Performance of Large Grain and Single Crystal Niobium Cavities

P. Kneisel, G. Ciovati, G.R. Myneni, Jlab
J. Sekutowicz, DESY
T. Carneiro, CBMM
Jlab/CBMM Technology(1)

- Development started with the need for understanding mechanical properties of niobium from different manufacturers (G. Myneni)
- Ingot material supplied by CBMM with large grains (T. Carneiro)
- Mechanical properties—especially elongation—excellent, permitting forming of cavity cells
- Investigate influence of grain boundaries on “Q-drop”

Comparison of Single and Poly Crystal RRR niobium

![Graph showing comparison of single and poly crystal RRR niobium](image)

- **Y-axis**: Load (Pounds)
- **X-axis**: Percentage of elongation

July 12, 2005 SRF 2005, Cornell University
Jlab/CBMM Technology(2)

- Since the first ILC workshop we have fabricated and tested 5 single cell cavities (1300 MHz - 1500 MHz) from sliced material (wire EDM and saw cut) from 3 different ingots (“A”, “B”, “C”), 3 different shapes, CBMM
- We have fabricated and tested 2 single crystal cavities from ingot “A” at 2.3 GHz, CBMM
- We have fabricated two 2.3 GHz cavities with material from a second vendor (WC) with somewhat smaller grains (not yet tested)
- We have fabricated a single cell cavity from large grain niobium from China-Ningxia (not yet tested)
- We have fabricated a 7-cell HG-Jlab-Upgrade cavity, which has been tested with problems so far (leaks, FE)
- We are in the process of fabricating an ILC_LL 7-cell cavity and intend to present results at the Snowmass meeting
Jlab/CBMM Technology (3)

Ingot “B”

HG Single Cell Cavity - "Single Crystal "-B

Q_0 vs. E_{acc}

"150 micron bcp, post-purified, 100 micron bcp"

"In-situ" baked at 120C, 40 hrs

Test

Quench
Jlab/CBMM Technology(4)

Ingot “A”

HG Single Cell Cavity - "Single Crystal "-A
Q_0 vs. E_{acc}

Test #4/4a

after baking
before baking

Quench

E_{acc} [MV/m]
Jlab/CBMM Technology(5)

Discs from Ingot

Cavity

$E_{\text{peak}}/E_{\text{acc}} = 1.674$

$H_{\text{peak}}/E_{\text{acc}} = 4.286 \text{ mT/MV/m}$
Single Crystal Niobium Cavity (1)

Test #1a: Treatment 100 μm BCP, 800C hydrogen degassing, 100 μm BCP, high pressure rinsing for 30 min

2.2 GHz Single crystal single cell cavity

Q_0 vs. E_{acc}

$T=2K$ $T=1.7K$ $T=1.5K$
Single Crystal Niobium Cavity (2)

Test #2: T-dependence (before baking)

2.2 GHz Single crystal single cell cavity after post-purification, 70mm BCP 1:1:1, 30min HPR

\[\frac{\Delta}{kT_c} = 1.827 \pm 0.032 \]

\[R_{\text{res}} = 0.8 \pm 0.4 \text{ n\Omega} \]

\[l = 291 \pm 83 \text{ nm} \]

\[\lambda_L = 32 \text{ nm} \]

\[\xi = 62 \text{ nm} \]

\[T_c = 9.25 \text{ K} \]
Single Crystal Niobium Cavity (3)

Test #1b: Treatment 100 \(\mu\)m BCP, 800C hydrogen degassing, 100 \(\mu\)m BCP, high pressure rinsing, "in situ" baked at 120C for 48 hrs

2.2 GHz Single crystal single cell cavity, 120C 48h bake

\[Q_0 \text{ vs. } E_{\text{acc}} \]

\(Q_0 \) vs. \(E_{\text{acc}} \) graph showing data points for temperatures of 2K and 1.5K.

Transmitted signal

Field emission

Pulsed
Test #2: post-purification heat treatment at 1250 °C for 10 hours, 100 μm BCP, high pressure rinsing

2.2 GHz Single crystal single cell cavity after postpurification

Q_0 vs. E_{acc}

T=2K
T=1.84K
T=1.84K scaled to 1.3 GHz

ERL gradient
XFEL gradient
ILC gradient
Quench
Jlab/CBMM Technology (6)

Nb Discs

LL cavity 2.3GHz

$E_{\text{peak}}/E_{\text{acc}} = 2.072$

$H_{\text{peak}}/E_{\text{acc}} = 3.56 \text{ mT/MV/m}$
Jlab/CBMM Technology

ILC_LL Cavities: no Q-drop w/o baking

Large Grain ILC_LL_Cavity

Can't follow the resonance!

Quench @ 33 MV/m

1500 ppm Ta

July 12, 2005

SRF 2005, Cornell University
Surface Roughness (1)

BCP provides very smooth surfaces as measured by A. Wu, Jlab.

RMS: 1274 nm fine grain bcp

- 53 nm after ~ 35 micron, single Crys
- 27 nm after ~ 80 micron, single Crys
- 251 nm fine grain ep

July 12, 2005

SRF 2005, Cornell University
Surface Roughness (2) (A. Wu)

- Nb Single Crystal As-cut
 Average RMS 1591 nm

- 20 min BCP112
 Average RMS 870 nm

- BCP112 60 min
 Average RMS 459 nm

- BCP112 10 min
 Average RMS 1199 nm

- 50 min BCP112
 Average RMS 575 nm

- BCP 112 70 min
 Average RMS 424 nm

- BCP112 Using an Improved Agitation Method RMS 202 nm

July 12, 2005
With a single cell cavity of the OC shape and fabricated from ingot “A” material we are investigating the “improvements” in cavity performance as a function of material removal employing T-mapping with the goal to:

- understand the loss mechanisms in the cavity, especially in the region of the “Q-drop”
- “streamline” the surface treatment by BCP with respect to the amount of material removal, which might result in cost savings
T-Mapping (1)

T-mapping system: ~600 Allen-Bradley C-resistors
T-Mapping (2)

Eacc = 25.9 Mv/m
Q = 4.9 x 10⁹

Eacc = 27.6 Mv/m
Q = 3.1 x 10⁹

Eacc = 29 Mv/m
Q = 1.9 x 10⁹

70 micron
bcp 1:1:2

July 12, 2005
SRF 2005, Cornell University
T - Mapping(3)
Add. 25 micron bcp 1:1:2

$E_{acc} = 28.5 \text{ MV/m}$
$Q = 3.6 \times 10^9$

Large grain CEBAF Single cell cavity 25µm BCP 1:1:2
What are the potential advantages of large grain/single crystal niobium?

• Reduced costs
• Comparable performance
• Very smooth surfaces with BCP, no EP necessary
• Possibly elimination of “in situ” baking because of “Q-drop” onset at higher gradients
• Possibly very low residual resistances (high Q’s), favoring lower operation temperature (B. Petersen)
• Higher thermal stability because of “Phonon-Peak”
• Good or better mechanical performance than fine grain material (e.g. predictable spring back..)
• Less material QA (eddy current/squid scanning)
Cavities awaiting testing

Wah Chang
2.2 GHz, HG shape
July 12, 2005

China
1.5 GHz, OC shape
SRF 2005, Cornell University

CBMM
1.3 GHz ILC, LL shape
Acknowledgement

This work would not have been possible without the support of several colleagues from Jlab:

Bon Manus
Gary Slack
Larry Turlington
Steve Manning
Pete Kushnick
Isiah Daniels