Analysis of baked cavities

- Based on the paper of J. Hao et al., SRF 2003
- Practical approach to quantify the bake effect
- cavity results:
 - $E_{acc.max}$, $Q_0(E_{acc.max})$
 - E_{acc} @ (Po=(100W/9*n)) (normalisation to cell number) , E_{acc} @ Q_0 = 10¹⁰
- analysed preparation + test parameters:
 - BCP / EP / "mixed states"
 - before vs. after bake
 - temperature in 3 groups: (100 120)/ (120 130)/(130 140) °C
 - He bath temperature of rf test (not complete)

neglected:

- duration of bake, residual resistance, effect of warm-up above T_c

Results

- Concentration on EP cavity results ~ 30-40 cavities
 (for few BCP cavities no improvement of Eacc, but cure of Q-slope)
- Results not fully actualized
- Gain of Eacc after bake: typically 3-4 MV/m with large scatter
- average gradient after EP + bake: ~>35 MV/m
- Dependance on bake temperature:
 - no influence on E_{acc}
 - influence on $E_{acc}(P=100W/9*n)$???
 - critical parameter Q₀(E_{acc,max}):

bake temperature around 130C better than lower temperature (factor of 2 in $Q_0(E_{acc.max})$)

Analysis of baked cavities: E_{acc,max}

Analysis of baked cavities: E_{acc,max}

• EP-cavities: influence of bake temperature average gain of E_{acc} after (100 - 110)°C: 31,9 MV/m \Rightarrow 35,5 MV/m average gain of E_{acc} after (120 - 130)°C: 32,6 MV/m \Rightarrow 34,9 MV/m \Rightarrow no difference between (100 - 110)°C vs. (120 - 130) °C

EP-cavities: general high scatter of E_{acc,max}: 29 MV/m to 44 MV/m high scatter of gain: -5 MV/m to 12 MV/m (experimental problems, cavity close to quench limit, not FE limited)

• BCP-cavities: general (only 5 tests available) average gain of E_{acc} 30 MV/m \Rightarrow 29,6 MV/m \Rightarrow no improvement !!

• EP-cavities preliminary: add. 2nd bake gives no improvement (3 tests)

Analysis of baked cavities: E_{acc,max}

EP-cavities: average gain of E_{acc} after bake: 3,2 MV/m 6 5 Number of cavities 1 0 -(8~6) 10~12 Gain of Eacc (MV/m)

Analysis of baked cavities: $E_{acc}@Q_0=10^{10}$

• EP-cavities:

average E_{acc} @ $Q_0 = 10^{10}$ at $T_b = 2K$: 27 MV/m \Rightarrow 31,1 MV/m ■ EP: Eacc@1e10 after bake ■ EP: Eacc@1e10 before bake 5 4 no. of tests 2 1 0

Eacc [MV/m]

Analysis of baked cavities: $E_{acc}@Q_0=10^{10}$

- Only tests at T_b = 2K taken into account !
- EP-cavities: influence of bake temperature average gain of E_{acc} after (100 110)°C: 25,9 MV/m \Rightarrow 30,5 MV/m average gain of E_{acc} after (120 130)°C: 28,4 MV/m \Rightarrow 31,6 MV/m \Rightarrow no significant difference between (100 110)°C vs. (120 130) °C (limited statistics)
- EP-cavities: influence of Q-degradation due to multipacting high scatter of E_{acc.max} and gain (gain: -6 MV/m to 13 MV/m)
 - ⇒ multipacting leads to significant Q-degradation
- EP-cavities preliminary: add. 2nd bake gives no improvement (3 tests)

Analysis of baked cavities: $E_{acc}@Q_0=10^{10}$

• EP-cavities: gain of $E_{acc}@ Q_0 = 10^{10}$ after bake $(T_b = 2K)$: 4,1 MV/m

Detlef Reschke

13.07.2005

$E_{acc}@Q_0=10^{10}$: BCP vs. EP-cavities

 Standard treatment BCP-cavities without bake vs. baked EP-cavities (mix of nine-cells and single-cells; T_b = 2K):

$E_{acc}@Q_0=10^{10}$: BCP vs. EP-cavities

Standard treatment BCP-cavities without bake:

$$E_{acc}$$
@ $Q_0 = 10^{10} : 25,5 \text{ MV/m}$

Baked EP-cavities:

$$E_{acc} @ Q_0 = 10^{10} : 31,1 \text{ MV/m}$$

 \Rightarrow gain of 5,7 MV/m due to EP + bake

- remarks:
 - mix of nine-cells and single-cells at $T_b = 2K$
 - BCP-results show narrow distribution
 - EP-results show broad scattering (MP effect)
 - (BCP cavities show no (few) multipacting ⇒ no Q-degradation)

Analysis of baked cavities: $Q_0(E_{acc})$

EP-cavities: higher Q₀(E_{acc.max}) at T_{bake} = (120 - 130) °C

Analysis of baked cavities: $Q_0(E_{acc})$

EP-cavities:

```
Q_0(E_{acc,max}) at T_{bake} = (100 - 110) \,^{\circ}C: 5.4 · 10<sup>9</sup> (14 tests) Q_0(E_{acc,max}) at T_{bake} = (120 - 130) \,^{\circ}C: 9.0 · 10<sup>9</sup> (7 tests)
```

⇒ significant improvement by enhanced bake temperature

BCP-cavities:

only some tests show improved $Q_0(E_{acc.max})$