Wiggler-dominated beam dynamics simulation and experiment

•Effect of wiggler magnetic nonlinearities on single-particle dynamics CESR-c wigglers will be *very* similar to the LC damping ring wigglers:

	Туре	$\int B^2 dl$	$B_{\rm max}$	Total	$\lambda_{w}(m)$	E	x_{max}	θ_{max}	K
		(T^2m)	(T)	length		(GeV)	(mm)	(mrad)	
				(m)					
NLC MDR	PM	106	2.15	46	0.27	1.98	8.2	14	54
TESLA DR	PM	592	1.67	432	0.40	5.0	2.5	6.4	62
CESRc (hi)	SC-Fe	~52	2.1	~18.2	~0.40	5.3	3.0	7.6	79
CESRc (lo)	SC-Fe	~52	2.1	~18.2	~0.40	1.55	10.3	26	79

Need to do wiggler design correctly!!!

Experiments to validate LC DR design tools:

R&D

• Compare measured dynamic aperture with particle tracking simulations of dynamic aperture.

- Measure tune shift vs. orbit bump.
- Measure tune shift, decoherence, and phase space distortion with pulsed bump.

Damping rings

Intra-beam scattering

• Measure σ_E/E as σ_y (and σ_x) are varied by coupling; measure σ_x , σ_y , and σ_E/E as a function of bunch current.

• Discrepancy of ATF IBS measurements with Piwinski, Raubenheimer, and Bjorken-Mtingwa theory (measurements ≈ 2 to $1.5 \times$ theory. Theory needs to be reconciled with observations.

• Some observations in ALS. More quantitative comparisons with theory needed. Further experiments in ALS may be difficult or not possible with recent installation of "superbends"

• No other suitable electron (*i.e.*, flat-beam) machines exist, yet (CESR-c can be used).

J. Rogers, Mini Machine Teach-In

Space charge tune shift

• Present in ATF and ALS at level of LC damping rings and at somewhat lower level in KEKB LER.

• Increased tune footprint may lead to particle loss.

• Single-bunch lifetime tune scan, and comparison with simulation, may be the best way to determine whether space charge tune shift is a problem for damping rings.

• Can be checked in CESR-c at low energy.

Local coupling (Derbenev) technique for reducing space charge effects

- Thorough particle tracking with space charge and optics errors is needed.
- Is there a long transfer line somewhere where this could be tested?

Damping rings— R&D

Demonstration of required ε_v

- Nearly achieved in ATF.
- Demonstration of continuous operation with low ε_y is needed! Continuously operating emittance diagnostics are essential!
- Not likely to be achieved in any other existing machine.
- Operating emittance ratio is below LC DR specs for several operating machines. These demonstrate that required *coupling* can be maintained.

5

- Better than TESLA DR spec: NSLS X-ray, Spring-8, MAX II, NSLS VUV, ESRF (in machine studies)
- Better than NLC MDR spec: all of the above, ESRF (in operation), LNLS, CESR, PLS

Electron cloud instability

- Simulations needed for LC DR chambers.
- Excellent relevant data from PEP-II LER, KEKB LER, APS,... already exists.

Fast ion instability

• Experimental data exists for ALS, PLS,... which requires comparison with LC DR parameters.

Control of circumference

• Requires a dedicated but straightforward experiment on a machine with a long enough straight for the installation of a chicane.

Beam size measurement techniques

- ATF is the *only* existing machine with ε_y approaching NLC MDR and TESLA DR requirements.
- Faster (higher optical power) laser wire technique for stored beams.
- Understand limitations of interferometer technique.
- Is ALS X-ray optical technique adaptable to ATF?

Impedance-driven collective effects

• LC DR regime similar to existing machines (SR light sources, B-factories, LEP).

Damping rings— R&D

Beam diagnostics: ATF laser wire (Y. Honda)

7.5 um waist size; laser intensity must be improved for fast scans

7

J. Rogers, Mini Machine Teach-In