This paper reports the development status of 345 MHz, 4 cm beam aperture, three-spoke-loaded TEM-class superconducting cavities for particle velocities $0.4 < v/c < 0.8$. Two prototype cavities have been operated cw at 4.2 K at accelerating gradients above 10 MV/m. Results of cold tests, including mechanical properties and microphonic behavior, are presented.

ABSTRACT

This paper reports the development status of 345 MHz, 4 cm beam aperture, three-spoke-loaded TEM-class superconducting cavities for particle velocities $0.4 < v/c < 0.8$. Two prototype cavities have been operated cw at 4.2 K at accelerating gradients above 10 MV/m. Results of cold tests, including mechanical properties and microphonic behavior, are presented.

DESIGN

The designs were constrained to provide a 345 MHz three-spoke-loaded cavity of $\beta_{0.5} = 0.5$ and 0.6 with a 4 cm beam aperture. The design priorities were to minimize the peak surface electric and magnetic field and to provide good mechanical stability. The electromagnetic properties were numerically modeled using CST Microwave Studio, Version 5. The mechanical properties were modeled using Pro-E and ANSYS.

The spoke elements are elliptical in cross section in order to minimize the peak surface fields while accommodating a 4 cm beam aperture. The major axis of the ellipse is normal to the beam axis in the center of each spoke to minimize the surface electric field and maximize the beam aperture. The major axis is parallel to the beam axis in the region of the spokes near the outer cylindrical diameter of the cavity in order to minimize the peak surface magnetic field.

TUNING AND PROCESSING

Tuning and preliminary surface processing were performed when the three major sub-assemblies of the cavity were complete. Namely, the two spherical end-walls, complete with beam ports and support ribs, and the body of the cavity with coupling ports and all three spokes welded into the cylindrical housing. Tuning was accomplished by clamping the three sections together, using a thin layer of indium to join the sections, and then adjusting the frequency. The frequency was then brought to design value by machining to adjust the spacing between the end walls and spoke elements.

Prior to welding the three sections together, each was heavily electropolished, removing 150 – 200 microns of material to eliminate any damage caused by forming and machining. After SS welding the three niobium sections together, the SS helium jacket was clamped into place and welded together. The niobium-SS braze transitions were then EB welded to the niobium shell to complete the assembly. The completed cavity was given a light (2-3 micron) chemical polish (BCP). BCP was performed through the 2 inch ID coupling ports with the cavity in a horizontal position. It was found that a bubble could cling to an area roughly 10 cm in diameter at the top of the housing, possibly preventing full chemical polishing of this portion of the surface. To ensure a complete BCP, the cavity was rotated 180 degrees and given a second 4-7 micron BCP.

MECHANICAL PROPERTIES AND MICROPHONICS

The Lorenz detuning was measured to be 7.3 Hz per (MV/m). The magnitude of the microphonics is sufficiently small, 1 Hz RMS, that a tuning window of a few tens of Herz would be adequate for phase-control.

HYDROGEN Q-DISEASE

The data show a greater increase of rf loss with increasing field level, so-called Q-slope, than we have observed for the other four types of cavity prototyped at ANL for the RIA driver. We tested the possibility that hydrogen Q-disease may be contributing to the rf loss by warming the cavity and holding it for 48 hours in the temperature range 110 K – 140 K. On then cooling the cavity to helium temperature, we found the cavity Q was severely degraded, by a factor of 10 to 100.

Table I: Electromagnetic properties

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Frequency [MHz]</th>
<th>R_{PEAK} [G]</th>
<th>E_{PEAK} [MV/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSR500</td>
<td>345</td>
<td>0.398</td>
<td>2.79</td>
</tr>
<tr>
<td>TSR630</td>
<td>345</td>
<td>0.565</td>
<td>2.93</td>
</tr>
<tr>
<td>TSR630</td>
<td>345</td>
<td>0.565</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Table II: Electromagnetic properties

<table>
<thead>
<tr>
<th>Cavity</th>
<th>Frequency [MHz]</th>
<th>R_{PEAK} [G]</th>
<th>E_{PEAK} [MV/m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSR500</td>
<td>345</td>
<td>0.398</td>
<td>2.79</td>
</tr>
<tr>
<td>TSR630</td>
<td>345</td>
<td>0.565</td>
<td>2.93</td>
</tr>
<tr>
<td>TSR630</td>
<td>345</td>
<td>0.565</td>
<td>2.93</td>
</tr>
</tbody>
</table>

Figure 1: TSR500 cavity Q as a function of accelerating gradient.

Figure 2: TSR630 cavity Q as a function of accelerating gradient.

Figure 3: TSR630 cavity Q vs. EACC at 4.5 K (left) and 2 K (right) for a sequence of tests described in the text.

Figure 4: Distribution of frequency errors measured at $E_{\text{ACC}} = 9.7$ MV/m. The distribution is Gaussian over 5 orders of magnitude, with an RMS fluctuation of 1.1 Hz.

Figure 5: Distribution of frequency fluctuations of the rf eigenfrequency of the triple spoke cavity at 9.7 MV/m and 4.2K.

Figure 6: TSR500 cavity Q as a function of accelerating gradient.

Figure 7: TSR630 cavity Q as a function of accelerating gradient.

Figure 8: TSR630 cavity Q vs. EACC at 4.5 K (left) and 2 K (right) for a sequence of tests described in the text.