Accelerator R&D Opportunities:

Damping Rings, Beam Delivery, and Interaction Region
J. Rogers, Cornell University

 Emphasis on projects with high priority which need attention.

» Please also see detailed list compiled by Tom Hietel|.
(http://www-project.slac.stanford.eduw/Ic/Project_List/intro.htm)
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Damping Rings Functions of the LC damping rings

 Damp the emittanceof the beam from the electron and positron sources prior to
injection into the linac

« Damp the jitter (from the source) of the beam.

* (Delay bunches so that downstream feedback systems have time to compensate for buncl
errors).

Design of the damping rings depends on the bunch pattern required by the linac:

Machine TESLA | NLC | CLIC
number of bunches per pulsg¢ 2820 192 154
bunch spacing (ns) 337 1.4 0.67
bunch train length (us) 950 0.26f7/ 0.102
pulse repetition rate (Hz) 5 120 200

NLC: train lengthc = 80 m. 3 trains fit into a small DR.

TESLA: train lengtle = 280 km. Willnotfit into a DR. Need to eject bunches
individually. Bunch spacing in DR (determined by ejection kicker bandwidth) is 20 ns, so
DR circumference is 17 km (beam folded on itsdl7).
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« Damping wiggler prototype ani

test. High priority.

i J.N.| E 1
, J = 001

machine. (Figure: A.Wolski

The linear collider damping
Corlett, Y. Wu, PACO01)

rings will be loaded with
reduce the useable aperture of-

damping wigglers. Even small
magnetic nonlinearities will

Wiggler designs exist for
NLC and TESLA, but no

prototypes or analyses of

tolerances.

Permanent magnet and
superconducting wigglers are

being considered.
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Damping Rings Component/subsystem development

» Extraction kicker and kicker compensation development. High priority.

TESLA must extract individual bunches from the damping ring, which has a bunch
spacing of 20 ns. Fast rise- and fall-time required from extraction kicker.

NLC and JLC extract long trains of bunches. Extraction kicker must be very flat.
For any project extraction kicker must be very reproducible.

extra kick
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Damping Rings—i=¥4p

e Beam size monitor development,

High priority.
Laser wirgfigure: Y. Honda)
Optical interferometer

X-ray synchrotron radiation
monitor

Optical diffraction radiation
monitor

Other ideas?...

 Polarimeter for the damping ring.

Medium priority.

Could be combined with laser
wire monitor.

Component/subsystem development

(enhanced and focused laser light)

detector count rate

: 1 i :
laser wire position
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Damping Rings—=¥:1p) Computer simulation and machine experiment

* Nonlinear, wiggler-dominated beam dynamics. High priority.

Particle-tracking simulations needed to maximize dynamic aperture, minimize
emittance growth. CESR-c will be the first storage ring in which synchrotron radiation
damping is dominated by wigglers, and experiments will be done here.

 Dispersion and coupling correction algorithms. High priority.

Beam-based alignment of magnets and beam position monitors will be required.
Ground motion and temperature changes move magnets, requiring continuous correction
of the orbit and coupling. The most obvious alignment/correction algorithms sometimes
fail to converge. Requires careful thought, simulation, and test.

*Electron cloud instability and tune spreatirfngs). High priority.

Electron cloud results in a very strong multi-bunch instability, single-bunch instability,
and tune spread. Requires improved simulation, remediation, and monitoring.
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Computer simulation and machine experiment

 Fast ion instability, ion trapping and tune spreadifg). High priority.

lons can be trapped by the beam, creating a large tune spread and a fast multi-bunch o
single-bunch instability. Much better simulation and further beam experiments are needed.
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« Space charge tune shift. Medium priority.

Beam self-defocusing produces a tune spread. Simulations needed to find effect on
emittance and particle loss and to determine optimum tunes. Experiments desirable.
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Materials science

« Suppression of the electron cloud. High priority.

Electron density grows exponentially when the effective secondary emission yield
exceeds 1. Low SEY, UHV-compatible surfaces must be developed to suppress the
electron cloud.
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(R. Kirby, SLAC). (M. Pivi, M. Furman, LCO02).
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Beam Delivery System & Interaction Regioffferenne o

Functions of the LC beam delivery system and interaction region:

» Focus the beams to a several nanometer (vertical) size at interaction point with well-
controlled aberrations.

» Keep beams in collision in the presence of ground motion and vibration.
» Minimize/collimate backgrounds.

» Monitor beam, luminosity, polarization.
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Beam Delivery System & Interaction Regiorjf IR
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Beam Delivery System & Interaction Regionrr s Wleile]s

TESLA interaction region
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Beam Delivery System & Interaction Regio/ie et le]s

NLC interaction region
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Beam Delivery System & Interaction Regionrr s Wleile]s

JLC interaction region

Support Tube

Luminosity Monitor

Beam Profile Monitor

Carbon Mask
Vertex
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Beam Delivery System & Interaction Regio Component/subsystem
development

 IP magnet stabilization. High priority.

Inertial stabilization and “optical anchor”
considered. Preliminary R&D has started.

(T. Markiewicz, Snowmass 2001)

Optical Anchor R&D

TSI |

Inertial stabilization test
(J. Frisch, LC02)

Memsured Dhsplacement aver 1 seoanids
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Component/subsystem
development

Beam Delivery System & Interaction Regio

 Final doublet magnets. Medium priority.

Permanent magnets (NLC): compact, allow exiting beam to pass; no internal source of
vibration; few external connections; fixed field.

Superconducting magnets (TESLA): Adjustable; large bore; massive. Is LHe flow a
source of vibration?

Fe/Cu magnets (JLC): Adjustable; massive; requires cooling water (source of
vibration?); requires shielding from detector solenoid.

Mock magnets for vibration testing and full design/prototypes needed.
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Beam Delivery System & Interaction Regio Instrumentation
development

Beam feedback system design. High priority.

NLC and JLC: short (8 ms) interval between trains, and short train. Use train by train
feedback (with possible intra-train feedback).

TESLA: long (200 ms) interval between trains, but long train. Use intra-train feedback.

(TESLA simulation)  (a) Separation Response

100 [ =
e \
5 m 5" 80
3 3 offset feedback OFF
o R S
E --------- A R s G R @ 60 offset feedback ON
§ = 5 £
f g
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Beam Delivery System & Interaction Regio Instrumentation
development

Status of NLC fast

(intra-train) feedback

(reported by Philip Burrows and Glen
White,

10/15/01, CERN, see also note LCC _
0056 03/01, Steve Smith)

Initial offset Start of steering Full luminosity
S§nm (3G ) after 36 ns after 42 ns (16 % of bunches)
100nm (37 6,)  after 36 ns after 120 ns (45 % of bunches)
Beneficial for NLC and CLIC as well but not sufficient. e
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Instrumentation
development

Beam Delivery System & Interaction Regio

e Luminosity monitor design. High priority.

Suppression of secondaries from pairs hitting luminosity monitor is a major issue. Can
the monitor be fast enough to measure the luminosity from each collision?

* IP beam size monitor. High priority.

Probably based on Compton scattering. How can this be incorporated into the
IR/detector geometry?

« Polarimeter design. Medium priority.
|deally want to measure polarization both before and after IP.
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Monte Carlo optimization
of IR design

Beam Delivery System & Interaction Regio

 Shielding and absorber design. High priority.
Backgrounds produced by the machine in the IR:
Synchrotron radiation from beam “tails” in IR quads;

Pairs produced in field of opposing bunch during collision;

Hadrons produced by beam- Pair distribution at z=200 .
beam gamma-gamma processes; 6 Tesl.

Beamstrahlung photons;

: High momentum paijrs
Secondaries (photons, &7 Omemn pajr 5
mostly in exit beampipe .

neutrons, electrons) produced
when pairs hit material near IP.

Y (cm)

Low momentum pairs

(T- Markiewicz,_ N - trapped by detector
LCO2 presentation) - -4 solenoid field

X (cm)

Tom Markiew
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