D Leptonic Decays near Production Threshold

Steven Blusk Syracuse University (on behalf of the CLEO Collaboration)

Steven Blusk, Syracuse University

CHARM 2007, Cornell University, Aug. 5-8, 2007

Introduction: $D \rightarrow \ell^+ v$

Partial width measurement probes the hadronic vertex

- □ Soft-gluon effects \rightarrow Non-perturbative QCD
- □ Decay constant, f_D describes the hadronic vertex, and is proportional to the wave-function overlap (Prob $\propto c\bar{d}(\bar{s})$ →W annihilation)

□ General solution (SM) for partial width

$$\Gamma(\mathbf{P}^{+} \to \ell^{+} \nu) = \frac{1}{8\pi} G_{F}^{2} f_{P}^{2} m_{\ell}^{2} M_{P} \left(1 - \frac{m_{\ell}^{2}}{M_{P}^{2}}\right)^{2} |V_{Qq}|^{2}$$

Calculate, or measure if V_{Oq} known

Leptonic Decays in SM

- Measurement provides critical test of theory to compute f_B , f_{Bs} .
- In a few years, we will have a precision measurement (~5°) of γ(φ₃) by LHCb.
 - Expect $\sigma(\gamma) \sim 5^{\circ}$ with 2 fb^{-1}
- Could provide signs of NP if γ measurement doesn't coincide with $\Delta m_{(s,d)}$ band.
- $B \rightarrow \tau^+ \nu$ gives $V_{ub} f_{B}$, but hard to measure directly.

Constraints from V_{ub} , Δm_d , $\Delta m_s \& B \rightarrow \tau^+ \nu$

Deviations from lepton universality possible if tanβ large Hewett [hep-ph/9505246] & Hou, PRD 48, 2342 (1993).

$$\frac{\Gamma(\mathbf{P}^{+} \rightarrow \tau^{+} \nu)}{\Gamma(\mathbf{P}^{+} \rightarrow \mu^{+} \nu)} = \frac{m_{\tau}^{2} \left(1 - m_{\tau}^{2} / M_{P}^{2}\right)^{2}}{m_{\mu}^{2} \left(1 - m_{\mu}^{2} / M_{P}^{2}\right)^{2}}$$

Deviations of this ratio from SM value of 9.72 would signal New Physics

D and D_s Landscape near threshold

\Box Produce DD at $\psi(3770)$.

- No additional particles
- Coherent 1– state
- Ideal for absolute BF measurements
- Measurements from 281 pb⁻¹ (Phys. Rev. Lett. 95, 251801 (2005))

 $B(D^+ \to \mu^+ \nu) = (4.40 \pm 0.66^{+0.09}_{-0.12}) \times 10^{-4}$ $f_D = (222.6 \pm 16.7^{+2.8}_{-3.4}) \text{ MeV}$

Not reviewed in this talk

0970606-007 Ψ' Ψ" $D_{D}^{-*} D_{S}^{+} D_{S}^{-} D_{D}^{+} D_{S}^{-} D_{S}^{+} D_{S}^{-}$ Ď;†Ď; DATA PDG 30 SCAN POINTS → hadrons) (nb 25 20 15 σ (e⁺e⁻ 3.4 3.6 3.8 4.2 3.2 4 E_{CM} (GeV)

D_s Leptonic Decays

Dedicated scan to find optimal energy for D_s physics (see talk by B. Lang)

> □ At $E_{cm} = 4170 \text{ MeV } \sigma(\overline{D}_s D_s^*) \sim 0.9 \text{ nb}$ □ Additional photon, ~100 MeV to contend with.

Steven Blusk, Syracuse University

CHARM 2007, Corne

Reconstructed D_s "Tags" at 4170 MeV

- Leptonic analyses require one fully reconstructed D_s decay ("tag").
 - 8 tag modes
- Signal region:
 - $|M_{rec}-M_{Ds}| < 2.5 \sigma$
- Sidebands:
 - $5.0 < |M_{rec} M_{Ds}| < 7.5 \sigma$
- Total # of Tags
 = 31,302 ± 472 (stat)

Steven Blusk, Syracuse University

CHARM 2007, Cornell

Measurements of f_{Ds}

"Missing Energy" Analysis (195 pb⁻¹) Preliminary

e

Only one additional track, consistent with electron hypothesis

 $\tau \rightarrow e \nu \nu$

 Signal discriminant: Remaining energy in calorimeter after tag and electron are removed.

Anatomy of Missing Mass Analyses

$$B(D_{s}^{+} \rightarrow \mu^{+} \nu) = \frac{N_{cand} - N_{back}}{\varepsilon_{\mu}(N_{tag}^{*})}$$

 $N_{tag}^{*} = N(D_{s}^{*\pm}D_{s}^{\mp}) \text{ including } \gamma \text{ from } D_{s}^{*} \text{ decay}$ $\varepsilon_{\mu} = \text{ muon detection efficiency}$ $N_{cand} = \# \text{ of } D_{s}^{+} \rightarrow \mu^{+}\nu \text{ candidates}$ $N_{back} = \text{ expected background}$

Missing Mass Analyses – N_{tag}*

$$B(D_s^+ \to \mu^+ \nu) = \frac{N_{cand} - N_{back}}{\varepsilon_{\mu}}$$

■ Take each D_s tag and photon candidate and compute the recoil mass against $(D_s^{tag} + \gamma)$.

$$\mathbf{M}\mathbf{M}^{*2} = \left(\mathbf{E}_{CM} - \mathbf{E}_{D_{s}} - \mathbf{E}_{\gamma}\right)^{2} - \left(\vec{p}_{CM} - \vec{p}_{D_{s}} - \vec{p}_{\gamma}\right)^{2}$$

regardless of whether $D_s + \gamma$ forms D_s^* , recoil mass peaks at $M(D_s)^2$

□ N_{tag}^* = 18645±426(stat) tags, after 2.5 σ selection on MM^{*2}.

Steven Blusk, Syracuse University

CHARM 2007, Cornell Univ

Missing Mass Analyses – Signal Side

$$B(D_{s}^{+} \rightarrow \mu^{+} \nu) = \frac{N_{cand} - N_{back}}{\varepsilon_{\mu}(N_{tag}^{*})}$$

For each D_s^{*} candidate, perform a kinematic fit, imposing the following constraints:

$$\vec{p}_{D_s} + \vec{p}_{D_s^*} = 0$$

$$E_{D_s} + E_{D_s^*} = E_{CM}$$

$$M_{D_s^*} - M_{D_s} = 143.6 \text{ MeV}$$

$$M_{tag} = M (D_s^*)$$

$$E_{D_s^*} = \frac{E_{cm}}{2} \pm \frac{M_{D_s^*}^2 - M_{D_s}^2}{2E_{cm}}$$

Two solutions for each D_s^* candidate • γ belongs with D_s tag • γ belongs with $D_s \rightarrow \mu\nu$ (try both)

Missing Mass Analyses – Signal Side

For each D_s^{*} candidate, perform a kinematic fit, imposing the following constraints:

$$\vec{p}_{D_s} + \vec{p}_{D_s^*} = 0$$

$$E_{D_s} + E_{D_s^*} = E_{CM}$$

$$M_{D_s^*} - M_{D_s} = 143.6 \text{ MeV}$$

$$M_{tag} = M (D_s^*)$$

$$E_{D_s^*} = \frac{E_{cm}}{2} \pm \frac{M_{D_s^*}^2 - M_{D_s}^2}{2E_{cm}}$$

Two possibilities for each D_s^* candidate • γ belongs with D_s tag • γ belongs with $D_s \rightarrow \mu \nu$ (try both)

MM² from CLEO-c Data

Backgrounds

Combinatoric background under peaks:

Use D_s cand. mass sidebands

Sample	Signal	Comb. Back.
(i) E _{trk} ^{CC} <300 MeV, "D→μν-like"	92	3.5±1.4
(ii) E _{trk} ^{cc} <300 MeV, "D→τν-like"	31	2.5±1.1
(iii) E _{trk} ^{CC} >300 MeV, "D→τν-like"	25	3.0±1.3
Total	148	9.0 ±1.3

\Box D_s $\rightarrow \tau v$ backgrounds from real D_s decays

Background	BF (%)	E _{trk} ^{cc} <300 MeV, "D → τν-like"	E _{trk} ^{CC} <300 MeV, "D → τν-like"
$D_s \rightarrow X \mu v$	8.2	0 ^{+1.8} -0	0
$D_s \rightarrow X \mu v$	1.0	0.03 ± 0.04	0.08±0.03
$D_{s}^{+} \rightarrow \tau^{+} \nu,$ $\tau \rightarrow \pi^{+} \pi^{0} \nu$	1.5	0.55±0.22	0.64±0.24
$D_{s}^{+} \rightarrow \tau^{+} \nu,$ $\tau^{+} \rightarrow \mu^{+} \nu \overline{\nu}$	1.0	0.37±0.15	0
Total		1.0 ^{+1.8} -0.3	0.7±0.2

Negligible real D_s decay background to D_s $\rightarrow \mu\nu$ Since B(D_s $\rightarrow \pi^+\pi^0$) <1.1x10⁻³ @ 90% CL

Branching fractions

$N_{\mu\nu} = N_{tag} \varepsilon[\varepsilon_{\mu} B(D_s^+ \to \mu^+ \nu) + \varepsilon_{\tau} B(D_s^+ \to \tau^+ \nu; \tau \to \pi \overline{\nu})]$

N _{tag}	$=18645\pm426\pm1081$
ε = efficiency for reconstructing μ^+/π^+	= 80.1%
ϵ_{μ} = efficiency for E _{cc} <300 MeV + MM ² <50 MeV	= 91.4%
ϵ_{τ} = efficiency for E _{cc} <300 MeV(60%) + MM ² <50 M	leV(13%) = 13.2%
$N_{\mu\nu} = 92 - (3.5 \pm 1.4)$	$= 88.5 \pm 9.7$
$B(D_s^+ o au^+ u; au^+ o \pi^+ \overline{ u})$	$= 1.059 \times B(D_s^+ \to \mu^+ \nu) (SM / PDG)$

 $B(D_{S}^{+} \rightarrow \mu^{+}\nu) = (0.597 \pm 0.067 \pm 0.039)\%$

	Type (i)	Type (ii)
N _{cand}	31	25
N _{back}	3.5 ^{+1.7} -1.1	5.1±1.6
ε(E _{trk} ^{CC})	60%	40%
ε(MM ²)req.	32%	45%

 $B(D_{S}^{+} \rightarrow \tau^{+} v) = (8.0 \pm 1.3 \pm 0.4)\%$

 $B(D_{S}^{+} \rightarrow \mu^{+} \nu)$

 $B(D_S^+ \rightarrow \tau^+ \nu)$

Combined f_{Ds}

Combine (i) and (ii).

Missing Energy Analysis $D_S^+ \rightarrow \tau^+ \nu, \tau^+ \rightarrow e^+ \nu \nu$

- Use 195 pb⁻¹ at E_{cm}=4170 MeV
- Reconstruct D_s tag, use recoil from D_s to get $N(\overline{D}_s D_s^*)$

(Preliminary)

- Require one extra electron candidate + no other tracks.
- No need to find γ from D_S*
- Main backgrounds from $D_S^+ \rightarrow Xe^+ v \sim 8\%$

Discriminant is E_{CC}^{extra}: extra energy in CC left over after showers associated to reconstructed particles are removed.

- Signal region: E_{CC}^{extra} < 400 MeV</p>
- Background obtained by scaling MC

■ $B(D_S^+ \to \tau^+ \nu) = (6.29 \pm 0.78 \pm 0.52)\%$

Combined results

 Weighted Average: f_{Ds}=275±10±5 MeV, the (systematic errors are mostly uncorrelated between the measurements)

Previously CLEO-c measured

$$f_{D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \text{ MeV}$$

M. Artuso et al., Phys .Rev. Lett. 95 (2005) 251801

• Thus $f_{DS}/f_{D^+}=1.24\pm0.10\pm0.03$ • $\Gamma(D_S^+ \rightarrow \tau^+ \nu)/\Gamma(D_S^+ \rightarrow \mu^+ \nu)=$ 11.5±2.0, SM=9.72, consistent with lepton universality

CHARM 2007, Cornell University, A

Comparisons with theoretical expectations

CLEO-c data
 consistent with
 most models,
 more precision
 needed

 Using Lattice ratio find

 |V_{cd}/V_{cs}|=0.2166±
 0.020 (exp)
 ±0.0017(theory)

Steven Blusk, Syracuse University

CLEO D _s $\rightarrow \mu\nu, \tau\nu \ (\tau \rightarrow \pi\nu)$ Final March07, 314/pb	⊷		
CLEO D _s →τν (τ→evv) prelim ICHEP 2006, 195/pb	⊬-●- H	Artuso,	
CLEO average	Hei	PRL95, 251801 (2005)	
	275 <u>+</u> 10 <u>+</u> 5	223 <u>+</u> 17 <u>+</u> 3	1.24 <u>+</u> 0.09 <u>+</u> 0.03
Unquenched LQCD Follana, arXiv:0706.172 [hep-lat]	H	HH I	HH I
Unquenched LQCD Aubin, PRL 95, 122002 (2005)	⊢●⊣	⊢●⊣	⊢ ●1
Quenched L. (QCDSF) Ali Khan, hep-lat/0701015	HOH		101
Quenched L. (Taiwan) Chiu, PLB 624, 31 (2005)	⊢⊷⊷	HOH	HOH
Quenched L. (UKQCD) Lellouch, PRD 64, 094501 (2001)	нөн	нөн	HOH
Quenched Lattice Becirevic, PRD 60, 074501 (1999)	HeH	HeH	
QCD Sum Rules Bordes, hep-ph/0507241	⊢●→	⊢●→	ю
QCD Sum Rules Narison, hep-ph/0202200	⊢ ●1	⊢●⊣	HeH
Quark Model Ebert, PLB 635, 93 (2006)	•	•	•
Quark Model Cvetic, PLB 596, 84 (2004)	⊢ ●1	⊢●→	•
Light Front QM Linear Choi, hep-ph/0701263	•	•	•
Light Front QM HO Choi, hep-ph/0701263	•	•	•
Potential Model Wang, Nucl. Phys. A744, 156 (2004)	•	•	•
Light Front QCD Salcedo, Braz. J. Phys. 34, 297 (2004)	•	•	•
Isospin Splittings Amundsen, PRD 47, 3059 (1993)			
	200 250 300	200 300	D 1 1.2 1.4
	f _{Ds} (MeV)	f _D (MeV)	f _D /f _D

Comparison to previous measurements

TABLE VI: These results compared with previous measurements. Results have been updated for new values of the D_s lifetime. ALEPH uses both measurements to derive a value for the decay constant.

Exp.	Mode	B	$\mathcal{B}_{\phi\pi}$ (%)	$f_{D_s^+}$ (MeV)
		_		
CLEO-c	combined	_		275±10±5
CLEO [30]	$\mu^+\nu$	$(6.2 \pm 0.8 \pm 1.3 \pm 1.6)10^{-3}$	$3.6 {\pm} 0.9$	$273 \pm 19 \pm 27 \pm 33$
BEATRICE [31] $\mu^+\nu$	$(8.3 \pm 2.3 \pm 0.6 \pm 2.1)10^{-3}$	$3.6 {\pm} 0.9$	$315\pm43\pm12\pm39$
ALEPH [32]	$\mu^+\nu$	$(6.8 \pm 1.1 \pm 1.8)10^{-3}$	$3.6 {\pm} 0.9$	$285\pm19\pm40$
ALEPH [32]	$\tau^+\nu$	$(5.8 \pm 0.8 \pm 1.8)10^{-2}$		
OPAL [34]	$\tau^+\nu$	$(7.0 \pm 2.1 \pm 2.0)10^{-2}$		$286\pm44\pm41$
L3 [33]	$\tau^+\nu$	$(7.4 \pm 2.8 \pm 1.6 \pm 1.8)10^{-2}$		$302 \pm 57 \pm 32 \pm 37$
BaBar [36]	$\mu^+\nu$	$(6.5 \pm 0.8 \pm 0.3 \pm 0.9)10^{-3}$ 4	$4.8 \pm 0.5 \pm 0.4$	$4\ 279 \pm 17 \pm 6 \pm 19$

CLEO-c is most precise result to date for both f_{Ds} & f_D+

Summary

Decay constants from CLEO-c are most precise to date

$f_{\rm D^+} = (222.6 \pm 16.7^{+2.3}_{-3.4}) \,\mathrm{MeV}$

$f_{\rm D} = (275 \pm 10 \pm 5) \,{\rm MeV}$

Expect to reach a precision of ~4.0-4.5% on these decay constants with full CLEO-c (through Apr 2008).

Missing Mass Distributions - MC

Check of resolution, procedure using $D_s \rightarrow K_s K_s$ - Remove extra track/shower/K[±] veto

MC resolution consistent w/ data
Find BF=(2.90±0.19±0.18)%,

Result from double tags: (3.00±0.19±0.10)%

• This background is wiped out by the PID requirement on the stiff μ/π .

