)
Conclusions

- Charm provides great opportunities for New Physics studies
 - large available statistics
 - small Standard Model background
- Different observables should be used to disentangle CP-violating contributions to $\Delta c=1$ and $\Delta c=2$ amplitudes
 - time-dependent and time-independent charge asymmetries
 - CP-tagged measurements
- Observation of CP-violation in the current round of experiments provide “smoking gun” signals for New Physics
 - new observables should be considered
 - untagged CP-asymmetries
 - triple-product correlators in $D \to VV$ decays
 - CP-asymmetries in baryon decays
Additional slides
“Static” observables for CP-violation

I. Intrinsic particle properties

✓ electric dipole moments:

\[\mathbf{d} = \int d^3 x \, \mathbf{x} \rho(\mathbf{x}) \]

should be (anti-)alligned with spin \(\mathbf{s} \)!

\[\mathbf{d} \xrightarrow{T} \mathbf{d} \quad || \quad \mathbf{s} \xrightarrow{T} -\mathbf{s} \]

however

\[\mathbf{d} \xrightarrow{P} -\mathbf{d} \quad || \quad \mathbf{s} \xrightarrow{P} \mathbf{s} \]

thus, if \(\mathbf{d} \neq 0 \) \(\Rightarrow T \) or \(CP \) is broken

<table>
<thead>
<tr>
<th>Particle</th>
<th>Exp Limit, e cm</th>
<th>Theory (SM), e cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>neutron</td>
<td>(</td>
<td>d_n</td>
</tr>
<tr>
<td>electron</td>
<td>(</td>
<td>d_e</td>
</tr>
<tr>
<td>muon</td>
<td>(</td>
<td>d_\mu</td>
</tr>
</tbody>
</table>

Low energy strong interaction effects might complicate predictions!