Evidence of Non-Linear BCS Resistance in Multi-Lab Cavity Data to Model **Comparison**

P. Bauer - FNAL, A. Gurevich – ASC-UW, N. Solyak - FNAL, G. Ciovati - JLab, **B.** Visentin - CEA, L. Lilje - DESY. **G.Eremeev - Cornell**

Thermal Feedback

Thermal feed-back: exponential T-dependence of BCS surface resistance: $\rightarrow R_s \rightarrow P_{RF} \rightarrow \Delta T \rightarrow R_s \rightarrow \dots$

Material Properties

Mittag

Koechler - Bonin

Pbauer – SRF05 – Q-Slope Session

SUMMARY - TABLE

	C-103	C-115	D-AC70	F-3C-1	J-LLSC	J-OCSC	CU-EI1-30
	CEA	CEA	DESY	FNAL	JLAB	JLAB	CORNELL
T ₀ (K)	1.44	1.6	2 (1.9)	1.8	2.0	1.4	1.53 (1.75)
G (Ω)	283	283	270	291	282	273	255
d (mm)	2.6	2.6	2.6	2.6	2.6	2.6	2.75
κ(T ₀)?(W/K/m)	6.1	7.6	11.22	9.9	12.7	5.8	6.9 (9.3)
$h_{Kap}(T_0) (W/K/m^2)$	1090	1780	3956	3080	5021	956	1445 (2699)
$R_{res}(n\Omega)$	3.2 (4.2)	1 (2)	-10 (5.2)	10	17 (9.4)	3.6 (5)	11 (11)
$R_{bcs,lin}(T_0)$ (n Ω)	0.5 (0.3)	1.7 (1.05)	24 (4.3)	40	31 (20)	3.9 (5.1)	5.6 (1)
$\Delta/k_{B}T_{c}$	2 (2.05)	1.97 (1.93)	1.53 (1.94)	1.92	2.1 (1.94)	2.09 (2.15)	1.99 (1.99)
A(ω) (10 ⁻⁵ Ω)	2.76(2.13)	2.5 (1.2)	0.597(1.058)	14.8	4.4 (1.7)	4.46 (2.38)	3.7 (2.5)
T _c (K) *	9.2	9.2	9.2	9.2	9.2	9.2	9.2
ω/2π (GHz)	1.3	1.3	1.3	3.9	1.5	1.5	1.5
C (Τ ₀ ,ω)	4.5 (4.5)	3.6 (3.4)	1.5 (2.5)	2.9	2.6 (2.2)	5.2 (5.5)	3.9 (2.9)
μ ₀ Η _c (mT) *	180	180	180	180	180	180	180

Comparison Model-Data: GRAPHS I

Comparison Model-Data: GRAPHS II

SUMMARY

Assuming

>A standardized set of thermal material parameters;

> Measured low field residual and lin BCS surface resistance contribution;

>TFBM in a homogeneous material;

>Non-lin BCS surface resistance contribution as recently presented by A. Gurevich can explain medium field Q-Slope;

C is not large enough at lower temps (1.4 K) and too large at higher frequency (f>2 GHz);

>Non lin BCS also cannot explain ultimate field Q-drop;

Surface Resistance Review

8

Surface Resistance

BCS Surface Resistance

A. Gurevich

Thermal activation of normal electrons $n_a = n_0 (\pi k_B T/2\Delta)^{1/2} exp(-\Delta/k_B T)$

□ Accelerating electric field $E(z,t) = \mu_0 \omega \lambda H_{\omega} e^{-\lambda |z|} sin\omega t$

□ Scattering mechanisms and normal state conductivity: $\sigma_n = e^2 n_0 \ell / p_F$, $p_F = \hbar (3\pi^2 n_0)^{1/3}$

□ Normal skin effect ($\ell << \lambda$): multiple impurity scattering in the λ - belt: R_s ~ (μ₀²ω²λ³σ_nΔ/(k_BT))exp(-Δ/k_BT)

 $\label{eq:anomalous skin effect ($\ell >> λ): scattering by the gradient of the ac field E(z): Effective $\sigma_{eff} ~ e^2n_0\lambda/p_{Fi}$ $\ell \to λ }$

Linear BCS Surface Resistance for $H_{\omega} << H_{c}$

• Solution of the kinetic equation for type-II superconductor for the clean limit and diffusive surface scattering at $\omega^2 << \Delta T$:

$$R_{s} = \frac{3\mu_{0}^{2}\lambda^{3}\Delta}{2k_{B}T}\sigma_{eff}\omega^{2}e^{-\Delta/(k_{B}T)}\left[\ln\frac{1.2k_{B}T\Delta\xi^{2}}{\hbar^{2}\omega^{2}\lambda^{2}}\right] \qquad \Delta/(k_{B}T_{c}) \sim 2, T_{c}\sim 9.2K, \xi\sim\lambda\sim40nm$$

$$n_{0}\sim 6\cdot10^{28} \text{ m}^{-3}, v_{F}\sim 1.3\cdot10^{6} \text{ m/s}$$
• Effective conductivity in the non-local clean limit:
$$\sigma_{eff} = \frac{n_{0}e^{2}\lambda}{p_{F}}$$
No dependence of R_s on the normal resistivity and impurity scattering

Nonlinear BCS Surface Resistance

RF dissipation was calculated for clean limit (*l* >> λ) from kinetic equations for a superconductor in a strong rf field superimposed on a dc field;
 H(t) = H_ω cosωt + H₀

$$\boldsymbol{R}_{s,BCS}(\boldsymbol{T},\boldsymbol{H}_{RF}) = \boldsymbol{R}_{s,BCS}(\boldsymbol{T},\boldsymbol{H}_{RF} = 0) \left[1 + \boldsymbol{C}(\boldsymbol{T},\boldsymbol{\omega}) \left(\frac{\boldsymbol{H}_{RF}}{\boldsymbol{H}_{c}}\right)^{2} + \dots \right] \quad \boldsymbol{C}(\boldsymbol{T},\boldsymbol{\omega}) = \frac{\pi^{2}}{384} \left[1 + \frac{\ln(9)}{3\ln\left(4.1\frac{\boldsymbol{k}_{B}T\Delta}{(\hbar\boldsymbol{\omega})^{2}}\left(\frac{\boldsymbol{\xi}}{\boldsymbol{\lambda}}\right)^{2}\right)} \right] \left(\frac{\Delta}{\boldsymbol{k}_{B}T}\right)^{2}$$

• Nonlinear correction due to rf pair-breaking increases as the temperature decreases, At low T, the non-linearity becomes important even for comparatively weak rf amplitudes

- RF power P depends quadratically on the RF magnetic field;
- Higher order terms $\sim H_{\omega}^{4}$ also appear at $H_{\omega} \sim H_{c}$;
- Contribution due to the DC magnetic field H_0 is usually counted as "residual";

Material Properties

Courtesy of D. Retschke / DESY

Breakdown RF Field – Linear BCS only

$$H_{RF}^{2} = \frac{2(T_{m} - T_{0})T_{m}}{A(\omega)T_{c}}e^{\frac{aT_{c}}{T_{m}}}\left(\frac{\kappa h_{Kap}}{dh_{Kap} + \kappa}\right) \quad \left(\frac{A^{2}}{m^{2}}\right)$$

Thermal runaway occurs at a rather weak overheating. Thermal break-down field depends on T_0 and κ , hd.

Inserting $\Delta T \sim T_0^2 / \Delta$ gives an expression for the Q drop at the thermal quench:

 $Q(H_b) \approx Q(0) / e$

A. Gurevich

Pbauer – SRF05 – Q-Slope Session

G. Ciovati CEBAF 1cell in TM (1.47) and TE (2.82 GHz)

3rd harmonic 3-cell Fermilab March 2005

Pbauer – SRF05 – Q-Slope Session

Analytical "Haebel" Model $R_{s}(T) \approx R_{s}(T_{0}) + \frac{\partial R_{s}}{\partial T}\Big|_{T_{0}} \Delta T \quad (\Omega) \quad \frac{\partial R_{s}}{\partial T}\Big|_{T_{0}} = \left(R_{s}(T_{0}) - R_{s0}\right)\left(\frac{\alpha T_{c}}{T_{0}^{2}} - \frac{1}{T_{0}}\right)$ $R_{s}(H_{RF}) \approx R_{s}(T_{0})\left[1 + \left(\frac{dh_{Kap}(T_{0}) + \kappa(T_{0})}{2\kappa(T_{0})h_{Kap}(T_{0})}\right)\frac{\partial R_{s}(T)}{\partial T}\Big|_{T_{0}}H_{RF}^{2}\right]$

