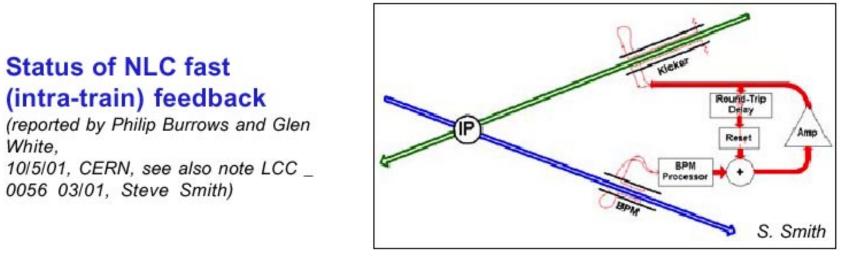


R&D

1

• Magnetic optics

"Folding" of beam by octupole doublets. Interaction with collimation requirements?



Beam delivery system—

2

• Feedback systems (example of a university group's contribution to machine R&D: P. Burrows, G. White, S. Smith, Oxford):

R&D

Initial offset	Start of s	steering	Full luminosity
$8 \text{ nm} (3 \sigma_y)$	after 36 ns	after 42 ns	(16 % of bunches)
100 nm (37 σ _v)	after 36 ns	after 120 ns	(45 % of bunches)

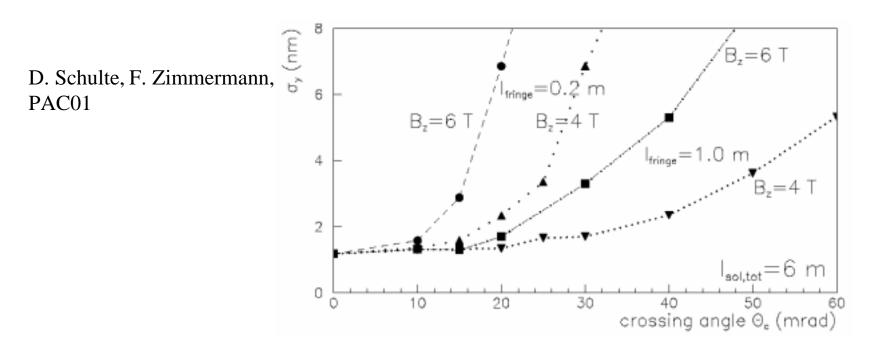
Beneficial for NLC and CLIC as well but not sufficient.

32

What is the origin of the beam halo?

• Calculations for all machines indicate a beam halo (due to beam-gas scattering and other known sources) at the level of 10^{-6} of the beam core population. SLC experienced a beam halo of 10^{-2} to 10^{-4} on its best days.

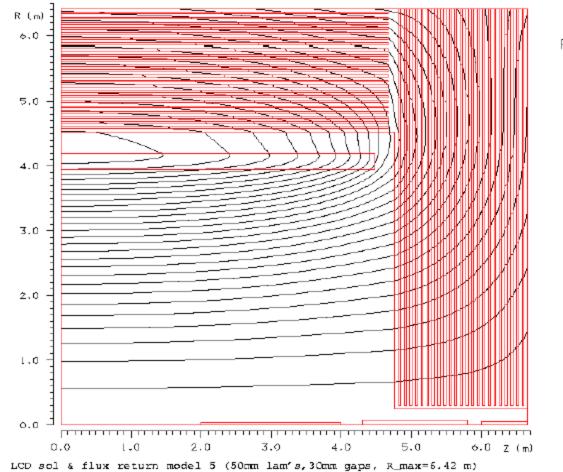
1


• Candidates include wake field distortions of the bunch phase space, dark current in the linac and uncollimated tails from the damping ring.

• The tails are a major source of background (through SR, secondary muons,...) and **must** be understood.

Effect of detector solenoid on luminosity

• Solenoid end fields cause the beam to radiate SR and blow up the vertical beam size at the IP. Detector solenoid must be designed taking this in account.


2

Machine-detector interface— R&D

NLC LD field map

R∦A_r

March 11, 2002

Machine-detector interface— R&D

4

Estimate of solenoid end-field effect

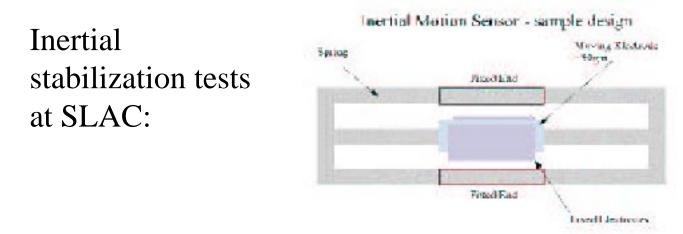
$$\Delta \sigma_y^{*2} = \frac{55}{24\sqrt{3}} r_e \lambda_e \frac{1}{20} \left(\frac{\gamma B_z \theta_c L}{2B\rho}\right)^5 \left[1 + 5\left(\frac{L}{l_{\text{fringe}}}\right)^2\right], \quad L = \text{Min}(L^*, L_{\text{sol}}/2)$$

Parameter designation			1a	1b	2a	2b	3a	3b	4a	4b
Central solenoid field	B_z	Т	2		3		5		4	
Crossing angle	θ_c	mrad	6		20		20		20	
$\operatorname{Min}(L^*, L_{\mathrm{sol}}/2)$	L	m	1.8		3.8		1.9		2.0	
Solenoid fringe field length	$l_{\rm fringe}$	m	1.0	0.3	1.0	0.3	1.0	0.3	1.0	0.3
Increase in σ_y^{*2} (from Eq. 1)	$\Delta \sigma_y^{*2}$	nm^2	1.3×10^{-5}	1.3×10^{-4}	7.1	77	0.74	7.8	0.34	3.7
Nominal squared beam size	σ_y^{*2}	nm^2	9.0		9.0		9.0		6.25	

5

Reduction of local neutron (and other) backgrounds

- Design of luminosity monitors
- Low-Z absorbers
- Shielding design
- Why so many neutrons in TESLA detector when crossing angle should help?


Machine-detector interface— R&D

IP magnet stabilization

- mechanical supports
- locally generated noise (cooling, detector,...)
- active feedback (optical anchor or inertial feedback)

Inertial Capacitive Sensors

6

Machine-detector interface-R&D

Sole noid Coil

Calorimeter

QA

2 m

Tracking

7

Measured Displacement over 100 seconds

presentation