In order to evaluate the potentials of SQUID systems for Nb diagnostic a preliminary work was done in collaboration of Institute of Applied Physics, Justus-Liebig Universität Gießen, Gießen, Germany; WSK Meßtechnik GmbH, Hanau, Germany; DESY Hamburg, Germany.

SQUID-based scanning system for detecting defects in Nb sheets for RF cavities
F. Schölz, A. Farr, E. Wappler; WSK Hanau, Germany
M. Mück; ez-Squid Sinn, Germany
A. Brinkmann, W. Singer; DESY Hamburg, Germany

Preliminary results are encouraging: SQUID method has some advantages in comparison with eddy current method

The SQUID probe is more sensitive. Particles of size smaller than 50µm, not detectable with eddy current method, are detectable with SQUID. Detection of rather deep inclusions in the material or investigation of the inside surface of closed parts (cavities) is possible. The distance between the probe and the sample surface is not so critical for SQUID method.

WSK Mess- und Datentechnik in Hanau works on development of a SQUID scanning system specially designed for testing of Nb- sheets for XFEL project (X-Ray Free - Electron Laser).

The scanner is based on a xyz table with ca. 300mm x 300mm travel area. The low TC SQUID is situated within a 1.5 l fibre glass He cryostat fixed at the z axis. The eddy current is generated by a selectable coil of diameter 1 - 3 mm. In order to maximize the resolution of the sensor the magnetic field of the excitation coil can be minimized at the sensor location by a fine adjustable compensation current. The SQUID is used with a flux compensating amplifier; the amplifiers output is then processed by a lock-in amplifier to gain the magnetic field in phase and with 90° phase shift at the location of the squid sensor. Different filters are implemented into the lock-in amplifier to improve the signal/noise ratio. The lift-off effect has been minimized by the geometry of the coil. The system works in a non-shielded environment.

The eddy current SQUID method detected with variable phase differences not only shows the allocation of the lamination, but also the run of the separation through the material. It is also visible, that the dimension of the failure is much larger than detectable with the US method. For the detection of separations with US the size of the failure and its position in relation to the US-sensor is determining. The skew of the lamination through the Ta-sheet and its small dimension (less than 1 mm) makes the detection of such failures with US (most used for testing of such semi-finished products) nearly impossible.