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Outline

• form factors are interesting

• form factors are useful

• charm is good

• theory tools

• some answers

• some questions
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form factors are interesting
● semileptonic meson decays: a controlled system to 
study the strong interaction

● dialing the q2 knob:  
- spectral shape governed by quark-hadron duality
- dispersion relations, analyticity, unitarity  

● dialing the m knob:
- explore regimes where different effective theory 
descriptions are valid: CHPT, HQET, SCET 
- unsolved theoretical questions in QCD
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form factors are useful
● |Vxy|: study the weak interactions of quarks

● cancel the hadronic part of different observables in the 
search for New Physics, e.g. 

K→πeν ⇒ K→πνν
B→πeν ⇒ B →ππ

D→πeν
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charm is good
● charm quark sits close to the border region between 
heavy and light quarks - Nature has  “dialed the m 
knob” to a useful place

● large statistics 
- tests of lattice 
- tests of powerful “new” expansion of form 
factors based on analyticity
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theory tools

1) the strong interactions are described by a field 
theory (QCD) 

useful facts:

⇒ leads to a small expansion parameter: z

2) in restricted kinematic regions, effective field 
theories apply ⇒ leads to small expansion parameters: 

mq/ΛQCD  (CHPT),   ΛQCD/mQ (HQET)

 ΛQCD/E   (SCET) 

1) ⇒ semileptonic form factors are very simple
this talk:

2) ⇒ measurements have important implications
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Fact:  every semileptonic meson form factor 
that has ever been measured is indistinguishable 
from a straight line (in many cases, a constant)
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● Hadronic amplitudes (form factors) have singularities
from long-distance (onshell) particle progagation 

B*

2

2

B π

X

Z

Y

2

resonancesproduction
threshold

“anomalous 
threshold”

● A “PDG” problem - no dynamics necessary
● No anomalous thresholds for ground state pseudoscalar mesons

q
2 ≥ (mB + mπ)2 q

2
= m

2

B∗ m
2

B ≥ m
2

X + m
2

Z

or m
2

π ≥ m
2

Y + m
2

Z

K→π
D→π B→π D→K B→D

-no poles, 
-no anom. thresh.

-one pole (B*) 
-no anom. thresh.

-one pole (Ds*) 
-anom. thresh.

-few poles (Bc*) 
-anom. thresh.

Should be irrelevant for practical purposes: Zweig/isospin/phase-space suppressed

Analyticity
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Standard complex analysis:

F (q2) = 1
2πi

∮
dt

F (t)
t−q2 = 1

π

∫
∞

t+
dt

ImF (t)
t−q2

t+ = (mB + mπ)2t
−

= (mB − mπ)2

Pole expansions
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F (q2) =
1
π
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R is a physical quantity, whose order of magnitude can be estimated by power 

counting in the heavy-quark mass: R~(Λ/mb)½ 
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∣
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Popular truncations of the “B* + one pole” model

F+(q2) =

F+(0)/(1−α)
1−q2/m2

B∗

+ c
1−q2/M ′2 + . . .

=

F+(0)(1−δq2/m2
B∗)

(1−q2/m2
B∗)(1−[α+δ(1−α)]q2/m2

B∗)

α=0 or δ=1 ⇒simple pole

δ=0 ⇒ “BK” 

α→∞ and δ→1 ⇒single pole

α

δ
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Figure 1: 68% (dark) and 90% (light) confidence regions for parameters α and δ as determined
by fitting F+ in (33) to binned B → πlν branching fraction measurements in [29], [30] and [31].
Also shown is the boundary of the 68% confidence region (dashed line) for the parameterization
of F+ in (28), with βBπ = 1.2.

5 Experimental Constraints

Existing experimental data can be used to put significant constraints on the observables defined
in (22) and (25). Figure 1 shows the constraints imposed on α and δ by combined CLEO [29]
(three q2 bins), Belle [30] (three q2 bins) and BaBar [31] (five q2 bins) B → π branching
fraction measurements. The contours in Figure 1 are obtained from a χ2 fit of F+ in (33) to
the data, and correspond to 68% (∆χ2 = 2.3) and 90% (∆χ2 = 4.6) confidence-level regions.
Systematic errors are added to the statistical errors in quadrature. With the exception of
[29], where error correlations between different q2 bins are available, branching fractions for
different bins are assumed uncorrelated, as are the measurements of different experiments.
The fit yields αBπ = 0.8+0.5

−0.2 and δBπ = 0.6+0.3
−0.7 as the 68% confidence intervals for the separate

parameters. The simple pole model, corresponding to the boundaries of the plot at α = 0 and
δ = 1, is ruled out decisively by the data (99.99% level). However, the single pole model is
not ruled out with high confidence. The contours in Figure 1 thus extend as fine filaments
toward the “point-at-infinity” as discussed after (33). If δ is small, power-suppressed terms in
α and β may compete with this parameter in (29). For comparison, the 68% confidence-level
region obtained from a fit to F+ in the parameterization (28), before expanding in α − 1 and
β − 1, is also shown in Figure 1, using βBπ = 1.2 [34, 35] (see Section 6), and imposing the
physical constraint 0 < 1/γ < m2

B∗/(mB + mπ)2 on the position of the effective pole. With

12

Simplifications provide intuition,  
but have downsides:

Pole dominance
- clear interpretation, clearly ruled out 
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5 Experimental Constraints

Existing experimental data can be used to put significant constraints on the observables defined
in (22) and (25). Figure 1 shows the constraints imposed on α and δ by combined CLEO [29]
(three q2 bins), Belle [30] (three q2 bins) and BaBar [31] (five q2 bins) B → π branching
fraction measurements. The contours in Figure 1 are obtained from a χ2 fit of F+ in (33) to
the data, and correspond to 68% (∆χ2 = 2.3) and 90% (∆χ2 = 4.6) confidence-level regions.
Systematic errors are added to the statistical errors in quadrature. With the exception of
[29], where error correlations between different q2 bins are available, branching fractions for
different bins are assumed uncorrelated, as are the measurements of different experiments.
The fit yields αBπ = 0.8+0.5

−0.2 and δBπ = 0.6+0.3
−0.7 as the 68% confidence intervals for the separate

parameters. The simple pole model, corresponding to the boundaries of the plot at α = 0 and
δ = 1, is ruled out decisively by the data (99.99% level). However, the single pole model is
not ruled out with high confidence. The contours in Figure 1 thus extend as fine filaments
toward the “point-at-infinity” as discussed after (33). If δ is small, power-suppressed terms in
α and β may compete with this parameter in (29). For comparison, the 68% confidence-level
region obtained from a fit to F+ in the parameterization (28), before expanding in α − 1 and
β − 1, is also shown in Figure 1, using βBπ = 1.2 [34, 35] (see Section 6), and imposing the
physical constraint 0 < 1/γ < m2

B∗/(mB + mπ)2 on the position of the effective pole. With

12

Simplifications provide intuition,  
but have downsides:

Pole dominance
- clear interpretation, clearly ruled out 

Single pole 
- fit value lies below all physical poles/singularities 
- no clear interpretation of pole mass

m2
→ m2

B∗/[1 + α(1 − δ)] < m2

B∗ ?!



Richard Hill  14

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

0 0.5 1 1.5 2

-1

-0.5

0

0.5

1

αBπαBπ

δB
π

δB
π

Figure 1: 68% (dark) and 90% (light) confidence regions for parameters α and δ as determined
by fitting F+ in (33) to binned B → πlν branching fraction measurements in [29], [30] and [31].
Also shown is the boundary of the 68% confidence region (dashed line) for the parameterization
of F+ in (28), with βBπ = 1.2.

5 Experimental Constraints

Existing experimental data can be used to put significant constraints on the observables defined
in (22) and (25). Figure 1 shows the constraints imposed on α and δ by combined CLEO [29]
(three q2 bins), Belle [30] (three q2 bins) and BaBar [31] (five q2 bins) B → π branching
fraction measurements. The contours in Figure 1 are obtained from a χ2 fit of F+ in (33) to
the data, and correspond to 68% (∆χ2 = 2.3) and 90% (∆χ2 = 4.6) confidence-level regions.
Systematic errors are added to the statistical errors in quadrature. With the exception of
[29], where error correlations between different q2 bins are available, branching fractions for
different bins are assumed uncorrelated, as are the measurements of different experiments.
The fit yields αBπ = 0.8+0.5

−0.2 and δBπ = 0.6+0.3
−0.7 as the 68% confidence intervals for the separate

parameters. The simple pole model, corresponding to the boundaries of the plot at α = 0 and
δ = 1, is ruled out decisively by the data (99.99% level). However, the single pole model is
not ruled out with high confidence. The contours in Figure 1 thus extend as fine filaments
toward the “point-at-infinity” as discussed after (33). If δ is small, power-suppressed terms in
α and β may compete with this parameter in (29). For comparison, the 68% confidence-level
region obtained from a fit to F+ in the parameterization (28), before expanding in α − 1 and
β − 1, is also shown in Figure 1, using βBπ = 1.2 [34, 35] (see Section 6), and imposing the
physical constraint 0 < 1/γ < m2

B∗/(mB + mπ)2 on the position of the effective pole. With

12

Simplifications provide intuition,  
but have downsides:

Single pole 
- fit value lies below all physical poles/singularities 
- no clear interpretation of pole mass

m2
→ m2

B∗/[1 + α(1 − δ)] < m2

B∗ ?!

Pole dominance
- clear interpretation, clearly ruled out 

Modified pole 
- inspired by “large-energy effective theory” (missing degrees 
of freedom, corrections are a priori order one)
- fit values in conflict with assumptions in D decays
- introduces bias in B decays 
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in (22) and (25). Figure 1 shows the constraints imposed on α and δ by combined CLEO [29]
(three q2 bins), Belle [30] (three q2 bins) and BaBar [31] (five q2 bins) B → π branching
fraction measurements. The contours in Figure 1 are obtained from a χ2 fit of F+ in (33) to
the data, and correspond to 68% (∆χ2 = 2.3) and 90% (∆χ2 = 4.6) confidence-level regions.
Systematic errors are added to the statistical errors in quadrature. With the exception of
[29], where error correlations between different q2 bins are available, branching fractions for
different bins are assumed uncorrelated, as are the measurements of different experiments.
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toward the “point-at-infinity” as discussed after (33). If δ is small, power-suppressed terms in
α and β may compete with this parameter in (29). For comparison, the 68% confidence-level
region obtained from a fit to F+ in the parameterization (28), before expanding in α − 1 and
β − 1, is also shown in Figure 1, using βBπ = 1.2 [34, 35] (see Section 6), and imposing the
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B∗/(mB + mπ)2 on the position of the effective pole. With
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Pole dominance
- clear interpretation, clearly ruled out 

Modified pole 
- inspired by “large-energy effective theory” (missing degrees 
of freedom, corrections are a priori order one)
- fit values in conflict with assumptions in D decays
- introduces bias in B decays 
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Fact:  every semileptonic meson form factor 
that has ever been measured is indistinguishable 
from a straight line (in many cases, a constant)

Problem: 
- what is the relevant parameter ? 
- how do we parameterize shape without introducing bias ?

Solution: 
- shape of a straight line described by its slope
- the same power counting that predicts the straight-line behavior 
gives an effective and model-independent parameterization  

(can do the same thing with poles, but clumsier)
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zt

“A” is a physical quantity, whose order of magnitude can be estimated by power 

counting in the heavy-quark mass:  A~(Λ/mb)3

F (q2) = a0 + a1z + a2z2 + . . .

∑
k

a2

k
≡ 1

2πi

∮
dz

z
|F (z)|2 =

∫
∞

t+
dt k(t)|F (t)|2 ≡ A

Series expansions
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φ(t)F (t) =
∑

k
akz(t)k

“scheme” choice

expansion coefficient

expansion parameter:
z=t-t0 + O( (t-t0)2 )

For any reasonable scheme have an expansion:
1 + (a1/a0)z + · · · = 1 + O(z)

actually know that Σkak
2 = finite.   ⇒ even more reason to believe the expansion 

• can argue about which scheme is “better” (like asking is MS-
bar “better” than MS, etc.)

• can ask whether “order unity” means 1 or 10 or 1023  (like 
asking whether “order Λ/mb” means 1/10 or 1 or 1023) 
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• Variable transformation is well known, but 
usefulness has been obscured by reliance on 
“unitarity bounds” (theorists a little too smart for 
their own good) 

• New systematic power counting, new data to 
utilize/test this expansion 

2 Flavor Physics and CP Violation Conference, Vancouver, 2006

Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(
pµ + p′µ − m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −√
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 − √

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞∑
k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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that inclusion of the continuum contribution in (27)
is essential.

From a dynamical point of view, in order to ob-
tain the 1/E2 dependence appearing in heavy-to-light
form factors, as in (18), it is necessary that the con-
tinuum integral in (27) play a significant role. This
can be treated in a model independent way by break-
ing up the integral into a sum of effective poles,
and using power-counting estimates to establish rea-
sonable bounds on the coefficients of these effective
poles [28, 53]. In the first approximation, the contin-
uum integral is represented by a single effective pole,
and two parameters are necessary to describe its loca-
tion and strength relative to the H∗ pole. Since this is
one more parameter than is easily measured from the
data, various suggestions have been made for elimi-
nating one of these parameters.

The “single pole model”, where both the H∗ pole
and the continuum integral are represented by a single
pole that is allowed to float,

single pole :

F+(t) =
F+(0)

1 − t/m2
pole

,

(29)
is also ruled out by the data, although in a slightly
less direct way. Although the curve can be made to
fit, the pole position is forced to take an unphysical
value, significantly below both the H∗ pole and the
continuum. The “modified pole model”,

modified pole :

F+(t) =
F+(0)

(1 − t/m2
H∗) (1 − αpolet/m2

H∗)
,

(30)
holds a similar status. For D → K and D → π,
(25) and (26) clearly show that 1 + 1/β − δ ≈ 2 is not
valid for charm decays, as necessary for the motivation
for the simplification (30) proposed in [68]. Although
the form (30) can be made to fit the data, there is
no obvious physical interpretation for the resulting fit
parameter; in particular αpole obtained in this way has
no direct relation to the physical α defined in (27).

It should be kept in mind that unless there is a
physical meaning that can be given to the parameter
being studied, there is no guarantee that different ex-
perimental or lattice determinations will converge to
any one value for this parameter. It is therefore un-
clear what to make of discrepancies appearing when
different datasets are forced to fit models such as (29)
or (30) [69, 70]. The situation is especially dangerous
for comparing lattice and experiment, since the range
of t that is emphasized is different in the two cases.
These pitfalls are easily avoided by working with a
general parameterization such as (4) that is guaran-
teed to contain the true form factor, and by comparing
physical quantities, such as in (25), (26).

Table III Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process |z|max

D → K∗ 0.017

D → ρ 0.024

B → D∗ 0.028

B → ρ 0.10

6.3. Testing convergence

The general parameterization (4) provides a system-
atic procedure for estimating how many terms should
be resolved by data at a given level of precision. Rig-
orous bounds are placed on the coefficients by using
crossing symmetry to analyze the production form fac-
tor, either via unitarity arguments, or through power
counting of contributions from different momentum
regions. Since the latter estimates yield constraints
that are so much more powerful than can be safely es-
timated by unitarity, it is important to check wherever
possible that large “order unity” numbers don’t ap-
pear. As illustrated by Table II, the available semilep-
tonic data reveal no surprises.

7. Decays of pseudoscalar to vector
mesons

Pseudoscalar-pseudoscalar transitions hold a priv-
eleged position, from a first-principles simplicity point
of view, from the lattice point of view, and from the
experimental point of view. Pseudoscalar-vector tran-
sitions, while accompanied by new complications, are
however important backgrounds to the pseudosclar
mode, provide alternative extractions of CKM param-
eters, and yield important constraints on radiative
and hadronic transitions. This section briefly outlines
the implementation of the ideas in Section 2 to the
pseudoscalar-vector case. 18

The most obvious complication is the multiple in-
variant form factors that accompany the vector parti-
cle. Less obvious complications involve modifications
to the analytic structure of the form factors due to the
unstable nature of vector mesons, and the possible ex-
istence of anomalous thresholds. When these occur,
they will encroach on the gap between the semilep-
tonic region and singularities. The effects of such

18There have been numerous studies aimed at reproducing
the P → V data by means of symmetry arguments or proposed
generating resonance structures [71, 72, 73]. The focus of the
present talk is on the extraction of physical quantities without
simplifying or model assumptions.
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Some answers

• does this expansion work, i.e., is QCD a 
field theory?

• what physical observables can be extracted 
from the data?
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√

1 − t−/t+).
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D → K Vcs 0.051
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have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.
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Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(
pµ + p′µ − m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −√
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 − √

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞∑
k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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K→π

• difference between simplified pole models and series expansions gives 
systematic normalization error

• important for extracting Vus (experiment, lattice, Ch.P.T.) 

• ideal laboratory to test shape expansions - precision data, existence of 
heavy lepton to directly probe timelike form factor
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2

B. Crossing symmetry and form factor bounds

It is important in practice to determine whether large
“order unity” coefficients ak/a0 could upset the formal
power counting in z. To address this question, a norm
may be defined via

||F ||2 ≡
∞∑

k=0

a2
k =

1

2πi

∮
dz

z
|φF |2

=
1

π

∫ ∞

t+

dt

t − t0

√
t+ − t0
t − t+

|φF |2 . (4)

By crossing symmetry, the norm can be evaluated using
form factors for the related process of Kπ production.
The following sections investigate bounds on the integral
appearing on the right hand side of (4).

II. VECTOR FORM FACTOR CONSTRAINTS

To compare with unitarity predictions, and to motivate
a choice of φ in (3), we consider the correlation function,

Πµν(q) ≡ i

∫
d4x eiq·x〈0|T {

V µ(x)V ν(0)†
} |0〉

= (−gµνq2 + qµqν)Π1(q
2) + qµqνΠ0(q

2) . (5)

An unsubtracted dispersion relation can be written for
the quantity: (Q2 = −q2)

χ1(Q
2) ≡ 1

2

∂2

∂(q2)2
[
q2Π1

]
=

1

π

∫ ∞

0

dt
tImΠ1(t)

(t + Q2)3
. (6)

Assuming isospin symmetry, the contribution of all Kπ
states to the (positive) spectral function ImΠ1(t) is

3

2

1

48π

[(t − t+)(t − t−)]3/2

t3
|F+(t)|2θ(t − t+) ≤ ImΠ1(t) .

(7)
Choosing: [note that |z| = 1 along the contour in (4) ]

φF+
(t, t0, Q

2) =

√
1

32π

z(t, 0)

−t

(
z(t,−Q2)

−Q2 − t

)3/2

×
(

z(t, t0)

t0 − t

)−1/2 (
z(t, t−)

t− − t

)−3/4 t+ − t

(t+ − t0)1/4
, (8)

then yields the inequality: [23] [note that a0(t0, Q2) =
φ(t0, t0, Q2)F (t0)]

A2
F+

(t0, Q
2) ≡

∞∑
k=0

a2
k

a2
0

≤ χ1(Q2)

|φF+
(t0, t0, Q2)F+(t0)|2 . (9)

For Q ' ΛQCD, χ1(Q2) can be reliably calculated using
the OPE in (5). Collecting results from the literature [11,
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FIG. 1: Bounds on the expansion coefficients for the vector
form factor. The top (light) band represents the unitarity
bound, and the lower (dark) band is a direct evaluation from τ
decay and perturbative QCD. The perturbative contribution
is shown separately as the dashed line.

12], we have at renormalization scale µ = Q [24]

χ1(Q
2) =

1

8π2Q2

{
1 +

αs

π
− 0.062α2

s − 0.162α3
s + . . .

+
1

Q2

[
− 3

2
m2

s + . . .

]
(10)

+
8π2

Q4

[
− ms〈ūu〉 − αs

12π
〈G2〉 + . . .

]
+ . . .

}
,

where corrections of order mu/ms are neglected,
and ms(2 GeV) = 0.087(8)GeV [13], −ms〈ūu〉 −
αs〈G2〉/12π = −0.0001(8)GeV4 [14]. The light band
in Fig. 1 shows the resulting bound on the quantity
AF+

(t0, Q2), setting t0 = 0 and F+(0) ≈ 1. The per-
turbative uncertainty is estimated by varying µ2 from
Q2/2 to 2Q2, and allowing for higher-order contributions
of relative size ±1×α4

s. Uncertainties from perturbative
and power corrections are small above Q = 2 GeV, but
become significant below this scale. The width of the
band represents a 1σ contour obtained by adding uncer-
tainties in perturbative and power corrections linearly.

Although the OPE breaks down at small Q, the norm
in (4) remains perfectly well defined. The dark band in
Fig. 1 shows the result of evaluating the integral in (4) us-
ing τ → Kπν decay data [15] for the region t+ < t < m2

τ ,
and estimating the remaining contribution from t > m2

τ
using perturbative QCD. Uncertainties from the τ decay
data are conservatively estimated by taking the maxi-
mum (minimum) value of the weight function in (4) for
each bin, and multiplying by the corresponding upper
(lower) bound of the 1σ interval for the Kπ component
of the spectral function measured in [15]. It may be noted
that for the present purpose, there is no need to resolve
the underlying resonance structure of the spectral func-

“scheme” choice

unitarity bound

bound from tau decay+PQCD

Bounds on the coefficients (vector f.f.)

• unitarity bound requires working at small Q (becomes 
increasingly silly for increasing Q), where the OPE is poorly 
behaved, and the effects of the K* pole are most pronounced

• With direct bound, no need for this restriction  

• Supports “order unity” counting in cases where direct bound 
isn’t available
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Recent results

I
e
K = 0.15350 ± 0.00044 ± 0.00095

I
e
K = 0.15392 ± 0.00048

a1/a0 = 1.023 ± 0.040

a2/a0 = 0.75 ± 2.16

ρ12 = −0.064

↓

phase space integral ∝ ∫|F|²

from difference between pole and 
series models

scheme chosen so that correlation vanishes for 
ideal acceptance, resolution

[KTEV hep-ex/0608058]
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Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(
pµ + p′µ − m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −√
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 − √

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞∑
k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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1.5

2

(m2

D − m2

K)F ′(0)/F (0) = 0.94 ± 0.07 ± 0.10

1.13 ± 0.10 ± 0.12

D→K

[BELLE hep-ex/0510003]
[FOCUS hep-ex/0410037]



Richard Hill  25

2 Flavor Physics and CP Violation Conference, Vancouver, 2006

Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.

zt

Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(
pµ + p′µ − m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −√
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 − √

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞∑
k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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[BELLE hep-ex/0510003]
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Figure 10: Agreement between the FOCUS and BaBar
f+(q2) shapes in K−!+ν. The results are also compared
to a recent LQCD calculation[4]

The K−!+ν measurements do not seem terribly
consistent between experiments. My naive weighted
average of the K−!+ν values is α(K−!+ν) = 0.35 ±
0.033 but the CL value that all values are consistent
is only 0.9 %. The consistency goes up to 39 % if the
preliminary CLEO-c value of α = 0.19 is excluded.
My weighted average of α(π−!+ν) = 0.33± 0.08. The
consistency CL for all three pion measurements is a
respectable 56 %.

Table III Modified pole α parameters

α(K−!+ν) α(π−!+ν)

CLEO III[9] 0.36 ± 0.10 ± 0.08 0.37+0.20
−0.31 ± 0.15

FOCUS[8] 0.28 ± 0.08 ± 0.07

BaBar 0.43 ± 0.03 ± 0.04

CLEO-c 0.19 ± 0.05 ± 0.03 0.37 ± 0.09 ± 0.03

Belle 0.52 ± 0.08 ± 0.06 0.10 ± 0.21 ± 0.10

WT AVE 0.35 ± 0.033 0.33 ± 0.08

The data on α(π−e+ν) appears to be consistent
with that for α(K−e+ν) as is the case in LQCD cal-
culations. At this point, the pion data are not suffi-
ciently accurate to make a really incisive test of the
difference between α(π−e+ν) and α(K−e+ν).

5. Vector !ν Decays

Although historically vector decays such as D+ →
K

∗0
!+ν have been the most accessible semileptonic

decays in fixed target experiments owing to their ease
of isolating a signal, they are the most complex decays
we will discuss. One problem is that a separate form
factor is required for each of the three helicity states of
the vector meson. Vector !+ν states result in a multi-
hadronic final state. For example D+ → K

∗0
!+ν final

states can potentially interfere with D+ → K−π+!+ν
processes with the K−π+ in various angular momen-
tum waves with each wave requiring its own form fac-
tor. I will concentrate on form factor measurements
of Vector !ν decays.

I believe at present, the D+ → K−π+!+ν and
D+

s → φ!+ν are the only decays with reasonably
well measured form factors. The three decay an-
gles describing the D+ → K−π+!+ν decay are il-
lustrated in Fig. 11. The other kinematic variables
are q2 and mKπ. Because the mKπ distribution in

D

W
K*

!

" #

$l
$
V

K

l

Figure 11: Definition of kinematic variables.

D+ → K−π+!+ν was an excellent fit to the K
∗0

Breit-Wigner, it was assumed for many years that any
non-resonant component to D+ → K−π+!+ν must
be negligible. In 2002, FOCUS observed a strong,
forward-backward asymmetry in cos θv for events with

mKπbelow the K
∗0

pole with essentially no asymme-
try above the pole as shown in Figure 12. The simplest

Figure 12: Evidence for s-wave interference in D+ →
K−π+!+ν.

explanation for the cos θv asymmetry is an interfer-
ence between s-wave and p-wave amplitudes creating a
linear cos θv term. The phase of the s-wave amplitude
must be such that its phase is nearly orthogonal with

the Breit-Wigner (BW ) phase for mKπ > m(K
∗0

).
The (acoplanarity) averaged |A|2 in the zero lepton
mass limit (Eq. (7)) is constructed from the Breit-
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Comments on shape measurements in the charm system

[J. Wiss, hep-ex/0605030]

• parameters in common use have no precise physical 
definition (“effective pole”, “average slope”)

• theory + experiment (or expt1+expt2) don’t agree → what 
does this mean?  

• theory + experiment do (or expt1+expt2) agree → what 
does this mean?  
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Table I Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process CKM element |z|max

π+ → π0 Vud 3.5 × 10−5

B → D Vcb 0.032

K → π Vus 0.047

D → K Vcs 0.051

D → π Vcd 0.17

B → π Vub 0.28

have about the form factors, following just from kine-
matics without dynamics. Pseudoscalar-pseudoscalar
transitions between “heavy-light”, nonsinglet mesons
are particularly simple and are the main focus. 3

Rigorous power-counting arguments provide the basis
for a powerful expansion based on analyticity. Sec-
tion 3 illustrates how the experimental data is simpli-
fied by making use of this expansion. In particular,
we find the remarkable conclusion that in terms of
standard variables, no semileptonic meson form fac-
tor has ever been observed to deviate from a straight
line. Given that the form factors are indistinguishable
from straight lines, if the shape of the semileptonic
spectrum is to provide insight on QCD, it must be
through the slope of the form factor; in fact, a clear
but unsolved question in QCD translates directly into
the numerical value of this slope in an appropriate
limit, as described in Section 4. Phenomenological
implications in the B → π system are considered in
Section 5. The methodology described here provides
a convenient framework in which to understand pre-
cisely what measurements in the charm system can,
and cannot, say that is relevant to the bottom sys-
tem, as discussed in Section 6. Section 7 outlines the
extension to pseudoscalar-vector transitions.

2. Analyticity and crossing symmetry

An oft-cited downside of old and well-known
dispersion-relation arguments is that the results are
too general, and do not make specific predictions for
detailed dynamics. In fact, precisely these properties
make them useful to the problem at hand—it is essen-
tial to make some statement on the possible functional
form of the form factors, yet we do not want to make
assumptions, explicit or implicit, on the dynamics.

The analytic structure of the form factors can be

3The nonsinglet restriction ensures that only a single topol-
ogy is relevant as in Figure 1.
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Figure 2: Mapping (3) of the cut t plane onto the unit
circle. The semileptonic region is represented by the blue
line.

investigated by standard means. 4 Let us focus on
the form factors for pseudoscalar-pseudoscalar transi-
tions, defined by the matrix element of the relevant
weak vector current, (q ≡ p − p′)

〈L(p′)|V µ|H(p)〉
= F+(q2) (pµ + p′µ) + F−(q2)qµ

= F+(q2)

(
pµ + p′µ − m2

H − m2
L

q2
qµ

)

+F0(q
2)

m2
H − m2

L

q2
qµ . (1)

To ensure that there is no singularity at q2 = 0, the
form factors obey the constraint

F+(0) = F0(0) . (2)

Ignoring possible complications from anomalous
thresholds or subthreshold resonances, to be discussed
below, the form factors F (t = q2) can be extended
to analytic functions throughout the complex t plane,
except for a branch cut along the positive real axis,
starting at the point t = t+ [t± ≡ (mH ±mL)2] corre-
sponding to the threshold for production of real H̄L
pairs in the crossed channel. By a standard transfor-
mation, as illustrated in Figure 2, the cut t plane is
mapped onto the unit circle |z| ≤ 1,

z(t, t0) ≡
√

t+ − t −√
t+ − t0√

t+ − t +
√

t+ − t0
, (3)

where t0 is the point mapping onto z = 0. The iso-
lation of the semileptonic region from singularities in
the t plane implies that |z| < 1 throughout this re-
gion. Choosing t0 = t+(1 − √

1 − t−/t+) minimizes
the maximum value of |z|; for typical decays these
maximum values are given in Table I.

Since the form factor is analytic, it may be ex-
panded,

F (t) =
1

P (t)φ(t, t0)

∞∑
k=0

ak(t0)z(t, t0)
k , (4)

4For a general discussion, see e.g. [3]. For early work on
applications to semileptonic form factors, see [4, 5, 6, 7, 8, 9, 10].
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[BABAR, hep-ex/0507003]
[BABAR, hep-ex/0607060]

B→π
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103|Vub| = (3.7 ± 0.2) ×
0.8

F+(16 GeV2)

F+(0) = (0.25 ± 0.04) ×
F+(16 GeV2)
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Figure 3: ∆χ2 = 1 region for |Vub| for an infinitely precise form factor determination at a single
q2-value. The plot assumes that the form factor yields the central value |Vub| = 3.7 × 10−3.
The darkest band is obtained for

∑
k a2

k < 0.01, while the two lighter bands correspond to∑
k a2

k < 0.1 and
∑

k a2
k < 1.

be tuned to satisfy the sum rules (10), or equivalently, to make the integral in (8) converge.
However, the semileptonic data becomes insensitive to terms zk for large k, and again such a
modification has little impact on the fits. Thus, while at some level the bound (8) will con-
strain the parameters in the series parameterization (5), and the bound (9) will constrain the
parameters in the pole parameterization (2), we restrict attention to the constraints imposed
by (8) on the pole parameterization, and by (9) on the series parameterization.

4 Parameterization uncertainty and shape observables

With the bounds in place, it is straightforward to generalize the fits in Section 2 to include
arbitrarily many parameters. Imposing the very conservative bound

∑
k |ρk| < 10, we observe

that additional poles in the class of parameterizations (2) have essentially no impact on the
central value and errors for |Vub|. Similarly, using the very conservative bound

∑
k a2

k < 1 in
(5), we find that the inclusion of higher order terms beyond kmax = 2 has negligible impact
on |Vub|. The errors are dominated by the lattice input point, and both the central value and
errors are not changed significantly from the N = 1 or kmax = 2 fits in Section 2.

In order to isolate the uncertainty on the form factor shape inherent to the present data,
we show in Figure 3 the minimum attainable error on |Vub|, assuming exact knowledge of the
form factor at one q2-value. Results are shown for the parameterization (5), using various
bounds

∑
k a2

k < 0.01, 0.1 and 1. As the figure illustrates, points in the intermediate range of

8

[CLEO, hep-ex/0304019]
[BELLE, hep-ex/0408145]
[BABAR, hep-ex/0507003]
[BABAR, hep-ex/0506064]

Minimum error on Vub for theory input at one q2

• Lattice input at intermediate q² best
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103|VubF+(0)| = 0.93 ± 0.08

103|VubF+(16)| = 3.07 ± 0.14

103|VubF+(20)| = 5.1 ± 0.3

m2
BF ′

+(0)/F+(0) = 1.75+0.32
−0.53

m2
BF ′

+(16)/F+(16) = 2.87+0.25
−0.17

m2
BF ′

+(20)/F+(20) = 4.2 ± 0.4

[BABAR, hep-ex/0607060]

input to hadronic B decays,  Vub from LCSR

Vub from lattice

1+1/β-δ  
(input to hadronic 

B decays)

test lattice 

Applications of semileptonic data

[preliminary w/ T. Becher]
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Table II Linear expansion coefficient a1/a0 from (4) at

t0 = t+(1 −
√

1 − t−/t+) and Q = 0.

Process a1/a0 Reference

B → D −2.6 ± 2.3 [13]

K+ → π0 −0.2 ± 0.2 [14]

KL → π± −0.5 ± 0.2 [15]

0.0 ± 0.3 [16]

−0.2 ± 0.2 [17]

D → K −2.7 ± 0.5 ± 0.4 [18]

−2.2 ± 0.4 ± 0.4 [19]

−3.2 ± 0.5 ± 0.2 [20]

D → π −2.3 ± 0.7 ± 1.3 [18]

−1.6 ± 0.5 ± 1.0 [20]

B → π −1.3 ± 0.6 ± 2.3 [21]

−1.9 ± 0.3 ± 1.1 [12]

−1.3 ± 0.8 ± 2.2 [22]

and then identifying the coefficients in a Taylor series
at t = t+(1 − √

1 − t−/t+). The results for D → K,
D → π and B → π were obtained by fitting the linear
z parameterization in (4) to the data. A second error
is included by redoing the fits with the quadratic z
parameterization, subject to the conservative bound
|ak/a0| < 10. Due to the smallness of z for pion beta
decay, π+ → π0 (cf. Table I), the slope in this case is
orders of magnitude from being measured experimen-
tally [25].

At least through linear order, there is no evidence
of anomalously large coefficients that could upset the
power counting. While it would be desirable to push
to the next order and examine the size of a2/a0, com-
parison to data establishes the remarkable conclusion
that form-factor curvature has not yet been seen in
any semileptonic transition. In fact, for many cases,
a form factor slope has yet to be measured. An ex-
ample of the transformed form factor is illustrated for
B → π in Fig. 3.

From the amusing coincidence that zDK/zDπ ∼
|Vcd|/|Vcs|, and zBD/zBπ ∼ |Vub|/|Vcb|, it turns
out that the higher statistics of the Cabibbo-allowed
modes (B → D, D → K) are offset at linear order
by the smallness of z. It is thus likely that curva-
ture will eventually be measured first in the Cabibbo-
suppressed modes (B → π, D → π).

The results in Table II are by no means the fi-
nal word on these quantities, but illustrate the main
point, that there is no sign that the z expansion is
breaking down. It is also easy to see that unitarity has
very little impact. For example, for B → π, the bound
on F+ taken from the OPE at Q = 0 is overestimated
by a factor ∼ (mb/ΛQCD)3 [53]. Taking for definite-
ness, F+(t0 = 16 GeV) ≈ 0.8, the unitarity bound
tells us only that

∑
k a2

k/a2
0

<∼ 2500 [6, 26, 27]. For

B → D, at Q = 0 with the approximate symmetry re-
lation F+(t−) ≈ (mB+mD)/2

√
mBmD, and including

three subthreshold poles as in (6), the unitarity bound
is overestimated by a factor ∼ (mb/mc)3 and yields∑

k a2
k/a2

0
<∼ 9000 [6, 9]. While these bounds can be

improved somewhat by subtracting off subthreshold
poles, extending isospin SU(2) to SU(3) flavor sym-
metry, or by lowering Q2, all of these modifications
introduce their own uncertainties. 8

4. A fundamental question

Given that the form factors (after extracting stan-
dard kinematic factors, and expressing them in terms
of the appropriate standard variable) are so far indis-
tinguishable from a straight line, it is apparent that
any insight to be gained from the shape of the form
factors, whether it be tests of nonperturbative meth-
ods, inputs to other processes, or more fundamental
questions about QCD, must be based in first approx-
imation on the slope of the form factor. In fact, this
quantity does provide a clear test of lattice QCD, is an
important input to hadronic B decays, and in an ap-
propriate limit can provide the answer to a longstand-
ing open question about the QCD dynamics governing
form factors.

It is convenient to define the physical shape observ-
ables in terms of the form factor slopes at t = 0 [28],

1

β
≡ m2

H − m2
L

F+(0)

dF0

dt

∣∣∣∣
t=0

,

δ ≡ 1 − m2
H − m2

L

F+(0)

(
dF+

dt

∣∣∣∣
t=0

− dF0

dt

∣∣∣∣
t=0

)

≡ F+(0) + F−(0)

F+(0)
. (12)

The quantities β and δ depend only on the masses
of the mesons involved. 9 Being physical quantities,
they are independent of any renormalization scale or
scheme. As discussed in the introduction, these quan-
tities take definite values for all mH and mL, values
that are accessible experimentally at the fixed masses
mπ, mK , mD and mB. 10

8For modes such as B → D, the incredible smallness of z,
and the judicious use of heavy-quark symmetry, allows even
very conservative unitarity bounds to guarantee few-percent
level accuracy by keeping only the linear term in (4) [5, 8].

9Recall that we consider mesons with a fixed light spectator
quark, which for simplicity in the discussion is assumed mass-
less. The meson mass is therefore in one-to-one correspondence
with the heavy (non-spectator) quark mass.

10For some studies of δ − 1 ≡ F−(0)/F+(0), also called ξ(0),
in the early literature of light-meson form factors, see the re-
view [29]. The positive sign for ξ(0) predicted in a number of
models, e.g. [30, 31], is in disagreement with current data. For
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● A particularly insightful number is given by the 
difference of vector and scalar form factor slopes

δ = 1 −

m2
H
− m2

L

F+(0)

(
dF+

dt

∣∣∣∣
t=0

−

dF0

dt

∣∣∣∣
t=0

)

● Embarrassingly, we don’t even know if this number
takes the value 0 or 2 in the heavy mass limit

δ =
2H

ζ + H

soft overlap
hard scattering

● But we can measure this number at a few mass values
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that inclusion of the continuum contribution in (27)
is essential.

From a dynamical point of view, in order to ob-
tain the 1/E2 dependence appearing in heavy-to-light
form factors, as in (18), it is necessary that the con-
tinuum integral in (27) play a significant role. This
can be treated in a model independent way by break-
ing up the integral into a sum of effective poles,
and using power-counting estimates to establish rea-
sonable bounds on the coefficients of these effective
poles [28, 53]. In the first approximation, the contin-
uum integral is represented by a single effective pole,
and two parameters are necessary to describe its loca-
tion and strength relative to the H∗ pole. Since this is
one more parameter than is easily measured from the
data, various suggestions have been made for elimi-
nating one of these parameters.

The “single pole model”, where both the H∗ pole
and the continuum integral are represented by a single
pole that is allowed to float,

single pole :

F+(t) =
F+(0)

1 − t/m2
pole

,

(29)
is also ruled out by the data, although in a slightly
less direct way. Although the curve can be made to
fit, the pole position is forced to take an unphysical
value, significantly below both the H∗ pole and the
continuum. The “modified pole model”,

modified pole :

F+(t) =
F+(0)

(1 − t/m2
H∗) (1 − αpolet/m2

H∗)
,

(30)
holds a similar status. For D → K and D → π,
(25) and (26) clearly show that 1 + 1/β − δ ≈ 2 is not
valid for charm decays, as necessary for the motivation
for the simplification (30) proposed in [68]. Although
the form (30) can be made to fit the data, there is
no obvious physical interpretation for the resulting fit
parameter; in particular αpole obtained in this way has
no direct relation to the physical α defined in (27).

It should be kept in mind that unless there is a
physical meaning that can be given to the parameter
being studied, there is no guarantee that different ex-
perimental or lattice determinations will converge to
any one value for this parameter. It is therefore un-
clear what to make of discrepancies appearing when
different datasets are forced to fit models such as (29)
or (30) [69, 70]. The situation is especially dangerous
for comparing lattice and experiment, since the range
of t that is emphasized is different in the two cases.
These pitfalls are easily avoided by working with a
general parameterization such as (4) that is guaran-
teed to contain the true form factor, and by comparing
physical quantities, such as in (25), (26).

Table III Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process |z|max

D → K∗ 0.017

D → ρ 0.024

B → D∗ 0.028

B → ρ 0.10

6.3. Testing convergence

The general parameterization (4) provides a system-
atic procedure for estimating how many terms should
be resolved by data at a given level of precision. Rig-
orous bounds are placed on the coefficients by using
crossing symmetry to analyze the production form fac-
tor, either via unitarity arguments, or through power
counting of contributions from different momentum
regions. Since the latter estimates yield constraints
that are so much more powerful than can be safely es-
timated by unitarity, it is important to check wherever
possible that large “order unity” numbers don’t ap-
pear. As illustrated by Table II, the available semilep-
tonic data reveal no surprises.

7. Decays of pseudoscalar to vector
mesons

Pseudoscalar-pseudoscalar transitions hold a priv-
eleged position, from a first-principles simplicity point
of view, from the lattice point of view, and from the
experimental point of view. Pseudoscalar-vector tran-
sitions, while accompanied by new complications, are
however important backgrounds to the pseudosclar
mode, provide alternative extractions of CKM param-
eters, and yield important constraints on radiative
and hadronic transitions. This section briefly outlines
the implementation of the ideas in Section 2 to the
pseudoscalar-vector case. 18

The most obvious complication is the multiple in-
variant form factors that accompany the vector parti-
cle. Less obvious complications involve modifications
to the analytic structure of the form factors due to the
unstable nature of vector mesons, and the possible ex-
istence of anomalous thresholds. When these occur,
they will encroach on the gap between the semilep-
tonic region and singularities. The effects of such

18There have been numerous studies aimed at reproducing
the P → V data by means of symmetry arguments or proposed
generating resonance structures [71, 72, 73]. The focus of the
present talk is on the extraction of physical quantities without
simplifying or model assumptions.
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that inclusion of the continuum contribution in (27)
is essential.

From a dynamical point of view, in order to ob-
tain the 1/E2 dependence appearing in heavy-to-light
form factors, as in (18), it is necessary that the con-
tinuum integral in (27) play a significant role. This
can be treated in a model independent way by break-
ing up the integral into a sum of effective poles,
and using power-counting estimates to establish rea-
sonable bounds on the coefficients of these effective
poles [28, 53]. In the first approximation, the contin-
uum integral is represented by a single effective pole,
and two parameters are necessary to describe its loca-
tion and strength relative to the H∗ pole. Since this is
one more parameter than is easily measured from the
data, various suggestions have been made for elimi-
nating one of these parameters.

The “single pole model”, where both the H∗ pole
and the continuum integral are represented by a single
pole that is allowed to float,

single pole :

F+(t) =
F+(0)

1 − t/m2
pole

,

(29)
is also ruled out by the data, although in a slightly
less direct way. Although the curve can be made to
fit, the pole position is forced to take an unphysical
value, significantly below both the H∗ pole and the
continuum. The “modified pole model”,

modified pole :

F+(t) =
F+(0)

(1 − t/m2
H∗) (1 − αpolet/m2

H∗)
,

(30)
holds a similar status. For D → K and D → π,
(25) and (26) clearly show that 1 + 1/β − δ ≈ 2 is not
valid for charm decays, as necessary for the motivation
for the simplification (30) proposed in [68]. Although
the form (30) can be made to fit the data, there is
no obvious physical interpretation for the resulting fit
parameter; in particular αpole obtained in this way has
no direct relation to the physical α defined in (27).

It should be kept in mind that unless there is a
physical meaning that can be given to the parameter
being studied, there is no guarantee that different ex-
perimental or lattice determinations will converge to
any one value for this parameter. It is therefore un-
clear what to make of discrepancies appearing when
different datasets are forced to fit models such as (29)
or (30) [69, 70]. The situation is especially dangerous
for comparing lattice and experiment, since the range
of t that is emphasized is different in the two cases.
These pitfalls are easily avoided by working with a
general parameterization such as (4) that is guaran-
teed to contain the true form factor, and by comparing
physical quantities, such as in (25), (26).

Table III Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process |z|max

D → K∗ 0.017

D → ρ 0.024

B → D∗ 0.028

B → ρ 0.10

6.3. Testing convergence

The general parameterization (4) provides a system-
atic procedure for estimating how many terms should
be resolved by data at a given level of precision. Rig-
orous bounds are placed on the coefficients by using
crossing symmetry to analyze the production form fac-
tor, either via unitarity arguments, or through power
counting of contributions from different momentum
regions. Since the latter estimates yield constraints
that are so much more powerful than can be safely es-
timated by unitarity, it is important to check wherever
possible that large “order unity” numbers don’t ap-
pear. As illustrated by Table II, the available semilep-
tonic data reveal no surprises.

7. Decays of pseudoscalar to vector
mesons

Pseudoscalar-pseudoscalar transitions hold a priv-
eleged position, from a first-principles simplicity point
of view, from the lattice point of view, and from the
experimental point of view. Pseudoscalar-vector tran-
sitions, while accompanied by new complications, are
however important backgrounds to the pseudosclar
mode, provide alternative extractions of CKM param-
eters, and yield important constraints on radiative
and hadronic transitions. This section briefly outlines
the implementation of the ideas in Section 2 to the
pseudoscalar-vector case. 18

The most obvious complication is the multiple in-
variant form factors that accompany the vector parti-
cle. Less obvious complications involve modifications
to the analytic structure of the form factors due to the
unstable nature of vector mesons, and the possible ex-
istence of anomalous thresholds. When these occur,
they will encroach on the gap between the semilep-
tonic region and singularities. The effects of such

18There have been numerous studies aimed at reproducing
the P → V data by means of symmetry arguments or proposed
generating resonance structures [71, 72, 73]. The focus of the
present talk is on the extraction of physical quantities without
simplifying or model assumptions.
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that inclusion of the continuum contribution in (27)
is essential.

From a dynamical point of view, in order to ob-
tain the 1/E2 dependence appearing in heavy-to-light
form factors, as in (18), it is necessary that the con-
tinuum integral in (27) play a significant role. This
can be treated in a model independent way by break-
ing up the integral into a sum of effective poles,
and using power-counting estimates to establish rea-
sonable bounds on the coefficients of these effective
poles [28, 53]. In the first approximation, the contin-
uum integral is represented by a single effective pole,
and two parameters are necessary to describe its loca-
tion and strength relative to the H∗ pole. Since this is
one more parameter than is easily measured from the
data, various suggestions have been made for elimi-
nating one of these parameters.

The “single pole model”, where both the H∗ pole
and the continuum integral are represented by a single
pole that is allowed to float,

single pole :

F+(t) =
F+(0)

1 − t/m2
pole

,

(29)
is also ruled out by the data, although in a slightly
less direct way. Although the curve can be made to
fit, the pole position is forced to take an unphysical
value, significantly below both the H∗ pole and the
continuum. The “modified pole model”,

modified pole :

F+(t) =
F+(0)

(1 − t/m2
H∗) (1 − αpolet/m2

H∗)
,

(30)
holds a similar status. For D → K and D → π,
(25) and (26) clearly show that 1 + 1/β − δ ≈ 2 is not
valid for charm decays, as necessary for the motivation
for the simplification (30) proposed in [68]. Although
the form (30) can be made to fit the data, there is
no obvious physical interpretation for the resulting fit
parameter; in particular αpole obtained in this way has
no direct relation to the physical α defined in (27).

It should be kept in mind that unless there is a
physical meaning that can be given to the parameter
being studied, there is no guarantee that different ex-
perimental or lattice determinations will converge to
any one value for this parameter. It is therefore un-
clear what to make of discrepancies appearing when
different datasets are forced to fit models such as (29)
or (30) [69, 70]. The situation is especially dangerous
for comparing lattice and experiment, since the range
of t that is emphasized is different in the two cases.
These pitfalls are easily avoided by working with a
general parameterization such as (4) that is guaran-
teed to contain the true form factor, and by comparing
physical quantities, such as in (25), (26).

Table III Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process |z|max

D → K∗ 0.017

D → ρ 0.024

B → D∗ 0.028

B → ρ 0.10

6.3. Testing convergence

The general parameterization (4) provides a system-
atic procedure for estimating how many terms should
be resolved by data at a given level of precision. Rig-
orous bounds are placed on the coefficients by using
crossing symmetry to analyze the production form fac-
tor, either via unitarity arguments, or through power
counting of contributions from different momentum
regions. Since the latter estimates yield constraints
that are so much more powerful than can be safely es-
timated by unitarity, it is important to check wherever
possible that large “order unity” numbers don’t ap-
pear. As illustrated by Table II, the available semilep-
tonic data reveal no surprises.

7. Decays of pseudoscalar to vector
mesons

Pseudoscalar-pseudoscalar transitions hold a priv-
eleged position, from a first-principles simplicity point
of view, from the lattice point of view, and from the
experimental point of view. Pseudoscalar-vector tran-
sitions, while accompanied by new complications, are
however important backgrounds to the pseudosclar
mode, provide alternative extractions of CKM param-
eters, and yield important constraints on radiative
and hadronic transitions. This section briefly outlines
the implementation of the ideas in Section 2 to the
pseudoscalar-vector case. 18

The most obvious complication is the multiple in-
variant form factors that accompany the vector parti-
cle. Less obvious complications involve modifications
to the analytic structure of the form factors due to the
unstable nature of vector mesons, and the possible ex-
istence of anomalous thresholds. When these occur,
they will encroach on the gap between the semilep-
tonic region and singularities. The effects of such

18There have been numerous studies aimed at reproducing
the P → V data by means of symmetry arguments or proposed
generating resonance structures [71, 72, 73]. The focus of the
present talk is on the extraction of physical quantities without
simplifying or model assumptions.
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that inclusion of the continuum contribution in (27)
is essential.

From a dynamical point of view, in order to ob-
tain the 1/E2 dependence appearing in heavy-to-light
form factors, as in (18), it is necessary that the con-
tinuum integral in (27) play a significant role. This
can be treated in a model independent way by break-
ing up the integral into a sum of effective poles,
and using power-counting estimates to establish rea-
sonable bounds on the coefficients of these effective
poles [28, 53]. In the first approximation, the contin-
uum integral is represented by a single effective pole,
and two parameters are necessary to describe its loca-
tion and strength relative to the H∗ pole. Since this is
one more parameter than is easily measured from the
data, various suggestions have been made for elimi-
nating one of these parameters.

The “single pole model”, where both the H∗ pole
and the continuum integral are represented by a single
pole that is allowed to float,

single pole :

F+(t) =
F+(0)

1 − t/m2
pole

,

(29)
is also ruled out by the data, although in a slightly
less direct way. Although the curve can be made to
fit, the pole position is forced to take an unphysical
value, significantly below both the H∗ pole and the
continuum. The “modified pole model”,

modified pole :

F+(t) =
F+(0)

(1 − t/m2
H∗) (1 − αpolet/m2

H∗)
,

(30)
holds a similar status. For D → K and D → π,
(25) and (26) clearly show that 1 + 1/β − δ ≈ 2 is not
valid for charm decays, as necessary for the motivation
for the simplification (30) proposed in [68]. Although
the form (30) can be made to fit the data, there is
no obvious physical interpretation for the resulting fit
parameter; in particular αpole obtained in this way has
no direct relation to the physical α defined in (27).

It should be kept in mind that unless there is a
physical meaning that can be given to the parameter
being studied, there is no guarantee that different ex-
perimental or lattice determinations will converge to
any one value for this parameter. It is therefore un-
clear what to make of discrepancies appearing when
different datasets are forced to fit models such as (29)
or (30) [69, 70]. The situation is especially dangerous
for comparing lattice and experiment, since the range
of t that is emphasized is different in the two cases.
These pitfalls are easily avoided by working with a
general parameterization such as (4) that is guaran-
teed to contain the true form factor, and by comparing
physical quantities, such as in (25), (26).

Table III Maximum |z(t, t0)| throughout semileptonic

range with symmetrizing choice t0 = t+(1−
√

1 − t−/t+).

Process |z|max

D → K∗ 0.017

D → ρ 0.024

B → D∗ 0.028

B → ρ 0.10

6.3. Testing convergence

The general parameterization (4) provides a system-
atic procedure for estimating how many terms should
be resolved by data at a given level of precision. Rig-
orous bounds are placed on the coefficients by using
crossing symmetry to analyze the production form fac-
tor, either via unitarity arguments, or through power
counting of contributions from different momentum
regions. Since the latter estimates yield constraints
that are so much more powerful than can be safely es-
timated by unitarity, it is important to check wherever
possible that large “order unity” numbers don’t ap-
pear. As illustrated by Table II, the available semilep-
tonic data reveal no surprises.

7. Decays of pseudoscalar to vector
mesons

Pseudoscalar-pseudoscalar transitions hold a priv-
eleged position, from a first-principles simplicity point
of view, from the lattice point of view, and from the
experimental point of view. Pseudoscalar-vector tran-
sitions, while accompanied by new complications, are
however important backgrounds to the pseudosclar
mode, provide alternative extractions of CKM param-
eters, and yield important constraints on radiative
and hadronic transitions. This section briefly outlines
the implementation of the ideas in Section 2 to the
pseudoscalar-vector case. 18

The most obvious complication is the multiple in-
variant form factors that accompany the vector parti-
cle. Less obvious complications involve modifications
to the analytic structure of the form factors due to the
unstable nature of vector mesons, and the possible ex-
istence of anomalous thresholds. When these occur,
they will encroach on the gap between the semilep-
tonic region and singularities. The effects of such

18There have been numerous studies aimed at reproducing
the P → V data by means of symmetry arguments or proposed
generating resonance structures [71, 72, 73]. The focus of the
present talk is on the extraction of physical quantities without
simplifying or model assumptions.
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B→D(*)

• would be interesting to know if slope has 
been seen (certainly curvature is negligible)
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Some questions
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6. What’s charm got to do with it?

Charm decays provide a direct probe of the “in-
teresting” regime pictured in Fig. 6. They provide
an important test of lattice measurements for heavy-
to-light form factors, and a quantitative test of the
power-counting used to bound the form factor shape
in other processes such as B → π.

6.1. Fundamental questions

  ( GeV )Lm

0 2 4
!

-1

0

1

2

Figure 8: δ as a function of light-meson mass. The
upper (black) points are for fixed mH = mD, and the
lower (red) points for fixed mH = mB.

Depending on whether the soft or hard component
of the form factor dominates in the limit mH → ∞,
the difference in form factor slopes (12) tends to δ → 0
or δ → 2. The latter would require that the curves
such as in Fig. 4 turn upward at small mL, for suffi-
ciently large mH . If this happens, and unless a new
large scale is dynamically generated by QCD, at which
a turnaround in the curves would occur, some evi-
dence for this behavior should be evident in the charm
system. Precision measurements here directly probe
the dangerous region illustrated in Fig 6. For D → K
decays,

D → K :

1 + 1/β − δ = 1.03 ± 0.09 ± 0.11 [18]

0.94 ± 0.07 ± 0.10 [19]

1.13 ± 0.10 ± 0.12 [20] .(25)

Here the first error is experimental using the linear
z parameterization (just a0, a1) in (4). The second
error is a conservative estimate of the residual shape
uncertainty, obtained by allowing an extra parameter
in the fit (a0, a1 and a2), with |ak/a0| <∼ 10. Combin-
ing this with the lattice value β = 1.8± 0.1 yields the
D → K data point in Fig. 8.

Similarly for D → π decays,

D → π :

1 + 1/β − δ = 1.3 ± 0.4 ± 0.5 [18]

0.9 ± 0.2 ± 0.3 [20] , (26)

with the errors as above. Combined with the lattice
value β = 1.65 ± 0.10 yields the D → π data point in
Fig. 5 and Fig. 8.

Our current combined knowledge of form factor
shape from B and D decays is illustrated in Fig. 8.
So far the data do not indicate surprises in either of
the curves when extrapolated into the region mL

<∼
1 GeV. It will be interesting to probe this region with
more precision when further data becomes available.

6.2. Lattice, experiment and
parameterizations

Charm decays provide important tests of nonper-
turbative methods used to evaluate hadronic matrix
elements. When comparing the results of lattice QCD
with experiment, it should be kept in mind that the
kinematic regions that are studied with best precision
are different for the lattice (large t) and experiment
(small t). Also, the manner in which chiral extrap-
olations are performed to reach physical light-quark
masses imply that it is difficult to present lattice re-
sults in terms of uncorrelated values of the form factor
at different t values. In practice, the results are gen-
erally presented in terms of a parameterized curve;
to make a definitive comparison to experiment, it is
essential that the chosen parameterization doesn’t in-
troduce a bias. The ideas described in Section 2 allow
a systematic approach to this problem [58]. The re-
mainder of this subsection points out pitfalls that can
occur with some of the simplified parameterizations
in common use.

The starting point for many parameterizations is a
more pedestrian but rigorous approach to analyticity,
which implies the dispersion relation:

F+(t) =
F+(0)

1 − α

1

1 − t/m2
H∗

+
1

π

∫ ∞

t+

dt′
ImF (t′)
t′ − t

,

(27)
where a distinct mH∗ pole appears below threshold
for heavy-to-light decays such as B → π and D → K
(and almost for D → π). The first interesting test
is to see whether just the mH∗ pole can describe the
data,

vector dominance :

F+(t) =
F+(0)

1 − t/m2
H∗

.

(28)
In fact this “vector dominance” model can be explic-
itly ruled out by the data [12, 18, 19, 20, 20, 21, 22], so
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D→π,K

B→π

● Is δ a strictly increasing 
function of mass: 
δDK > δDπ   ?

● Simplest SCET description 
of B→ππ data requires 
δBπ ≈1.   Is there any evidence 
of a sharp upturn in the charm 
system  ?

Charm decays important to addressing B→ππ puzzles

[e.g. Jain, Rothstein, Stewart, hep-ph/0706.3399]
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Summary

• Very few, but very interesting observables accessible in 
exclusive semileptonic spectral shape 

• Theory tools very different for different modes 
(CHPT,HQET,SCET,..) but description of experimental data 
essentially the same

• Charm measurements important for refining the analyticity 
analysis, testing lattice, inputting to B decays



Overview and references: 
hep-ph/0606023


